1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2013 Red Hat 5 * Author: Rob Clark <robdclark@gmail.com> 6 */ 7 8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 9 #include <linux/debugfs.h> 10 #include <linux/kthread.h> 11 #include <linux/seq_file.h> 12 13 #include <drm/drm_crtc.h> 14 #include <drm/drm_file.h> 15 #include <drm/drm_probe_helper.h> 16 17 #include "msm_drv.h" 18 #include "dpu_kms.h" 19 #include "dpu_hwio.h" 20 #include "dpu_hw_catalog.h" 21 #include "dpu_hw_intf.h" 22 #include "dpu_hw_ctl.h" 23 #include "dpu_hw_dspp.h" 24 #include "dpu_formats.h" 25 #include "dpu_encoder_phys.h" 26 #include "dpu_crtc.h" 27 #include "dpu_trace.h" 28 #include "dpu_core_irq.h" 29 30 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\ 31 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 32 33 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\ 34 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 35 36 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\ 37 (p) ? (p)->parent->base.id : -1, \ 38 (p) ? (p)->intf_idx - INTF_0 : -1, \ 39 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 40 ##__VA_ARGS__) 41 42 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\ 43 (p) ? (p)->parent->base.id : -1, \ 44 (p) ? (p)->intf_idx - INTF_0 : -1, \ 45 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 46 ##__VA_ARGS__) 47 48 /* 49 * Two to anticipate panels that can do cmd/vid dynamic switching 50 * plan is to create all possible physical encoder types, and switch between 51 * them at runtime 52 */ 53 #define NUM_PHYS_ENCODER_TYPES 2 54 55 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \ 56 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES) 57 58 #define MAX_CHANNELS_PER_ENC 2 59 60 #define IDLE_SHORT_TIMEOUT 1 61 62 #define MAX_HDISPLAY_SPLIT 1080 63 64 /* timeout in frames waiting for frame done */ 65 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5 66 67 /** 68 * enum dpu_enc_rc_events - events for resource control state machine 69 * @DPU_ENC_RC_EVENT_KICKOFF: 70 * This event happens at NORMAL priority. 71 * Event that signals the start of the transfer. When this event is 72 * received, enable MDP/DSI core clocks. Regardless of the previous 73 * state, the resource should be in ON state at the end of this event. 74 * @DPU_ENC_RC_EVENT_FRAME_DONE: 75 * This event happens at INTERRUPT level. 76 * Event signals the end of the data transfer after the PP FRAME_DONE 77 * event. At the end of this event, a delayed work is scheduled to go to 78 * IDLE_PC state after IDLE_TIMEOUT time. 79 * @DPU_ENC_RC_EVENT_PRE_STOP: 80 * This event happens at NORMAL priority. 81 * This event, when received during the ON state, leave the RC STATE 82 * in the PRE_OFF state. It should be followed by the STOP event as 83 * part of encoder disable. 84 * If received during IDLE or OFF states, it will do nothing. 85 * @DPU_ENC_RC_EVENT_STOP: 86 * This event happens at NORMAL priority. 87 * When this event is received, disable all the MDP/DSI core clocks, and 88 * disable IRQs. It should be called from the PRE_OFF or IDLE states. 89 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing. 90 * PRE_OFF is expected when PRE_STOP was executed during the ON state. 91 * Resource state should be in OFF at the end of the event. 92 * @DPU_ENC_RC_EVENT_ENTER_IDLE: 93 * This event happens at NORMAL priority from a work item. 94 * Event signals that there were no frame updates for IDLE_TIMEOUT time. 95 * This would disable MDP/DSI core clocks and change the resource state 96 * to IDLE. 97 */ 98 enum dpu_enc_rc_events { 99 DPU_ENC_RC_EVENT_KICKOFF = 1, 100 DPU_ENC_RC_EVENT_FRAME_DONE, 101 DPU_ENC_RC_EVENT_PRE_STOP, 102 DPU_ENC_RC_EVENT_STOP, 103 DPU_ENC_RC_EVENT_ENTER_IDLE 104 }; 105 106 /* 107 * enum dpu_enc_rc_states - states that the resource control maintains 108 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state 109 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state 110 * @DPU_ENC_RC_STATE_ON: Resource is in ON state 111 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state 112 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state 113 */ 114 enum dpu_enc_rc_states { 115 DPU_ENC_RC_STATE_OFF, 116 DPU_ENC_RC_STATE_PRE_OFF, 117 DPU_ENC_RC_STATE_ON, 118 DPU_ENC_RC_STATE_IDLE 119 }; 120 121 /** 122 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical 123 * encoders. Virtual encoder manages one "logical" display. Physical 124 * encoders manage one intf block, tied to a specific panel/sub-panel. 125 * Virtual encoder defers as much as possible to the physical encoders. 126 * Virtual encoder registers itself with the DRM Framework as the encoder. 127 * @base: drm_encoder base class for registration with DRM 128 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes 129 * @bus_scaling_client: Client handle to the bus scaling interface 130 * @enabled: True if the encoder is active, protected by enc_lock 131 * @num_phys_encs: Actual number of physical encoders contained. 132 * @phys_encs: Container of physical encoders managed. 133 * @cur_master: Pointer to the current master in this mode. Optimization 134 * Only valid after enable. Cleared as disable. 135 * @hw_pp Handle to the pingpong blocks used for the display. No. 136 * pingpong blocks can be different than num_phys_encs. 137 * @intfs_swapped Whether or not the phys_enc interfaces have been swapped 138 * for partial update right-only cases, such as pingpong 139 * split where virtual pingpong does not generate IRQs 140 * @crtc: Pointer to the currently assigned crtc. Normally you 141 * would use crtc->state->encoder_mask to determine the 142 * link between encoder/crtc. However in this case we need 143 * to track crtc in the disable() hook which is called 144 * _after_ encoder_mask is cleared. 145 * @crtc_kickoff_cb: Callback into CRTC that will flush & start 146 * all CTL paths 147 * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb 148 * @debugfs_root: Debug file system root file node 149 * @enc_lock: Lock around physical encoder 150 * create/destroy/enable/disable 151 * @frame_busy_mask: Bitmask tracking which phys_enc we are still 152 * busy processing current command. 153 * Bit0 = phys_encs[0] etc. 154 * @crtc_frame_event_cb: callback handler for frame event 155 * @crtc_frame_event_cb_data: callback handler private data 156 * @frame_done_timeout_ms: frame done timeout in ms 157 * @frame_done_timer: watchdog timer for frame done event 158 * @vsync_event_timer: vsync timer 159 * @disp_info: local copy of msm_display_info struct 160 * @idle_pc_supported: indicate if idle power collaps is supported 161 * @rc_lock: resource control mutex lock to protect 162 * virt encoder over various state changes 163 * @rc_state: resource controller state 164 * @delayed_off_work: delayed worker to schedule disabling of 165 * clks and resources after IDLE_TIMEOUT time. 166 * @vsync_event_work: worker to handle vsync event for autorefresh 167 * @topology: topology of the display 168 * @idle_timeout: idle timeout duration in milliseconds 169 */ 170 struct dpu_encoder_virt { 171 struct drm_encoder base; 172 spinlock_t enc_spinlock; 173 uint32_t bus_scaling_client; 174 175 bool enabled; 176 177 unsigned int num_phys_encs; 178 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL]; 179 struct dpu_encoder_phys *cur_master; 180 struct dpu_encoder_phys *cur_slave; 181 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; 182 183 bool intfs_swapped; 184 185 struct drm_crtc *crtc; 186 187 struct dentry *debugfs_root; 188 struct mutex enc_lock; 189 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL); 190 void (*crtc_frame_event_cb)(void *, u32 event); 191 void *crtc_frame_event_cb_data; 192 193 atomic_t frame_done_timeout_ms; 194 struct timer_list frame_done_timer; 195 struct timer_list vsync_event_timer; 196 197 struct msm_display_info disp_info; 198 199 bool idle_pc_supported; 200 struct mutex rc_lock; 201 enum dpu_enc_rc_states rc_state; 202 struct delayed_work delayed_off_work; 203 struct kthread_work vsync_event_work; 204 struct msm_display_topology topology; 205 206 u32 idle_timeout; 207 }; 208 209 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base) 210 211 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc, 212 enum dpu_intr_idx intr_idx) 213 { 214 DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n", 215 DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0, 216 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx); 217 218 if (phys_enc->parent_ops->handle_frame_done) 