1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2013 Red Hat 4 * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved. 5 * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved. 6 * 7 * Author: Rob Clark <robdclark@gmail.com> 8 */ 9 10 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 11 #include <linux/debugfs.h> 12 #include <linux/kthread.h> 13 #include <linux/seq_file.h> 14 15 #include <drm/drm_crtc.h> 16 #include <drm/drm_file.h> 17 #include <drm/drm_probe_helper.h> 18 19 #include "msm_drv.h" 20 #include "dpu_kms.h" 21 #include "dpu_hwio.h" 22 #include "dpu_hw_catalog.h" 23 #include "dpu_hw_intf.h" 24 #include "dpu_hw_ctl.h" 25 #include "dpu_hw_dspp.h" 26 #include "dpu_hw_dsc.h" 27 #include "dpu_hw_merge3d.h" 28 #include "dpu_formats.h" 29 #include "dpu_encoder_phys.h" 30 #include "dpu_crtc.h" 31 #include "dpu_trace.h" 32 #include "dpu_core_irq.h" 33 #include "disp/msm_disp_snapshot.h" 34 35 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\ 36 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 37 38 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\ 39 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 40 41 /* 42 * Two to anticipate panels that can do cmd/vid dynamic switching 43 * plan is to create all possible physical encoder types, and switch between 44 * them at runtime 45 */ 46 #define NUM_PHYS_ENCODER_TYPES 2 47 48 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \ 49 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES) 50 51 #define MAX_CHANNELS_PER_ENC 2 52 53 #define IDLE_SHORT_TIMEOUT 1 54 55 #define MAX_HDISPLAY_SPLIT 1080 56 57 /* timeout in frames waiting for frame done */ 58 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5 59 60 /** 61 * enum dpu_enc_rc_events - events for resource control state machine 62 * @DPU_ENC_RC_EVENT_KICKOFF: 63 * This event happens at NORMAL priority. 64 * Event that signals the start of the transfer. When this event is 65 * received, enable MDP/DSI core clocks. Regardless of the previous 66 * state, the resource should be in ON state at the end of this event. 67 * @DPU_ENC_RC_EVENT_FRAME_DONE: 68 * This event happens at INTERRUPT level. 69 * Event signals the end of the data transfer after the PP FRAME_DONE 70 * event. At the end of this event, a delayed work is scheduled to go to 71 * IDLE_PC state after IDLE_TIMEOUT time. 72 * @DPU_ENC_RC_EVENT_PRE_STOP: 73 * This event happens at NORMAL priority. 74 * This event, when received during the ON state, leave the RC STATE 75 * in the PRE_OFF state. It should be followed by the STOP event as 76 * part of encoder disable. 77 * If received during IDLE or OFF states, it will do nothing. 78 * @DPU_ENC_RC_EVENT_STOP: 79 * This event happens at NORMAL priority. 80 * When this event is received, disable all the MDP/DSI core clocks, and 81 * disable IRQs. It should be called from the PRE_OFF or IDLE states. 82 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing. 83 * PRE_OFF is expected when PRE_STOP was executed during the ON state. 84 * Resource state should be in OFF at the end of the event. 85 * @DPU_ENC_RC_EVENT_ENTER_IDLE: 86 * This event happens at NORMAL priority from a work item. 87 * Event signals that there were no frame updates for IDLE_TIMEOUT time. 88 * This would disable MDP/DSI core clocks and change the resource state 89 * to IDLE. 90 */ 91 enum dpu_enc_rc_events { 92 DPU_ENC_RC_EVENT_KICKOFF = 1, 93 DPU_ENC_RC_EVENT_FRAME_DONE, 94 DPU_ENC_RC_EVENT_PRE_STOP, 95 DPU_ENC_RC_EVENT_STOP, 96 DPU_ENC_RC_EVENT_ENTER_IDLE 97 }; 98 99 /* 100 * enum dpu_enc_rc_states - states that the resource control maintains 101 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state 102 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state 103 * @DPU_ENC_RC_STATE_ON: Resource is in ON state 104 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state 105 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state 106 */ 107 enum dpu_enc_rc_states { 108 DPU_ENC_RC_STATE_OFF, 109 DPU_ENC_RC_STATE_PRE_OFF, 110 DPU_ENC_RC_STATE_ON, 111 DPU_ENC_RC_STATE_IDLE 112 }; 113 114 /** 115 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical 116 * encoders. Virtual encoder manages one "logical" display. Physical 117 * encoders manage one intf block, tied to a specific panel/sub-panel. 118 * Virtual encoder defers as much as possible to the physical encoders. 119 * Virtual encoder registers itself with the DRM Framework as the encoder. 120 * @base: drm_encoder base class for registration with DRM 121 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes 122 * @enabled: True if the encoder is active, protected by enc_lock 123 * @num_phys_encs: Actual number of physical encoders contained. 124 * @phys_encs: Container of physical encoders managed. 125 * @cur_master: Pointer to the current master in this mode. Optimization 126 * Only valid after enable. Cleared as disable. 127 * @cur_slave: As above but for the slave encoder. 128 * @hw_pp: Handle to the pingpong blocks used for the display. No. 129 * pingpong blocks can be different than num_phys_encs. 130 * @hw_dsc: Handle to the DSC blocks used for the display. 131 * @dsc_mask: Bitmask of used DSC blocks. 132 * @intfs_swapped: Whether or not the phys_enc interfaces have been swapped 133 * for partial update right-only cases, such as pingpong 134 * split where virtual pingpong does not generate IRQs 135 * @crtc: Pointer to the currently assigned crtc. Normally you 136 * would use crtc->state->encoder_mask to determine the 137 * link between encoder/crtc. However in this case we need 138 * to track crtc in the disable() hook which is called 139 * _after_ encoder_mask is cleared. 140 * @connector: If a mode is set, cached pointer to the active connector 141 * @crtc_kickoff_cb: Callback into CRTC that will flush & start 142 * all CTL paths 143 * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb 144 * @debugfs_root: Debug file system root file node 145 * @enc_lock: Lock around physical encoder 146 * create/destroy/enable/disable 147 * @frame_busy_mask: Bitmask tracking which phys_enc we are still 148 * busy processing current command. 149 * Bit0 = phys_encs[0] etc. 150 * @crtc_frame_event_cb: callback handler for frame event 151 * @crtc_frame_event_cb_data: callback handler private data 152 * @frame_done_timeout_ms: frame done timeout in ms 153 * @frame_done_timer: watchdog timer for frame done event 154 * @vsync_event_timer: vsync timer 155 * @disp_info: local copy of msm_display_info struct 156 * @idle_pc_supported: indicate if idle power collaps is supported 157 * @rc_lock: resource control mutex lock to protect 158 * virt encoder over various state changes 159 * @rc_state: resource controller state 160 * @delayed_off_work: delayed worker to schedule disabling of 161 * clks and resources after IDLE_TIMEOUT time. 162 * @vsync_event_work: worker to handle vsync event for autorefresh 163 * @topology: topology of the display 164 * @idle_timeout: idle timeout duration in milliseconds 165 * @dsc: msm_display_dsc_config pointer, for DSC-enabled encoders 166 */ 167 struct dpu_encoder_virt { 168 struct drm_encoder base; 169 spinlock_t enc_spinlock; 170 171 bool enabled; 172 173 unsigned int num_phys_encs; 174 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL]; 175 struct dpu_encoder_phys *cur_master; 176 struct dpu_encoder_phys *cur_slave; 177 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; 178 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC]; 179 180 unsigned int dsc_mask; 181 182 bool intfs_swapped; 183 184 struct drm_crtc *crtc; 185 struct drm_connector *connector; 186 187 struct dentry *debugfs_root; 188 struct mutex enc_lock; 189 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL); 190 void (*crtc_frame_event_cb)(void *, u32 event); 191 void *crtc_frame_event_cb_data; 192 193 atomic_t frame_done_timeout_ms; 194 struct timer_list frame_done_timer; 195 struct timer_list vsync_event_timer; 196 197 struct msm_display_info disp_info; 198 199 bool idle_pc_supported; 200 struct mutex rc_lock; 201 enum dpu_enc_rc_states rc_state; 202 struct delayed_work delayed_off_work; 203 struct kthread_work vsync_event_work; 204 struct msm_display_topology topology; 205 206 u32 idle_timeout; 207 208 bool wide_bus_en; 209 210 /* DSC configuration */ 211 struct msm_display_dsc_config *dsc; 212 }; 213 214 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base) 215 216 static u32 dither_matrix[DITHER_MATRIX_SZ] = { 217 15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10 218 }; 219 220 221 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc) 222 { 223 const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 224 225 return dpu_enc->wide_bus_en; 226 } 227 228 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc) 229 { 230 struct dpu_hw_dither_cfg dither_cfg = { 0 }; 231 232 if (!hw_pp->ops.setup_dither) 233 return; 234 235 switch (bpc) { 236 case 6: 237 dither_cfg.c0_bitdepth = 6; 238 dither_cfg.c1_bitdepth = 6; 239 dither_cfg.c2_bitdepth = 6; 240 dither_cfg.c3_bitdepth = 6; 241 dither_cfg.temporal_en = 0; 242 break; 243 default: 244 hw_pp->ops.setup_dither(hw_pp, NULL); 245 return; 246 } 247 248 memcpy(&dither_cfg.matrix, dither_matrix, 249 sizeof(u32) * DITHER_MATRIX_SZ); 250 251 hw_pp->ops.setup_dither(hw_pp, &dither_cfg); 252 } 253 254 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode) 255 { 256 switch (intf_mode) { 257 case INTF_MODE_VIDEO: 258 return "INTF_MODE_VIDEO"; 259 case INTF_MODE_CMD: 260 return "INTF_MODE_CMD"; 261 case INTF_MODE_WB_BLOCK: 262 return "INTF_MODE_WB_BLOCK"; 263 case INTF_MODE_WB_LINE: 