1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5  * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
6  *
7  * Author: Rob Clark <robdclark@gmail.com>
8  */
9 
10 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_file.h>
18 #include <drm/drm_probe_helper.h>
19 
20 #include "msm_drv.h"
21 #include "dpu_kms.h"
22 #include "dpu_hwio.h"
23 #include "dpu_hw_catalog.h"
24 #include "dpu_hw_intf.h"
25 #include "dpu_hw_ctl.h"
26 #include "dpu_hw_dspp.h"
27 #include "dpu_hw_dsc.h"
28 #include "dpu_hw_merge3d.h"
29 #include "dpu_formats.h"
30 #include "dpu_encoder_phys.h"
31 #include "dpu_crtc.h"
32 #include "dpu_trace.h"
33 #include "dpu_core_irq.h"
34 #include "disp/msm_disp_snapshot.h"
35 
36 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
37 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
38 
39 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
40 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
41 
42 #define DPU_ERROR_ENC_RATELIMITED(e, fmt, ...) DPU_ERROR_RATELIMITED("enc%d " fmt,\
43 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
44 
45 /*
46  * Two to anticipate panels that can do cmd/vid dynamic switching
47  * plan is to create all possible physical encoder types, and switch between
48  * them at runtime
49  */
50 #define NUM_PHYS_ENCODER_TYPES 2
51 
52 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
53 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
54 
55 #define MAX_CHANNELS_PER_ENC 2
56 
57 #define IDLE_SHORT_TIMEOUT	1
58 
59 #define MAX_HDISPLAY_SPLIT 1080
60 
61 /* timeout in frames waiting for frame done */
62 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
63 
64 /**
65  * enum dpu_enc_rc_events - events for resource control state machine
66  * @DPU_ENC_RC_EVENT_KICKOFF:
67  *	This event happens at NORMAL priority.
68  *	Event that signals the start of the transfer. When this event is
69  *	received, enable MDP/DSI core clocks. Regardless of the previous
70  *	state, the resource should be in ON state at the end of this event.
71  * @DPU_ENC_RC_EVENT_FRAME_DONE:
72  *	This event happens at INTERRUPT level.
73  *	Event signals the end of the data transfer after the PP FRAME_DONE
74  *	event. At the end of this event, a delayed work is scheduled to go to
75  *	IDLE_PC state after IDLE_TIMEOUT time.
76  * @DPU_ENC_RC_EVENT_PRE_STOP:
77  *	This event happens at NORMAL priority.
78  *	This event, when received during the ON state, leave the RC STATE
79  *	in the PRE_OFF state. It should be followed by the STOP event as
80  *	part of encoder disable.
81  *	If received during IDLE or OFF states, it will do nothing.
82  * @DPU_ENC_RC_EVENT_STOP:
83  *	This event happens at NORMAL priority.
84  *	When this event is received, disable all the MDP/DSI core clocks, and
85  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
86  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
87  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
88  *	Resource state should be in OFF at the end of the event.
89  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
90  *	This event happens at NORMAL priority from a work item.
91  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
92  *	This would disable MDP/DSI core clocks and change the resource state
93  *	to IDLE.
94  */
95 enum dpu_enc_rc_events {
96 	DPU_ENC_RC_EVENT_KICKOFF = 1,
97 	DPU_ENC_RC_EVENT_FRAME_DONE,
98 	DPU_ENC_RC_EVENT_PRE_STOP,
99 	DPU_ENC_RC_EVENT_STOP,
100 	DPU_ENC_RC_EVENT_ENTER_IDLE
101 };
102 
103 /*
104  * enum dpu_enc_rc_states - states that the resource control maintains
105  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
106  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
107  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
108  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
109  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
110  */
111 enum dpu_enc_rc_states {
112 	DPU_ENC_RC_STATE_OFF,
113 	DPU_ENC_RC_STATE_PRE_OFF,
114 	DPU_ENC_RC_STATE_ON,
115 	DPU_ENC_RC_STATE_IDLE
116 };
117 
118 /**
119  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
120  *	encoders. Virtual encoder manages one "logical" display. Physical
121  *	encoders manage one intf block, tied to a specific panel/sub-panel.
122  *	Virtual encoder defers as much as possible to the physical encoders.
123  *	Virtual encoder registers itself with the DRM Framework as the encoder.
124  * @base:		drm_encoder base class for registration with DRM
125  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
126  * @enabled:		True if the encoder is active, protected by enc_lock
127  * @num_phys_encs:	Actual number of physical encoders contained.
128  * @phys_encs:		Container of physical encoders managed.
129  * @cur_master:		Pointer to the current master in this mode. Optimization
130  *			Only valid after enable. Cleared as disable.
131  * @cur_slave:		As above but for the slave encoder.
132  * @hw_pp:		Handle to the pingpong blocks used for the display. No.
133  *			pingpong blocks can be different than num_phys_encs.
134  * @hw_dsc:		Handle to the DSC blocks used for the display.
135  * @dsc_mask:		Bitmask of used DSC blocks.
136  * @intfs_swapped:	Whether or not the phys_enc interfaces have been swapped
137  *			for partial update right-only cases, such as pingpong
138  *			split where virtual pingpong does not generate IRQs
139  * @crtc:		Pointer to the currently assigned crtc. Normally you
140  *			would use crtc->state->encoder_mask to determine the
141  *			link between encoder/crtc. However in this case we need
142  *			to track crtc in the disable() hook which is called
143  *			_after_ encoder_mask is cleared.