219 phys_enc->parent_ops->handle_frame_done( 220 phys_enc->parent, phys_enc, 221 DPU_ENCODER_FRAME_EVENT_ERROR); 222 } 223 224 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id, 225 int32_t hw_id, struct dpu_encoder_wait_info *info); 226 227 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc, 228 enum dpu_intr_idx intr_idx, 229 struct dpu_encoder_wait_info *wait_info) 230 { 231 struct dpu_encoder_irq *irq; 232 u32 irq_status; 233 int ret; 234 235 if (!wait_info || intr_idx >= INTR_IDX_MAX) { 236 DPU_ERROR("invalid params\n"); 237 return -EINVAL; 238 } 239 irq = &phys_enc->irq[intr_idx]; 240 241 /* note: do master / slave checking outside */ 242 243 /* return EWOULDBLOCK since we know the wait isn't necessary */ 244 if (phys_enc->enable_state == DPU_ENC_DISABLED) { 245 DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d", 246 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 247 irq->irq_idx); 248 return -EWOULDBLOCK; 249 } 250 251 if (irq->irq_idx < 0) { 252 DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s", 253 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 254 irq->name); 255 return 0; 256 } 257 258 DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d", 259 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 260 irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0, 261 atomic_read(wait_info->atomic_cnt)); 262 263 ret = dpu_encoder_helper_wait_event_timeout( 264 DRMID(phys_enc->parent), 265 irq->hw_idx, 266 wait_info); 267 268 if (ret <= 0) { 269 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, 270 irq->irq_idx, true); 271 if (irq_status) { 272 unsigned long flags; 273 274 DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, " 275 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", 276 DRMID(phys_enc->parent), intr_idx, 277 irq->hw_idx, irq->irq_idx, 278 phys_enc->hw_pp->idx - PINGPONG_0, 279 atomic_read(wait_info->atomic_cnt)); 280 local_irq_save(flags); 281 irq->cb.func(phys_enc, irq->irq_idx); 282 local_irq_restore(flags); 283 ret = 0; 284 } else { 285 ret = -ETIMEDOUT; 286 DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, " 287 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", 288 DRMID(phys_enc->parent), intr_idx, 289 irq->hw_idx, irq->irq_idx, 290 phys_enc->hw_pp->idx - PINGPONG_0, 291 atomic_read(wait_info->atomic_cnt)); 292 } 293 } else { 294 ret = 0; 295 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent), 296 intr_idx, irq->hw_idx, irq->irq_idx, 297 phys_enc->hw_pp->idx - PINGPONG_0, 298 atomic_read(wait_info->atomic_cnt)); 299 } 300 301 return ret; 302 } 303 304 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc, 305 enum dpu_intr_idx intr_idx) 306 { 307 struct dpu_encoder_irq *irq; 308 int ret = 0; 309 310 if (intr_idx >= INTR_IDX_MAX) { 311 DPU_ERROR("invalid params\n"); 312 return -EINVAL; 313 } 314 irq = &phys_enc->irq[intr_idx]; 315 316 if (irq->irq_idx >= 0) { 317 DPU_DEBUG_PHYS(phys_enc, 318 "skipping already registered irq %s type %d\n", 319 irq->name, irq->intr_type); 320 return 0; 321 } 322 323 irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms, 324 irq->intr_type, irq->hw_idx); 325 if (irq->irq_idx < 0) { 326 DPU_ERROR_PHYS(phys_enc, 327 "failed to lookup IRQ index for %s type:%d\n", 328 irq->name, irq->intr_type); 329 return -EINVAL; 330 } 331 332 ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx, 333 &irq->cb); 334 if (ret) { 335 DPU_ERROR_PHYS(phys_enc, 336 "failed to register IRQ callback for %s\n", 337 irq->name); 338 irq->irq_idx = -EINVAL; 339 return ret; 340 } 341 342 ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1); 343 if (ret) { 344 DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d", 345 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 346 irq->irq_idx); 347 dpu_core_irq_unregister_callback(phys_enc->dpu_kms, 348 irq->irq_idx, &irq->cb); 349 irq->irq_idx = -EINVAL; 350 return ret; 351 } 352 353 trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx, 354 irq->hw_idx, irq->irq_idx); 355 356 return ret; 357 } 358 359 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc, 360 enum dpu_intr_idx intr_idx) 361 { 362 struct dpu_encoder_irq *irq; 363 int ret; 364 365 irq = &phys_enc->irq[intr_idx]; 366 367 /* silently skip irqs that weren't registered */ 368 if (irq->irq_idx < 0) { 369 DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d", 370 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 371 irq->irq_idx); 372 return 0; 373 } 374 375 ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1); 376 if (ret) { 377 DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d", 378 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 379 irq->irq_idx, ret); 380 } 381 382 ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx, 383 &irq->cb); 384 if (ret) { 385 DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d", 386 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 387 irq->irq_idx, ret); 388 } 389 390 trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx, 391 irq->hw_idx, irq->irq_idx); 392 393 irq->irq_idx = -EINVAL; 394 395 return 0; 396 } 397 398 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc, 399 struct dpu_encoder_hw_resources *hw_res) 400 { 401 struct dpu_encoder_virt *dpu_enc = NULL; 402 int i = 0; 403 404 dpu_enc = to_dpu_encoder_virt(drm_enc); 405 DPU_DEBUG_ENC(dpu_enc, "\n"); 406 407 /* Query resources used by phys encs, expected to be without overlap */ 408 memset(hw_res, 0, sizeof(*hw_res)); 409 410 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 411 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 412 413 if (phys->ops.get_hw_resources) 414 phys->ops.get_hw_resources(phys, hw_res); 415 } 416 } 417 418 static void dpu_encoder_destroy(struct drm_encoder *drm_enc) 419 { 420 struct dpu_encoder_virt *dpu_enc = NULL; 421 int i = 0; 422 423 if (!drm_enc) { 424 DPU_ERROR("invalid encoder\n"); 425 return; 426 } 427 428 dpu_enc = to_dpu_encoder_virt(drm_enc); 429 DPU_DEBUG_ENC(dpu_enc, "\n"); 430 431 mutex_lock(&dpu_enc->enc_lock); 432 433 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 434 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 435 436 if (phys->ops.destroy) { 437 phys->ops.destroy(phys); 438 --dpu_enc->num_phys_encs; 439 dpu_enc->phys_encs[i] = NULL; 440 } 441 } 442 443 if (dpu_enc->num_phys_encs) 444 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n", 445 dpu_enc->num_phys_encs); 446 dpu_enc->num_phys_encs = 0; 447 mutex_unlock(&dpu_enc->enc_lock); 448 449 drm_encoder_cleanup(drm_enc); 450 mutex_destroy(&dpu_enc->enc_lock); 451 } 452 453 void dpu_encoder_helper_split_config( 454 struct dpu_encoder_phys *phys_enc, 455 enum dpu_intf interface) 456 { 457 struct dpu_encoder_virt *dpu_enc; 458 struct split_pipe_cfg cfg = { 0 }; 459 struct dpu_hw_mdp *hw_mdptop; 460 struct msm_display_info *disp_info; 461 462 if (!phys_enc->hw_mdptop || !phys_enc->parent) { 463 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL); 464 return; 465 } 466 467 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 468 hw_mdptop = phys_enc->hw_mdptop; 469 disp_info = &dpu_enc->disp_info; 470 471 if (disp_info->intf_type != DRM_MODE_ENCODER_DSI) 472 return; 473 474 /** 475 * disable split modes since encoder will be operating in as the only 476 * encoder, either for the entire use case in the case of, for example, 477 * single DSI, or for this frame in the case of left/right only partial 478 * update. 