1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2013 Red Hat
5  * Author: Rob Clark <robdclark@gmail.com>
6  */
7 
8 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/debugfs.h>
10 #include <linux/kthread.h>
11 #include <linux/seq_file.h>
12 
13 #include <drm/drm_crtc.h>
14 #include <drm/drm_file.h>
15 #include <drm/drm_probe_helper.h>
16 
17 #include "msm_drv.h"
18 #include "dpu_kms.h"
19 #include "dpu_hwio.h"
20 #include "dpu_hw_catalog.h"
21 #include "dpu_hw_intf.h"
22 #include "dpu_hw_ctl.h"
23 #include "dpu_hw_dspp.h"
24 #include "dpu_formats.h"
25 #include "dpu_encoder_phys.h"
26 #include "dpu_crtc.h"
27 #include "dpu_trace.h"
28 #include "dpu_core_irq.h"
29 
30 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\
31 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
32 
33 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
34 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
35 
36 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\
37 		(p) ? (p)->parent->base.id : -1, \
38 		(p) ? (p)->intf_idx - INTF_0 : -1, \
39 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
40 		##__VA_ARGS__)
41 
42 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
43 		(p) ? (p)->parent->base.id : -1, \
44 		(p) ? (p)->intf_idx - INTF_0 : -1, \
45 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
46 		##__VA_ARGS__)
47 
48 /*
49  * Two to anticipate panels that can do cmd/vid dynamic switching
50  * plan is to create all possible physical encoder types, and switch between
51  * them at runtime
52  */
53 #define NUM_PHYS_ENCODER_TYPES 2
54 
55 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
56 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
57 
58 #define MAX_CHANNELS_PER_ENC 2
59 
60 #define IDLE_SHORT_TIMEOUT	1
61 
62 #define MAX_HDISPLAY_SPLIT 1080
63 
64 /* timeout in frames waiting for frame done */
65 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
66 
67 /**
68  * enum dpu_enc_rc_events - events for resource control state machine
69  * @DPU_ENC_RC_EVENT_KICKOFF:
70  *	This event happens at NORMAL priority.
71  *	Event that signals the start of the transfer. When this event is
72  *	received, enable MDP/DSI core clocks. Regardless of the previous
73  *	state, the resource should be in ON state at the end of this event.
74  * @DPU_ENC_RC_EVENT_FRAME_DONE:
75  *	This event happens at INTERRUPT level.
76  *	Event signals the end of the data transfer after the PP FRAME_DONE
77  *	event. At the end of this event, a delayed work is scheduled to go to
78  *	IDLE_PC state after IDLE_TIMEOUT time.
79  * @DPU_ENC_RC_EVENT_PRE_STOP:
80  *	This event happens at NORMAL priority.
81  *	This event, when received during the ON state, leave the RC STATE
82  *	in the PRE_OFF state. It should be followed by the STOP event as
83  *	part of encoder disable.
84  *	If received during IDLE or OFF states, it will do nothing.
85  * @DPU_ENC_RC_EVENT_STOP:
86  *	This event happens at NORMAL priority.
87  *	When this event is received, disable all the MDP/DSI core clocks, and
88  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
89  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
90  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
91  *	Resource state should be in OFF at the end of the event.
92  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
93  *	This event happens at NORMAL priority from a work item.
94  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
95  *	This would disable MDP/DSI core clocks and change the resource state
96  *	to IDLE.
97  */
98 enum dpu_enc_rc_events {
99 	DPU_ENC_RC_EVENT_KICKOFF = 1,
100 	DPU_ENC_RC_EVENT_FRAME_DONE,
101 	DPU_ENC_RC_EVENT_PRE_STOP,
102 	DPU_ENC_RC_EVENT_STOP,
103 	DPU_ENC_RC_EVENT_ENTER_IDLE
104 };
105 
106 /*
107  * enum dpu_enc_rc_states - states that the resource control maintains
108  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
109  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
110  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
111  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
112  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
113  */
114 enum dpu_enc_rc_states {
115 	DPU_ENC_RC_STATE_OFF,
116 	DPU_ENC_RC_STATE_PRE_OFF,
117 	DPU_ENC_RC_STATE_ON,
118 	DPU_ENC_RC_STATE_IDLE
119 };
120 
121 /**
122  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
123  *	encoders. Virtual encoder manages one "logical" display. Physical
124  *	encoders manage one intf block, tied to a specific panel/sub-panel.
125  *	Virtual encoder defers as much as possible to the physical encoders.
126  *	Virtual encoder registers itself with the DRM Framework as the encoder.
127  * @base:		drm_encoder base class for registration with DRM
128  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
129  * @bus_scaling_client:	Client handle to the bus scaling interface
130  * @enabled:		True if the encoder is active, protected by enc_lock
131  * @num_phys_encs:	Actual number of physical encoders contained.
132  * @phys_encs:		Container of physical encoders managed.
133  * @cur_master:		Pointer to the current master in this mode. Optimization
134  *			Only valid after enable. Cleared as disable.
135  * @hw_pp		Handle to the pingpong blocks used for the display. No.
136  *			pingpong blocks can be different than num_phys_encs.
137  * @intfs_swapped	Whether or not the phys_enc interfaces have been swapped
138  *			for partial update right-only cases, such as pingpong
139  *			split where virtual pingpong does not generate IRQs
140  * @crtc:		Pointer to the currently assigned crtc. Normally you
141  *			would use crtc->state->encoder_mask to determine the
142  *			link between encoder/crtc. However in this case we need
143  *			to track crtc in the disable() hook which is called
144  *			_after_ encoder_mask is cleared.
145  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
146  *				all CTL paths
147  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
148  * @debugfs_root:		Debug file system root file node
149  * @enc_lock:			Lock around physical encoder
150  *				create/destroy/enable/disable
151  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
152  *				busy processing current command.
153  *				Bit0 = phys_encs[0] etc.
154  * @crtc_frame_event_cb:	callback handler for frame event
155  * @crtc_frame_event_cb_data:	callback handler private data
156  * @frame_done_timeout_ms:	frame done timeout in ms
157  * @frame_done_timer:		watchdog timer for frame done event
158  * @vsync_event_timer:		vsync timer
159  * @disp_info:			local copy of msm_display_info struct
160  * @idle_pc_supported:		indicate if idle power collaps is supported
161  * @rc_lock:			resource control mutex lock to protect
162  *				virt encoder over various state changes
163  * @rc_state:			resource controller state
164  * @delayed_off_work:		delayed worker to schedule disabling of
165  *				clks and resources after IDLE_TIMEOUT time.