144  * @connector:		If a mode is set, cached pointer to the active connector
145  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
146  *				all CTL paths
147  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
148  * @debugfs_root:		Debug file system root file node
149  * @enc_lock:			Lock around physical encoder
150  *				create/destroy/enable/disable
151  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
152  *				busy processing current command.
153  *				Bit0 = phys_encs[0] etc.
154  * @crtc_frame_event_cb:	callback handler for frame event
155  * @crtc_frame_event_cb_data:	callback handler private data
156  * @frame_done_timeout_ms:	frame done timeout in ms
157  * @frame_done_timer:		watchdog timer for frame done event
158  * @disp_info:			local copy of msm_display_info struct
159  * @idle_pc_supported:		indicate if idle power collaps is supported
160  * @rc_lock:			resource control mutex lock to protect
161  *				virt encoder over various state changes
162  * @rc_state:			resource controller state
163  * @delayed_off_work:		delayed worker to schedule disabling of
164  *				clks and resources after IDLE_TIMEOUT time.
165  * @topology:                   topology of the display
166  * @idle_timeout:		idle timeout duration in milliseconds
167  * @wide_bus_en:		wide bus is enabled on this interface
168  * @dsc:			drm_dsc_config pointer, for DSC-enabled encoders
169  */
170 struct dpu_encoder_virt {
171 	struct drm_encoder base;
172 	spinlock_t enc_spinlock;
173 
174 	bool enabled;
175 
176 	unsigned int num_phys_encs;
177 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
178 	struct dpu_encoder_phys *cur_master;
179 	struct dpu_encoder_phys *cur_slave;
180 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
181 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
182 
183 	unsigned int dsc_mask;
184 
185 	bool intfs_swapped;
186 
187 	struct drm_crtc *crtc;
188 	struct drm_connector *connector;
189 
190 	struct dentry *debugfs_root;
191 	struct mutex enc_lock;
192 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
193 	void (*crtc_frame_event_cb)(void *, u32 event);
194 	void *crtc_frame_event_cb_data;
195 
196 	atomic_t frame_done_timeout_ms;
197 	struct timer_list frame_done_timer;
198 
199 	struct msm_display_info disp_info;
200 
201 	bool idle_pc_supported;
202 	struct mutex rc_lock;
203 	enum dpu_enc_rc_states rc_state;
204 	struct delayed_work delayed_off_work;
205 	struct msm_display_topology topology;
206 
207 	u32 idle_timeout;
208 
209 	bool wide_bus_en;
210 
211 	/* DSC configuration */
212 	struct drm_dsc_config *dsc;
213 };
214 
215 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
216 
217 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
218 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
219 };
220 
221 
222 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
223 {
224 	const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
225 
226 	return dpu_enc->wide_bus_en;
227 }
228 
229 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
230 {
231 	struct dpu_encoder_virt *dpu_enc;
232 	int i, num_intf = 0;
233 
234 	dpu_enc = to_dpu_encoder_virt(drm_enc);
235 
236 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
237 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
238 
239 		if (phys->hw_intf && phys->hw_intf->ops.setup_misr
240 				&& phys->hw_intf->ops.collect_misr)
241 			num_intf++;
242 	}
243 
244 	return num_intf;
245 }
246 
247 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
248 {
249 	struct dpu_encoder_virt *dpu_enc;
250 
251 	int i;
252 
253 	dpu_enc = to_dpu_encoder_virt(drm_enc);
254 
255 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
256 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
257 
258 		if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
259 			continue;
260 
261 		phys->hw_intf->ops.setup_misr(phys->hw_intf);
262 	}
263 }
264 
265 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
266 {
267 	struct dpu_encoder_virt *dpu_enc;
268 
269 	int i, rc = 0, entries_added = 0;
270 
271 	if (!drm_enc->crtc) {
272 		DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
273 		return -EINVAL;
274 	}
275 
276 	dpu_enc = to_dpu_encoder_virt(drm_enc);
277 
278 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
279 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
280 
281 		if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
282 			continue;
283 
284 		rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
285 		if (rc)
286 			return rc;
287 		entries_added++;
288 	}
289 
290 	return entries_added;
291 }
292 
293 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
294 {
295 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
296 
297 	if (!hw_pp->ops.setup_dither)
298 		return;
299 
300 	switch (bpc) {
301 	case 6:
302 		dither_cfg.c0_bitdepth = 6;
303 		dither_cfg.c1_bitdepth = 6;
304 		dither_cfg.c2_bitdepth = 6;
305 		dither_cfg.c3_bitdepth = 6;
306 		dither_cfg.temporal_en = 0;
307 		break;
308 	default:
309 		hw_pp->ops.setup_dither(hw_pp, NULL);
310 		return;
311 	}
312 
313 	memcpy(&dither_cfg.matrix, dither_matrix,
314 			sizeof(u32) * DITHER_MATRIX_SZ);
315 
316 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
317 }
318 
319 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
320 {
321 	switch (intf_mode) {
322 	case INTF_MODE_VIDEO:
323 		return "INTF_MODE_VIDEO";
324 	case INTF_MODE_CMD:
325 		return "INTF_MODE_CMD";
326 	case INTF_MODE_WB_BLOCK:
327 		return "INTF_MODE_WB_BLOCK";
328 	case INTF_MODE_WB_LINE:
329 		return "INTF_MODE_WB_LINE";
330 	default:
331 		return "INTF_MODE_UNKNOWN";
332 	}
333 }
334 
335 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
336 		enum dpu_intr_idx intr_idx)
337 {
338 	DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
339 			DRMID(phys_enc->parent),
340 			dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
341 			phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1,
342 			phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1,
343 			phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
344 
345 	dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
346 				DPU_ENCODER_FRAME_EVENT_ERROR);
347 }
348 
349 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
350 		u32 irq_idx, struct dpu_encoder_wait_info *info);
351 
352 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
353 		int irq,
354 		void (*func)(void *arg, int irq_idx),
355 		struct dpu_encoder_wait_info *wait_info)
356 {
357 	u32 irq_status;
358 	int ret;
359 
360 	if (!wait_info) {
361 		DPU_ERROR("invalid params\n");
362 		return -EINVAL;
363 	}
364 	/* note: do master / slave checking outside */
365 
366 	/* return EWOULDBLOCK since we know the wait isn't necessary */
367 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
368 		DRM_ERROR("encoder is disabled id=%u, callback=%ps, irq=%d\n",
369 			  DRMID(phys_enc->parent), func,
370 			  irq);
371 		return -EWOULDBLOCK;
372 	}
373 
374 	if (irq < 0) {
375 		DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
376 			      DRMID(phys_enc->parent), func);
377 		return 0;
378 	}
379 
380 	DRM_DEBUG_KMS("id=%u, callback=%ps, irq=%d, pp=%d, pending_cnt=%d\n",
381 		      DRMID(phys_enc->parent), func,
382 		      irq, phys_enc->hw_pp->idx - PINGPONG_0,
383 		      atomic_read(wait_info->atomic_cnt));
384 
385 	ret = dpu_encoder_helper_wait_event_timeout(
386 			DRMID(phys_enc->parent),
387 			irq,
388 			wait_info);
389 
390 	if (ret <= 0) {
391 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq);
392 		if (irq_status) {
393 			unsigned long flags;
394 
395 			DRM_DEBUG_KMS("irq not triggered id=%u, callback=%ps, irq=%d, pp=%d, atomic_cnt=%d\n",
396 				      DRMID(phys_enc->parent), func,
397 				      irq,
398 				      phys_enc->hw_pp->idx - PINGPONG_0,
399 				      atomic_read(wait_info->atomic_cnt));
400 			local_irq_save(flags);
401 			func(phys_enc, irq);
402 			local_irq_restore(flags);
403 			ret = 0;
404 		} else {
405 			ret = -ETIMEDOUT;
406 			DRM_DEBUG_KMS("irq timeout id=%u, callback=%ps, irq=%d, pp=%d, atomic_cnt=%d\n",
407 				      DRMID(phys_enc->parent), func,
408 				      irq,
409 				      phys_enc->hw_pp->idx - PINGPONG_0,
410 				      atomic_read(wait_info->atomic_cnt));
411 		}
412 	} else {
413 		ret = 0;
414 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
415 			func, irq,
416 			phys_enc->hw_pp->idx - PINGPONG_0,
417 			atomic_read(wait_info->atomic_cnt));
418 	}
419 
420 	return ret;
421 }
422 
423 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
424 {
425 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
426 	struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
427 	return phys ? atomic_read(&phys->vsync_cnt) : 0;
428 }
429 
430 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
431 {
432 	struct dpu_encoder_virt *dpu_enc;
433 	struct dpu_encoder_phys *phys;
434 	int linecount = 0;
435 
436 	dpu_enc = to_dpu_encoder_virt(drm_enc);
437 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
438 
439 	if (phys && phys->ops.get_line_count)
440 		linecount = phys->ops.get_line_count(phys);
441 
442 	return linecount;
443 }
444 
445 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
446 {
447 	struct dpu_encoder_virt *dpu_enc = NULL;
448 	int i = 0;
449 
450 	if (!drm_enc) {
451 		DPU_ERROR("invalid encoder\n");
452 		return;
453 	}
454 
455 	dpu_enc = to_dpu_encoder_virt(drm_enc);
456 	DPU_DEBUG_ENC(dpu_enc, "\n");
457 
458 	mutex_lock(&dpu_enc->enc_lock);
459 
460 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
461 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
462 
463 		if (phys->ops.destroy) {
464 			phys->ops.destroy(phys);
465 			--dpu_enc->num_phys_encs;
466 			dpu_enc->phys_encs[i] = NULL;
467 		}
468 	}
469 
470 	if (dpu_enc->num_phys_encs)
471 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
472 				dpu_enc->num_phys_encs);
473 	dpu_enc->num_phys_encs = 0;
474 	mutex_unlock(&dpu_enc->enc_lock);
475 
476 	drm_encoder_cleanup(drm_enc);
477 	mutex_destroy(&dpu_enc->enc_lock);
478 }
479 
480 void dpu_encoder_helper_split_config(
481 		struct dpu_encoder_phys *phys_enc,
482 		enum dpu_intf interface)
483 {
484 	struct dpu_encoder_virt *dpu_enc;
485 	struct split_pipe_cfg cfg = { 0 };
486 	struct dpu_hw_mdp *hw_mdptop;
487 	struct msm_display_info *disp_info;
488 
489 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
490 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
491 		return;
492 	}
493 
494 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
495 	hw_mdptop = phys_enc->hw_mdptop;
496 	disp_info = &dpu_enc->disp_info;
497 
498 	if (disp_info->intf_type != INTF_DSI)
499 		return;
500 
501 	/**
502 	 * disable split modes since encoder will be operating in as the only
503 	 * encoder, either for the entire use case in the case of, for example,
504 	 * single DSI, or for this frame in the case of left/right only partial
505 	 * update.