479 */ 480 if (phys_enc->split_role == ENC_ROLE_SOLO) { 481 if (hw_mdptop->ops.setup_split_pipe) 482 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 483 return; 484 } 485 486 cfg.en = true; 487 cfg.mode = phys_enc->intf_mode; 488 cfg.intf = interface; 489 490 if (cfg.en && phys_enc->ops.needs_single_flush && 491 phys_enc->ops.needs_single_flush(phys_enc)) 492 cfg.split_flush_en = true; 493 494 if (phys_enc->split_role == ENC_ROLE_MASTER) { 495 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en); 496 497 if (hw_mdptop->ops.setup_split_pipe) 498 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 499 } 500 } 501 502 static struct msm_display_topology dpu_encoder_get_topology( 503 struct dpu_encoder_virt *dpu_enc, 504 struct dpu_kms *dpu_kms, 505 struct drm_display_mode *mode) 506 { 507 struct msm_display_topology topology; 508 int i, intf_count = 0; 509 510 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) 511 if (dpu_enc->phys_encs[i]) 512 intf_count++; 513 514 /* Datapath topology selection 515 * 516 * Dual display 517 * 2 LM, 2 INTF ( Split display using 2 interfaces) 518 * 519 * Single display 520 * 1 LM, 1 INTF 521 * 2 LM, 1 INTF (stream merge to support high resolution interfaces) 522 * 523 * Adding color blocks only to primary interface 524 */ 525 if (intf_count == 2) 526 topology.num_lm = 2; 527 else if (!dpu_kms->catalog->caps->has_3d_merge) 528 topology.num_lm = 1; 529 else 530 topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1; 531 532 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI) 533 topology.num_dspp = topology.num_lm; 534 535 topology.num_enc = 0; 536 topology.num_intf = intf_count; 537 538 return topology; 539 } 540 static int dpu_encoder_virt_atomic_check( 541 struct drm_encoder *drm_enc, 542 struct drm_crtc_state *crtc_state, 543 struct drm_connector_state *conn_state) 544 { 545 struct dpu_encoder_virt *dpu_enc; 546 struct msm_drm_private *priv; 547 struct dpu_kms *dpu_kms; 548 const struct drm_display_mode *mode; 549 struct drm_display_mode *adj_mode; 550 struct msm_display_topology topology; 551 struct dpu_global_state *global_state; 552 int i = 0; 553 int ret = 0; 554 555 if (!drm_enc || !crtc_state || !conn_state) { 556 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n", 557 drm_enc != NULL, crtc_state != NULL, conn_state != NULL); 558 return -EINVAL; 559 } 560 561 dpu_enc = to_dpu_encoder_virt(drm_enc); 562 DPU_DEBUG_ENC(dpu_enc, "\n"); 563 564 priv = drm_enc->dev->dev_private; 565 dpu_kms = to_dpu_kms(priv->kms); 566 mode = &crtc_state->mode; 567 adj_mode = &crtc_state->adjusted_mode; 568 global_state = dpu_kms_get_existing_global_state(dpu_kms); 569 trace_dpu_enc_atomic_check(DRMID(drm_enc)); 570 571 /* perform atomic check on the first physical encoder (master) */ 572 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 573 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 574 575 if (phys->ops.atomic_check) 576 ret = phys->ops.atomic_check(phys, crtc_state, 577 conn_state); 578 else if (phys->ops.mode_fixup) 579 if (!phys->ops.mode_fixup(phys, mode, adj_mode)) 580 ret = -EINVAL; 581 582 if (ret) { 583 DPU_ERROR_ENC(dpu_enc, 584 "mode unsupported, phys idx %d\n", i); 585 break; 586 } 587 } 588 589 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 590 591 /* Reserve dynamic resources now. */ 592 if (!ret) { 593 /* 594 * Avoid reserving resources when mode set is pending. Topology 595 * info may not be available to complete reservation. 596 */ 597 if (drm_atomic_crtc_needs_modeset(crtc_state)) { 598 ret = dpu_rm_reserve(&dpu_kms->rm, global_state, 599 drm_enc, crtc_state, topology); 600 } 601 } 602 603 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags); 604 605 return ret; 606 } 607 608 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc, 609 struct msm_display_info *disp_info) 610 { 611 struct dpu_vsync_source_cfg vsync_cfg = { 0 }; 612 struct msm_drm_private *priv; 613 struct dpu_kms *dpu_kms; 614 struct dpu_hw_mdp *hw_mdptop; 615 struct drm_encoder *drm_enc; 616 int i; 617 618 if (!dpu_enc || !disp_info) { 619 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n", 620 dpu_enc != NULL, disp_info != NULL); 621 return; 622 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) { 623 DPU_ERROR("invalid num phys enc %d/%d\n", 624 dpu_enc->num_phys_encs, 625 (int) ARRAY_SIZE(dpu_enc->hw_pp)); 626 return; 627 } 628 629 drm_enc = &dpu_enc->base; 630 /* this pointers are checked in virt_enable_helper */ 631 priv = drm_enc->dev->dev_private; 632 633 dpu_kms = to_dpu_kms(priv->kms); 634 hw_mdptop = dpu_kms->hw_mdp; 635 if (!hw_mdptop) { 636 DPU_ERROR("invalid mdptop\n"); 637 return; 638 } 639 640 if (hw_mdptop->ops.setup_vsync_source && 641 disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) { 642 for (i = 0; i < dpu_enc->num_phys_encs; i++) 643 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx; 644 645 vsync_cfg.pp_count = dpu_enc->num_phys_encs; 646 if (disp_info->is_te_using_watchdog_timer) 647 vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0; 648 else 649 vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO; 650 651 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg); 652 } 653 } 654 655 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable) 656 { 657 struct dpu_encoder_virt *dpu_enc; 658 int i; 659 660 if (!drm_enc) { 661 DPU_ERROR("invalid encoder\n"); 662 return; 663 } 664 665 dpu_enc = to_dpu_encoder_virt(drm_enc); 666 667 DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable); 668 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 669 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 670 671 if (phys->ops.irq_control) 672 phys->ops.irq_control(phys, enable); 673 } 674 675 } 676 677 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc, 678 bool enable) 679 { 680 struct msm_drm_private *priv; 681 struct dpu_kms *dpu_kms; 682 struct dpu_encoder_virt *dpu_enc; 683 684 dpu_enc = to_dpu_encoder_virt(drm_enc); 685 priv = drm_enc->dev->dev_private; 686 dpu_kms = to_dpu_kms(priv->kms); 687 688 trace_dpu_enc_rc_helper(DRMID(drm_enc), enable); 689 690 if (!dpu_enc->cur_master) { 691 DPU_ERROR("encoder master not set\n"); 692 return; 693 } 694 695 if (enable) { 696 /* enable DPU core clks */ 697 pm_runtime_get_sync(&dpu_kms->pdev->dev); 698 699 /* enable all the irq */ 700 _dpu_encoder_irq_control(drm_enc, true); 701 702 } else { 703 /* disable all the irq */ 704 _dpu_encoder_irq_control(drm_enc, false); 705 706 /* disable DPU core clks */ 707 pm_runtime_put_sync(&dpu_kms->pdev->dev); 708 } 709 710 } 711 712 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc, 713 u32 sw_event) 714 { 715 struct dpu_encoder_virt *dpu_enc; 716 struct msm_drm_private *priv; 717 bool is_vid_mode = false; 718 719 if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) { 720 DPU_ERROR("invalid parameters\n"); 721 return -EINVAL; 722 } 723 dpu_enc = to_dpu_encoder_virt(drm_enc); 724 priv = drm_enc->dev->dev_private; 725 is_vid_mode = dpu_enc->disp_info.capabilities & 726 MSM_DISPLAY_CAP_VID_MODE; 727 728 /* 729 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET 730 * events and return early for other events (ie wb display). 731 */ 732 if (!dpu_enc->idle_pc_supported && 733 (sw_event != DPU_ENC_RC_EVENT_KICKOFF && 734 sw_event != DPU_ENC_RC_EVENT_STOP && 735 sw_event != DPU_ENC_RC_EVENT_PRE_STOP)) 736 return 0; 737 738 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, 739 dpu_enc->rc_state, "begin"); 740 741 switch (sw_event) { 742 case DPU_ENC_RC_EVENT_KICKOFF: 743 /* cancel delayed off work, if any */ 744 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 745 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 746 sw_event); 747 748 mutex_lock(&dpu_enc->rc_lock); 749 750 /* return if the resource control is already in ON state */ 751 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 752 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n", 753 DRMID(drm_enc), sw_event); 754 mutex_unlock(&dpu_enc->rc_lock); 755 return 0; 756 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF && 757 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) { 758 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n", 759 DRMID(drm_enc), sw_event, 760 dpu_enc->rc_state); 761 mutex_unlock(&dpu_enc->rc_lock); 762 return -EINVAL; 763 } 764 765 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) 766 _dpu_encoder_irq_control(drm_enc, true); 767 else 768 _dpu_encoder_resource_control_helper(drm_enc, true); 769 770 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON; 771 772 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 773 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 774 "kickoff"); 775 776 mutex_unlock(&dpu_enc->rc_lock); 777 break; 778 779 case DPU_ENC_RC_EVENT_FRAME_DONE: 780 /* 781 * mutex lock is not used as this event happens at interrupt 782 * context. And locking is not required as, the other events 783 * like KICKOFF and STOP does a wait-for-idle before executing 784 * the resource_control 785 */ 786 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 787 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n", 788 DRMID(drm_enc), sw_event, 789 dpu_enc->rc_state); 790 return -EINVAL; 791 } 792 793 /* 794 * schedule off work item only when there are no 795 * frames pending 796 */ 797 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) { 798 DRM_DEBUG_KMS("id:%d skip schedule work\n", 799 DRMID(drm_enc)); 800 return 0; 801 } 802 803 queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work, 804 msecs_to_jiffies(dpu_enc->idle_timeout)); 805 806 