166  * @vsync_event_work:		worker to handle vsync event for autorefresh
167  * @topology:                   topology of the display
168  * @idle_timeout:		idle timeout duration in milliseconds
169  */
170 struct dpu_encoder_virt {
171 	struct drm_encoder base;
172 	spinlock_t enc_spinlock;
173 	uint32_t bus_scaling_client;
174 
175 	bool enabled;
176 
177 	unsigned int num_phys_encs;
178 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
179 	struct dpu_encoder_phys *cur_master;
180 	struct dpu_encoder_phys *cur_slave;
181 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
182 
183 	bool intfs_swapped;
184 
185 	struct drm_crtc *crtc;
186 
187 	struct dentry *debugfs_root;
188 	struct mutex enc_lock;
189 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
190 	void (*crtc_frame_event_cb)(void *, u32 event);
191 	void *crtc_frame_event_cb_data;
192 
193 	atomic_t frame_done_timeout_ms;
194 	struct timer_list frame_done_timer;
195 	struct timer_list vsync_event_timer;
196 
197 	struct msm_display_info disp_info;
198 
199 	bool idle_pc_supported;
200 	struct mutex rc_lock;
201 	enum dpu_enc_rc_states rc_state;
202 	struct delayed_work delayed_off_work;
203 	struct kthread_work vsync_event_work;
204 	struct msm_display_topology topology;
205 
206 	u32 idle_timeout;
207 };
208 
209 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
210 
211 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
212 		enum dpu_intr_idx intr_idx)
213 {
214 	DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
215 		  DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
216 		  phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
217 
218 	if (phys_enc->parent_ops->handle_frame_done)
219 		phys_enc->parent_ops->handle_frame_done(
220 				phys_enc->parent, phys_enc,
221 				DPU_ENCODER_FRAME_EVENT_ERROR);
222 }
223 
224 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
225 		int32_t hw_id, struct dpu_encoder_wait_info *info);
226 
227 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
228 		enum dpu_intr_idx intr_idx,
229 		struct dpu_encoder_wait_info *wait_info)
230 {
231 	struct dpu_encoder_irq *irq;
232 	u32 irq_status;
233 	int ret;
234 
235 	if (!wait_info || intr_idx >= INTR_IDX_MAX) {
236 		DPU_ERROR("invalid params\n");
237 		return -EINVAL;
238 	}
239 	irq = &phys_enc->irq[intr_idx];
240 
241 	/* note: do master / slave checking outside */
242 
243 	/* return EWOULDBLOCK since we know the wait isn't necessary */
244 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
245 		DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d",
246 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
247 			  irq->irq_idx);
248 		return -EWOULDBLOCK;
249 	}
250 
251 	if (irq->irq_idx < 0) {
252 		DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s",
253 			      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
254 			      irq->name);
255 		return 0;
256 	}
257 
258 	DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d",
259 		      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
260 		      irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
261 		      atomic_read(wait_info->atomic_cnt));
262 
263 	ret = dpu_encoder_helper_wait_event_timeout(
264 			DRMID(phys_enc->parent),
265 			irq->hw_idx,
266 			wait_info);
267 
268 	if (ret <= 0) {
269 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
270 				irq->irq_idx, true);
271 		if (irq_status) {
272 			unsigned long flags;
273 
274 			DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, "
275 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
276 				      DRMID(phys_enc->parent), intr_idx,
277 				      irq->hw_idx, irq->irq_idx,
278 				      phys_enc->hw_pp->idx - PINGPONG_0,
279 				      atomic_read(wait_info->atomic_cnt));
280 			local_irq_save(flags);
281 			irq->cb.func(phys_enc, irq->irq_idx);
282 			local_irq_restore(flags);
283 			ret = 0;
284 		} else {
285 			ret = -ETIMEDOUT;
286 			DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, "
287 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
288 				      DRMID(phys_enc->parent), intr_idx,
289 				      irq->hw_idx, irq->irq_idx,
290 				      phys_enc->hw_pp->idx - PINGPONG_0,
291 				      atomic_read(wait_info->atomic_cnt));
292 		}
293 	} else {
294 		ret = 0;
295 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
296 			intr_idx, irq->hw_idx, irq->irq_idx,
297 			phys_enc->hw_pp->idx - PINGPONG_0,
298 			atomic_read(wait_info->atomic_cnt));
299 	}
300 
301 	return ret;
302 }
303 
304 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
305 		enum dpu_intr_idx intr_idx)
306 {
307 	struct dpu_encoder_irq *irq;
308 	int ret = 0;
309 
310 	if (intr_idx >= INTR_IDX_MAX) {
311 		DPU_ERROR("invalid params\n");
312 		return -EINVAL;
313 	}
314 	irq = &phys_enc->irq[intr_idx];
315 
316 	if (irq->irq_idx >= 0) {
317 		DPU_DEBUG_PHYS(phys_enc,
318 				"skipping already registered irq %s type %d\n",
319 				irq->name, irq->intr_type);
320 		return 0;
321 	}
322 
323 	irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms,
324 			irq->intr_type, irq->hw_idx);
325 	if (irq->irq_idx < 0) {
326 		DPU_ERROR_PHYS(phys_enc,
327 			"failed to lookup IRQ index for %s type:%d\n",
328 			irq->name, irq->intr_type);
329 		return -EINVAL;
330 	}
331 
332 	ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
333 			&irq->cb);
334 	if (ret) {
335 		DPU_ERROR_PHYS(phys_enc,
336 			"failed to register IRQ callback for %s\n",
337 			irq->name);
338 		irq->irq_idx = -EINVAL;
339 		return ret;
340 	}
341 
342 	ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1);
343 	if (ret) {
344 		DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d",
345 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
346 			  irq->irq_idx);
347 		dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
348 				irq->irq_idx, &irq->cb);
349 		irq->irq_idx = -EINVAL;
350 		return ret;
351 	}
352 
353 	trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
354 				irq->hw_idx, irq->irq_idx);
355 
356 	return ret;
357 }
358 
359 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
360 		enum dpu_intr_idx intr_idx)
361 {
362 	struct dpu_encoder_irq *irq;
363 	int ret;
364 
365 	irq = &phys_enc->irq[intr_idx];
366 
367 	/* silently skip irqs that weren't registered */
368 	if (irq->irq_idx < 0) {
369 		DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d",
370 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
371 			  irq->irq_idx);
372 		return 0;
373 	}
374 
375 	ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1);
376 	if (ret) {
377 		DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d",
378 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
379 			  irq->irq_idx, ret);
380 	}
381 
382 	ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
383 			&irq->cb);
384 	if (ret) {
385 		DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d",
386 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
387 			  irq->irq_idx, ret);
388 	}
389 
390 	trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
391 					     irq->hw_idx, irq->irq_idx);
392 
393 	irq->irq_idx = -EINVAL;
394 
395 	return 0;
396 }
397 
398 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
399 				  struct dpu_encoder_hw_resources *hw_res)
400 {
401 	struct dpu_encoder_virt *dpu_enc = NULL;
402 	int i = 0;
403 
404 	dpu_enc = to_dpu_encoder_virt(drm_enc);
405 	DPU_DEBUG_ENC(dpu_enc, "\n");
406 
407 	/* Query resources used by phys encs, expected to be without overlap */
408 	memset(hw_res, 0, sizeof(*hw_res));
409 
410 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
411 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
412 
413 		if (phys->ops.get_hw_resources)
414 			phys->ops.get_hw_resources(phys, hw_res);
415 	}
416 }
417 
418 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
419 {
420 	struct dpu_encoder_virt *dpu_enc = NULL;
421 	int i = 0;
422 
423 	if (!drm_enc) {
424 		DPU_ERROR("invalid encoder\n");
425 		return;
426 	}
427 
428 	dpu_enc = to_dpu_encoder_virt(drm_enc);
429 	DPU_DEBUG_ENC(dpu_enc, "\n");
430 
431 	mutex_lock(&dpu_enc->enc_lock);
432 
433 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
434 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
435 
436 		if (phys->ops.destroy) {
437 			phys->ops.destroy(phys);
438 			--dpu_enc->num_phys_encs;
439 			dpu_enc->phys_encs[i] = NULL;
440 		}
441 	}
442 
443 	if (dpu_enc->num_phys_encs)
444 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
445 				dpu_enc->num_phys_encs);
446 	dpu_enc->num_phys_encs = 0;
447 	mutex_unlock(&dpu_enc->enc_lock);
448 
449 	drm_encoder_cleanup(drm_enc);
450 	mutex_destroy(&dpu_enc->enc_lock);
451 }
452 
453 void dpu_encoder_helper_split_config(
454 		struct dpu_encoder_phys *phys_enc,
455 		enum dpu_intf interface)
456 {
457 	struct dpu_encoder_virt *dpu_enc;
458 	struct split_pipe_cfg cfg = { 0 };
459 	struct dpu_hw_mdp *hw_mdptop;
460 	struct msm_display_info *disp_info;
461 
462 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
463 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
464 		return;
465 	}
466 
467 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
468 	hw_mdptop = phys_enc->hw_mdptop;
469 	disp_info = &dpu_enc->disp_info;
470 
471 	if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
472 		return;
473 
474 	/**
475 	 * disable split modes since encoder will be operating in as the only
476 	 * encoder, either for the entire use case in the case of, for example,
477 	 * single DSI, or for this frame in the case of left/right only partial
478 	 * update.