264 return "INTF_MODE_WB_LINE"; 265 default: 266 return "INTF_MODE_UNKNOWN"; 267 } 268 } 269 270 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc, 271 enum dpu_intr_idx intr_idx) 272 { 273 DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n", 274 DRMID(phys_enc->parent), 275 dpu_encoder_helper_get_intf_type(phys_enc->intf_mode), 276 phys_enc->intf_idx - INTF_0, phys_enc->wb_idx - WB_0, 277 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx); 278 279 if (phys_enc->parent_ops->handle_frame_done) 280 phys_enc->parent_ops->handle_frame_done( 281 phys_enc->parent, phys_enc, 282 DPU_ENCODER_FRAME_EVENT_ERROR); 283 } 284 285 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id, 286 u32 irq_idx, struct dpu_encoder_wait_info *info); 287 288 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc, 289 int irq, 290 void (*func)(void *arg, int irq_idx), 291 struct dpu_encoder_wait_info *wait_info) 292 { 293 u32 irq_status; 294 int ret; 295 296 if (!wait_info) { 297 DPU_ERROR("invalid params\n"); 298 return -EINVAL; 299 } 300 /* note: do master / slave checking outside */ 301 302 /* return EWOULDBLOCK since we know the wait isn't necessary */ 303 if (phys_enc->enable_state == DPU_ENC_DISABLED) { 304 DRM_ERROR("encoder is disabled id=%u, callback=%ps, irq=%d\n", 305 DRMID(phys_enc->parent), func, 306 irq); 307 return -EWOULDBLOCK; 308 } 309 310 if (irq < 0) { 311 DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n", 312 DRMID(phys_enc->parent), func); 313 return 0; 314 } 315 316 DRM_DEBUG_KMS("id=%u, callback=%ps, irq=%d, pp=%d, pending_cnt=%d\n", 317 DRMID(phys_enc->parent), func, 318 irq, phys_enc->hw_pp->idx - PINGPONG_0, 319 atomic_read(wait_info->atomic_cnt)); 320 321 ret = dpu_encoder_helper_wait_event_timeout( 322 DRMID(phys_enc->parent), 323 irq, 324 wait_info); 325 326 if (ret <= 0) { 327 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq); 328 if (irq_status) { 329 unsigned long flags; 330 331 DRM_DEBUG_KMS("irq not triggered id=%u, callback=%ps, irq=%d, pp=%d, atomic_cnt=%d\n", 332 DRMID(phys_enc->parent), func, 333 irq, 334 phys_enc->hw_pp->idx - PINGPONG_0, 335 atomic_read(wait_info->atomic_cnt)); 336 local_irq_save(flags); 337 func(phys_enc, irq); 338 local_irq_restore(flags); 339 ret = 0; 340 } else { 341 ret = -ETIMEDOUT; 342 DRM_DEBUG_KMS("irq timeout id=%u, callback=%ps, irq=%d, pp=%d, atomic_cnt=%d\n", 343 DRMID(phys_enc->parent), func, 344 irq, 345 phys_enc->hw_pp->idx - PINGPONG_0, 346 atomic_read(wait_info->atomic_cnt)); 347 } 348 } else { 349 ret = 0; 350 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent), 351 func, irq, 352 phys_enc->hw_pp->idx - PINGPONG_0, 353 atomic_read(wait_info->atomic_cnt)); 354 } 355 356 return ret; 357 } 358 359 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc) 360 { 361 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 362 struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL; 363 return phys ? atomic_read(&phys->vsync_cnt) : 0; 364 } 365 366 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc) 367 { 368 struct dpu_encoder_virt *dpu_enc; 369 struct dpu_encoder_phys *phys; 370 int linecount = 0; 371 372 dpu_enc = to_dpu_encoder_virt(drm_enc); 373 phys = dpu_enc ? dpu_enc->cur_master : NULL; 374 375 if (phys && phys->ops.get_line_count) 376 linecount = phys->ops.get_line_count(phys); 377 378 return linecount; 379 } 380 381 static void dpu_encoder_destroy(struct drm_encoder *drm_enc) 382 { 383 struct dpu_encoder_virt *dpu_enc = NULL; 384 int i = 0; 385 386 if (!drm_enc) { 387 DPU_ERROR("invalid encoder\n"); 388 return; 389 } 390 391 dpu_enc = to_dpu_encoder_virt(drm_enc); 392 DPU_DEBUG_ENC(dpu_enc, "\n"); 393 394 mutex_lock(&dpu_enc->enc_lock); 395 396 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 397 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 398 399 if (phys->ops.destroy) { 400 phys->ops.destroy(phys); 401 --dpu_enc->num_phys_encs; 402 dpu_enc->phys_encs[i] = NULL; 403 } 404 } 405 406 if (dpu_enc->num_phys_encs) 407 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n", 408 dpu_enc->num_phys_encs); 409 dpu_enc->num_phys_encs = 0; 410 mutex_unlock(&dpu_enc->enc_lock); 411 412 drm_encoder_cleanup(drm_enc); 413 mutex_destroy(&dpu_enc->enc_lock); 414 } 415 416 void dpu_encoder_helper_split_config( 417 struct dpu_encoder_phys *phys_enc, 418 enum dpu_intf interface) 419 { 420 struct dpu_encoder_virt *dpu_enc; 421 struct split_pipe_cfg cfg = { 0 }; 422 struct dpu_hw_mdp *hw_mdptop; 423 struct msm_display_info *disp_info; 424 425 if (!phys_enc->hw_mdptop || !phys_enc->parent) { 426 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL); 427 return; 428 } 429 430 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 431 hw_mdptop = phys_enc->hw_mdptop; 432 disp_info = &dpu_enc->disp_info; 433 434 if (disp_info->intf_type != DRM_MODE_ENCODER_DSI) 435 return; 436 437 /** 438 * disable split modes since encoder will be operating in as the only 439 * encoder, either for the entire use case in the case of, for example, 440 * single DSI, or for this frame in the case of left/right only partial 441 * update. 442 */ 443 if (phys_enc->split_role == ENC_ROLE_SOLO) { 444 if (hw_mdptop->ops.setup_split_pipe) 445 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 446 return; 447 } 448 449 cfg.en = true; 450 cfg.mode = phys_enc->intf_mode; 451 cfg.intf = interface; 452 453 if (cfg.en && phys_enc->ops.needs_single_flush && 454 phys_enc->ops.needs_single_flush(phys_enc)) 455 cfg.split_flush_en = true; 456 457 if (phys_enc->split_role == ENC_ROLE_MASTER) { 458 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en); 459 460 if (hw_mdptop->ops.setup_split_pipe) 461 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 462 } 463 } 464 465 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc) 466 { 467 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 468 int i, intf_count = 0, num_dsc = 0; 469 470 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) 471 if (dpu_enc->phys_encs[i]) 472 intf_count++; 473 474 /* See dpu_encoder_get_topology, we only support 2:2:1 topology */ 475 if (dpu_enc->dsc) 476 num_dsc = 2; 477 478 return (num_dsc > 0) && (num_dsc > intf_count); 479 } 480 481 static struct msm_display_topology dpu_encoder_get_topology( 482 struct dpu_encoder_virt *dpu_enc, 483 struct dpu_kms *dpu_kms, 484 struct drm_display_mode *mode) 485 { 486 struct msm_display_topology topology = {0}; 487 int i, intf_count = 0; 488 489 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) 490 if (dpu_enc->phys_encs[i]) 491 intf_count++; 492 493 /* Datapath topology selection 494 * 495 * Dual display 496 * 2 LM, 2 INTF ( Split display using 2 interfaces) 497 * 498 * Single display 499 * 1 LM, 1 INTF 500 * 2 LM, 1 INTF (stream merge to support high resolution interfaces) 501 * 502 * Adding color blocks only to primary interface if available in 503 * sufficient number 504 */ 505 if (intf_count == 2) 506 topology.num_lm = 2; 507 else if (!dpu_kms->catalog->caps->has_3d_merge) 508 topology.num_lm = 1; 509 else 510 topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1; 511 512 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI) { 513 if (dpu_kms->catalog->dspp && 514 (dpu_kms->catalog->dspp_count >= topology.num_lm)) 515 topology.num_dspp = topology.num_lm; 516 } 517 518 topology.num_enc = 0; 519 topology.num_intf = intf_count; 520 521 if (dpu_enc->dsc) { 522 /* In case of Display Stream Compression (DSC), we would use 523 * 2 encoders, 2 layer mixers and 1 interface 524 * this is power optimal and can drive up to (including) 4k 525 * screens 526 */ 527 topology.num_enc = 2; 528 topology.num_dsc = 2; 529 topology.num_intf = 1; 530 topology.num_lm = 2; 531 } 532 533 return topology; 534 } 535 536 static int dpu_encoder_virt_atomic_check( 537 struct drm_encoder *drm_enc, 538 struct drm_crtc_state *crtc_state, 539 struct drm_connector_state *conn_state) 540 { 541 struct dpu_encoder_virt *dpu_enc; 542 struct msm_drm_private *priv; 543 struct dpu_kms *dpu_kms; 544 const struct drm_display_mode *mode; 545 struct drm_display_mode *adj_mode; 546 struct msm_display_topology topology; 547 struct dpu_global_state *global_state; 548 int i = 0; 549 int ret = 0; 550 551 if (!drm_enc || !crtc_state || !conn_state) { 552 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n", 553 drm_enc != NULL, crtc_state != NULL, conn_state != NULL); 554 return -EINVAL; 555 } 556 557 dpu_enc = to_dpu_encoder_virt(drm_enc); 558 DPU_DEBUG_ENC(dpu_enc, "\n"); 559 560 priv = drm_enc->dev->dev_private; 561 dpu_kms = to_dpu_kms(priv->kms); 562 mode = &crtc_state->mode; 563 adj_mode = &crtc_state->adjusted_mode; 564 global_state = dpu_kms_get_global_state(crtc_state->state); 565 if (IS_ERR(global_state)) 566 return PTR_ERR(global_state); 567 568 trace_dpu_enc_atomic_check(DRMID(drm_enc)); 569 570 /* perform atomic check on the first physical encoder (master) */ 571 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 572 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 573 574 if (phys->ops.atomic_check) 575 ret = phys->ops.atomic_check(phys, crtc_state, 576 conn_state); 577 if (ret) { 578 DPU_ERROR_ENC(dpu_enc, 579 "mode unsupported, phys idx %d\n", i); 580 break; 581 } 582 } 583 584 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 585 586 /* Reserve dynamic resources now. */ 587 if (!ret) { 588 /* 589 * Release and Allocate resources on every modeset 590 * Dont allocate when active is false. 