506 	 */
507 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
508 		if (hw_mdptop->ops.setup_split_pipe)
509 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
510 		return;
511 	}
512 
513 	cfg.en = true;
514 	cfg.mode = phys_enc->intf_mode;
515 	cfg.intf = interface;
516 
517 	if (cfg.en && phys_enc->ops.needs_single_flush &&
518 			phys_enc->ops.needs_single_flush(phys_enc))
519 		cfg.split_flush_en = true;
520 
521 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
522 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
523 
524 		if (hw_mdptop->ops.setup_split_pipe)
525 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
526 	}
527 }
528 
529 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
530 {
531 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
532 	int i, intf_count = 0, num_dsc = 0;
533 
534 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
535 		if (dpu_enc->phys_encs[i])
536 			intf_count++;
537 
538 	/* See dpu_encoder_get_topology, we only support 2:2:1 topology */
539 	if (dpu_enc->dsc)
540 		num_dsc = 2;
541 
542 	return (num_dsc > 0) && (num_dsc > intf_count);
543 }
544 
545 static struct drm_dsc_config *dpu_encoder_get_dsc_config(struct drm_encoder *drm_enc)
546 {
547 	struct msm_drm_private *priv = drm_enc->dev->dev_private;
548 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
549 	int index = dpu_enc->disp_info.h_tile_instance[0];
550 
551 	if (dpu_enc->disp_info.intf_type == INTF_DSI)
552 		return msm_dsi_get_dsc_config(priv->dsi[index]);
553 
554 	return NULL;
555 }
556 
557 static struct msm_display_topology dpu_encoder_get_topology(
558 			struct dpu_encoder_virt *dpu_enc,
559 			struct dpu_kms *dpu_kms,
560 			struct drm_display_mode *mode,
561 			struct drm_crtc_state *crtc_state,
562 			struct drm_dsc_config *dsc)
563 {
564 	struct msm_display_topology topology = {0};
565 	int i, intf_count = 0;
566 
567 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
568 		if (dpu_enc->phys_encs[i])
569 			intf_count++;
570 
571 	/* Datapath topology selection
572 	 *
573 	 * Dual display
574 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
575 	 *
576 	 * Single display
577 	 * 1 LM, 1 INTF
578 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
579 	 *
580 	 * Add dspps to the reservation requirements if ctm is requested
581 	 */
582 	if (intf_count == 2)
583 		topology.num_lm = 2;
584 	else if (!dpu_kms->catalog->caps->has_3d_merge)
585 		topology.num_lm = 1;
586 	else
587 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
588 
589 	if (crtc_state->ctm)
590 		topology.num_dspp = topology.num_lm;
591 
592 	topology.num_intf = intf_count;
593 
594 	if (dsc) {
595 		/*
596 		 * In case of Display Stream Compression (DSC), we would use
597 		 * 2 DSC encoders, 2 layer mixers and 1 interface
598 		 * this is power optimal and can drive up to (including) 4k
599 		 * screens
600 		 */
601 		topology.num_dsc = 2;
602 		topology.num_lm = 2;
603 		topology.num_intf = 1;
604 	}
605 
606 	return topology;
607 }
608 
609 static int dpu_encoder_virt_atomic_check(
610 		struct drm_encoder *drm_enc,
611 		struct drm_crtc_state *crtc_state,
612 		struct drm_connector_state *conn_state)
613 {
614 	struct dpu_encoder_virt *dpu_enc;
615 	struct msm_drm_private *priv;
616 	struct dpu_kms *dpu_kms;
617 	struct drm_display_mode *adj_mode;
618 	struct msm_display_topology topology;
619 	struct dpu_global_state *global_state;
620 	struct drm_dsc_config *dsc;
621 	int i = 0;
622 	int ret = 0;
623 
624 	if (!drm_enc || !crtc_state || !conn_state) {
625 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
626 				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
627 		return -EINVAL;
628 	}
629 
630 	dpu_enc = to_dpu_encoder_virt(drm_enc);
631 	DPU_DEBUG_ENC(dpu_enc, "\n");
632 
633 	priv = drm_enc->dev->dev_private;
634 	dpu_kms = to_dpu_kms(priv->kms);
635 	adj_mode = &crtc_state->adjusted_mode;
636 	global_state = dpu_kms_get_global_state(crtc_state->state);
637 	if (IS_ERR(global_state))
638 		return PTR_ERR(global_state);
639 
640 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
641 
642 	/* perform atomic check on the first physical encoder (master) */
643 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
644 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
645 
646 		if (phys->ops.atomic_check)
647 			ret = phys->ops.atomic_check(phys, crtc_state,
648 					conn_state);
649 		if (ret) {
650 			DPU_ERROR_ENC(dpu_enc,
651 					"mode unsupported, phys idx %d\n", i);
652 			return ret;
653 		}
654 	}
655 
656 	dsc = dpu_encoder_get_dsc_config(drm_enc);
657 
658 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode, crtc_state, dsc);
659 
660 	/*
661 	 * Release and Allocate resources on every modeset
662 	 * Dont allocate when active is false.