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 807 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 808 "frame done"); 809 break; 810 811 case DPU_ENC_RC_EVENT_PRE_STOP: 812 /* cancel delayed off work, if any */ 813 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 814 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 815 sw_event); 816 817 mutex_lock(&dpu_enc->rc_lock); 818 819 if (is_vid_mode && 820 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 821 _dpu_encoder_irq_control(drm_enc, true); 822 } 823 /* skip if is already OFF or IDLE, resources are off already */ 824 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF || 825 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 826 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n", 827 DRMID(drm_enc), sw_event, 828 dpu_enc->rc_state); 829 mutex_unlock(&dpu_enc->rc_lock); 830 return 0; 831 } 832 833 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF; 834 835 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 836 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 837 "pre stop"); 838 839 mutex_unlock(&dpu_enc->rc_lock); 840 break; 841 842 case DPU_ENC_RC_EVENT_STOP: 843 mutex_lock(&dpu_enc->rc_lock); 844 845 /* return if the resource control is already in OFF state */ 846 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) { 847 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n", 848 DRMID(drm_enc), sw_event); 849 mutex_unlock(&dpu_enc->rc_lock); 850 return 0; 851 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 852 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n", 853 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 854 mutex_unlock(&dpu_enc->rc_lock); 855 return -EINVAL; 856 } 857 858 /** 859 * expect to arrive here only if in either idle state or pre-off 860 * and in IDLE state the resources are already disabled 861 */ 862 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF) 863 _dpu_encoder_resource_control_helper(drm_enc, false); 864 865 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF; 866 867 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 868 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 869 "stop"); 870 871 mutex_unlock(&dpu_enc->rc_lock); 872 break; 873 874 case DPU_ENC_RC_EVENT_ENTER_IDLE: 875 mutex_lock(&dpu_enc->rc_lock); 876 877 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 878 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n", 879 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 880 mutex_unlock(&dpu_enc->rc_lock); 881 return 0; 882 } 883 884 /* 885 * if we are in ON but a frame was just kicked off, 886 * ignore the IDLE event, it's probably a stale timer event 887 */ 888 if (dpu_enc->frame_busy_mask[0]) { 889 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n", 890 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 891 mutex_unlock(&dpu_enc->rc_lock); 892 return 0; 893 } 894 895 if (is_vid_mode) 896 _dpu_encoder_irq_control(drm_enc, false); 897 else 898 _dpu_encoder_resource_control_helper(drm_enc, false); 899 900 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE; 901 902 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 903 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 904 "idle"); 905 906 mutex_unlock(&dpu_enc->rc_lock); 907 break; 908 909 default: 910 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc), 911 sw_event); 912 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 913 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 914 "error"); 915 break; 916 } 917 918 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 919 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 920 "end"); 921 return 0; 922 } 923 924 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc, 925 struct drm_display_mode *mode, 926 struct drm_display_mode *adj_mode) 927 { 928 struct dpu_encoder_virt *dpu_enc; 929 struct msm_drm_private *priv; 930 struct dpu_kms *dpu_kms; 931 struct list_head *connector_list; 932 struct drm_connector *conn = NULL, *conn_iter; 933 struct drm_crtc *drm_crtc; 934 struct dpu_crtc_state *cstate; 935 struct dpu_global_state *global_state; 936 struct msm_display_topology topology; 937 struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC]; 938 struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC]; 939 struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC]; 940 struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL }; 941 int num_lm, num_ctl, num_pp, num_dspp; 942 int i, j; 943 944 if (!drm_enc) { 945 DPU_ERROR("invalid encoder\n"); 946 return; 947 } 948 949 dpu_enc = to_dpu_encoder_virt(drm_enc); 950 DPU_DEBUG_ENC(dpu_enc, "\n"); 951 952 priv = drm_enc->dev->dev_private; 953 dpu_kms = to_dpu_kms(priv->kms); 954 connector_list = &dpu_kms->dev->mode_config.connector_list; 955 956 global_state = dpu_kms_get_existing_global_state(dpu_kms); 957 if (IS_ERR_OR_NULL(global_state)) { 958 DPU_ERROR("Failed to get global state"); 959 return; 960 } 961 962 trace_dpu_enc_mode_set(DRMID(drm_enc)); 963 964 list_for_each_entry(conn_iter, connector_list, head) 965 if (conn_iter->encoder == drm_enc) 966 conn = conn_iter; 967 968 if (!conn) { 969 DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n"); 970 return; 971 } else if (!conn->state) { 972 DPU_ERROR_ENC(dpu_enc, "invalid connector state\n"); 973 return; 974 } 975 976 drm_for_each_crtc(drm_crtc, drm_enc->dev) 977 if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc)) 978 break; 979 980 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 981 982 /* Query resource that have been reserved in atomic check step. */ 983 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 984 drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp, 985 ARRAY_SIZE(hw_pp)); 986 num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 987 drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl)); 988 num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 989 drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm)); 990 num_dspp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 991 drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp, 992 ARRAY_SIZE(hw_dspp)); 993 994 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) 995 dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i]) 996 : NULL; 997 998 cstate = to_dpu_crtc_state(drm_crtc->state); 999 1000 for (i = 0; i < num_lm; i++) { 1001 int ctl_idx = (i < num_ctl) ? i : (num_ctl-1); 1002 1003 cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]); 1004 cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]); 1005 cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]); 1006 } 1007 1008 cstate->num_mixers = num_lm; 1009 1010 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1011 int num_blk; 1012 struct dpu_hw_blk *hw_blk[MAX_CHANNELS_PER_ENC]; 1013 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1014 1015 if (!dpu_enc->hw_pp[i]) { 1016 DPU_ERROR_ENC(dpu_enc, 1017 "no pp block assigned at idx: %d\n", i); 1018 return; 1019 } 1020 1021 if (!hw_ctl[i]) { 1022 DPU_ERROR_ENC(dpu_enc, 1023 "no ctl block assigned at idx: %d\n", i); 1024 return; 1025 } 1026 1027 phys->hw_pp = dpu_enc->hw_pp[i]; 1028 phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]); 1029 1030 num_blk = dpu_rm_get_assigned_resources(&dpu_kms->rm, 1031 global_state, drm_enc->base.id, DPU_HW_BLK_INTF, 1032 hw_blk, ARRAY_SIZE(hw_blk)); 1033 for (j = 0; j < num_blk; j++) { 1034 struct dpu_hw_intf *hw_intf; 1035 1036 hw_intf = to_dpu_hw_intf(hw_blk[i]); 1037 if (hw_intf->idx == phys->intf_idx) 1038 phys->hw_intf = hw_intf; 1039 } 1040 1041 if (!phys->hw_intf) { 1042 DPU_ERROR_ENC(dpu_enc, 1043 "no intf block assigned at idx: %d\n", i); 1044 return; 1045 } 1046 1047 phys->connector = conn->state->connector; 1048 if (phys->ops.mode_set) 1049 phys->ops.mode_set(phys, mode, adj_mode); 1050 } 1051 } 1052 1053 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc) 1054 { 1055 struct dpu_encoder_virt *dpu_enc = NULL; 1056 struct msm_drm_private *priv; 1057 struct dpu_kms *dpu_kms; 1058 1059 if (!drm_enc || !drm_enc->dev) { 1060 DPU_ERROR("invalid parameters\n"); 1061 return; 1062 } 1063 1064 priv = drm_enc->dev->dev_private; 1065 dpu_kms = to_dpu_kms(priv->kms); 1066 1067 dpu_enc = to_dpu_encoder_virt(drm_enc); 1068 if (!dpu_enc || !dpu_enc->cur_master) { 1069 DPU_ERROR("invalid dpu encoder/master\n"); 1070 return; 1071 } 1072 1073 if (dpu_enc->cur_master->hw_mdptop && 1074 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc) 1075 