591 */ 592 if (drm_atomic_crtc_needs_modeset(crtc_state)) { 593 dpu_rm_release(global_state, drm_enc); 594 595 if (!crtc_state->active_changed || crtc_state->active) 596 ret = dpu_rm_reserve(&dpu_kms->rm, global_state, 597 drm_enc, crtc_state, topology); 598 } 599 } 600 601 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags); 602 603 return ret; 604 } 605 606 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc, 607 struct msm_display_info *disp_info) 608 { 609 struct dpu_vsync_source_cfg vsync_cfg = { 0 }; 610 struct msm_drm_private *priv; 611 struct dpu_kms *dpu_kms; 612 struct dpu_hw_mdp *hw_mdptop; 613 struct drm_encoder *drm_enc; 614 int i; 615 616 if (!dpu_enc || !disp_info) { 617 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n", 618 dpu_enc != NULL, disp_info != NULL); 619 return; 620 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) { 621 DPU_ERROR("invalid num phys enc %d/%d\n", 622 dpu_enc->num_phys_encs, 623 (int) ARRAY_SIZE(dpu_enc->hw_pp)); 624 return; 625 } 626 627 drm_enc = &dpu_enc->base; 628 /* this pointers are checked in virt_enable_helper */ 629 priv = drm_enc->dev->dev_private; 630 631 dpu_kms = to_dpu_kms(priv->kms); 632 hw_mdptop = dpu_kms->hw_mdp; 633 if (!hw_mdptop) { 634 DPU_ERROR("invalid mdptop\n"); 635 return; 636 } 637 638 if (hw_mdptop->ops.setup_vsync_source && 639 disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) { 640 for (i = 0; i < dpu_enc->num_phys_encs; i++) 641 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx; 642 643 vsync_cfg.pp_count = dpu_enc->num_phys_encs; 644 if (disp_info->is_te_using_watchdog_timer) 645 vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0; 646 else 647 vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO; 648 649 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg); 650 } 651 } 652 653 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable) 654 { 655 struct dpu_encoder_virt *dpu_enc; 656 int i; 657 658 if (!drm_enc) { 659 DPU_ERROR("invalid encoder\n"); 660 return; 661 } 662 663 dpu_enc = to_dpu_encoder_virt(drm_enc); 664 665 DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable); 666 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 667 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 668 669 if (phys->ops.irq_control) 670 phys->ops.irq_control(phys, enable); 671 } 672 673 } 674 675 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc, 676 bool enable) 677 { 678 struct msm_drm_private *priv; 679 struct dpu_kms *dpu_kms; 680 struct dpu_encoder_virt *dpu_enc; 681 682 dpu_enc = to_dpu_encoder_virt(drm_enc); 683 priv = drm_enc->dev->dev_private; 684 dpu_kms = to_dpu_kms(priv->kms); 685 686 trace_dpu_enc_rc_helper(DRMID(drm_enc), enable); 687 688 if (!dpu_enc->cur_master) { 689 DPU_ERROR("encoder master not set\n"); 690 return; 691 } 692 693 if (enable) { 694 /* enable DPU core clks */ 695 pm_runtime_get_sync(&dpu_kms->pdev->dev); 696 697 /* enable all the irq */ 698 _dpu_encoder_irq_control(drm_enc, true); 699 700 } else { 701 /* disable all the irq */ 702 _dpu_encoder_irq_control(drm_enc, false); 703 704 /* disable DPU core clks */ 705 pm_runtime_put_sync(&dpu_kms->pdev->dev); 706 } 707 708 } 709 710 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc, 711 u32 sw_event) 712 { 713 struct dpu_encoder_virt *dpu_enc; 714 struct msm_drm_private *priv; 715 bool is_vid_mode = false; 716 717 if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) { 718 DPU_ERROR("invalid parameters\n"); 719 return -EINVAL; 720 } 721 dpu_enc = to_dpu_encoder_virt(drm_enc); 722 priv = drm_enc->dev->dev_private; 723 is_vid_mode = dpu_enc->disp_info.capabilities & 724 MSM_DISPLAY_CAP_VID_MODE; 725 726 /* 727 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET 728 * events and return early for other events (ie wb display). 729 */ 730 if (!dpu_enc->idle_pc_supported && 731 (sw_event != DPU_ENC_RC_EVENT_KICKOFF && 732 sw_event != DPU_ENC_RC_EVENT_STOP && 733 sw_event != DPU_ENC_RC_EVENT_PRE_STOP)) 734 return 0; 735 736 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, 737 dpu_enc->rc_state, "begin"); 738 739 switch (sw_event) { 740 case DPU_ENC_RC_EVENT_KICKOFF: 741 /* cancel delayed off work, if any */ 742 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 743 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 744 sw_event); 745 746 mutex_lock(&dpu_enc->rc_lock); 747 748 /* return if the resource control is already in ON state */ 749 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 750 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n", 751 DRMID(drm_enc), sw_event); 752 mutex_unlock(&dpu_enc->rc_lock); 753 return 0; 754 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF && 755 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) { 756 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n", 757 DRMID(drm_enc), sw_event, 758 dpu_enc->rc_state); 759 mutex_unlock(&dpu_enc->rc_lock); 760 return -EINVAL; 761 } 762 763 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) 764 _dpu_encoder_irq_control(drm_enc, true); 765 else 766 _dpu_encoder_resource_control_helper(drm_enc, true); 767 768 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON; 769 770 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 771 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 772 "kickoff"); 773 774 mutex_unlock(&dpu_enc->rc_lock); 775 break; 776 777 case DPU_ENC_RC_EVENT_FRAME_DONE: 778 /* 779 * mutex lock is not used as this event happens at interrupt 780 * context. And locking is not required as, the other events 781 * like KICKOFF and STOP does a wait-for-idle before executing 782 * the resource_control 783 */ 784 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 785 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n", 786 DRMID(drm_enc), sw_event, 787 dpu_enc->rc_state); 788 return -EINVAL; 789 } 790 791 /* 792 * schedule off work item only when there are no 793 * frames pending 794 */ 795 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) { 796 DRM_DEBUG_KMS("id:%d skip schedule work\n", 797 DRMID(drm_enc)); 798 return 0; 799 } 800 801 queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work, 802 msecs_to_jiffies(dpu_enc->idle_timeout)); 803 804 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 805 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 806 "frame done"); 807 break; 808 809 case DPU_ENC_RC_EVENT_PRE_STOP: 810 /* cancel delayed off work, if any */ 811 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 812 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 813 sw_event); 814 815 mutex_lock(&dpu_enc->rc_lock); 816 817 if (is_vid_mode && 818 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 819 _dpu_encoder_irq_control(drm_enc, true); 820 } 821 /* skip if is already OFF or IDLE, resources are off already */ 822 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF || 823 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 824 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n", 825 DRMID(drm_enc), sw_event, 826 dpu_enc->rc_state); 827 mutex_unlock(&dpu_enc->rc_lock); 828 return 0; 829 } 830 831 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF; 832 833 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 834 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 835 "pre stop"); 836 837 mutex_unlock(&dpu_enc->rc_lock); 838 break; 839 840 case DPU_ENC_RC_EVENT_STOP: 841 mutex_lock(&dpu_enc->rc_lock); 842 843 /* return if the resource control is already in OFF state */ 844 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) { 845 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n", 846 DRMID(drm_enc), sw_event); 847 mutex_unlock(&dpu_enc->rc_lock); 848 return 0; 849 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 850 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n", 851 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 852 mutex_unlock(&dpu_enc->rc_lock); 853 return -EINVAL; 854 } 855 856 /** 857 * expect to arrive here only if in either idle state or pre-off 858 * and in IDLE state the resources are already disabled 859 */ 860 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF) 861 _dpu_encoder_resource_control_helper(drm_enc, false); 862 863 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF; 864 865 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 866 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 867 "stop"); 868 869 mutex_unlock(&dpu_enc->rc_lock); 870 break; 871 872 case DPU_ENC_RC_EVENT_ENTER_IDLE: 873 mutex_lock(&dpu_enc->rc_lock); 874 875 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 876 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n", 877 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 878 mutex_unlock(&dpu_enc->rc_lock); 879 return 0; 880 } 881 882 /* 883 * if we are in ON but a frame was just kicked off, 884 * ignore the IDLE event, it's probably a stale timer event 885 */ 886 if (dpu_enc->frame_busy_mask[0]) { 887 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n", 888 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 889 mutex_unlock(&dpu_enc->rc_lock); 890 return 0; 891 } 892 893 if (is_vid_mode) 894 _dpu_encoder_irq_control(drm_enc, false); 895 else 896 _dpu_encoder_resource_control_helper(drm_enc, false); 897 898 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE; 899 900 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 901 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 902 "idle"); 903 904 mutex_unlock(&dpu_enc->rc_lock); 905 break; 906 907 default: 908 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc), 909 sw_event); 910 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 911 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 912 "error"); 913 break; 