663 	 */
664 	if (drm_atomic_crtc_needs_modeset(crtc_state)) {
665 		dpu_rm_release(global_state, drm_enc);
666 
667 		if (!crtc_state->active_changed || crtc_state->enable)
668 			ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
669 					drm_enc, crtc_state, topology);
670 	}
671 
672 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
673 
674 	return ret;
675 }
676 
677 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
678 			struct msm_display_info *disp_info)
679 {
680 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
681 	struct msm_drm_private *priv;
682 	struct dpu_kms *dpu_kms;
683 	struct dpu_hw_mdp *hw_mdptop;
684 	struct drm_encoder *drm_enc;
685 	struct dpu_encoder_phys *phys_enc;
686 	int i;
687 
688 	if (!dpu_enc || !disp_info) {
689 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
690 					dpu_enc != NULL, disp_info != NULL);
691 		return;
692 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
693 		DPU_ERROR("invalid num phys enc %d/%d\n",
694 				dpu_enc->num_phys_encs,
695 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
696 		return;
697 	}
698 
699 	drm_enc = &dpu_enc->base;
700 	/* this pointers are checked in virt_enable_helper */
701 	priv = drm_enc->dev->dev_private;
702 
703 	dpu_kms = to_dpu_kms(priv->kms);
704 	hw_mdptop = dpu_kms->hw_mdp;
705 	if (!hw_mdptop) {
706 		DPU_ERROR("invalid mdptop\n");
707 		return;
708 	}
709 
710 	if (hw_mdptop->ops.setup_vsync_source &&
711 			disp_info->is_cmd_mode) {
712 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
713 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
714 
715 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
716 		vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode);
717 
718 		if (disp_info->is_te_using_watchdog_timer)
719 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
720 		else
721 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
722 
723 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
724 
725 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
726 			phys_enc = dpu_enc->phys_encs[i];
727 
728 			if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel)
729 				phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf,
730 						vsync_cfg.vsync_source);
731 		}
732 	}
733 }
734 
735 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
736 {
737 	struct dpu_encoder_virt *dpu_enc;
738 	int i;
739 
740 	if (!drm_enc) {
741 		DPU_ERROR("invalid encoder\n");
742 		return;
743 	}
744 
745 	dpu_enc = to_dpu_encoder_virt(drm_enc);
746 
747 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
748 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
749 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
750 
751 		if (phys->ops.irq_control)
752 			phys->ops.irq_control(phys, enable);
753 	}
754 
755 }
756 
757 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
758 		bool enable)
759 {
760 	struct msm_drm_private *priv;
761 	struct dpu_kms *dpu_kms;
762 	struct dpu_encoder_virt *dpu_enc;
763 
764 	dpu_enc = to_dpu_encoder_virt(drm_enc);
765 	priv = drm_enc->dev->dev_private;
766 	dpu_kms = to_dpu_kms(priv->kms);
767 
768 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
769 
770 	if (!dpu_enc->cur_master) {
771 		DPU_ERROR("encoder master not set\n");
772 		return;
773 	}
774 
775 	if (enable) {
776 		/* enable DPU core clks */
777 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
778 
779 		/* enable all the irq */
780 		_dpu_encoder_irq_control(drm_enc, true);
781 
782 	} else {
783 		/* disable all the irq */
784 		_dpu_encoder_irq_control(drm_enc, false);
785 
786 		/* disable DPU core clks */
787 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
788 	}
789 
790 }
791 
792 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
793 		u32 sw_event)
794 {
795 	struct dpu_encoder_virt *dpu_enc;
796 	struct msm_drm_private *priv;
797 	bool is_vid_mode = false;
798 
799 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
800 		DPU_ERROR("invalid parameters\n");
801 		return -EINVAL;
802 	}
803 	dpu_enc = to_dpu_encoder_virt(drm_enc);
804 	priv = drm_enc->dev->dev_private;
805 	is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
806 
807 	/*
808 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
809 	 * events and return early for other events (ie wb display).
810 	 */
811 	if (!dpu_enc->idle_pc_supported &&
812 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
813 			sw_event != DPU_ENC_RC_EVENT_STOP &&
814 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
815 		return 0;
816 
817 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
818 			 dpu_enc->rc_state, "begin");
819 
820 	switch (sw_event) {
821 	case DPU_ENC_RC_EVENT_KICKOFF:
822 		/* cancel delayed off work, if any */
823 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
824 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
825 					sw_event);
826 
827 		mutex_lock(&dpu_enc->rc_lock);
828 
829 		/* return if the resource control is already in ON state */
830 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
831 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
832 				      DRMID(drm_enc), sw_event);
833 			mutex_unlock(&dpu_enc->rc_lock);
834 			return 0;
835 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
836 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
837 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
838 				      DRMID(drm_enc), sw_event,
839 				      dpu_enc->rc_state);
840 			mutex_unlock(&dpu_enc->rc_lock);
841 			return -EINVAL;
842 		}
843 
844 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
845 			_dpu_encoder_irq_control(drm_enc, true);
846 		else
847 			_dpu_encoder_resource_control_helper(drm_enc, true);
848 
849 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
850 
851 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
852 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
853 				 "kickoff");
854 
855 		mutex_unlock(&dpu_enc->rc_lock);
856 		break;
857 
858 	case DPU_ENC_RC_EVENT_FRAME_DONE:
859 		/*
860 		 * mutex lock is not used as this event happens at interrupt
861 		 * context. And locking is not required as, the other events
862 		 * like KICKOFF and STOP does a wait-for-idle before executing
863 		 * the resource_control