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc( 1076 dpu_enc->cur_master->hw_mdptop, 1077 dpu_kms->catalog); 1078 1079 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info); 1080 } 1081 1082 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc) 1083 { 1084 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1085 1086 mutex_lock(&dpu_enc->enc_lock); 1087 1088 if (!dpu_enc->enabled) 1089 goto out; 1090 1091 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore) 1092 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave); 1093 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore) 1094 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master); 1095 1096 _dpu_encoder_virt_enable_helper(drm_enc); 1097 1098 out: 1099 mutex_unlock(&dpu_enc->enc_lock); 1100 } 1101 1102 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc) 1103 { 1104 struct dpu_encoder_virt *dpu_enc = NULL; 1105 int ret = 0; 1106 struct drm_display_mode *cur_mode = NULL; 1107 1108 if (!drm_enc) { 1109 DPU_ERROR("invalid encoder\n"); 1110 return; 1111 } 1112 dpu_enc = to_dpu_encoder_virt(drm_enc); 1113 1114 mutex_lock(&dpu_enc->enc_lock); 1115 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode; 1116 1117 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay, 1118 cur_mode->vdisplay); 1119 1120 /* always enable slave encoder before master */ 1121 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable) 1122 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave); 1123 1124 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable) 1125 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master); 1126 1127 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1128 if (ret) { 1129 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n", 1130 ret); 1131 goto out; 1132 } 1133 1134 _dpu_encoder_virt_enable_helper(drm_enc); 1135 1136 dpu_enc->enabled = true; 1137 1138 out: 1139 mutex_unlock(&dpu_enc->enc_lock); 1140 } 1141 1142 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc) 1143 { 1144 struct dpu_encoder_virt *dpu_enc = NULL; 1145 struct msm_drm_private *priv; 1146 struct dpu_kms *dpu_kms; 1147 struct dpu_global_state *global_state; 1148 int i = 0; 1149 1150 if (!drm_enc) { 1151 DPU_ERROR("invalid encoder\n"); 1152 return; 1153 } else if (!drm_enc->dev) { 1154 DPU_ERROR("invalid dev\n"); 1155 return; 1156 } 1157 1158 dpu_enc = to_dpu_encoder_virt(drm_enc); 1159 DPU_DEBUG_ENC(dpu_enc, "\n"); 1160 1161 mutex_lock(&dpu_enc->enc_lock); 1162 dpu_enc->enabled = false; 1163 1164 priv = drm_enc->dev->dev_private; 1165 dpu_kms = to_dpu_kms(priv->kms); 1166 global_state = dpu_kms_get_existing_global_state(dpu_kms); 1167 1168 trace_dpu_enc_disable(DRMID(drm_enc)); 1169 1170 /* wait for idle */ 1171 dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE); 1172 1173 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP); 1174 1175 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1176 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1177 1178 if (phys->ops.disable) 1179 phys->ops.disable(phys); 1180 } 1181 1182 /* after phys waits for frame-done, should be no more frames pending */ 1183 if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 1184 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id); 1185 del_timer_sync(&dpu_enc->frame_done_timer); 1186 } 1187 1188 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP); 1189 1190 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1191 dpu_enc->phys_encs[i]->connector = NULL; 1192 } 1193 1194 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n"); 1195 1196 dpu_rm_release(global_state, drm_enc); 1197 1198 mutex_unlock(&dpu_enc->enc_lock); 1199 } 1200 1201 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog, 1202 enum dpu_intf_type type, u32 controller_id) 1203 { 1204 int i = 0; 1205 1206 for (i = 0; i < catalog->intf_count; i++) { 1207 if (catalog->intf[i].type == type 1208 && catalog->intf[i].controller_id == controller_id) { 1209 return catalog->intf[i].id; 1210 } 1211 } 1212 1213 return INTF_MAX; 1214 } 1215 1216 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc, 1217 struct dpu_encoder_phys *phy_enc) 1218 { 1219 struct dpu_encoder_virt *dpu_enc = NULL; 1220 unsigned long lock_flags; 1221 1222 if (!drm_enc || !phy_enc) 1223 return; 1224 1225 DPU_ATRACE_BEGIN("encoder_vblank_callback"); 1226 dpu_enc = to_dpu_encoder_virt(drm_enc); 1227 1228 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1229 if (dpu_enc->crtc) 1230 dpu_crtc_vblank_callback(dpu_enc->crtc); 1231 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1232 1233 atomic_inc(&phy_enc->vsync_cnt); 1234 DPU_ATRACE_END("encoder_vblank_callback"); 1235 } 1236 1237 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc, 1238 struct dpu_encoder_phys *phy_enc) 1239 { 1240 if (!phy_enc) 1241 return; 1242 1243 DPU_ATRACE_BEGIN("encoder_underrun_callback"); 1244 atomic_inc(&phy_enc->underrun_cnt); 1245 trace_dpu_enc_underrun_cb(DRMID(drm_enc), 1246 atomic_read(&phy_enc->underrun_cnt)); 1247 DPU_ATRACE_END("encoder_underrun_callback"); 1248 } 1249 1250 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc) 1251 { 1252 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1253 unsigned long lock_flags; 1254 1255 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1256 /* crtc should always be cleared before re-assigning */ 1257 WARN_ON(crtc && dpu_enc->crtc); 1258 dpu_enc->crtc = crtc; 1259 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1260 } 1261 1262 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc, 1263 struct drm_crtc *crtc, bool enable) 1264 { 1265 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1266 unsigned long lock_flags; 1267 int i; 1268 1269 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable); 1270 1271 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1272 if (dpu_enc->crtc != crtc) { 1273 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1274 return; 1275 } 1276 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1277 1278 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1279 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1280 1281 if (phys->ops.control_vblank_irq) 1282 phys->ops.control_vblank_irq(phys, enable); 1283 } 1284 } 1285 1286 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc, 1287 void (*frame_event_cb)(void *, u32 event), 1288 void *frame_event_cb_data) 1289 { 1290 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1291 unsigned long lock_flags; 1292 bool enable; 1293 1294 enable = frame_event_cb ? true : false; 1295 1296 if (!drm_enc) { 1297 DPU_ERROR("invalid encoder\n"); 1298 return; 1299 } 1300 trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable); 1301 1302 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1303 dpu_enc->crtc_frame_event_cb = frame_event_cb; 1304 dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data; 1305 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1306 } 1307 1308 static void dpu_encoder_frame_done_callback( 1309 struct drm_encoder *drm_enc, 1310 struct dpu_encoder_phys *ready_phys, u32 event) 1311 { 1312 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1313 unsigned int i; 1314 1315 if (event & (DPU_ENCODER_FRAME_EVENT_DONE 1316 | DPU_ENCODER_FRAME_EVENT_ERROR 1317 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 1318 1319 if (!dpu_enc->frame_busy_mask[0]) { 1320 /** 1321 * suppress frame_done without waiter, 1322 * likely autorefresh 1323 */ 1324 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), 1325 event, ready_phys->intf_idx); 1326 return; 1327 } 1328 1329 /* One of the physical encoders has become idle */ 1330 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1331 if (dpu_enc->phys_encs[i] == ready_phys) { 1332 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i, 1333 dpu_enc->frame_busy_mask[0]); 1334 clear_bit(i, dpu_enc->frame_busy_mask); 1335 } 1336 } 1337 1338 if (!dpu_enc->frame_busy_mask[0]) { 1339 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 1340 del_timer(&dpu_enc->frame_done_timer); 1341 1342 dpu_encoder_resource_control(drm_enc, 1343 DPU_ENC_RC_EVENT_FRAME_DONE); 1344 1345 if (dpu_enc->crtc_frame_event_cb) 1346 dpu_enc->crtc_frame_event_cb( 1347 dpu_enc->crtc_frame_event_cb_data, 1348 event); 1349 } 1350 } else { 1351 if (dpu_enc->crtc_frame_event_cb) 1352 dpu_enc->crtc_frame_event_cb( 1353 dpu_enc->crtc_frame_event_cb_data, event); 1354 } 1355 } 1356 1357 static void dpu_encoder_off_work(struct work_struct *work) 1358 { 1359 struct dpu_encoder_virt *dpu_enc = container_of(work, 