914 } 915 916 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 917 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 918 "end"); 919 return 0; 920 } 921 922 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc, 923 struct drm_writeback_job *job) 924 { 925 struct dpu_encoder_virt *dpu_enc; 926 int i; 927 928 dpu_enc = to_dpu_encoder_virt(drm_enc); 929 930 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 931 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 932 933 if (phys->ops.prepare_wb_job) 934 phys->ops.prepare_wb_job(phys, job); 935 936 } 937 } 938 939 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc, 940 struct drm_writeback_job *job) 941 { 942 struct dpu_encoder_virt *dpu_enc; 943 int i; 944 945 dpu_enc = to_dpu_encoder_virt(drm_enc); 946 947 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 948 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 949 950 if (phys->ops.cleanup_wb_job) 951 phys->ops.cleanup_wb_job(phys, job); 952 953 } 954 } 955 956 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc, 957 struct drm_crtc_state *crtc_state, 958 struct drm_connector_state *conn_state) 959 { 960 struct dpu_encoder_virt *dpu_enc; 961 struct msm_drm_private *priv; 962 struct dpu_kms *dpu_kms; 963 struct dpu_crtc_state *cstate; 964 struct dpu_global_state *global_state; 965 struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC]; 966 struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC]; 967 struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC]; 968 struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL }; 969 struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC]; 970 int num_lm, num_ctl, num_pp, num_dsc; 971 unsigned int dsc_mask = 0; 972 int i; 973 974 if (!drm_enc) { 975 DPU_ERROR("invalid encoder\n"); 976 return; 977 } 978 979 dpu_enc = to_dpu_encoder_virt(drm_enc); 980 DPU_DEBUG_ENC(dpu_enc, "\n"); 981 982 priv = drm_enc->dev->dev_private; 983 dpu_kms = to_dpu_kms(priv->kms); 984 985 global_state = dpu_kms_get_existing_global_state(dpu_kms); 986 if (IS_ERR_OR_NULL(global_state)) { 987 DPU_ERROR("Failed to get global state"); 988 return; 989 } 990 991 trace_dpu_enc_mode_set(DRMID(drm_enc)); 992 993 /* Query resource that have been reserved in atomic check step. */ 994 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 995 drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp, 996 ARRAY_SIZE(hw_pp)); 997 num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 998 drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl)); 999 num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1000 drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm)); 1001 dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1002 drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp, 1003 ARRAY_SIZE(hw_dspp)); 1004 1005 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) 1006 dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i]) 1007 : NULL; 1008 1009 if (dpu_enc->dsc) { 1010 num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state, 1011 drm_enc->base.id, DPU_HW_BLK_DSC, 1012 hw_dsc, ARRAY_SIZE(hw_dsc)); 1013 for (i = 0; i < num_dsc; i++) { 1014 dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]); 1015 dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0); 1016 } 1017 } 1018 1019 dpu_enc->dsc_mask = dsc_mask; 1020 1021 cstate = to_dpu_crtc_state(crtc_state); 1022 1023 for (i = 0; i < num_lm; i++) { 1024 int ctl_idx = (i < num_ctl) ? i : (num_ctl-1); 1025 1026 cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]); 1027 cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]); 1028 cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]); 1029 } 1030 1031 cstate->num_mixers = num_lm; 1032 1033 dpu_enc->connector = conn_state->connector; 1034 1035 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1036 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1037 1038 if (!dpu_enc->hw_pp[i]) { 1039 DPU_ERROR_ENC(dpu_enc, 1040 "no pp block assigned at idx: %d\n", i); 1041 return; 1042 } 1043 1044 if (!hw_ctl[i]) { 1045 DPU_ERROR_ENC(dpu_enc, 1046 "no ctl block assigned at idx: %d\n", i); 1047 return; 1048 } 1049 1050 phys->hw_pp = dpu_enc->hw_pp[i]; 1051 phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]); 1052 1053 if (phys->intf_idx >= INTF_0 && phys->intf_idx < INTF_MAX) 1054 phys->hw_intf = dpu_rm_get_intf(&dpu_kms->rm, phys->intf_idx); 1055 1056 if (phys->wb_idx >= WB_0 && phys->wb_idx < WB_MAX) 1057 phys->hw_wb = dpu_rm_get_wb(&dpu_kms->rm, phys->wb_idx); 1058 1059 if (!phys->hw_intf && !phys->hw_wb) { 1060 DPU_ERROR_ENC(dpu_enc, 1061 "no intf or wb block assigned at idx: %d\n", i); 1062 return; 1063 } 1064 1065 if (phys->hw_intf && phys->hw_wb) { 1066 DPU_ERROR_ENC(dpu_enc, 1067 "invalid phys both intf and wb block at idx: %d\n", i); 1068 return; 1069 } 1070 1071 phys->cached_mode = crtc_state->adjusted_mode; 1072 if (phys->ops.atomic_mode_set) 1073 phys->ops.atomic_mode_set(phys, crtc_state, conn_state); 1074 } 1075 } 1076 1077 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc) 1078 { 1079 struct dpu_encoder_virt *dpu_enc = NULL; 1080 int i; 1081 1082 if (!drm_enc || !drm_enc->dev) { 1083 DPU_ERROR("invalid parameters\n"); 1084 return; 1085 } 1086 1087 dpu_enc = to_dpu_encoder_virt(drm_enc); 1088 if (!dpu_enc || !dpu_enc->cur_master) { 1089 DPU_ERROR("invalid dpu encoder/master\n"); 1090 return; 1091 } 1092 1093 1094 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_TMDS && 1095 dpu_enc->cur_master->hw_mdptop && 1096 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select) 1097 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select( 1098 dpu_enc->cur_master->hw_mdptop); 1099 1100 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info); 1101 1102 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI && 1103 !WARN_ON(dpu_enc->num_phys_encs == 0)) { 1104 unsigned bpc = dpu_enc->connector->display_info.bpc; 1105 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1106 if (!dpu_enc->hw_pp[i]) 1107 continue; 1108 _dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc); 1109 } 1110 } 1111 } 1112 1113 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc) 1114 { 1115 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1116 1117 mutex_lock(&dpu_enc->enc_lock); 1118 1119 if (!dpu_enc->enabled) 1120 goto out; 1121 1122 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore) 1123 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave); 1124 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore) 1125 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master); 1126 1127 _dpu_encoder_virt_enable_helper(drm_enc); 1128 1129 out: 1130 mutex_unlock(&dpu_enc->enc_lock); 1131 } 1132 1133 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc) 1134 { 1135 struct dpu_encoder_virt *dpu_enc = NULL; 1136 int ret = 0; 1137 struct drm_display_mode *cur_mode = NULL; 1138 1139 dpu_enc = to_dpu_encoder_virt(drm_enc); 1140 1141 mutex_lock(&dpu_enc->enc_lock); 1142 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode; 1143 1144 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay, 1145 cur_mode->vdisplay); 1146 1147 /* always enable slave encoder before master */ 1148 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable) 1149 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave); 1150 1151 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable) 1152 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master); 1153 1154 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1155 if (ret) { 1156 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n", 1157 ret); 1158 goto out; 1159 } 1160 1161 _dpu_encoder_virt_enable_helper(drm_enc); 1162 1163 dpu_enc->enabled = true; 1164 1165 out: 1166 mutex_unlock(&dpu_enc->enc_lock); 1167 } 1168 1169 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc) 1170 { 1171 struct dpu_encoder_virt *dpu_enc = NULL; 1172 int i = 0; 1173 1174 dpu_enc = to_dpu_encoder_virt(drm_enc); 1175 DPU_DEBUG_ENC(dpu_enc, "\n"); 1176 1177 mutex_lock(&dpu_enc->enc_lock); 1178 dpu_enc->enabled = false; 1179 1180 trace_dpu_enc_disable(DRMID(drm_enc)); 1181 1182 /* wait for idle */ 1183 dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE); 1184 1185 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP); 1186 1187 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1188 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1189 1190 if (phys->ops.disable) 1191 phys->ops.disable(phys); 1192 } 1193 1194 1195 /* after phys waits for frame-done, should be no more frames pending */ 1196 if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 1197 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id); 1198 del_timer_sync(&dpu_enc->frame_done_timer); 1199 } 1200 1201 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP); 1202 1203 dpu_enc->connector = NULL; 1204 1205 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n"); 1206 1207 mutex_unlock(&dpu_enc->enc_lock); 1208 } 1209 1210 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog, 1211 enum dpu_intf_type type, u32 controller_id) 1212 { 1213 int i = 0; 1214 1215 if (type != INTF_WB) { 1216 for (i = 0; i < catalog->intf_count; i++) { 1217 if (catalog->intf[i].type == type 1218 && catalog->intf[i].controller_id == controller_id) { 1219 return catalog->intf[i].id; 1220 } 1221 } 1222 } 1223 1224 return INTF_MAX; 1225 } 1226 1227 static enum dpu_wb dpu_encoder_get_wb(struct dpu_mdss_cfg *catalog, 1228 enum dpu_intf_type type, u32 controller_id) 1229 { 1230 int i = 0; 1231 1232 if (type != INTF_WB) 1233 goto end; 1234 1235 for (i = 0; i < catalog->wb_count; i++) { 1236 if (catalog->wb[i].id == controller_id) 1237 return catalog->wb[i].id; 1238 } 1239 1240 end: 1241 return WB_MAX; 1242 } 1243 1244 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc, 1245 struct dpu_encoder_phys *phy_enc) 1246 { 1247 struct dpu_encoder_virt *dpu_enc = NULL; 1248 unsigned long lock_flags; 1249 1250 if (!drm_enc || !phy_enc) 1251 return; 1252 1253 DPU_ATRACE_BEGIN("encoder_vblank_callback"); 1254 dpu_enc = to_dpu_encoder_virt(drm_enc); 1255 1256 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1257 if (dpu_enc->crtc) 1258 dpu_crtc_vblank_callback(dpu_enc->crtc); 1259 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1260 1261 atomic_inc(&phy_enc->vsync_cnt); 1262 DPU_ATRACE_END("encoder_vblank_callback"); 1263 } 1264 1265 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc, 1266 struct dpu_encoder_phys *phy_enc) 1267 { 1268 if (!phy_enc) 1269 return; 1270 1271 DPU_ATRACE_BEGIN("encoder_underrun_callback"); 1272 atomic_inc(&phy_enc->underrun_cnt); 1273 1274 /* trigger dump only on the first underrun */ 1275 if (atomic_read(&phy_enc->underrun_cnt) == 1) 1276 msm_disp_snapshot_state(drm_enc->dev); 1277 1278 trace_dpu_enc_underrun_cb(DRMID(drm_enc), 1279 atomic_read(&phy_enc->underrun_cnt)); 1280 DPU_ATRACE_END("encoder_underrun_callback"); 1281 } 1282 1283 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc) 1284 { 1285 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1286 unsigned long lock_flags; 1287 1288 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1289 /* crtc should always be cleared before re-assigning */ 1290 WARN_ON(crtc && dpu_enc->crtc); 1291 dpu_enc->crtc = crtc; 1292 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1293 } 1294 1295 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc, 1296 struct drm_crtc *crtc, bool enable) 1297 { 1298 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1299 unsigned long lock_flags; 1300 int i; 1301 1302 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable); 1303 1304 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1305 if (dpu_enc->crtc != crtc) { 1306 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1307 return; 1308 } 1309 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1310 1311 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1312 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1313 1314 if (phys->ops.control_vblank_irq) 1315 phys->ops.control_vblank_irq(phys, enable); 1316 } 1317 } 1318 1319 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc, 1320 void (*frame_event_cb)(void *, u32 event), 1321 void *frame_event_cb_data) 1322 { 1323 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1324 unsigned long lock_flags; 1325 bool enable; 1326 1327 enable = frame_event_cb ? true : false; 1328 1329 if (!drm_enc) { 1330 DPU_ERROR("invalid encoder\n"); 1331 return; 1332 } 1333 trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable); 1334 1335 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1336 dpu_enc->crtc_frame_event_cb = frame_event_cb; 1337 dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data; 1338 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1339 } 1340 1341 static void dpu_encoder_frame_done_callback( 1342 struct drm_encoder *drm_enc, 1343 struct dpu_encoder_phys *ready_phys, u32 event) 1344 { 1345 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1346 unsigned int i; 1347 1348 if (event & (DPU_ENCODER_FRAME_EVENT_DONE 1349 | DPU_ENCODER_FRAME_EVENT_ERROR 1350 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 1351 1352 if (!dpu_enc->frame_busy_mask[0]) { 1353 /** 1354 * suppress frame_done without waiter, 1355 * likely autorefresh 1356 */ 1357 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event, 1358 dpu_encoder_helper_get_intf_type(ready_phys->intf_mode), 1359 ready_phys->intf_idx, ready_phys->wb_idx); 1360 return; 1361 } 1362 1363 /* One of the physical encoders has become idle */ 1364 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1365 if (dpu_enc->phys_encs[i] == ready_phys) { 1366 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i, 1367 dpu_enc->frame_busy_mask[0]); 1368 clear_bit(i, dpu_enc->frame_busy_mask); 1369 } 1370 } 1371 1372 if (!dpu_enc->frame_busy_mask[0]) { 1373 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 1374 del_timer(&dpu_enc->frame_done_timer); 1375 1376 dpu_encoder_resource_control(drm_enc, 1377 DPU_ENC_RC_EVENT_FRAME_DONE); 1378 1379 if (dpu_enc->crtc_frame_event_cb) 1380 dpu_enc->crtc_frame_event_cb( 1381 dpu_enc->crtc_frame_event_cb_data, 1382 event); 1383 } 1384 } else { 1385 if (dpu_enc->crtc_frame_event_cb) 1386 dpu_enc->crtc_frame_event_cb( 1387 dpu_enc->crtc_frame_event_cb_data, event); 1388 } 1389 } 1390 1391 static void dpu_encoder_off_work(struct work_struct *work) 1392 { 1393 struct dpu_encoder_virt *dpu_enc = container_of(work, 1394 struct dpu_encoder_virt, delayed_off_work.work); 1395 1396 dpu_encoder_resource_control(&dpu_enc->base, 1397 DPU_ENC_RC_EVENT_ENTER_IDLE); 1398 1399 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL, 1400 DPU_ENCODER_FRAME_EVENT_IDLE); 1401 } 1402 1403 /** 1404 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder 1405 * @drm_enc: Pointer to drm encoder structure 1406 * @phys: Pointer to physical encoder structure 1407 * @extra_flush_bits: Additional bit mask to include in flush trigger 1408 */ 1409 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc, 1410 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits) 1411 { 1412 struct dpu_hw_ctl *ctl; 1413 int pending_kickoff_cnt; 1414 u32 ret = UINT_MAX; 1415 1416 if (!phys->hw_pp) { 1417 DPU_ERROR("invalid pingpong hw\n"); 1418 return; 1419 } 1420 1421 ctl = phys->hw_ctl; 1422 if (!ctl->ops.trigger_flush) { 1423 DPU_ERROR("missing trigger cb\n"); 1424 return; 1425 } 1426 1427 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys); 1428 1429 if (extra_flush_bits && ctl->ops.update_pending_flush) 1430 ctl->ops.update_pending_flush(ctl, extra_flush_bits); 1431 1432 ctl->ops.trigger_flush(ctl); 1433 1434 if (ctl->ops.get_pending_flush) 1435 ret = ctl->ops.get_pending_flush(ctl); 1436 1437 trace_dpu_enc_trigger_flush(DRMID(drm_enc), 1438 dpu_encoder_helper_get_intf_type(phys->intf_mode), 1439 phys->intf_idx, phys->wb_idx, 1440 pending_kickoff_cnt, ctl->idx, 1441 extra_flush_bits, ret); 1442 } 1443 1444 /** 1445 * _dpu_encoder_trigger_start - trigger start for a physical encoder 1446 * @phys: Pointer to physical encoder structure 1447 */ 1448 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys) 1449 { 1450 if (!phys) { 1451 DPU_ERROR("invalid argument(s)\n"); 1452 return; 1453 } 1454 1455 if (!phys->hw_pp) { 1456 DPU_ERROR("invalid pingpong hw\n"); 1457 return; 1458 } 1459 1460 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED) 1461 phys->ops.trigger_start(phys); 1462 } 1463 1464 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc) 1465 { 1466 struct dpu_hw_ctl *ctl; 1467 1468 ctl = phys_enc->hw_ctl; 1469 if (ctl->ops.trigger_start) { 1470 ctl->ops.trigger_start(ctl); 1471 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx); 1472 } 1473 } 1474 1475 static int dpu_encoder_helper_wait_event_timeout( 1476 int32_t drm_id, 1477 u32 irq_idx, 1478 struct dpu_encoder_wait_info *info) 1479 { 1480 int rc = 0; 1481 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms; 1482 s64 jiffies = msecs_to_jiffies(info->timeout_ms); 1483 s64 time; 1484 1485 do { 1486 rc = wait_event_timeout(*(info->wq), 1487 atomic_read(info->atomic_cnt) == 0, jiffies); 1488 time = ktime_to_ms(ktime_get()); 1489 1490 trace_dpu_enc_wait_event_timeout(drm_id, irq_idx, rc, time, 1491 expected_time, 1492 atomic_read(info->atomic_cnt)); 1493 /* If we timed out, counter is valid and time is less, wait again */ 1494 } while (atomic_read(info->atomic_cnt) && (rc == 0) && 1495 (time < expected_time)); 1496 1497 return rc; 1498 } 1499 1500 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc) 1501 { 1502 struct dpu_encoder_virt *dpu_enc; 1503 struct dpu_hw_ctl *ctl; 1504 int rc; 1505 struct drm_encoder *drm_enc; 1506 1507 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 1508 ctl = phys_enc->hw_ctl; 1509 drm_enc = phys_enc->parent; 1510 1511 if (!ctl->ops.reset) 1512 return; 1513 1514 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc), 1515 ctl->idx); 1516 1517 rc = ctl->ops.reset(ctl); 1518 if (rc) { 1519 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx); 1520 msm_disp_snapshot_state(drm_enc->dev); 1521 } 1522 1523 phys_enc->enable_state = DPU_ENC_ENABLED; 1524 } 1525 1526 /** 1527 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff 1528 * Iterate through the physical encoders and perform consolidated flush 1529 * and/or control start triggering as needed. This is done in the virtual 1530 * encoder rather than the individual physical ones in order to handle 1531 * use cases that require visibility into multiple physical encoders at 1532 * a time. 1533 * @dpu_enc: Pointer to virtual encoder structure 1534 */ 1535 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc) 1536 { 1537 struct dpu_hw_ctl *ctl; 1538 uint32_t i, pending_flush; 1539 unsigned long lock_flags; 1540 1541 pending_flush = 0x0; 1542 1543 /* update pending counts and trigger kickoff ctl flush atomically */ 1544 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1545 1546 /* don't perform flush/start operations for slave encoders */ 1547 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1548 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1549 1550 if (phys->enable_state == DPU_ENC_DISABLED) 1551 continue; 1552 1553 ctl = phys->hw_ctl; 1554 1555 /* 1556 * This is cleared in frame_done worker, which isn't invoked 1557 * for async commits. So don't set this for async, since it'll 1558 * roll over to the next commit. 