864 		 */
865 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
866 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
867 				      DRMID(drm_enc), sw_event,
868 				      dpu_enc->rc_state);
869 			return -EINVAL;
870 		}
871 
872 		/*
873 		 * schedule off work item only when there are no
874 		 * frames pending
875 		 */
876 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
877 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
878 				      DRMID(drm_enc));
879 			return 0;
880 		}
881 
882 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
883 				   msecs_to_jiffies(dpu_enc->idle_timeout));
884 
885 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
886 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
887 				 "frame done");
888 		break;
889 
890 	case DPU_ENC_RC_EVENT_PRE_STOP:
891 		/* cancel delayed off work, if any */
892 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
893 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
894 					sw_event);
895 
896 		mutex_lock(&dpu_enc->rc_lock);
897 
898 		if (is_vid_mode &&
899 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
900 			_dpu_encoder_irq_control(drm_enc, true);
901 		}
902 		/* skip if is already OFF or IDLE, resources are off already */
903 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
904 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
905 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
906 				      DRMID(drm_enc), sw_event,
907 				      dpu_enc->rc_state);
908 			mutex_unlock(&dpu_enc->rc_lock);
909 			return 0;
910 		}
911 
912 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
913 
914 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
915 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
916 				 "pre stop");
917 
918 		mutex_unlock(&dpu_enc->rc_lock);
919 		break;
920 
921 	case DPU_ENC_RC_EVENT_STOP:
922 		mutex_lock(&dpu_enc->rc_lock);
923 
924 		/* return if the resource control is already in OFF state */
925 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
926 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
927 				      DRMID(drm_enc), sw_event);
928 			mutex_unlock(&dpu_enc->rc_lock);
929 			return 0;
930 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
931 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
932 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
933 			mutex_unlock(&dpu_enc->rc_lock);
934 			return -EINVAL;
935 		}
936 
937 		/**
938 		 * expect to arrive here only if in either idle state or pre-off
939 		 * and in IDLE state the resources are already disabled
940 		 */
941 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
942 			_dpu_encoder_resource_control_helper(drm_enc, false);
943 
944 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
945 
946 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
947 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
948 				 "stop");
949 
950 		mutex_unlock(&dpu_enc->rc_lock);
951 		break;
952 
953 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
954 		mutex_lock(&dpu_enc->rc_lock);
955 
956 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
957 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
958 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
959 			mutex_unlock(&dpu_enc->rc_lock);
960 			return 0;
961 		}
962 
963 		/*
964 		 * if we are in ON but a frame was just kicked off,
965 		 * ignore the IDLE event, it's probably a stale timer event
966 		 */
967 		if (dpu_enc->frame_busy_mask[0]) {
968 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
969 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
970 			mutex_unlock(&dpu_enc->rc_lock);
971 			return 0;
972 		}
973 
974 		if (is_vid_mode)
975 			_dpu_encoder_irq_control(drm_enc, false);
976 		else
977 			_dpu_encoder_resource_control_helper(drm_enc, false);
978 
979 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
980 
981 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
982 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
983 				 "idle");
984 
985 		mutex_unlock(&dpu_enc->rc_lock);
986 		break;
987 
988 	default:
989 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
990 			  sw_event);
991 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
992 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
993 				 "error");
994 		break;
995 	}
996 
997 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
998 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
999 			 "end");
1000 	return 0;
1001 }
1002 
1003 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
1004 		struct drm_writeback_job *job)
1005 {
1006 	struct dpu_encoder_virt *dpu_enc;
1007 	int i;
1008 
1009 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1010 
1011 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1012 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1013 
1014 		if (phys->ops.prepare_wb_job)
1015 			phys->ops.prepare_wb_job(phys, job);
1016 
1017 	}
1018 }
1019 
1020 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
1021 		struct drm_writeback_job *job)
1022 {
1023 	struct dpu_encoder_virt *dpu_enc;
1024 	int i;
1025 
1026 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1027 
1028 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1029 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1030 
1031 		if (phys->ops.cleanup_wb_job)
1032 			phys->ops.cleanup_wb_job(phys, job);
1033 
1034 	}
1035 }
1036 
1037 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1038 					     struct drm_crtc_state *crtc_state,
1039 					     struct drm_connector_state *conn_state)
1040 {
1041 	struct dpu_encoder_virt *dpu_enc;
1042 	struct msm_drm_private *priv;
1043 	struct dpu_kms *dpu_kms;
1044 	struct dpu_crtc_state *cstate;
1045 	struct dpu_global_state *global_state;
1046 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1047 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1048 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
1049 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
1050 	struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1051 	int num_lm, num_ctl, num_pp, num_dsc;
1052 	unsigned int dsc_mask = 0;
1053 	int i;
1054 
1055 	if (!drm_enc) {
1056 		DPU_ERROR("invalid encoder\n");