479 	 */
480 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
481 		if (hw_mdptop->ops.setup_split_pipe)
482 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
483 		return;
484 	}
485 
486 	cfg.en = true;
487 	cfg.mode = phys_enc->intf_mode;
488 	cfg.intf = interface;
489 
490 	if (cfg.en && phys_enc->ops.needs_single_flush &&
491 			phys_enc->ops.needs_single_flush(phys_enc))
492 		cfg.split_flush_en = true;
493 
494 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
495 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
496 
497 		if (hw_mdptop->ops.setup_split_pipe)
498 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
499 	}
500 }
501 
502 static void _dpu_encoder_adjust_mode(struct drm_connector *connector,
503 		struct drm_display_mode *adj_mode)
504 {
505 	struct drm_display_mode *cur_mode;
506 
507 	if (!connector || !adj_mode)
508 		return;
509 
510 	list_for_each_entry(cur_mode, &connector->modes, head) {
511 		if (cur_mode->vdisplay == adj_mode->vdisplay &&
512 		    cur_mode->hdisplay == adj_mode->hdisplay &&
513 		    drm_mode_vrefresh(cur_mode) == drm_mode_vrefresh(adj_mode)) {
514 			adj_mode->private_flags |= cur_mode->private_flags;
515 		}
516 	}
517 }
518 
519 static struct msm_display_topology dpu_encoder_get_topology(
520 			struct dpu_encoder_virt *dpu_enc,
521 			struct dpu_kms *dpu_kms,
522 			struct drm_display_mode *mode)
523 {
524 	struct msm_display_topology topology;
525 	int i, intf_count = 0;
526 
527 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
528 		if (dpu_enc->phys_encs[i])
529 			intf_count++;
530 
531 	/* Datapath topology selection
532 	 *
533 	 * Dual display
534 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
535 	 *
536 	 * Single display
537 	 * 1 LM, 1 INTF
538 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
539 	 *
540 	 * Adding color blocks only to primary interface
541 	 */
542 	if (intf_count == 2)
543 		topology.num_lm = 2;
544 	else if (!dpu_kms->catalog->caps->has_3d_merge)
545 		topology.num_lm = 1;
546 	else
547 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
548 
549 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI)
550 		topology.num_dspp = topology.num_lm;
551 
552 	topology.num_enc = 0;
553 	topology.num_intf = intf_count;
554 
555 	return topology;
556 }
557 static int dpu_encoder_virt_atomic_check(
558 		struct drm_encoder *drm_enc,
559 		struct drm_crtc_state *crtc_state,
560 		struct drm_connector_state *conn_state)
561 {
562 	struct dpu_encoder_virt *dpu_enc;
563 	struct msm_drm_private *priv;
564 	struct dpu_kms *dpu_kms;
565 	const struct drm_display_mode *mode;
566 	struct drm_display_mode *adj_mode;
567 	struct msm_display_topology topology;
568 	struct dpu_global_state *global_state;
569 	int i = 0;
570 	int ret = 0;
571 
572 	if (!drm_enc || !crtc_state || !conn_state) {
573 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
574 				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
575 		return -EINVAL;
576 	}
577 
578 	dpu_enc = to_dpu_encoder_virt(drm_enc);
579 	DPU_DEBUG_ENC(dpu_enc, "\n");
580 
581 	priv = drm_enc->dev->dev_private;
582 	dpu_kms = to_dpu_kms(priv->kms);
583 	mode = &crtc_state->mode;
584 	adj_mode = &crtc_state->adjusted_mode;
585 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
586 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
587 
588 	/*
589 	 * display drivers may populate private fields of the drm display mode
590 	 * structure while registering possible modes of a connector with DRM.
591 	 * These private fields are not populated back while DRM invokes
592 	 * the mode_set callbacks. This module retrieves and populates the
593 	 * private fields of the given mode.
594 	 */
595 	_dpu_encoder_adjust_mode(conn_state->connector, adj_mode);
596 
597 	/* perform atomic check on the first physical encoder (master) */
598 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
599 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
600 
601 		if (phys->ops.atomic_check)
602 			ret = phys->ops.atomic_check(phys, crtc_state,
603 					conn_state);
604 		else if (phys->ops.mode_fixup)
605 			if (!phys->ops.mode_fixup(phys, mode, adj_mode))
606 				ret = -EINVAL;
607 
608 		if (ret) {
609 			DPU_ERROR_ENC(dpu_enc,
610 					"mode unsupported, phys idx %d\n", i);
611 			break;
612 		}
613 	}
614 
615 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
616 
617 	/* Reserve dynamic resources now. */
618 	if (!ret) {
619 		/*
620 		 * Avoid reserving resources when mode set is pending. Topology
621 		 * info may not be available to complete reservation.
622 		 */
623 		if (drm_atomic_crtc_needs_modeset(crtc_state)) {
624 			ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
625 					drm_enc, crtc_state, topology);
626 		}
627 	}
628 
629 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags,
630 			adj_mode->private_flags);
631 
632 	return ret;
633 }
634 
635 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
636 			struct msm_display_info *disp_info)
637 {
638 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
639 	struct msm_drm_private *priv;
640 	struct dpu_kms *dpu_kms;
641 	struct dpu_hw_mdp *hw_mdptop;
642 	struct drm_encoder *drm_enc;
643 	int i;
644 
645 	if (!dpu_enc || !disp_info) {
646 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
647 					dpu_enc != NULL, disp_info != NULL);
648 		return;
649 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
650 		DPU_ERROR("invalid num phys enc %d/%d\n",
651 				dpu_enc->num_phys_encs,
652 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
653 		return;
654 	}
655 
656 	drm_enc = &dpu_enc->base;
657 	/* this pointers are checked in virt_enable_helper */
658 	priv = drm_enc->dev->dev_private;
659 
660 	dpu_kms = to_dpu_kms(priv->kms);
661 	hw_mdptop = dpu_kms->hw_mdp;
662 	if (!hw_mdptop) {
663 		DPU_ERROR("invalid mdptop\n");
664 		return;
665 	}
666 
667 	if (hw_mdptop->ops.setup_vsync_source &&
668 			disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
669 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
670 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
671 
672 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
673 		if (disp_info->is_te_using_watchdog_timer)
674 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
675 		else
676 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
677 
678 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
679 	}
680 }
681 
682 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
683 {
684 	struct dpu_encoder_virt *dpu_enc;
685 	int i;
686 
687 	if (!drm_enc) {
688 		DPU_ERROR("invalid encoder\n");
689 		return;
690 	}
691 
692 	dpu_enc = to_dpu_encoder_virt(drm_enc);
693 
694 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
695 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
696 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
697 
698 		if (phys->ops.irq_control)
699 			phys->ops.irq_control(phys, enable);
700 	}
701 
702 }
703 
704 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
705 		bool enable)
706 {
707 	struct msm_drm_private *priv;
708 	struct dpu_kms *dpu_kms;
709 	struct dpu_encoder_virt *dpu_enc;
710 
711 	dpu_enc = to_dpu_encoder_virt(drm_enc);
712 	priv = drm_enc->dev->dev_private;
713 	dpu_kms = to_dpu_kms(priv->kms);
714 
715 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
716 
717 	if (!dpu_enc->cur_master) {
718 		DPU_ERROR("encoder master not set\n");
719 		return;
720 	}
721 
722 	if (enable) {
723 		/* enable DPU core clks */
724 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
725 
726 		/* enable all the irq */
727 		_dpu_encoder_irq_control(drm_enc, true);
728 
729 	} else {
730 		/* disable all the irq */
731 		_dpu_encoder_irq_control(drm_enc, false);
732 
733 		/* disable DPU core clks */
734 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
735 	}
736 
737 }
738 
739 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
740 		u32 sw_event)
741 {
742 	struct dpu_encoder_virt *dpu_enc;
743 	struct msm_drm_private *priv;
744 	bool is_vid_mode = false;
745 
746 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
747 		DPU_ERROR("invalid parameters\n");
748 		return -EINVAL;
749 	}
750 	dpu_enc = to_dpu_encoder_virt(drm_enc);
751 	priv = drm_enc->dev->dev_private;
752 	is_vid_mode = dpu_enc->disp_info.capabilities &
753 						MSM_DISPLAY_CAP_VID_MODE;
754 
755 	/*
756 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
757 	 * events and return early for other events (ie wb display).