1559 */ 1560 if (phys->split_role != ENC_ROLE_SLAVE) 1561 set_bit(i, dpu_enc->frame_busy_mask); 1562 1563 if (!phys->ops.needs_single_flush || 1564 !phys->ops.needs_single_flush(phys)) 1565 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0); 1566 else if (ctl->ops.get_pending_flush) 1567 pending_flush |= ctl->ops.get_pending_flush(ctl); 1568 } 1569 1570 /* for split flush, combine pending flush masks and send to master */ 1571 if (pending_flush && dpu_enc->cur_master) { 1572 _dpu_encoder_trigger_flush( 1573 &dpu_enc->base, 1574 dpu_enc->cur_master, 1575 pending_flush); 1576 } 1577 1578 _dpu_encoder_trigger_start(dpu_enc->cur_master); 1579 1580 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1581 } 1582 1583 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc) 1584 { 1585 struct dpu_encoder_virt *dpu_enc; 1586 struct dpu_encoder_phys *phys; 1587 unsigned int i; 1588 struct dpu_hw_ctl *ctl; 1589 struct msm_display_info *disp_info; 1590 1591 if (!drm_enc) { 1592 DPU_ERROR("invalid encoder\n"); 1593 return; 1594 } 1595 dpu_enc = to_dpu_encoder_virt(drm_enc); 1596 disp_info = &dpu_enc->disp_info; 1597 1598 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1599 phys = dpu_enc->phys_encs[i]; 1600 1601 ctl = phys->hw_ctl; 1602 if (ctl->ops.clear_pending_flush) 1603 ctl->ops.clear_pending_flush(ctl); 1604 1605 /* update only for command mode primary ctl */ 1606 if ((phys == dpu_enc->cur_master) && 1607 (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) 1608 && ctl->ops.trigger_pending) 1609 ctl->ops.trigger_pending(ctl); 1610 } 1611 } 1612 1613 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc, 1614 struct drm_display_mode *mode) 1615 { 1616 u64 pclk_rate; 1617 u32 pclk_period; 1618 u32 line_time; 1619 1620 /* 1621 * For linetime calculation, only operate on master encoder. 1622 */ 1623 if (!dpu_enc->cur_master) 1624 return 0; 1625 1626 if (!dpu_enc->cur_master->ops.get_line_count) { 1627 DPU_ERROR("get_line_count function not defined\n"); 1628 return 0; 1629 } 1630 1631 pclk_rate = mode->clock; /* pixel clock in kHz */ 1632 if (pclk_rate == 0) { 1633 DPU_ERROR("pclk is 0, cannot calculate line time\n"); 1634 return 0; 1635 } 1636 1637 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate); 1638 if (pclk_period == 0) { 1639 DPU_ERROR("pclk period is 0\n"); 1640 return 0; 1641 } 1642 1643 /* 1644 * Line time calculation based on Pixel clock and HTOTAL. 1645 * Final unit is in ns. 1646 */ 1647 line_time = (pclk_period * mode->htotal) / 1000; 1648 if (line_time == 0) { 1649 DPU_ERROR("line time calculation is 0\n"); 1650 return 0; 1651 } 1652 1653 DPU_DEBUG_ENC(dpu_enc, 1654 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n", 1655 pclk_rate, pclk_period, line_time); 1656 1657 return line_time; 1658 } 1659 1660 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time) 1661 { 1662 struct drm_display_mode *mode; 1663 struct dpu_encoder_virt *dpu_enc; 1664 u32 cur_line; 1665 u32 line_time; 1666 u32 vtotal, time_to_vsync; 1667 ktime_t cur_time; 1668 1669 dpu_enc = to_dpu_encoder_virt(drm_enc); 1670 1671 if (!drm_enc->crtc || !drm_enc->crtc->state) { 1672 DPU_ERROR("crtc/crtc state object is NULL\n"); 1673 return -EINVAL; 1674 } 1675 mode = &drm_enc->crtc->state->adjusted_mode; 1676 1677 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode); 1678 if (!line_time) 1679 return -EINVAL; 1680 1681 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master); 1682 1683 vtotal = mode->vtotal; 1684 if (cur_line >= vtotal) 1685 time_to_vsync = line_time * vtotal; 1686 else 1687 time_to_vsync = line_time * (vtotal - cur_line); 1688 1689 if (time_to_vsync == 0) { 1690 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n", 1691 vtotal); 1692 return -EINVAL; 1693 } 1694 1695 cur_time = ktime_get(); 1696 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync); 1697 1698 DPU_DEBUG_ENC(dpu_enc, 1699 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n", 1700 cur_line, vtotal, time_to_vsync, 1701 ktime_to_ms(cur_time), 1702 ktime_to_ms(*wakeup_time)); 1703 return 0; 1704 } 1705 1706 static void dpu_encoder_vsync_event_handler(struct timer_list *t) 1707 { 1708 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 1709 vsync_event_timer); 1710 struct drm_encoder *drm_enc = &dpu_enc->base; 1711 struct msm_drm_private *priv; 1712 struct msm_drm_thread *event_thread; 1713 1714 if (!drm_enc->dev || !drm_enc->crtc) { 1715 DPU_ERROR("invalid parameters\n"); 1716 return; 1717 } 1718 1719 priv = drm_enc->dev->dev_private; 1720 1721 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) { 1722 DPU_ERROR("invalid crtc index\n"); 1723 return; 1724 } 1725 event_thread = &priv->event_thread[drm_enc->crtc->index]; 1726 if (!event_thread) { 1727 DPU_ERROR("event_thread not found for crtc:%d\n", 1728 drm_enc->crtc->index); 1729 return; 1730 } 1731 1732 del_timer(&dpu_enc->vsync_event_timer); 1733 } 1734 1735 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work) 1736 { 1737 struct dpu_encoder_virt *dpu_enc = container_of(work, 1738 struct dpu_encoder_virt, vsync_event_work); 1739 ktime_t wakeup_time; 1740 1741 if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time)) 1742 return; 1743 1744 trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time); 1745 mod_timer(&dpu_enc->vsync_event_timer, 1746 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1747 } 1748 1749 static u32 1750 dpu_encoder_dsc_initial_line_calc(struct msm_display_dsc_config *dsc, 1751 u32 enc_ip_width) 1752 { 1753 int ssm_delay, total_pixels, soft_slice_per_enc; 1754 1755 soft_slice_per_enc = enc_ip_width / dsc->drm->slice_width; 1756 1757 /* 1758 * minimum number of initial line pixels is a sum of: 1759 * 1. sub-stream multiplexer delay (83 groups for 8bpc, 1760 * 91 for 10 bpc) * 3 1761 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3 1762 * 3. the initial xmit delay 1763 * 4. total pipeline delay through the "lock step" of encoder (47) 1764 * 5. 6 additional pixels as the output of the rate buffer is 1765 * 48 bits wide 1766 */ 1767 ssm_delay = ((dsc->drm->bits_per_component < 10) ? 84 : 92); 1768 total_pixels = ssm_delay * 3 + dsc->drm->initial_xmit_delay + 47; 1769 if (soft_slice_per_enc > 1) 1770 total_pixels += (ssm_delay * 3); 1771 return DIV_ROUND_UP(total_pixels, dsc->drm->slice_width); 1772 } 1773 1774 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_dsc *hw_dsc, 1775 struct dpu_hw_pingpong *hw_pp, 1776 struct msm_display_dsc_config *dsc, 1777 u32 common_mode, 1778 u32 initial_lines) 1779 { 1780 if (hw_dsc->ops.dsc_config) 1781 hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines); 1782 1783 if (hw_dsc->ops.dsc_config_thresh) 1784 hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc); 1785 1786 if (hw_pp->ops.setup_dsc) 1787 hw_pp->ops.setup_dsc(hw_pp); 1788 1789 if (hw_pp->ops.enable_dsc) 1790 hw_pp->ops.enable_dsc(hw_pp); 1791 } 1792 1793 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc, 1794 struct msm_display_dsc_config *dsc) 1795 { 1796 /* coding only for 2LM, 2enc, 1 dsc config */ 1797 struct dpu_encoder_phys *enc_master = dpu_enc->cur_master; 1798 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC]; 1799 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; 1800 int this_frame_slices; 1801 int intf_ip_w, enc_ip_w; 1802 int dsc_common_mode; 1803 int pic_width; 1804 u32 initial_lines; 1805 int i; 1806 1807 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1808 hw_pp[i] = dpu_enc->hw_pp[i]; 1809 hw_dsc[i] = dpu_enc->hw_dsc[i]; 1810 1811 if (!hw_pp[i] || !hw_dsc[i]) { 1812 DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n"); 1813 return; 1814 } 1815 } 1816 1817 dsc_common_mode = 0; 1818 pic_width = dsc->drm->pic_width; 1819 1820 dsc_common_mode = DSC_MODE_MULTIPLEX | DSC_MODE_SPLIT_PANEL; 1821 if (enc_master->intf_mode == INTF_MODE_VIDEO) 1822 dsc_common_mode |= DSC_MODE_VIDEO; 1823 1824 this_frame_slices = pic_width / dsc->drm->slice_width; 1825 intf_ip_w = this_frame_slices * dsc->drm->slice_width; 1826 1827 /* 1828 * dsc merge case: when using 2 encoders for the same stream, 1829 * no. of slices need to be same on both the encoders. 