1057 		return;
1058 	}
1059 
1060 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1061 	DPU_DEBUG_ENC(dpu_enc, "\n");
1062 
1063 	priv = drm_enc->dev->dev_private;
1064 	dpu_kms = to_dpu_kms(priv->kms);
1065 
1066 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
1067 	if (IS_ERR_OR_NULL(global_state)) {
1068 		DPU_ERROR("Failed to get global state");
1069 		return;
1070 	}
1071 
1072 	trace_dpu_enc_mode_set(DRMID(drm_enc));
1073 
1074 	/* Query resource that have been reserved in atomic check step. */
1075 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1076 		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1077 		ARRAY_SIZE(hw_pp));
1078 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1079 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1080 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1081 		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1082 	dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1083 		drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1084 		ARRAY_SIZE(hw_dspp));
1085 
1086 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1087 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1088 						: NULL;
1089 
1090 	num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1091 						drm_enc->base.id, DPU_HW_BLK_DSC,
1092 						hw_dsc, ARRAY_SIZE(hw_dsc));
1093 	for (i = 0; i < num_dsc; i++) {
1094 		dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1095 		dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1096 	}
1097 
1098 	dpu_enc->dsc_mask = dsc_mask;
1099 
1100 	cstate = to_dpu_crtc_state(crtc_state);
1101 
1102 	for (i = 0; i < num_lm; i++) {
1103 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1104 
1105 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1106 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1107 		cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1108 	}
1109 
1110 	cstate->num_mixers = num_lm;
1111 
1112 	dpu_enc->connector = conn_state->connector;
1113 
1114 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1115 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1116 
1117 		if (!dpu_enc->hw_pp[i]) {
1118 			DPU_ERROR_ENC(dpu_enc,
1119 				"no pp block assigned at idx: %d\n", i);
1120 			return;
1121 		}
1122 
1123 		if (!hw_ctl[i]) {
1124 			DPU_ERROR_ENC(dpu_enc,
1125 				"no ctl block assigned at idx: %d\n", i);
1126 			return;
1127 		}
1128 
1129 		phys->hw_pp = dpu_enc->hw_pp[i];
1130 		phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1131 
1132 		phys->cached_mode = crtc_state->adjusted_mode;
1133 		if (phys->ops.atomic_mode_set)
1134 			phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1135 	}
1136 }
1137 
1138 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1139 {
1140 	struct dpu_encoder_virt *dpu_enc = NULL;
1141 	int i;
1142 
1143 	if (!drm_enc || !drm_enc->dev) {
1144 		DPU_ERROR("invalid parameters\n");
1145 		return;
1146 	}
1147 
1148 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1149 	if (!dpu_enc || !dpu_enc->cur_master) {
1150 		DPU_ERROR("invalid dpu encoder/master\n");
1151 		return;
1152 	}
1153 
1154 
1155 	if (dpu_enc->disp_info.intf_type == INTF_DP &&
1156 		dpu_enc->cur_master->hw_mdptop &&
1157 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1158 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1159 			dpu_enc->cur_master->hw_mdptop);
1160 
1161 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1162 
1163 	if (dpu_enc->disp_info.intf_type == INTF_DSI &&
1164 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1165 		unsigned bpc = dpu_enc->connector->display_info.bpc;
1166 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1167 			if (!dpu_enc->hw_pp[i])
1168 				continue;
1169 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1170 		}
1171 	}
1172 }
1173 
1174 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1175 {
1176 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1177 
1178 	mutex_lock(&dpu_enc->enc_lock);
1179 
1180 	if (!dpu_enc->enabled)
1181 		goto out;
1182 
1183 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1184 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1185 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1186 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1187 
1188 	_dpu_encoder_virt_enable_helper(drm_enc);
1189 
1190 out:
1191 	mutex_unlock(&dpu_enc->enc_lock);
1192 }
1193 
1194 static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc,
1195 					struct drm_atomic_state *state)
1196 {
1197 	struct dpu_encoder_virt *dpu_enc = NULL;
1198 	int ret = 0;
1199 	struct drm_display_mode *cur_mode = NULL;
1200 
1201 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1202 
1203 	dpu_enc->dsc = dpu_encoder_get_dsc_config(drm_enc);
1204 
1205 	mutex_lock(&dpu_enc->enc_lock);
1206 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1207 
1208 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1209 			     cur_mode->vdisplay);
1210 
1211 	/* always enable slave encoder before master */
1212 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1213 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1214 
1215 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1216 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1217 
1218 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1219 	if (ret) {
1220 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1221 				ret);
1222 		goto out;
1223 	}
1224 
1225 	_dpu_encoder_virt_enable_helper(drm_enc);
1226 
1227 	dpu_enc->enabled = true;
1228 
1229 out:
1230 	mutex_unlock(&dpu_enc->enc_lock);
1231 }
1232 
1233 static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc,
1234 					struct drm_atomic_state *state)
1235 {
1236 	struct dpu_encoder_virt *dpu_enc = NULL;
1237 	struct drm_crtc *crtc;
1238 	struct drm_crtc_state *old_state = NULL;
1239 	int i = 0;
1240 
1241 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1242 	DPU_DEBUG_ENC(dpu_enc, "\n");
1243 
1244 	crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc);
1245 	if (crtc)
1246 		old_state = drm_atomic_get_old_crtc_state(state, crtc);
1247 
1248 	/*
1249 	 * The encoder is already disabled if self refresh mode was set earlier,
1250 	 * in the old_state for the corresponding crtc.