758 	 */
759 	if (!dpu_enc->idle_pc_supported &&
760 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
761 			sw_event != DPU_ENC_RC_EVENT_STOP &&
762 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
763 		return 0;
764 
765 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
766 			 dpu_enc->rc_state, "begin");
767 
768 	switch (sw_event) {
769 	case DPU_ENC_RC_EVENT_KICKOFF:
770 		/* cancel delayed off work, if any */
771 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
772 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
773 					sw_event);
774 
775 		mutex_lock(&dpu_enc->rc_lock);
776 
777 		/* return if the resource control is already in ON state */
778 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
779 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n",
780 				      DRMID(drm_enc), sw_event);
781 			mutex_unlock(&dpu_enc->rc_lock);
782 			return 0;
783 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
784 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
785 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n",
786 				      DRMID(drm_enc), sw_event,
787 				      dpu_enc->rc_state);
788 			mutex_unlock(&dpu_enc->rc_lock);
789 			return -EINVAL;
790 		}
791 
792 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
793 			_dpu_encoder_irq_control(drm_enc, true);
794 		else
795 			_dpu_encoder_resource_control_helper(drm_enc, true);
796 
797 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
798 
799 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
800 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
801 				 "kickoff");
802 
803 		mutex_unlock(&dpu_enc->rc_lock);
804 		break;
805 
806 	case DPU_ENC_RC_EVENT_FRAME_DONE:
807 		/*
808 		 * mutex lock is not used as this event happens at interrupt
809 		 * context. And locking is not required as, the other events
810 		 * like KICKOFF and STOP does a wait-for-idle before executing
811 		 * the resource_control
812 		 */
813 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
814 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
815 				      DRMID(drm_enc), sw_event,
816 				      dpu_enc->rc_state);
817 			return -EINVAL;
818 		}
819 
820 		/*
821 		 * schedule off work item only when there are no
822 		 * frames pending
823 		 */
824 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
825 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
826 				      DRMID(drm_enc));
827 			return 0;
828 		}
829 
830 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
831 				   msecs_to_jiffies(dpu_enc->idle_timeout));
832 
833 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
834 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
835 				 "frame done");
836 		break;
837 
838 	case DPU_ENC_RC_EVENT_PRE_STOP:
839 		/* cancel delayed off work, if any */
840 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
841 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
842 					sw_event);
843 
844 		mutex_lock(&dpu_enc->rc_lock);
845 
846 		if (is_vid_mode &&
847 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
848 			_dpu_encoder_irq_control(drm_enc, true);
849 		}
850 		/* skip if is already OFF or IDLE, resources are off already */
851 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
852 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
853 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
854 				      DRMID(drm_enc), sw_event,
855 				      dpu_enc->rc_state);
856 			mutex_unlock(&dpu_enc->rc_lock);
857 			return 0;
858 		}
859 
860 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
861 
862 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
863 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
864 				 "pre stop");
865 
866 		mutex_unlock(&dpu_enc->rc_lock);
867 		break;
868 
869 	case DPU_ENC_RC_EVENT_STOP:
870 		mutex_lock(&dpu_enc->rc_lock);
871 
872 		/* return if the resource control is already in OFF state */
873 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
874 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
875 				      DRMID(drm_enc), sw_event);
876 			mutex_unlock(&dpu_enc->rc_lock);
877 			return 0;
878 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
879 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
880 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
881 			mutex_unlock(&dpu_enc->rc_lock);
882 			return -EINVAL;
883 		}
884 
885 		/**
886 		 * expect to arrive here only if in either idle state or pre-off
887 		 * and in IDLE state the resources are already disabled
888 		 */
889 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
890 			_dpu_encoder_resource_control_helper(drm_enc, false);
891 
892 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
893 
894 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
895 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
896 				 "stop");
897 
898 		mutex_unlock(&dpu_enc->rc_lock);
899 		break;
900 
901 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
902 		mutex_lock(&dpu_enc->rc_lock);
903 
904 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
905 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
906 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
907 			mutex_unlock(&dpu_enc->rc_lock);
908 			return 0;
909 		}
910 
911 		/*
912 		 * if we are in ON but a frame was just kicked off,
913 		 * ignore the IDLE event, it's probably a stale timer event
914 		 */
915 		if (dpu_enc->frame_busy_mask[0]) {
916 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
917 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
918 			mutex_unlock(&dpu_enc->rc_lock);
919 			return 0;
920 		}
921 
922 		if (is_vid_mode)
923 			_dpu_encoder_irq_control(drm_enc, false);
924 		else
925 			_dpu_encoder_resource_control_helper(drm_enc, false);
926 
927 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
928 
929 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
930 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
931 				 "idle");
932 
933 		mutex_unlock(&dpu_enc->rc_lock);
934 		break;
935 
936 	default:
937 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
938 			  sw_event);
939 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
940 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
941 				 "error");
942 		break;
943 	}
944 
945 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
946 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
947 			 "end");
948 	return 0;
949 }
950 
951 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
952 				      struct drm_display_mode *mode,
953 				      struct drm_display_mode *adj_mode)
954 {
955 	struct dpu_encoder_virt *dpu_enc;
956 	struct msm_drm_private *priv;
957 	struct dpu_kms *dpu_kms;
958 	struct list_head *connector_list;
959 	struct drm_connector *conn = NULL, *conn_iter;
960 	struct drm_crtc *drm_crtc;
961 	struct dpu_crtc_state *cstate;
962 	struct dpu_global_state *global_state;
963 	struct msm_display_topology topology;
964 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
965 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
966 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
967 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
968 	int num_lm, num_ctl, num_pp, num_dspp;
969 	int i, j;
970 
971 	if (!drm_enc) {
972 		DPU_ERROR("invalid encoder\n");
973 		return;
974 	}
975 
976 	dpu_enc = to_dpu_encoder_virt(drm_enc);
977 	DPU_DEBUG_ENC(dpu_enc, "\n");
978 
979 	priv = drm_enc->dev->dev_private;
980 	dpu_kms = to_dpu_kms(priv->kms);
981 	connector_list = &dpu_kms->dev->mode_config.connector_list;
982 
983 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
984 	if (IS_ERR_OR_NULL(global_state)) {
985 		DPU_ERROR("Failed to get global state");
986 		return;
987 	}
988 
989 	trace_dpu_enc_mode_set(DRMID(drm_enc));
990 
991 	list_for_each_entry(conn_iter, connector_list, head)
992 		if (conn_iter->encoder == drm_enc)
993 			conn = conn_iter;
994 
995 	if (!conn) {
996 		DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
997 		return;
998 	} else if (!conn->state) {
999 		DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
1000 		return;
1001 	}
1002 
1003 	drm_for_each_crtc(drm_crtc, drm_enc->dev)
1004 		if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc))
1005 			break;
1006 
1007 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
1008 
1009 	/* Query resource that have been reserved in atomic check step. */
1010 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1011 		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1012 		ARRAY_SIZE(hw_pp));
1013 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1014 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1015 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1016 		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1017 	num_dspp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1018 		drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1019 		ARRAY_SIZE(hw_dspp));
1020 
1021 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1022 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1023 						: NULL;
1024 
1025 	cstate = to_dpu_crtc_state(drm_crtc->state);
1026 
1027 	for (i = 0; i < num_lm; i++) {
1028 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1029 