1830 */ 1831 enc_ip_w = intf_ip_w / 2; 1832 initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w); 1833 1834 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) 1835 dpu_encoder_dsc_pipe_cfg(hw_dsc[i], hw_pp[i], dsc, dsc_common_mode, initial_lines); 1836 } 1837 1838 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc) 1839 { 1840 struct dpu_encoder_virt *dpu_enc; 1841 struct dpu_encoder_phys *phys; 1842 bool needs_hw_reset = false; 1843 unsigned int i; 1844 1845 dpu_enc = to_dpu_encoder_virt(drm_enc); 1846 1847 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc)); 1848 1849 /* prepare for next kickoff, may include waiting on previous kickoff */ 1850 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff"); 1851 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1852 phys = dpu_enc->phys_encs[i]; 1853 if (phys->ops.prepare_for_kickoff) 1854 phys->ops.prepare_for_kickoff(phys); 1855 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET) 1856 needs_hw_reset = true; 1857 } 1858 DPU_ATRACE_END("enc_prepare_for_kickoff"); 1859 1860 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1861 1862 /* if any phys needs reset, reset all phys, in-order */ 1863 if (needs_hw_reset) { 1864 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc)); 1865 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1866 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]); 1867 } 1868 } 1869 1870 if (dpu_enc->dsc) 1871 dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc); 1872 } 1873 1874 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc) 1875 { 1876 struct dpu_encoder_virt *dpu_enc; 1877 unsigned int i; 1878 struct dpu_encoder_phys *phys; 1879 1880 dpu_enc = to_dpu_encoder_virt(drm_enc); 1881 1882 if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) { 1883 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1884 phys = dpu_enc->phys_encs[i]; 1885 if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) { 1886 DPU_DEBUG("invalid FB not kicking off\n"); 1887 return false; 1888 } 1889 } 1890 } 1891 1892 return true; 1893 } 1894 1895 void dpu_encoder_kickoff(struct drm_encoder *drm_enc) 1896 { 1897 struct dpu_encoder_virt *dpu_enc; 1898 struct dpu_encoder_phys *phys; 1899 ktime_t wakeup_time; 1900 unsigned long timeout_ms; 1901 unsigned int i; 1902 1903 DPU_ATRACE_BEGIN("encoder_kickoff"); 1904 dpu_enc = to_dpu_encoder_virt(drm_enc); 1905 1906 trace_dpu_enc_kickoff(DRMID(drm_enc)); 1907 1908 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 / 1909 drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode); 1910 1911 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms); 1912 mod_timer(&dpu_enc->frame_done_timer, 1913 jiffies + msecs_to_jiffies(timeout_ms)); 1914 1915 /* All phys encs are ready to go, trigger the kickoff */ 1916 _dpu_encoder_kickoff_phys(dpu_enc); 1917 1918 /* allow phys encs to handle any post-kickoff business */ 1919 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1920 phys = dpu_enc->phys_encs[i]; 1921 if (phys->ops.handle_post_kickoff) 1922 phys->ops.handle_post_kickoff(phys); 1923 } 1924 1925 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI && 1926 !dpu_encoder_vsync_time(drm_enc, &wakeup_time)) { 1927 trace_dpu_enc_early_kickoff(DRMID(drm_enc), 1928 ktime_to_ms(wakeup_time)); 1929 mod_timer(&dpu_enc->vsync_event_timer, 1930 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1931 } 1932 1933 DPU_ATRACE_END("encoder_kickoff"); 1934 } 1935 1936 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc) 1937 { 1938 struct dpu_hw_mixer_cfg mixer; 1939 int i, num_lm; 1940 u32 flush_mask = 0; 1941 struct dpu_global_state *global_state; 1942 struct dpu_hw_blk *hw_lm[2]; 1943 struct dpu_hw_mixer *hw_mixer[2]; 1944 struct dpu_hw_ctl *ctl = phys_enc->hw_ctl; 1945 1946 memset(&mixer, 0, sizeof(mixer)); 1947 1948 /* reset all mixers for this encoder */ 1949 if (phys_enc->hw_ctl->ops.clear_all_blendstages) 1950 phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl); 1951 1952 global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms); 1953 1954 num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state, 1955 phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm)); 1956 1957 for (i = 0; i < num_lm; i++) { 1958 hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]); 1959 flush_mask = phys_enc->hw_ctl->ops.get_bitmask_mixer(ctl, hw_mixer[i]->idx); 1960 if (phys_enc->hw_ctl->ops.update_pending_flush) 1961 phys_enc->hw_ctl->ops.update_pending_flush(ctl, flush_mask); 1962 1963 /* clear all blendstages */ 1964 if (phys_enc->hw_ctl->ops.setup_blendstage) 1965 phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL); 1966 } 1967 } 1968 1969 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc) 1970 { 1971 struct dpu_hw_ctl *ctl = phys_enc->hw_ctl; 1972 struct dpu_hw_intf_cfg intf_cfg = { 0 }; 1973 int i; 1974 struct dpu_encoder_virt *dpu_enc; 1975 1976 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 1977 1978 phys_enc->hw_ctl->ops.reset(ctl); 1979 1980 dpu_encoder_helper_reset_mixers(phys_enc); 1981 1982 /* 1983 * TODO: move the once-only operation like CTL flush/trigger 1984 * into dpu_encoder_virt_disable() and all operations which need 1985 * to be done per phys encoder into the phys_disable() op. 1986 */ 1987 if (phys_enc->hw_wb) { 1988 /* disable the PP block */ 1989 if (phys_enc->hw_wb->ops.bind_pingpong_blk) 1990 phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, false, 1991 phys_enc->hw_pp->idx); 1992 1993 /* mark WB flush as pending */ 1994 if (phys_enc->hw_ctl->ops.update_pending_flush_wb) 1995 phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx); 1996 } else { 1997 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1998 if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk) 1999 phys_enc->hw_intf->ops.bind_pingpong_blk( 2000 dpu_enc->phys_encs[i]->hw_intf, false, 2001 dpu_enc->phys_encs[i]->hw_pp->idx); 2002 2003 /* mark INTF flush as pending */ 2004 if (phys_enc->hw_ctl->ops.update_pending_flush_intf) 2005 phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl, 2006 dpu_enc->phys_encs[i]->hw_intf->idx); 2007 } 2008 } 2009 2010 /* reset the merge 3D HW block */ 2011 if (phys_enc->hw_pp->merge_3d) { 2012 phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d, 2013 BLEND_3D_NONE); 2014 if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d) 2015 phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl, 2016 phys_enc->hw_pp->merge_3d->idx); 2017 } 2018 2019 intf_cfg.stream_sel = 0; /* Don't care value for video mode */ 2020 intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc); 2021 if (phys_enc->hw_pp->merge_3d) 2022 intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx; 2023 2024 if (ctl->ops.reset_intf_cfg) 2025 ctl->ops.reset_intf_cfg(ctl, &intf_cfg); 2026 2027 ctl->ops.trigger_flush(ctl); 2028 ctl->ops.trigger_start(ctl); 2029 ctl->ops.clear_pending_flush(ctl); 2030 } 2031 2032 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc) 2033 { 2034 struct dpu_encoder_virt *dpu_enc; 2035 struct dpu_encoder_phys *phys; 2036 int i; 2037 2038 if (!drm_enc) { 2039 DPU_ERROR("invalid encoder\n"); 2040 return; 2041 } 2042 dpu_enc = to_dpu_encoder_virt(drm_enc); 2043 2044 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2045 phys = dpu_enc->phys_encs[i]; 2046 if (phys->ops.prepare_commit) 2047 phys->ops.prepare_commit(phys); 2048 } 2049 } 2050 2051 #ifdef CONFIG_DEBUG_FS 2052 static int _dpu_encoder_status_show(struct seq_file *s, void *data) 2053 { 2054 struct dpu_encoder_virt *dpu_enc = s->private; 2055 int i; 2056 2057 mutex_lock(&dpu_enc->enc_lock); 2058 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2059 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2060 2061 seq_printf(s, "intf:%d wb:%d vsync:%8d underrun:%8d ", 2062 phys->intf_idx - INTF_0, phys->wb_idx - WB_0, 2063 atomic_read(&phys->vsync_cnt), 2064 atomic_read(&phys->underrun_cnt)); 2065 2066 seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode)); 2067 } 2068 mutex_unlock(&dpu_enc->enc_lock); 2069 2070 return 0; 2071 } 2072 2073 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status); 2074 2075 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 2076 { 2077 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 2078 int i; 2079 2080 char name[DPU_NAME_SIZE]; 2081 2082 if (!drm_enc->dev) { 2083 DPU_ERROR("invalid encoder or kms\n"); 2084 return -EINVAL; 2085 } 2086 2087 snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id); 2088 2089 /* create overall sub-directory for the encoder */ 2090 dpu_enc->debugfs_root = debugfs_create_dir(name, 2091 drm_enc->dev->primary->debugfs_root); 2092 2093 /* don't error check these */ 2094 debugfs_create_file("status", 0600, 2095 dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops); 2096 2097 for (i = 0; i < dpu_enc->num_phys_encs; i++) 2098 if (dpu_enc->phys_encs[i]->ops.late_register) 2099 dpu_enc->phys_encs[i]->ops.late_register( 2100 dpu_enc->phys_encs[i], 2101 dpu_enc->debugfs_root); 2102 2103 return 0; 2104 } 2105 #else 2106 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 2107 { 2108 return 0; 2109 } 2110 #endif 2111 2112 static int dpu_encoder_late_register(struct drm_encoder *encoder) 2113 { 2114 return _dpu_encoder_init_debugfs(encoder); 2115 } 2116 2117 static void dpu_encoder_early_unregister(struct drm_encoder *encoder) 2118 { 2119 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder); 2120 2121 debugfs_remove_recursive(dpu_enc->debugfs_root); 2122 } 2123 2124 static int dpu_encoder_virt_add_phys_encs( 2125 struct msm_display_info *disp_info, 2126 struct dpu_encoder_virt *dpu_enc, 2127 struct dpu_enc_phys_init_params *params) 2128 { 2129 struct dpu_encoder_phys *enc = NULL; 2130 2131 DPU_DEBUG_ENC(dpu_enc, "\n"); 2132 2133 /* 2134 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types 2135 * in this function, check up-front. 