1360 struct dpu_encoder_virt, delayed_off_work.work); 1361 1362 if (!dpu_enc) { 1363 DPU_ERROR("invalid dpu encoder\n"); 1364 return; 1365 } 1366 1367 dpu_encoder_resource_control(&dpu_enc->base, 1368 DPU_ENC_RC_EVENT_ENTER_IDLE); 1369 1370 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL, 1371 DPU_ENCODER_FRAME_EVENT_IDLE); 1372 } 1373 1374 /** 1375 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder 1376 * drm_enc: Pointer to drm encoder structure 1377 * phys: Pointer to physical encoder structure 1378 * extra_flush_bits: Additional bit mask to include in flush trigger 1379 */ 1380 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc, 1381 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits) 1382 { 1383 struct dpu_hw_ctl *ctl; 1384 int pending_kickoff_cnt; 1385 u32 ret = UINT_MAX; 1386 1387 if (!phys->hw_pp) { 1388 DPU_ERROR("invalid pingpong hw\n"); 1389 return; 1390 } 1391 1392 ctl = phys->hw_ctl; 1393 if (!ctl->ops.trigger_flush) { 1394 DPU_ERROR("missing trigger cb\n"); 1395 return; 1396 } 1397 1398 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys); 1399 1400 if (extra_flush_bits && ctl->ops.update_pending_flush) 1401 ctl->ops.update_pending_flush(ctl, extra_flush_bits); 1402 1403 ctl->ops.trigger_flush(ctl); 1404 1405 if (ctl->ops.get_pending_flush) 1406 ret = ctl->ops.get_pending_flush(ctl); 1407 1408 trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx, 1409 pending_kickoff_cnt, ctl->idx, 1410 extra_flush_bits, ret); 1411 } 1412 1413 /** 1414 * _dpu_encoder_trigger_start - trigger start for a physical encoder 1415 * phys: Pointer to physical encoder structure 1416 */ 1417 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys) 1418 { 1419 if (!phys) { 1420 DPU_ERROR("invalid argument(s)\n"); 1421 return; 1422 } 1423 1424 if (!phys->hw_pp) { 1425 DPU_ERROR("invalid pingpong hw\n"); 1426 return; 1427 } 1428 1429 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED) 1430 phys->ops.trigger_start(phys); 1431 } 1432 1433 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc) 1434 { 1435 struct dpu_hw_ctl *ctl; 1436 1437 ctl = phys_enc->hw_ctl; 1438 if (ctl->ops.trigger_start) { 1439 ctl->ops.trigger_start(ctl); 1440 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx); 1441 } 1442 } 1443 1444 static int dpu_encoder_helper_wait_event_timeout( 1445 int32_t drm_id, 1446 int32_t hw_id, 1447 struct dpu_encoder_wait_info *info) 1448 { 1449 int rc = 0; 1450 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms; 1451 s64 jiffies = msecs_to_jiffies(info->timeout_ms); 1452 s64 time; 1453 1454 do { 1455 rc = wait_event_timeout(*(info->wq), 1456 atomic_read(info->atomic_cnt) == 0, jiffies); 1457 time = ktime_to_ms(ktime_get()); 1458 1459 trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time, 1460 expected_time, 1461 atomic_read(info->atomic_cnt)); 1462 /* If we timed out, counter is valid and time is less, wait again */ 1463 } while (atomic_read(info->atomic_cnt) && (rc == 0) && 1464 (time < expected_time)); 1465 1466 return rc; 1467 } 1468 1469 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc) 1470 { 1471 struct dpu_encoder_virt *dpu_enc; 1472 struct dpu_hw_ctl *ctl; 1473 int rc; 1474 1475 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 1476 ctl = phys_enc->hw_ctl; 1477 1478 if (!ctl->ops.reset) 1479 return; 1480 1481 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent), 1482 ctl->idx); 1483 1484 rc = ctl->ops.reset(ctl); 1485 if (rc) 1486 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx); 1487 1488 phys_enc->enable_state = DPU_ENC_ENABLED; 1489 } 1490 1491 /** 1492 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff 1493 * Iterate through the physical encoders and perform consolidated flush 1494 * and/or control start triggering as needed. This is done in the virtual 1495 * encoder rather than the individual physical ones in order to handle 1496 * use cases that require visibility into multiple physical encoders at 1497 * a time. 1498 * dpu_enc: Pointer to virtual encoder structure 1499 */ 1500 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc) 1501 { 1502 struct dpu_hw_ctl *ctl; 1503 uint32_t i, pending_flush; 1504 unsigned long lock_flags; 1505 1506 pending_flush = 0x0; 1507 1508 /* update pending counts and trigger kickoff ctl flush atomically */ 1509 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1510 1511 /* don't perform flush/start operations for slave encoders */ 1512 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1513 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1514 1515 if (phys->enable_state == DPU_ENC_DISABLED) 1516 continue; 1517 1518 ctl = phys->hw_ctl; 1519 1520 /* 1521 * This is cleared in frame_done worker, which isn't invoked 1522 * for async commits. So don't set this for async, since it'll 1523 * roll over to the next commit. 1524 */ 1525 if (phys->split_role != ENC_ROLE_SLAVE) 1526 set_bit(i, dpu_enc->frame_busy_mask); 1527 1528 if (!phys->ops.needs_single_flush || 1529 !phys->ops.needs_single_flush(phys)) 1530 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0); 1531 else if (ctl->ops.get_pending_flush) 1532 pending_flush |= ctl->ops.get_pending_flush(ctl); 1533 } 1534 1535 /* for split flush, combine pending flush masks and send to master */ 1536 if (pending_flush && dpu_enc->cur_master) { 1537 _dpu_encoder_trigger_flush( 1538 &dpu_enc->base, 1539 dpu_enc->cur_master, 1540 pending_flush); 1541 } 1542 1543 _dpu_encoder_trigger_start(dpu_enc->cur_master); 1544 1545 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1546 } 1547 1548 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc) 1549 { 1550 struct dpu_encoder_virt *dpu_enc; 1551 struct dpu_encoder_phys *phys; 1552 unsigned int i; 1553 struct dpu_hw_ctl *ctl; 1554 struct msm_display_info *disp_info; 1555 1556 if (!drm_enc) { 1557 DPU_ERROR("invalid encoder\n"); 1558 return; 1559 } 1560 dpu_enc = to_dpu_encoder_virt(drm_enc); 1561 disp_info = &dpu_enc->disp_info; 1562 1563 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1564 phys = dpu_enc->phys_encs[i]; 1565 1566 ctl = phys->hw_ctl; 1567 if (ctl->ops.clear_pending_flush) 1568 ctl->ops.clear_pending_flush(ctl); 1569 1570 /* update only for command mode primary ctl */ 1571 if ((phys == dpu_enc->cur_master) && 1572 (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) 1573 && ctl->ops.trigger_pending) 1574 ctl->ops.trigger_pending(ctl); 1575 } 1576 } 1577 1578 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc, 1579 struct drm_display_mode *mode) 1580 { 1581 u64 pclk_rate; 1582 u32 pclk_period; 1583 u32 line_time; 1584 1585 /* 1586 * For linetime calculation, only operate on master encoder. 1587 */ 1588 if (!dpu_enc->cur_master) 1589 return 0; 1590 1591 if (!dpu_enc->cur_master->ops.get_line_count) { 1592 DPU_ERROR("get_line_count function not defined\n"); 1593 return 0; 1594 } 1595 1596 pclk_rate = mode->clock; /* pixel clock in kHz */ 1597 if (pclk_rate == 0) { 1598 DPU_ERROR("pclk is 0, cannot calculate line time\n"); 1599 return 0; 1600 } 1601 1602 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate); 1603 if (pclk_period == 0) { 1604 DPU_ERROR("pclk period is 0\n"); 1605 return 0; 1606 } 1607 1608 /* 1609 * Line time calculation based on Pixel clock and HTOTAL. 