1030 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1031 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1032 		cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1033 	}
1034 
1035 	cstate->num_mixers = num_lm;
1036 
1037 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1038 		int num_blk;
1039 		struct dpu_hw_blk *hw_blk[MAX_CHANNELS_PER_ENC];
1040 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1041 
1042 		if (!dpu_enc->hw_pp[i]) {
1043 			DPU_ERROR_ENC(dpu_enc,
1044 				"no pp block assigned at idx: %d\n", i);
1045 			return;
1046 		}
1047 
1048 		if (!hw_ctl[i]) {
1049 			DPU_ERROR_ENC(dpu_enc,
1050 				"no ctl block assigned at idx: %d\n", i);
1051 			return;
1052 		}
1053 
1054 		phys->hw_pp = dpu_enc->hw_pp[i];
1055 		phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1056 
1057 		num_blk = dpu_rm_get_assigned_resources(&dpu_kms->rm,
1058 			global_state, drm_enc->base.id, DPU_HW_BLK_INTF,
1059 			hw_blk, ARRAY_SIZE(hw_blk));
1060 		for (j = 0; j < num_blk; j++) {
1061 			struct dpu_hw_intf *hw_intf;
1062 
1063 			hw_intf = to_dpu_hw_intf(hw_blk[i]);
1064 			if (hw_intf->idx == phys->intf_idx)
1065 				phys->hw_intf = hw_intf;
1066 		}
1067 
1068 		if (!phys->hw_intf) {
1069 			DPU_ERROR_ENC(dpu_enc,
1070 				      "no intf block assigned at idx: %d\n", i);
1071 			return;
1072 		}
1073 
1074 		phys->connector = conn->state->connector;
1075 		if (phys->ops.mode_set)
1076 			phys->ops.mode_set(phys, mode, adj_mode);
1077 	}
1078 }
1079 
1080 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1081 {
1082 	struct dpu_encoder_virt *dpu_enc = NULL;
1083 	struct msm_drm_private *priv;
1084 	struct dpu_kms *dpu_kms;
1085 
1086 	if (!drm_enc || !drm_enc->dev) {
1087 		DPU_ERROR("invalid parameters\n");
1088 		return;
1089 	}
1090 
1091 	priv = drm_enc->dev->dev_private;
1092 	dpu_kms = to_dpu_kms(priv->kms);
1093 
1094 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1095 	if (!dpu_enc || !dpu_enc->cur_master) {
1096 		DPU_ERROR("invalid dpu encoder/master\n");
1097 		return;
1098 	}
1099 
1100 	if (dpu_enc->cur_master->hw_mdptop &&
1101 			dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc)
1102 		dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc(
1103 				dpu_enc->cur_master->hw_mdptop,
1104 				dpu_kms->catalog);
1105 
1106 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1107 }
1108 
1109 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1110 {
1111 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1112 
1113 	mutex_lock(&dpu_enc->enc_lock);
1114 
1115 	if (!dpu_enc->enabled)
1116 		goto out;
1117 
1118 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1119 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1120 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1121 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1122 
1123 	_dpu_encoder_virt_enable_helper(drm_enc);
1124 
1125 out:
1126 	mutex_unlock(&dpu_enc->enc_lock);
1127 }
1128 
1129 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1130 {
1131 	struct dpu_encoder_virt *dpu_enc = NULL;
1132 	int ret = 0;
1133 	struct drm_display_mode *cur_mode = NULL;
1134 
1135 	if (!drm_enc) {
1136 		DPU_ERROR("invalid encoder\n");
1137 		return;
1138 	}
1139 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1140 
1141 	mutex_lock(&dpu_enc->enc_lock);
1142 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1143 
1144 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1145 			     cur_mode->vdisplay);
1146 
1147 	/* always enable slave encoder before master */
1148 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1149 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1150 
1151 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1152 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1153 
1154 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1155 	if (ret) {
1156 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1157 				ret);
1158 		goto out;
1159 	}
1160 
1161 	_dpu_encoder_virt_enable_helper(drm_enc);
1162 
1163 	dpu_enc->enabled = true;
1164 
1165 out:
1166 	mutex_unlock(&dpu_enc->enc_lock);
1167 }
1168 
1169 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1170 {
1171 	struct dpu_encoder_virt *dpu_enc = NULL;
1172 	struct msm_drm_private *priv;
1173 	struct dpu_kms *dpu_kms;
1174 	struct dpu_global_state *global_state;
1175 	int i = 0;
1176 
1177 	if (!drm_enc) {
1178 		DPU_ERROR("invalid encoder\n");
1179 		return;
1180 	} else if (!drm_enc->dev) {
1181 		DPU_ERROR("invalid dev\n");
1182 		return;
1183 	}
1184 
1185 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1186 	DPU_DEBUG_ENC(dpu_enc, "\n");
1187 
1188 	mutex_lock(&dpu_enc->enc_lock);
1189 	dpu_enc->enabled = false;
1190 
1191 	priv = drm_enc->dev->dev_private;
1192 	dpu_kms = to_dpu_kms(priv->kms);
1193 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
1194 
1195 	trace_dpu_enc_disable(DRMID(drm_enc));
1196 
1197 	/* wait for idle */
1198 	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1199 
1200 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1201 
1202 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1203 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1204 
1205 		if (phys->ops.disable)
1206 			phys->ops.disable(phys);
1207 	}
1208 
1209 	/* after phys waits for frame-done, should be no more frames pending */
1210 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1211 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1212 		del_timer_sync(&dpu_enc->frame_done_timer);
1213 	}
1214 
1215 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1216 
1217 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1218 		dpu_enc->phys_encs[i]->connector = NULL;
1219 	}
1220 
1221 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1222 
1223 	dpu_rm_release(global_state, drm_enc);
1224 
1225 	mutex_unlock(&dpu_enc->enc_lock);
1226 }
1227 
1228 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1229 		enum dpu_intf_type type, u32 controller_id)
1230 {
1231 	int i = 0;
1232 
1233 	for (i = 0; i < catalog->intf_count; i++) {
1234 		if (catalog->intf[i].type == type
1235 		    && catalog->intf[i].controller_id == controller_id) {
1236 			return catalog->intf[i].id;
1237 		}
1238 	}
1239 
1240 	return INTF_MAX;
1241 }
1242 
1243 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1244 		struct dpu_encoder_phys *phy_enc)
1245 {
1246 	struct dpu_encoder_virt *dpu_enc = NULL;
1247 	unsigned long lock_flags;
1248 
1249 	if (!drm_enc || !phy_enc)
1250 		return;
1251 
1252 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1253 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1254 
1255 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1256 	if (dpu_enc->crtc)
1257 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1258 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1259 
1260 	atomic_inc(&phy_enc->vsync_cnt);
1261 	DPU_ATRACE_END("encoder_vblank_callback");
1262 }
1263 
1264 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1265 		struct dpu_encoder_phys *phy_enc)
1266 {
1267 	if (!phy_enc)
1268 		return;
1269 
1270 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1271 	atomic_inc(&phy_enc->underrun_cnt);
1272 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1273 				  atomic_read(&phy_enc->underrun_cnt));
1274 	DPU_ATRACE_END("encoder_underrun_callback");
1275 }
1276 
1277 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1278 {
1279 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1280 	unsigned long lock_flags;
1281 
1282 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1283 	/* crtc should always be cleared before re-assigning */
1284 	WARN_ON(crtc && dpu_enc->crtc);
1285 	dpu_enc->crtc = crtc;
1286 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1287 }
1288 
1289 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1290 					struct drm_crtc *crtc, bool enable)
1291 {
1292 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1293 	unsigned long lock_flags;
1294 	int i;
1295 
1296 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1297 
1298 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1299 	if (dpu_enc->crtc != crtc) {
1300 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1301 		return;
1302 	}
1303 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1304 
1305 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1306 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1307 
1308 		if (phys->ops.control_vblank_irq)
1309 			phys->ops.control_vblank_irq(phys, enable);
1310 	}
1311 }
1312 
1313 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1314 		void (*frame_event_cb)(void *, u32 event),
1315 		void *frame_event_cb_data)
1316 {
1317 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1318 	unsigned long lock_flags;
1319 	bool enable;
1320 
1321 	enable = frame_event_cb ? true : false;
1322 
1323 	if (!drm_enc) {
1324 		DPU_ERROR("invalid encoder\n");
1325 		return;
1326 	}
1327 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1328 
1329 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1330 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1331 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1332 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1333 }