2136 */ 2137 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >= 2138 ARRAY_SIZE(dpu_enc->phys_encs)) { 2139 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n", 2140 dpu_enc->num_phys_encs); 2141 return -EINVAL; 2142 } 2143 2144 if (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE) { 2145 enc = dpu_encoder_phys_vid_init(params); 2146 2147 if (IS_ERR_OR_NULL(enc)) { 2148 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n", 2149 PTR_ERR(enc)); 2150 return enc == NULL ? -EINVAL : PTR_ERR(enc); 2151 } 2152 2153 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 2154 ++dpu_enc->num_phys_encs; 2155 } 2156 2157 if (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) { 2158 enc = dpu_encoder_phys_cmd_init(params); 2159 2160 if (IS_ERR_OR_NULL(enc)) { 2161 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n", 2162 PTR_ERR(enc)); 2163 return enc == NULL ? -EINVAL : PTR_ERR(enc); 2164 } 2165 2166 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 2167 ++dpu_enc->num_phys_encs; 2168 } 2169 2170 if (disp_info->intf_type == DRM_MODE_ENCODER_VIRTUAL) { 2171 enc = dpu_encoder_phys_wb_init(params); 2172 2173 if (IS_ERR_OR_NULL(enc)) { 2174 DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n", 2175 PTR_ERR(enc)); 2176 return enc == NULL ? -EINVAL : PTR_ERR(enc); 2177 } 2178 2179 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 2180 ++dpu_enc->num_phys_encs; 2181 } 2182 2183 if (params->split_role == ENC_ROLE_SLAVE) 2184 dpu_enc->cur_slave = enc; 2185 else 2186 dpu_enc->cur_master = enc; 2187 2188 return 0; 2189 } 2190 2191 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = { 2192 .handle_vblank_virt = dpu_encoder_vblank_callback, 2193 .handle_underrun_virt = dpu_encoder_underrun_callback, 2194 .handle_frame_done = dpu_encoder_frame_done_callback, 2195 }; 2196 2197 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc, 2198 struct dpu_kms *dpu_kms, 2199 struct msm_display_info *disp_info) 2200 { 2201 int ret = 0; 2202 int i = 0; 2203 enum dpu_intf_type intf_type = INTF_NONE; 2204 struct dpu_enc_phys_init_params phys_params; 2205 2206 if (!dpu_enc) { 2207 DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL); 2208 return -EINVAL; 2209 } 2210 2211 dpu_enc->cur_master = NULL; 2212 2213 memset(&phys_params, 0, sizeof(phys_params)); 2214 phys_params.dpu_kms = dpu_kms; 2215 phys_params.parent = &dpu_enc->base; 2216 phys_params.parent_ops = &dpu_encoder_parent_ops; 2217 phys_params.enc_spinlock = &dpu_enc->enc_spinlock; 2218 2219 switch (disp_info->intf_type) { 2220 case DRM_MODE_ENCODER_DSI: 2221 intf_type = INTF_DSI; 2222 break; 2223 case DRM_MODE_ENCODER_TMDS: 2224 intf_type = INTF_DP; 2225 break; 2226 case DRM_MODE_ENCODER_VIRTUAL: 2227 intf_type = INTF_WB; 2228 break; 2229 } 2230 2231 WARN_ON(disp_info->num_of_h_tiles < 1); 2232 2233 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles); 2234 2235 if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) || 2236 (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE)) 2237 dpu_enc->idle_pc_supported = 2238 dpu_kms->catalog->caps->has_idle_pc; 2239 2240 dpu_enc->dsc = disp_info->dsc; 2241 2242 mutex_lock(&dpu_enc->enc_lock); 2243 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) { 2244 /* 2245 * Left-most tile is at index 0, content is controller id 2246 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right 2247 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right 2248 */ 2249 u32 controller_id = disp_info->h_tile_instance[i]; 2250 2251 if (disp_info->num_of_h_tiles > 1) { 2252 if (i == 0) 2253 phys_params.split_role = ENC_ROLE_MASTER; 2254 else 2255 phys_params.split_role = ENC_ROLE_SLAVE; 2256 } else { 2257 phys_params.split_role = ENC_ROLE_SOLO; 2258 } 2259 2260 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n", 2261 i, controller_id, phys_params.split_role); 2262 2263 phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog, 2264 intf_type, 2265 controller_id); 2266 2267 phys_params.wb_idx = dpu_encoder_get_wb(dpu_kms->catalog, 2268 intf_type, controller_id); 2269 /* 2270 * The phys_params might represent either an INTF or a WB unit, but not 2271 * both of them at the same time. 2272 */ 2273 if ((phys_params.intf_idx == INTF_MAX) && 2274 (phys_params.wb_idx == WB_MAX)) { 2275 DPU_ERROR_ENC(dpu_enc, "could not get intf or wb: type %d, id %d\n", 2276 intf_type, controller_id); 2277 ret = -EINVAL; 2278 } 2279 2280 if ((phys_params.intf_idx != INTF_MAX) && 2281 (phys_params.wb_idx != WB_MAX)) { 2282 DPU_ERROR_ENC(dpu_enc, "both intf and wb present: type %d, id %d\n", 2283 intf_type, controller_id); 2284 ret = -EINVAL; 2285 } 2286 2287 if (!ret) { 2288 ret = dpu_encoder_virt_add_phys_encs(disp_info, 2289 dpu_enc, &phys_params); 2290 if (ret) 2291 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n"); 2292 } 2293 } 2294 2295 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2296 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2297 atomic_set(&phys->vsync_cnt, 0); 2298 atomic_set(&phys->underrun_cnt, 0); 2299 } 2300 mutex_unlock(&dpu_enc->enc_lock); 2301 2302 return ret; 2303 } 2304 2305 static void dpu_encoder_frame_done_timeout(struct timer_list *t) 2306 { 2307 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 2308 frame_done_timer); 2309 struct drm_encoder *drm_enc = &dpu_enc->base; 2310 u32 event; 2311 2312 if (!drm_enc->dev) { 2313 DPU_ERROR("invalid parameters\n"); 2314 return; 2315 } 2316 2317 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) { 2318 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n", 2319 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]); 2320 return; 2321 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 2322 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc)); 2323 return; 2324 } 2325 2326 DPU_ERROR_ENC(dpu_enc, "frame done timeout\n"); 2327 2328 event = DPU_ENCODER_FRAME_EVENT_ERROR; 2329 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event); 2330 dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event); 2331 } 2332 2333 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = { 2334 .atomic_mode_set = dpu_encoder_virt_atomic_mode_set, 2335 .disable = dpu_encoder_virt_disable, 2336 .enable = dpu_encoder_virt_enable, 2337 .atomic_check = dpu_encoder_virt_atomic_check, 2338 }; 2339 2340 static const struct drm_encoder_funcs dpu_encoder_funcs = { 2341 .destroy = dpu_encoder_destroy, 2342 .late_register = dpu_encoder_late_register, 2343 .early_unregister = dpu_encoder_early_unregister, 2344 }; 2345 2346 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc, 2347 struct msm_display_info *disp_info) 2348 { 2349 struct msm_drm_private *priv = dev->dev_private; 2350 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 2351 struct drm_encoder *drm_enc = NULL; 2352 struct dpu_encoder_virt *dpu_enc = NULL; 2353 int ret = 0; 2354 2355 dpu_enc = to_dpu_encoder_virt(enc); 2356 2357 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info); 2358 if (ret) 2359 goto fail; 2360 2361 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 2362 timer_setup(&dpu_enc->frame_done_timer, 2363 dpu_encoder_frame_done_timeout, 0); 2364 2365 if (disp_info->intf_type == DRM_MODE_ENCODER_DSI) 2366 timer_setup(&dpu_enc->vsync_event_timer, 2367 dpu_encoder_vsync_event_handler, 2368 0); 2369 else if (disp_info->intf_type == DRM_MODE_ENCODER_TMDS) 2370 dpu_enc->wide_bus_en = msm_dp_wide_bus_available( 2371 priv->dp[disp_info->h_tile_instance[0]]); 2372 2373 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work, 2374 dpu_encoder_off_work); 2375 dpu_enc->idle_timeout = IDLE_TIMEOUT; 2376 2377 kthread_init_work(&dpu_enc->vsync_event_work, 2378 dpu_encoder_vsync_event_work_handler); 2379 2380 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info)); 2381 2382 DPU_DEBUG_ENC(dpu_enc, "created\n"); 2383 2384 return ret; 2385 2386 fail: 2387 DPU_ERROR("failed to create encoder\n"); 2388 if (drm_enc) 2389 dpu_encoder_destroy(drm_enc); 2390 2391 return ret; 2392 2393 2394 } 2395 2396 struct drm_encoder *dpu_encoder_init(struct drm_device *dev, 2397 int drm_enc_mode) 2398 { 2399 struct dpu_encoder_virt *dpu_enc = NULL; 2400 int rc = 0; 2401 2402 dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL); 2403 if (!dpu_enc) 2404 return ERR_PTR(-ENOMEM); 2405 2406 2407 rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs, 2408 drm_enc_mode, NULL); 2409 if (rc) { 2410 devm_kfree(dev->dev, dpu_enc); 2411 return ERR_PTR(rc); 2412 } 2413 2414 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs); 2415 2416 spin_lock_init(&dpu_enc->enc_spinlock); 2417 dpu_enc->enabled = false; 2418 mutex_init(&dpu_enc->enc_lock); 2419 mutex_init(&dpu_enc->rc_lock); 2420 2421 return &dpu_enc->base; 2422 } 2423 2424 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc, 2425 enum msm_event_wait event) 2426 { 2427 int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL; 2428 struct dpu_encoder_virt *dpu_enc = NULL; 2429 int i, ret = 0; 2430 2431 if (!drm_enc) { 2432 DPU_ERROR("invalid encoder\n"); 2433 return -EINVAL; 2434 } 2435 dpu_enc = to_dpu_encoder_virt(drm_enc); 2436 DPU_DEBUG_ENC(dpu_enc, "\n"); 2437 2438 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2439 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2440 2441 switch (event) { 2442 case MSM_ENC_COMMIT_DONE: 2443 fn_wait = phys->ops.wait_for_commit_done; 2444 break; 2445 case MSM_ENC_TX_COMPLETE: 2446 fn_wait = phys->ops.wait_for_tx_complete; 2447 break; 2448 case MSM_ENC_VBLANK: 2449 fn_wait = phys->ops.wait_for_vblank; 2450 break; 2451 default: 2452 DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n", 2453 event); 2454 return -EINVAL; 2455 } 2456 2457 if (fn_wait) { 2458 DPU_ATRACE_BEGIN("wait_for_completion_event"); 2459 ret = fn_wait(phys); 2460 DPU_ATRACE_END("wait_for_completion_event"); 2461 if (ret) 2462 return ret; 2463 } 2464 } 2465 2466 return ret; 2467 } 2468 2469 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder) 2470 { 2471 struct dpu_encoder_virt *dpu_enc = NULL; 2472 2473 if (!encoder) { 2474 DPU_ERROR("invalid encoder\n"); 2475 return INTF_MODE_NONE; 2476 } 2477 dpu_enc = to_dpu_encoder_virt(encoder); 2478 2479 if (dpu_enc->cur_master) 2480 return dpu_enc->cur_master->intf_mode; 2481 2482 if (dpu_enc->num_phys_encs) 2483 return dpu_enc->phys_encs[0]->intf_mode; 2484 2485 return INTF_MODE_NONE; 2486 } 2487 2488 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc) 2489 { 2490 struct drm_encoder *encoder = phys_enc->parent; 2491 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder); 2492 2493 return dpu_enc->dsc_mask; 2494 } 2495