1610 * Final unit is in ns. 1611 */ 1612 line_time = (pclk_period * mode->htotal) / 1000; 1613 if (line_time == 0) { 1614 DPU_ERROR("line time calculation is 0\n"); 1615 return 0; 1616 } 1617 1618 DPU_DEBUG_ENC(dpu_enc, 1619 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n", 1620 pclk_rate, pclk_period, line_time); 1621 1622 return line_time; 1623 } 1624 1625 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time) 1626 { 1627 struct drm_display_mode *mode; 1628 struct dpu_encoder_virt *dpu_enc; 1629 u32 cur_line; 1630 u32 line_time; 1631 u32 vtotal, time_to_vsync; 1632 ktime_t cur_time; 1633 1634 dpu_enc = to_dpu_encoder_virt(drm_enc); 1635 1636 if (!drm_enc->crtc || !drm_enc->crtc->state) { 1637 DPU_ERROR("crtc/crtc state object is NULL\n"); 1638 return -EINVAL; 1639 } 1640 mode = &drm_enc->crtc->state->adjusted_mode; 1641 1642 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode); 1643 if (!line_time) 1644 return -EINVAL; 1645 1646 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master); 1647 1648 vtotal = mode->vtotal; 1649 if (cur_line >= vtotal) 1650 time_to_vsync = line_time * vtotal; 1651 else 1652 time_to_vsync = line_time * (vtotal - cur_line); 1653 1654 if (time_to_vsync == 0) { 1655 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n", 1656 vtotal); 1657 return -EINVAL; 1658 } 1659 1660 cur_time = ktime_get(); 1661 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync); 1662 1663 DPU_DEBUG_ENC(dpu_enc, 1664 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n", 1665 cur_line, vtotal, time_to_vsync, 1666 ktime_to_ms(cur_time), 1667 ktime_to_ms(*wakeup_time)); 1668 return 0; 1669 } 1670 1671 static void dpu_encoder_vsync_event_handler(struct timer_list *t) 1672 { 1673 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 1674 vsync_event_timer); 1675 struct drm_encoder *drm_enc = &dpu_enc->base; 1676 struct msm_drm_private *priv; 1677 struct msm_drm_thread *event_thread; 1678 1679 if (!drm_enc->dev || !drm_enc->crtc) { 1680 DPU_ERROR("invalid parameters\n"); 1681 return; 1682 } 1683 1684 priv = drm_enc->dev->dev_private; 1685 1686 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) { 1687 DPU_ERROR("invalid crtc index\n"); 1688 return; 1689 } 1690 event_thread = &priv->event_thread[drm_enc->crtc->index]; 1691 if (!event_thread) { 1692 DPU_ERROR("event_thread not found for crtc:%d\n", 1693 drm_enc->crtc->index); 1694 return; 1695 } 1696 1697 del_timer(&dpu_enc->vsync_event_timer); 1698 } 1699 1700 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work) 1701 { 1702 struct dpu_encoder_virt *dpu_enc = container_of(work, 1703 struct dpu_encoder_virt, vsync_event_work); 1704 ktime_t wakeup_time; 1705 1706 if (!dpu_enc) { 1707 DPU_ERROR("invalid dpu encoder\n"); 1708 return; 1709 } 1710 1711 if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time)) 1712 return; 1713 1714 trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time); 1715 mod_timer(&dpu_enc->vsync_event_timer, 1716 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1717 } 1718 1719 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc) 1720 { 1721 struct dpu_encoder_virt *dpu_enc; 1722 struct dpu_encoder_phys *phys; 1723 bool needs_hw_reset = false; 1724 unsigned int i; 1725 1726 dpu_enc = to_dpu_encoder_virt(drm_enc); 1727 1728 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc)); 1729 1730 /* prepare for next kickoff, may include waiting on previous kickoff */ 1731 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff"); 1732 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1733 phys = dpu_enc->phys_encs[i]; 1734 if (phys->ops.prepare_for_kickoff) 1735 phys->ops.prepare_for_kickoff(phys); 1736 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET) 1737 needs_hw_reset = true; 1738 } 1739 DPU_ATRACE_END("enc_prepare_for_kickoff"); 1740 1741 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1742 1743 /* if any phys needs reset, reset all phys, in-order */ 1744 if (needs_hw_reset) { 1745 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc)); 1746 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1747 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]); 1748 } 1749 } 1750 } 1751 1752 void dpu_encoder_kickoff(struct drm_encoder *drm_enc) 1753 { 1754 struct dpu_encoder_virt *dpu_enc; 1755 struct dpu_encoder_phys *phys; 1756 ktime_t wakeup_time; 1757 unsigned long timeout_ms; 1758 unsigned int i; 1759 1760 DPU_ATRACE_BEGIN("encoder_kickoff"); 1761 dpu_enc = to_dpu_encoder_virt(drm_enc); 1762 1763 trace_dpu_enc_kickoff(DRMID(drm_enc)); 1764 1765 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 / 1766 drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode); 1767 1768 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms); 1769 mod_timer(&dpu_enc->frame_done_timer, 1770 jiffies + msecs_to_jiffies(timeout_ms)); 1771 1772 /* All phys encs are ready to go, trigger the kickoff */ 1773 _dpu_encoder_kickoff_phys(dpu_enc); 1774 1775 /* allow phys encs to handle any post-kickoff business */ 1776 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1777 phys = dpu_enc->phys_encs[i]; 1778 if (phys->ops.handle_post_kickoff) 1779 phys->ops.handle_post_kickoff(phys); 1780 } 1781 1782 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI && 1783 !dpu_encoder_vsync_time(drm_enc, &wakeup_time)) { 1784 trace_dpu_enc_early_kickoff(DRMID(drm_enc), 1785 ktime_to_ms(wakeup_time)); 1786 mod_timer(&dpu_enc->vsync_event_timer, 1787 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1788 } 1789 1790 DPU_ATRACE_END("encoder_kickoff"); 1791 } 1792 1793 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc) 1794 { 1795 struct dpu_encoder_virt *dpu_enc; 1796 struct dpu_encoder_phys *phys; 1797 int i; 1798 1799 if (!drm_enc) { 1800 DPU_ERROR("invalid encoder\n"); 1801 return; 1802 } 1803 dpu_enc = to_dpu_encoder_virt(drm_enc); 1804 1805 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1806 phys = dpu_enc->phys_encs[i]; 1807 if (phys->ops.prepare_commit) 1808 phys->ops.prepare_commit(phys); 1809 } 1810 } 1811 1812 #ifdef CONFIG_DEBUG_FS 1813 static int _dpu_encoder_status_show(struct seq_file *s, void *data) 1814 { 1815 struct dpu_encoder_virt *dpu_enc = s->private; 1816 int i; 1817 1818 mutex_lock(&dpu_enc->enc_lock); 1819 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1820 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1821 1822 seq_printf(s, "intf:%d vsync:%8d underrun:%8d ", 1823 phys->intf_idx - INTF_0, 1824 atomic_read(&phys->vsync_cnt), 1825 atomic_read(&phys->underrun_cnt)); 1826 1827 switch (phys->intf_mode) { 1828 case INTF_MODE_VIDEO: 1829 seq_puts(s, "mode: video\n"); 1830 break; 1831 case INTF_MODE_CMD: 1832 seq_puts(s, "mode: command\n"); 1833 break; 1834 default: 1835 seq_puts(s, "mode: ???\n"); 1836 break; 1837 } 1838 } 1839 mutex_unlock(&dpu_enc->enc_lock); 1840 1841 return 0; 1842 } 1843 1844 static int _dpu_encoder_debugfs_status_open(struct inode *inode, 1845 struct file *file) 1846 { 1847 return single_open(file, _dpu_encoder_status_show, inode->i_private); 1848 } 1849 1850 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 1851 { 1852 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1853 int i; 1854 1855 static const struct file_operations debugfs_status_fops = { 1856 .open = _dpu_encoder_debugfs_status_open, 1857 .read = seq_read, 1858 .llseek = seq_lseek, 1859 .release = single_release, 1860 }; 1861 1862 char name[DPU_NAME_SIZE]; 1863 1864 if (!drm_enc->dev) { 1865 DPU_ERROR("invalid encoder or kms\n"); 1866 return -EINVAL; 1867 } 1868 1869 snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id); 1870 1871 /* create overall sub-directory for the encoder */ 1872 dpu_enc->debugfs_root = debugfs_create_dir(name, 1873 drm_enc->dev->primary->debugfs_root); 1874 1875 /* don't error check these */ 1876 debugfs_create_file("status", 0600, 1877 dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops); 1878 1879 for (i = 0; i < dpu_enc->num_phys_encs; i++) 1880 if (dpu_enc->phys_encs[i]->ops.late_register) 1881 dpu_enc->phys_encs[i]->ops.late_register( 1882 dpu_enc->phys_encs[i], 1883 dpu_enc->debugfs_root); 1884 1885 return 0; 1886 } 1887 #else 1888 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 1889 { 1890 return 0; 1891 } 1892 #endif 1893 1894 static int dpu_encoder_late_register(struct drm_encoder *encoder) 1895 { 1896 return _dpu_encoder_init_debugfs(encoder); 1897 } 1898 1899 static void dpu_encoder_early_unregister(struct drm_encoder *encoder) 1900 { 1901 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder); 1902 1903 debugfs_remove_recursive(dpu_enc->debugfs_root); 1904 } 1905 1906 static int dpu_encoder_virt_add_phys_encs( 1907 u32 display_caps, 1908 struct dpu_encoder_virt *dpu_enc, 1909 struct dpu_enc_phys_init_params *params) 1910 { 1911 struct dpu_encoder_phys *enc = NULL; 1912 1913 DPU_DEBUG_ENC(dpu_enc, "\n"); 1914 1915 /* 1916 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types 1917 * in this function, check up-front. 