1334 
1335 static void dpu_encoder_frame_done_callback(
1336 		struct drm_encoder *drm_enc,
1337 		struct dpu_encoder_phys *ready_phys, u32 event)
1338 {
1339 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1340 	unsigned int i;
1341 
1342 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1343 			| DPU_ENCODER_FRAME_EVENT_ERROR
1344 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1345 
1346 		if (!dpu_enc->frame_busy_mask[0]) {
1347 			/**
1348 			 * suppress frame_done without waiter,
1349 			 * likely autorefresh
1350 			 */
1351 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
1352 					event, ready_phys->intf_idx);
1353 			return;
1354 		}
1355 
1356 		/* One of the physical encoders has become idle */
1357 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1358 			if (dpu_enc->phys_encs[i] == ready_phys) {
1359 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1360 						dpu_enc->frame_busy_mask[0]);
1361 				clear_bit(i, dpu_enc->frame_busy_mask);
1362 			}
1363 		}
1364 
1365 		if (!dpu_enc->frame_busy_mask[0]) {
1366 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1367 			del_timer(&dpu_enc->frame_done_timer);
1368 
1369 			dpu_encoder_resource_control(drm_enc,
1370 					DPU_ENC_RC_EVENT_FRAME_DONE);
1371 
1372 			if (dpu_enc->crtc_frame_event_cb)
1373 				dpu_enc->crtc_frame_event_cb(
1374 					dpu_enc->crtc_frame_event_cb_data,
1375 					event);
1376 		}
1377 	} else {
1378 		if (dpu_enc->crtc_frame_event_cb)
1379 			dpu_enc->crtc_frame_event_cb(
1380 				dpu_enc->crtc_frame_event_cb_data, event);
1381 	}
1382 }
1383 
1384 static void dpu_encoder_off_work(struct work_struct *work)
1385 {
1386 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1387 			struct dpu_encoder_virt, delayed_off_work.work);
1388 
1389 	if (!dpu_enc) {
1390 		DPU_ERROR("invalid dpu encoder\n");
1391 		return;
1392 	}
1393 
1394 	dpu_encoder_resource_control(&dpu_enc->base,
1395 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1396 
1397 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1398 				DPU_ENCODER_FRAME_EVENT_IDLE);
1399 }
1400 
1401 /**
1402  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1403  * drm_enc: Pointer to drm encoder structure
1404  * phys: Pointer to physical encoder structure
1405  * extra_flush_bits: Additional bit mask to include in flush trigger
1406  */
1407 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1408 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1409 {
1410 	struct dpu_hw_ctl *ctl;
1411 	int pending_kickoff_cnt;
1412 	u32 ret = UINT_MAX;
1413 
1414 	if (!phys->hw_pp) {
1415 		DPU_ERROR("invalid pingpong hw\n");
1416 		return;
1417 	}
1418 
1419 	ctl = phys->hw_ctl;
1420 	if (!ctl->ops.trigger_flush) {
1421 		DPU_ERROR("missing trigger cb\n");
1422 		return;
1423 	}
1424 
1425 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1426 
1427 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1428 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1429 
1430 	ctl->ops.trigger_flush(ctl);
1431 
1432 	if (ctl->ops.get_pending_flush)
1433 		ret = ctl->ops.get_pending_flush(ctl);
1434 
1435 	trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1436 				    pending_kickoff_cnt, ctl->idx,
1437 				    extra_flush_bits, ret);
1438 }
1439 
1440 /**
1441  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1442  * phys: Pointer to physical encoder structure
1443  */
1444 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1445 {
1446 	if (!phys) {
1447 		DPU_ERROR("invalid argument(s)\n");
1448 		return;
1449 	}
1450 
1451 	if (!phys->hw_pp) {
1452 		DPU_ERROR("invalid pingpong hw\n");
1453 		return;
1454 	}
1455 
1456 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1457 		phys->ops.trigger_start(phys);
1458 }
1459 
1460 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1461 {
1462 	struct dpu_hw_ctl *ctl;
1463 
1464 	ctl = phys_enc->hw_ctl;
1465 	if (ctl->ops.trigger_start) {
1466 		ctl->ops.trigger_start(ctl);
1467 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1468 	}
1469 }
1470 
1471 static int dpu_encoder_helper_wait_event_timeout(
1472 		int32_t drm_id,
1473 		int32_t hw_id,
1474 		struct dpu_encoder_wait_info *info)
1475 {
1476 	int rc = 0;
1477 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1478 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1479 	s64 time;
1480 
1481 	do {
1482 		rc = wait_event_timeout(*(info->wq),
1483 				atomic_read(info->atomic_cnt) == 0, jiffies);
1484 		time = ktime_to_ms(ktime_get());
1485 
1486 		trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time,
1487 						 expected_time,
1488 						 atomic_read(info->atomic_cnt));
1489 	/* If we timed out, counter is valid and time is less, wait again */
1490 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1491 			(time < expected_time));
1492 
1493 	return rc;
1494 }
1495 
1496 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1497 {
1498 	struct dpu_encoder_virt *dpu_enc;
1499 	struct dpu_hw_ctl *ctl;
1500 	int rc;
1501 
1502 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1503 	ctl = phys_enc->hw_ctl;
1504 
1505 	if (!ctl->ops.reset)
1506 		return;
1507 
1508 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent),
1509 		      ctl->idx);
1510 
1511 	rc = ctl->ops.reset(ctl);
1512 	if (rc)
1513 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1514 
1515 	phys_enc->enable_state = DPU_ENC_ENABLED;
1516 }
1517 
1518 /**
1519  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1520  *	Iterate through the physical encoders and perform consolidated flush
1521  *	and/or control start triggering as needed. This is done in the virtual
1522  *	encoder rather than the individual physical ones in order to handle
1523  *	use cases that require visibility into multiple physical encoders at
1524  *	a time.
1525  * dpu_enc: Pointer to virtual encoder structure
1526  */
1527 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1528 {
1529 	struct dpu_hw_ctl *ctl;
1530 	uint32_t i, pending_flush;
1531 	unsigned long lock_flags;
1532 
1533 	pending_flush = 0x0;
1534 
1535 	/* update pending counts and trigger kickoff ctl flush atomically */
1536 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1537 
1538 	/* don't perform flush/start operations for slave encoders */
1539 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1540 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1541 
1542 		if (phys->enable_state == DPU_ENC_DISABLED)
1543 			continue;
1544 
1545 		ctl = phys->hw_ctl;
1546 
1547 		/*
1548 		 * This is cleared in frame_done worker, which isn't invoked
1549 		 * for async commits. So don't set this for async, since it'll
1550 		 * roll over to the next commit.
1551 		 */
1552 		if (phys->split_role != ENC_ROLE_SLAVE)
1553 			set_bit(i, dpu_enc->frame_busy_mask);
1554 
1555 		if (!phys->ops.needs_single_flush ||
1556 				!phys->ops.needs_single_flush(phys))
1557 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1558 		else if (ctl->ops.get_pending_flush)
1559 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1560 	}
1561 
1562 	/* for split flush, combine pending flush masks and send to master */
1563 	if (pending_flush && dpu_enc->cur_master) {
1564 		_dpu_encoder_trigger_flush(
1565 				&dpu_enc->base,
1566 				dpu_enc->cur_master,
1567 				pending_flush);
1568 	}
1569 
1570 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1571 
1572 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1573 }
1574 
1575 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1576 {
1577 	struct dpu_encoder_virt *dpu_enc;
1578 	struct dpu_encoder_phys *phys;
1579 	unsigned int i;
1580 	struct dpu_hw_ctl *ctl;
1581 	struct msm_display_info *disp_info;
1582 
1583 	if (!drm_enc) {
1584 		DPU_ERROR("invalid encoder\n");
1585 		return;
1586 	}
1587 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1588 	disp_info = &dpu_enc->disp_info;
1589 
1590 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1591 		phys = dpu_enc->phys_encs[i];
1592 
1593 		ctl = phys->hw_ctl;
1594 		if (ctl->ops.clear_pending_flush)
1595 			ctl->ops.clear_pending_flush(ctl);
1596 
1597 		/* update only for command mode primary ctl */
1598 		if ((phys == dpu_enc->cur_master) &&
1599 		   (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1600 		    && ctl->ops.trigger_pending)
1601 			ctl->ops.trigger_pending(ctl);
1602 	}
1603 }
1604 
1605 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1606 		struct drm_display_mode *mode)
1607 {
1608 	u64 pclk_rate;
1609 	u32 pclk_period;
1610 	u32 line_time;
1611 
1612 	/*
1613 	 * For linetime calculation, only operate on master encoder.
1614 	 */
1615 	if (!dpu_enc->cur_master)
1616 		return 0;
1617 
1618 	if (!dpu_enc->cur_master->ops.get_line_count) {
1619 		DPU_ERROR("get_line_count function not defined\n");
1620 		return 0;
1621 	}
1622 
1623 	pclk_rate = mode->clock; /* pixel clock in kHz */
1624 	if (pclk_rate == 0) {
1625 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1626 		return 0;
1627 	}
1628 
1629 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1630 	if (pclk_period == 0) {
1631 		DPU_ERROR("pclk period is 0\n");
1632 		return 0;
1633 	}
1634 
1635 	/*
1636 	 * Line time calculation based on Pixel clock and HTOTAL.
1637 	 * Final unit is in ns.
1638 	 */
1639 	line_time = (pclk_period * mode->htotal) / 1000;
1640 	if (line_time == 0) {
1641 		DPU_ERROR("line time calculation is 0\n");
1642 		return 0;
1643 	}
1644 
1645 	DPU_DEBUG_ENC(dpu_enc,
1646 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1647 			pclk_rate, pclk_period, line_time);
1648 
1649 	return line_time;
1650 }
1651 
1652 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1653 {
1654 	struct drm_display_mode *mode;
1655 	struct dpu_encoder_virt *dpu_enc;
1656 	u32 cur_line;
1657 	u32 line_time;
1658 	u32 vtotal, time_to_vsync;
1659 	ktime_t cur_time;
1660 
1661 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1662 
1663 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1664 		DPU_ERROR("crtc/crtc state object is NULL\n");
1665 		return -EINVAL;
1666 	}
1667 	mode = &drm_enc->crtc->state->adjusted_mode;
1668 
1669 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1670 	if (!line_time)
1671 		return -EINVAL;
1672 
1673 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1674 
1675 	vtotal = mode->vtotal;
1676 	if (cur_line >= vtotal)
1677 		time_to_vsync = line_time * vtotal;
1678 	else
1679 		time_to_vsync = line_time * (vtotal - cur_line);
1680 
1681 	if (time_to_vsync == 0) {
1682 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1683 				vtotal);
1684 		return -EINVAL;
1685 	}
1686 
1687 	cur_time = ktime_get();
1688 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1689 
1690 	DPU_DEBUG_ENC(dpu_enc,
1691 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1692 			cur_line, vtotal, time_to_vsync,
1693 			ktime_to_ms(cur_time),
1694 			ktime_to_ms(*wakeup_time));
1695 	return 0;
1696 }
1697 
1698 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1699 {
1700 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1701 			vsync_event_timer);
1702 	struct drm_encoder *drm_enc = &dpu_enc->base;
1703 	struct msm_drm_private *priv;
1704 	struct msm_drm_thread *event_thread;
1705 
1706 	if (!drm_enc->dev || !drm_enc->crtc) {
1707 		DPU_ERROR("invalid parameters\n");
1708 		return;
1709 	}
1710 
1711 	priv = drm_enc->dev->dev_private;
1712 
1713 	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1714 		DPU_ERROR("invalid crtc index\n");
1715 		return;
1716 	}
1717 	event_thread = &priv->event_thread[drm_enc->crtc->index];
1718 	if (!event_thread) {
1719 		DPU_ERROR("event_thread not found for crtc:%d\n",
1720 				drm_enc->crtc->index);
1721 		return;
1722 	}
1723 
1724 	del_timer(&dpu_enc->vsync_event_timer);
1725 }
1726 
1727 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1728 {
1729 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1730 			struct dpu_encoder_virt, vsync_event_work);
1731 	ktime_t wakeup_time;
1732 
1733 	if (!dpu_enc) {
1734 		DPU_ERROR("invalid dpu encoder\n");
1735 		return;
1736 	}
1737 
1738 	if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
1739 		return;
1740 
1741 	trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1742 	mod_timer(&dpu_enc->vsync_event_timer,
1743 			nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1744 }
1745 
1746 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1747 {
1748 	struct dpu_encoder_virt *dpu_enc;
1749 	struct dpu_encoder_phys *phys;
1750 	bool needs_hw_reset = false;
1751 	unsigned int i;
1752 
1753 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1754 
1755 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1756 
1757 	/* prepare for next kickoff, may include waiting on previous kickoff */
1758 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1759 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1760 		phys = dpu_enc->phys_encs[i];
1761 		if (phys->ops.prepare_for_kickoff)
1762 			phys->ops.prepare_for_kickoff(phys);
1763 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1764 			needs_hw_reset = true;
1765 	}
1766 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1767 
1768 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1769 
1770 	/* if any phys needs reset, reset all phys, in-order */
1771 	if (needs_hw_reset) {
1772 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1773 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1774 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1775 		}
1776 	}
1777 }
1778 
1779 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1780 {
1781 	struct dpu_encoder_virt *dpu_enc;
1782 	struct dpu_encoder_phys *phys;
1783 	ktime_t wakeup_time;
1784 	unsigned long timeout_ms;
1785 	unsigned int i;
1786 
1787 	DPU_ATRACE_BEGIN("encoder_kickoff");
1788 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1789 
1790 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1791 
1792 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1793 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1794 
1795 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1796 	mod_timer(&dpu_enc->frame_done_timer,
1797 			jiffies + msecs_to_jiffies(timeout_ms));
1798 
1799 	/* All phys encs are ready to go, trigger the kickoff */
1800 	_dpu_encoder_kickoff_phys(dpu_enc);
1801 
1802 	/* allow phys encs to handle any post-kickoff business */
1803 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1804 		phys = dpu_enc->phys_encs[i];
1805 		if (phys->ops.handle_post_kickoff)
1806 			phys->ops.handle_post_kickoff(phys);
1807 	}
1808 
1809 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1810 			!dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
1811 		trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1812 					    ktime_to_ms(wakeup_time));
1813 		mod_timer(&dpu_enc->vsync_event_timer,
1814 				nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1815 	}
1816 
1817 	DPU_ATRACE_END("encoder_kickoff");
1818 }
1819 
1820 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
1821 {
1822 	struct dpu_encoder_virt *dpu_enc;
1823 	struct dpu_encoder_phys *phys;
1824 	int i;
1825 
1826 	if (!drm_enc) {
1827 		DPU_ERROR("invalid encoder\n");
1828 		return;
1829 	}
1830 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1831 
1832 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1833 		phys = dpu_enc->phys_encs[i];
1834 		if (phys->ops.prepare_commit)
1835 			phys->ops.prepare_commit(phys);
1836 	}
1837 }
1838 
1839 #ifdef CONFIG_DEBUG_FS
1840 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
1841 {
1842 	struct dpu_encoder_virt *dpu_enc = s->private;
1843 	int i;
1844 
1845 	mutex_lock(&dpu_enc->enc_lock);
1846 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1847 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1848 
1849 		seq_printf(s, "intf:%d    vsync:%8d     underrun:%8d    ",
1850 				phys->intf_idx - INTF_0,
1851 				atomic_read(&phys->vsync_cnt),
1852 				atomic_read(&phys->underrun_cnt));
1853 
1854 		switch (phys->intf_mode) {
1855 		case INTF_MODE_VIDEO:
1856 			seq_puts(s, "mode: video\n");
1857 			break;
1858 		case INTF_MODE_CMD:
1859 			seq_puts(s, "mode: command\n");
1860 			break;
1861 		default:
1862 			seq_puts(s, "mode: ???\n");
1863 			break;
1864 		}
1865 	}
1866 	mutex_unlock(&dpu_enc->enc_lock);
1867 
1868 	return 0;
1869 }
1870 
1871 static int _dpu_encoder_debugfs_status_open(struct inode *inode,
1872 		struct file *file)
1873 {
1874 	return single_open(file, _dpu_encoder_status_show, inode->i_private);
1875 }
1876 
1877 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1878 {
1879 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1880 	int i;
1881 
1882 	static const struct file_operations debugfs_status_fops = {
1883 		.open =		_dpu_encoder_debugfs_status_open,
1884 		.read =		seq_read,
1885 		.llseek =	seq_lseek,
1886 		.release =	single_release,
1887 	};
1888 
1889 	char name[DPU_NAME_SIZE];
1890 
1891 	if (!drm_enc->dev) {
1892 		DPU_ERROR("invalid encoder or kms\n");
1893 		return -EINVAL;
1894 	}
1895 
1896 	snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
1897 
1898 	/* create overall sub-directory for the encoder */
1899 	dpu_enc->debugfs_root = debugfs_create_dir(name,
1900 			drm_enc->dev->primary->debugfs_root);
1901 
1902 	/* don't error check these */
1903 	debugfs_create_file("status", 0600,
1904 		dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops);
1905 
1906 	for (i = 0; i < dpu_enc->num_phys_encs; i++)
1907 		if (dpu_enc->phys_encs[i]->ops.late_register)
1908 			dpu_enc->phys_encs[i]->ops.late_register(
1909 					dpu_enc->phys_encs[i],
1910 					dpu_enc->debugfs_root);
1911 
1912 	return 0;
1913 }
1914 #else
1915 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1916 {
1917 	return 0;
1918 }
1919 #endif
1920 
1921 static int dpu_encoder_late_register(struct drm_encoder *encoder)
1922 {
1923 	return _dpu_encoder_init_debugfs(encoder);
1924 }
1925 
1926 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
1927 {
1928 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
1929 
1930 	debugfs_remove_recursive(dpu_enc->debugfs_root);
1931 }
1932 
1933 static int dpu_encoder_virt_add_phys_encs(
1934 		u32 display_caps,
1935 		struct dpu_encoder_virt *dpu_enc,
1936 		struct dpu_enc_phys_init_params *params)
1937 {
1938 	struct dpu_encoder_phys *enc = NULL;
1939 
1940 	DPU_DEBUG_ENC(dpu_enc, "\n");
1941 
1942 	/*
1943 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
1944 	 * in this function, check up-front.