1918 */ 1919 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >= 1920 ARRAY_SIZE(dpu_enc->phys_encs)) { 1921 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n", 1922 dpu_enc->num_phys_encs); 1923 return -EINVAL; 1924 } 1925 1926 if (display_caps & MSM_DISPLAY_CAP_VID_MODE) { 1927 enc = dpu_encoder_phys_vid_init(params); 1928 1929 if (IS_ERR_OR_NULL(enc)) { 1930 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n", 1931 PTR_ERR(enc)); 1932 return enc == NULL ? -EINVAL : PTR_ERR(enc); 1933 } 1934 1935 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 1936 ++dpu_enc->num_phys_encs; 1937 } 1938 1939 if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) { 1940 enc = dpu_encoder_phys_cmd_init(params); 1941 1942 if (IS_ERR_OR_NULL(enc)) { 1943 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n", 1944 PTR_ERR(enc)); 1945 return enc == NULL ? -EINVAL : PTR_ERR(enc); 1946 } 1947 1948 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 1949 ++dpu_enc->num_phys_encs; 1950 } 1951 1952 if (params->split_role == ENC_ROLE_SLAVE) 1953 dpu_enc->cur_slave = enc; 1954 else 1955 dpu_enc->cur_master = enc; 1956 1957 return 0; 1958 } 1959 1960 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = { 1961 .handle_vblank_virt = dpu_encoder_vblank_callback, 1962 .handle_underrun_virt = dpu_encoder_underrun_callback, 1963 .handle_frame_done = dpu_encoder_frame_done_callback, 1964 }; 1965 1966 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc, 1967 struct dpu_kms *dpu_kms, 1968 struct msm_display_info *disp_info) 1969 { 1970 int ret = 0; 1971 int i = 0; 1972 enum dpu_intf_type intf_type; 1973 struct dpu_enc_phys_init_params phys_params; 1974 1975 if (!dpu_enc) { 1976 DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL); 1977 return -EINVAL; 1978 } 1979 1980 dpu_enc->cur_master = NULL; 1981 1982 memset(&phys_params, 0, sizeof(phys_params)); 1983 phys_params.dpu_kms = dpu_kms; 1984 phys_params.parent = &dpu_enc->base; 1985 phys_params.parent_ops = &dpu_encoder_parent_ops; 1986 phys_params.enc_spinlock = &dpu_enc->enc_spinlock; 1987 1988 DPU_DEBUG("\n"); 1989 1990 switch (disp_info->intf_type) { 1991 case DRM_MODE_ENCODER_DSI: 1992 intf_type = INTF_DSI; 1993 break; 1994 default: 1995 DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n"); 1996 return -EINVAL; 1997 } 1998 1999 WARN_ON(disp_info->num_of_h_tiles < 1); 2000 2001 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles); 2002 2003 if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) || 2004 (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE)) 2005 dpu_enc->idle_pc_supported = 2006 dpu_kms->catalog->caps->has_idle_pc; 2007 2008 mutex_lock(&dpu_enc->enc_lock); 2009 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) { 2010 /* 2011 * Left-most tile is at index 0, content is controller id 2012 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right 2013 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right 2014 */ 2015 u32 controller_id = disp_info->h_tile_instance[i]; 2016 2017 if (disp_info->num_of_h_tiles > 1) { 2018 if (i == 0) 2019 phys_params.split_role = ENC_ROLE_MASTER; 2020 else 2021 phys_params.split_role = ENC_ROLE_SLAVE; 2022 } else { 2023 phys_params.split_role = ENC_ROLE_SOLO; 2024 } 2025 2026 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n", 2027 i, controller_id, phys_params.split_role); 2028 2029 phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog, 2030 intf_type, 2031 controller_id); 2032 if (phys_params.intf_idx == INTF_MAX) { 2033 DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n", 2034 intf_type, controller_id); 2035 ret = -EINVAL; 2036 } 2037 2038 if (!ret) { 2039 ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities, 2040 dpu_enc, 2041 &phys_params); 2042 if (ret) 2043 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n"); 2044 } 2045 } 2046 2047 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2048 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2049 atomic_set(&phys->vsync_cnt, 0); 2050 atomic_set(&phys->underrun_cnt, 0); 2051 } 2052 mutex_unlock(&dpu_enc->enc_lock); 2053 2054 return ret; 2055 } 2056 2057 static void dpu_encoder_frame_done_timeout(struct timer_list *t) 2058 { 2059 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 2060 frame_done_timer); 2061 struct drm_encoder *drm_enc = &dpu_enc->base; 2062 u32 event; 2063 2064 if (!drm_enc->dev) { 2065 DPU_ERROR("invalid parameters\n"); 2066 return; 2067 } 2068 2069 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) { 2070 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n", 2071 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]); 2072 return; 2073 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 2074 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc)); 2075 return; 2076 } 2077 2078 DPU_ERROR_ENC(dpu_enc, "frame done timeout\n"); 2079 2080 event = DPU_ENCODER_FRAME_EVENT_ERROR; 2081 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event); 2082 dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event); 2083 } 2084 2085 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = { 2086 .mode_set = dpu_encoder_virt_mode_set, 2087 .disable = dpu_encoder_virt_disable, 2088 .enable = dpu_kms_encoder_enable, 2089 .atomic_check = dpu_encoder_virt_atomic_check, 2090 2091 /* This is called by dpu_kms_encoder_enable */ 2092 .commit = dpu_encoder_virt_enable, 2093 }; 2094 2095 static const struct drm_encoder_funcs dpu_encoder_funcs = { 2096 .destroy = dpu_encoder_destroy, 2097 .late_register = dpu_encoder_late_register, 2098 .early_unregister = dpu_encoder_early_unregister, 2099 }; 2100 2101 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc, 2102 struct msm_display_info *disp_info) 2103 { 2104 struct msm_drm_private *priv = dev->dev_private; 2105 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 2106 struct drm_encoder *drm_enc = NULL; 2107 struct dpu_encoder_virt *dpu_enc = NULL; 2108 int ret = 0; 2109 2110 dpu_enc = to_dpu_encoder_virt(enc); 2111 2112 mutex_init(&dpu_enc->enc_lock); 2113 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info); 2114 if (ret) 2115 goto fail; 2116 2117 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 2118 timer_setup(&dpu_enc->frame_done_timer, 2119 dpu_encoder_frame_done_timeout, 0); 2120 2121 if (disp_info->intf_type == DRM_MODE_ENCODER_DSI) 2122 timer_setup(&dpu_enc->vsync_event_timer, 2123 dpu_encoder_vsync_event_handler, 2124 0); 2125 2126 2127 mutex_init(&dpu_enc->rc_lock); 2128 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work, 2129 dpu_encoder_off_work); 2130 dpu_enc->idle_timeout = IDLE_TIMEOUT; 2131 2132 kthread_init_work(&dpu_enc->vsync_event_work, 2133 dpu_encoder_vsync_event_work_handler); 2134 2135 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info)); 2136 2137 DPU_DEBUG_ENC(dpu_enc, "created\n"); 2138 2139 return ret; 2140 2141 fail: 2142 DPU_ERROR("failed to create encoder\n"); 2143 if (drm_enc) 2144 dpu_encoder_destroy(drm_enc); 2145 2146 return ret; 2147 2148 2149 } 2150 2151 struct drm_encoder *dpu_encoder_init(struct drm_device *dev, 2152 int drm_enc_mode) 2153 { 2154 struct dpu_encoder_virt *dpu_enc = NULL; 2155 int rc = 0; 2156 2157 dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL); 2158 if (!dpu_enc) 2159 return ERR_PTR(ENOMEM); 2160 2161 rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs, 2162 drm_enc_mode, NULL); 2163 if (rc) { 2164 devm_kfree(dev->dev, dpu_enc); 2165 return ERR_PTR(rc); 2166 } 2167 2168 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs); 2169 2170 spin_lock_init(&dpu_enc->enc_spinlock); 2171 dpu_enc->enabled = false; 2172 2173 return &dpu_enc->base; 2174 } 2175 2176 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc, 2177 enum msm_event_wait event) 2178 { 2179 int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL; 2180 struct dpu_encoder_virt *dpu_enc = NULL; 2181 int i, ret = 0; 2182 2183 if (!drm_enc) { 2184 DPU_ERROR("invalid encoder\n"); 2185 return -EINVAL; 2186 } 2187 dpu_enc = to_dpu_encoder_virt(drm_enc); 2188 DPU_DEBUG_ENC(dpu_enc, "\n"); 2189 2190 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2191 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2192 2193 switch (event) { 2194 case MSM_ENC_COMMIT_DONE: 2195 fn_wait = phys->ops.wait_for_commit_done; 2196 break; 2197 case MSM_ENC_TX_COMPLETE: 2198 fn_wait = phys->ops.wait_for_tx_complete; 2199 break; 2200 case MSM_ENC_VBLANK: 2201 fn_wait = phys->ops.wait_for_vblank; 2202 break; 2203 default: 2204 DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n", 2205 event); 2206 return -EINVAL; 2207 } 2208 2209 if (fn_wait) { 2210 DPU_ATRACE_BEGIN("wait_for_completion_event"); 2211 ret = fn_wait(phys); 2212 DPU_ATRACE_END("wait_for_completion_event"); 2213 if (ret) 2214 return ret; 2215 } 2216 } 2217 2218 return ret; 2219 } 2220 2221 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder) 2222 { 2223 struct dpu_encoder_virt *dpu_enc = NULL; 2224 2225 if (!encoder) { 2226 DPU_ERROR("invalid encoder\n"); 2227 return INTF_MODE_NONE; 2228 } 2229 dpu_enc = to_dpu_encoder_virt(encoder); 2230 2231 if (dpu_enc->cur_master) 2232 return dpu_enc->cur_master->intf_mode; 2233 2234 if (dpu_enc->num_phys_encs) 2235 return dpu_enc->phys_encs[0]->intf_mode; 2236 2237 return INTF_MODE_NONE; 2238 } 2239