1945 	 */
1946 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
1947 			ARRAY_SIZE(dpu_enc->phys_encs)) {
1948 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
1949 			  dpu_enc->num_phys_encs);
1950 		return -EINVAL;
1951 	}
1952 
1953 	if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
1954 		enc = dpu_encoder_phys_vid_init(params);
1955 
1956 		if (IS_ERR_OR_NULL(enc)) {
1957 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
1958 				PTR_ERR(enc));
1959 			return enc == NULL ? -EINVAL : PTR_ERR(enc);
1960 		}
1961 
1962 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
1963 		++dpu_enc->num_phys_encs;
1964 	}
1965 
1966 	if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
1967 		enc = dpu_encoder_phys_cmd_init(params);
1968 
1969 		if (IS_ERR_OR_NULL(enc)) {
1970 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
1971 				PTR_ERR(enc));
1972 			return enc == NULL ? -EINVAL : PTR_ERR(enc);
1973 		}
1974 
1975 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
1976 		++dpu_enc->num_phys_encs;
1977 	}
1978 
1979 	if (params->split_role == ENC_ROLE_SLAVE)
1980 		dpu_enc->cur_slave = enc;
1981 	else
1982 		dpu_enc->cur_master = enc;
1983 
1984 	return 0;
1985 }
1986 
1987 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
1988 	.handle_vblank_virt = dpu_encoder_vblank_callback,
1989 	.handle_underrun_virt = dpu_encoder_underrun_callback,
1990 	.handle_frame_done = dpu_encoder_frame_done_callback,
1991 };
1992 
1993 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
1994 				 struct dpu_kms *dpu_kms,
1995 				 struct msm_display_info *disp_info)
1996 {
1997 	int ret = 0;
1998 	int i = 0;
1999 	enum dpu_intf_type intf_type;
2000 	struct dpu_enc_phys_init_params phys_params;
2001 
2002 	if (!dpu_enc) {
2003 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2004 		return -EINVAL;
2005 	}
2006 
2007 	dpu_enc->cur_master = NULL;
2008 
2009 	memset(&phys_params, 0, sizeof(phys_params));
2010 	phys_params.dpu_kms = dpu_kms;
2011 	phys_params.parent = &dpu_enc->base;
2012 	phys_params.parent_ops = &dpu_encoder_parent_ops;
2013 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2014 
2015 	DPU_DEBUG("\n");
2016 
2017 	switch (disp_info->intf_type) {
2018 	case DRM_MODE_ENCODER_DSI:
2019 		intf_type = INTF_DSI;
2020 		break;
2021 	default:
2022 		DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n");
2023 		return -EINVAL;
2024 	}
2025 
2026 	WARN_ON(disp_info->num_of_h_tiles < 1);
2027 
2028 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2029 
2030 	if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
2031 	    (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
2032 		dpu_enc->idle_pc_supported =
2033 				dpu_kms->catalog->caps->has_idle_pc;
2034 
2035 	mutex_lock(&dpu_enc->enc_lock);
2036 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2037 		/*
2038 		 * Left-most tile is at index 0, content is controller id
2039 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2040 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2041 		 */
2042 		u32 controller_id = disp_info->h_tile_instance[i];
2043 
2044 		if (disp_info->num_of_h_tiles > 1) {
2045 			if (i == 0)
2046 				phys_params.split_role = ENC_ROLE_MASTER;
2047 			else
2048 				phys_params.split_role = ENC_ROLE_SLAVE;
2049 		} else {
2050 			phys_params.split_role = ENC_ROLE_SOLO;
2051 		}
2052 
2053 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2054 				i, controller_id, phys_params.split_role);
2055 
2056 		phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2057 													intf_type,
2058 													controller_id);
2059 		if (phys_params.intf_idx == INTF_MAX) {
2060 			DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
2061 						  intf_type, controller_id);
2062 			ret = -EINVAL;
2063 		}
2064 
2065 		if (!ret) {
2066 			ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
2067 												 dpu_enc,
2068 												 &phys_params);
2069 			if (ret)
2070 				DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2071 		}
2072 	}
2073 
2074 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2075 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2076 		atomic_set(&phys->vsync_cnt, 0);
2077 		atomic_set(&phys->underrun_cnt, 0);
2078 	}
2079 	mutex_unlock(&dpu_enc->enc_lock);
2080 
2081 	return ret;
2082 }
2083 
2084 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2085 {
2086 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2087 			frame_done_timer);
2088 	struct drm_encoder *drm_enc = &dpu_enc->base;
2089 	u32 event;
2090 
2091 	if (!drm_enc->dev) {
2092 		DPU_ERROR("invalid parameters\n");
2093 		return;
2094 	}
2095 
2096 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2097 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2098 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2099 		return;
2100 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2101 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2102 		return;
2103 	}
2104 
2105 	DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2106 
2107 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2108 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2109 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2110 }
2111 
2112 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2113 	.mode_set = dpu_encoder_virt_mode_set,
2114 	.disable = dpu_encoder_virt_disable,
2115 	.enable = dpu_kms_encoder_enable,
2116 	.atomic_check = dpu_encoder_virt_atomic_check,
2117 
2118 	/* This is called by dpu_kms_encoder_enable */
2119 	.commit = dpu_encoder_virt_enable,
2120 };
2121 
2122 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2123 		.destroy = dpu_encoder_destroy,
2124 		.late_register = dpu_encoder_late_register,
2125 		.early_unregister = dpu_encoder_early_unregister,
2126 };
2127 
2128 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2129 		struct msm_display_info *disp_info)
2130 {
2131 	struct msm_drm_private *priv = dev->dev_private;
2132 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2133 	struct drm_encoder *drm_enc = NULL;
2134 	struct dpu_encoder_virt *dpu_enc = NULL;
2135 	int ret = 0;
2136 
2137 	dpu_enc = to_dpu_encoder_virt(enc);
2138 
2139 	mutex_init(&dpu_enc->enc_lock);
2140 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2141 	if (ret)
2142 		goto fail;
2143 
2144 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2145 	timer_setup(&dpu_enc->frame_done_timer,
2146 			dpu_encoder_frame_done_timeout, 0);
2147 
2148 	if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2149 		timer_setup(&dpu_enc->vsync_event_timer,
2150 				dpu_encoder_vsync_event_handler,
2151 				0);
2152 
2153 
2154 	mutex_init(&dpu_enc->rc_lock);
2155 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2156 			dpu_encoder_off_work);
2157 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2158 
2159 	kthread_init_work(&dpu_enc->vsync_event_work,
2160 			dpu_encoder_vsync_event_work_handler);
2161 
2162 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2163 
2164 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2165 
2166 	return ret;
2167 
2168 fail:
2169 	DPU_ERROR("failed to create encoder\n");
2170 	if (drm_enc)
2171 		dpu_encoder_destroy(drm_enc);
2172 
2173 	return ret;
2174 
2175 
2176 }
2177 
2178 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2179 		int drm_enc_mode)
2180 {
2181 	struct dpu_encoder_virt *dpu_enc = NULL;
2182 	int rc = 0;
2183 
2184 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2185 	if (!dpu_enc)
2186 		return ERR_PTR(ENOMEM);
2187 
2188 	rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2189 			drm_enc_mode, NULL);
2190 	if (rc) {
2191 		devm_kfree(dev->dev, dpu_enc);
2192 		return ERR_PTR(rc);
2193 	}
2194 
2195 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2196 
2197 	spin_lock_init(&dpu_enc->enc_spinlock);
2198 	dpu_enc->enabled = false;
2199 
2200 	return &dpu_enc->base;
2201 }
2202 
2203 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2204 	enum msm_event_wait event)
2205 {
2206 	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2207 	struct dpu_encoder_virt *dpu_enc = NULL;
2208 	int i, ret = 0;
2209 
2210 	if (!drm_enc) {
2211 		DPU_ERROR("invalid encoder\n");
2212 		return -EINVAL;
2213 	}
2214 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2215 	DPU_DEBUG_ENC(dpu_enc, "\n");
2216 
2217 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2218 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2219 
2220 		switch (event) {
2221 		case MSM_ENC_COMMIT_DONE:
2222 			fn_wait = phys->ops.wait_for_commit_done;
2223 			break;
2224 		case MSM_ENC_TX_COMPLETE:
2225 			fn_wait = phys->ops.wait_for_tx_complete;
2226 			break;
2227 		case MSM_ENC_VBLANK:
2228 			fn_wait = phys->ops.wait_for_vblank;
2229 			break;
2230 		default:
2231 			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2232 					event);
2233 			return -EINVAL;
2234 		}
2235 
2236 		if (fn_wait) {
2237 			DPU_ATRACE_BEGIN("wait_for_completion_event");
2238 			ret = fn_wait(phys);
2239 			DPU_ATRACE_END("wait_for_completion_event");
2240 			if (ret)
2241 				return ret;
2242 		}
2243 	}
2244 
2245 	return ret;
2246 }
2247 
2248 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2249 {
2250 	struct dpu_encoder_virt *dpu_enc = NULL;
2251 
2252 	if (!encoder) {
2253 		DPU_ERROR("invalid encoder\n");
2254 		return INTF_MODE_NONE;
2255 	}
2256 	dpu_enc = to_dpu_encoder_virt(encoder);
2257 
2258 	if (dpu_enc->cur_master)
2259 		return dpu_enc->cur_master->intf_mode;
2260 
2261 	if (dpu_enc->num_phys_encs)
2262 		return dpu_enc->phys_encs[0]->intf_mode;
2263 
2264 	return INTF_MODE_NONE;
2265 }
2266