1251 	 */
1252 	if (old_state && old_state->self_refresh_active)
1253 		return;
1254 
1255 	mutex_lock(&dpu_enc->enc_lock);
1256 	dpu_enc->enabled = false;
1257 
1258 	trace_dpu_enc_disable(DRMID(drm_enc));
1259 
1260 	/* wait for idle */
1261 	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1262 
1263 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1264 
1265 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1266 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1267 
1268 		if (phys->ops.disable)
1269 			phys->ops.disable(phys);
1270 	}
1271 
1272 
1273 	/* after phys waits for frame-done, should be no more frames pending */
1274 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1275 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1276 		del_timer_sync(&dpu_enc->frame_done_timer);
1277 	}
1278 
1279 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1280 
1281 	dpu_enc->connector = NULL;
1282 
1283 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1284 
1285 	mutex_unlock(&dpu_enc->enc_lock);
1286 }
1287 
1288 static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1289 		struct dpu_rm *dpu_rm,
1290 		enum dpu_intf_type type, u32 controller_id)
1291 {
1292 	int i = 0;
1293 
1294 	if (type == INTF_WB)
1295 		return NULL;
1296 
1297 	for (i = 0; i < catalog->intf_count; i++) {
1298 		if (catalog->intf[i].type == type
1299 		    && catalog->intf[i].controller_id == controller_id) {
1300 			return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id);
1301 		}
1302 	}
1303 
1304 	return NULL;
1305 }
1306 
1307 void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1308 		struct dpu_encoder_phys *phy_enc)
1309 {
1310 	struct dpu_encoder_virt *dpu_enc = NULL;
1311 	unsigned long lock_flags;
1312 
1313 	if (!drm_enc || !phy_enc)
1314 		return;
1315 
1316 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1317 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1318 
1319 	atomic_inc(&phy_enc->vsync_cnt);
1320 
1321 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1322 	if (dpu_enc->crtc)
1323 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1324 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1325 
1326 	DPU_ATRACE_END("encoder_vblank_callback");
1327 }
1328 
1329 void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1330 		struct dpu_encoder_phys *phy_enc)
1331 {
1332 	if (!phy_enc)
1333 		return;
1334 
1335 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1336 	atomic_inc(&phy_enc->underrun_cnt);
1337 
1338 	/* trigger dump only on the first underrun */
1339 	if (atomic_read(&phy_enc->underrun_cnt) == 1)
1340 		msm_disp_snapshot_state(drm_enc->dev);
1341 
1342 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1343 				  atomic_read(&phy_enc->underrun_cnt));
1344 	DPU_ATRACE_END("encoder_underrun_callback");
1345 }
1346 
1347 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1348 {
1349 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1350 	unsigned long lock_flags;
1351 
1352 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1353 	/* crtc should always be cleared before re-assigning */
1354 	WARN_ON(crtc && dpu_enc->crtc);
1355 	dpu_enc->crtc = crtc;
1356 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1357 }
1358 
1359 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1360 					struct drm_crtc *crtc, bool enable)
1361 {
1362 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1363 	unsigned long lock_flags;
1364 	int i;
1365 
1366 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1367 
1368 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1369 	if (dpu_enc->crtc != crtc) {
1370 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1371 		return;
1372 	}
1373 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1374 
1375 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1376 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1377 
1378 		if (phys->ops.control_vblank_irq)
1379 			phys->ops.control_vblank_irq(phys, enable);
1380 	}
1381 }
1382 
1383 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1384 		void (*frame_event_cb)(void *, u32 event),
1385 		void *frame_event_cb_data)
1386 {
1387 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1388 	unsigned long lock_flags;
1389 	bool enable;
1390 
1391 	enable = frame_event_cb ? true : false;
1392 
1393 	if (!drm_enc) {
1394 		DPU_ERROR("invalid encoder\n");
1395 		return;
1396 	}
1397 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1398 
1399 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1400 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1401 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1402 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1403 }
1404 
1405 void dpu_encoder_frame_done_callback(
1406 		struct drm_encoder *drm_enc,
1407 		struct dpu_encoder_phys *ready_phys, u32 event)
1408 {
1409 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1410 	unsigned int i;
1411 
1412 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1413 			| DPU_ENCODER_FRAME_EVENT_ERROR
1414 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1415 
1416 		if (!dpu_enc->frame_busy_mask[0]) {
1417 			/**
1418 			 * suppress frame_done without waiter,
1419 			 * likely autorefresh
1420 			 */
1421 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1422 					dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1423 					ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1,
1424 					ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1);
1425 			return;
1426 		}
1427 
1428 		/* One of the physical encoders has become idle */
1429 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1430 			if (dpu_enc->phys_encs[i] == ready_phys) {
1431 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1432 						dpu_enc->frame_busy_mask[0]);
1433 				clear_bit(i, dpu_enc->frame_busy_mask);
1434 			}
1435 		}
1436 
1437 		if (!dpu_enc->frame_busy_mask[0]) {
1438 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1439 			del_timer(&dpu_enc->frame_done_timer);
1440 
1441 			dpu_encoder_resource_control(drm_enc,
1442 					DPU_ENC_RC_EVENT_FRAME_DONE);
1443 
1444 			if (dpu_enc->crtc_frame_event_cb)
1445 				dpu_enc->crtc_frame_event_cb(
1446 					dpu_enc->crtc_frame_event_cb_data,
1447 					event);
1448 		}
1449 	} else {
1450 		if (dpu_enc->crtc_frame_event_cb)
1451 			dpu_enc->crtc_frame_event_cb(
1452 				dpu_enc->crtc_frame_event_cb_data, event);
1453 	}
1454 }
1455 
1456 static void dpu_encoder_off_work(struct work_struct *work)
1457 {
1458 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1459 			struct dpu_encoder_virt, delayed_off_work.work);
1460 
1461 	dpu_encoder_resource_control(&dpu_enc->base,
1462 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1463 
1464 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1465 				DPU_ENCODER_FRAME_EVENT_IDLE);
1466 }
1467 
1468 /**
1469  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1470  * @drm_enc: Pointer to drm encoder structure
1471  * @phys: Pointer to physical encoder structure
1472  * @extra_flush_bits: Additional bit mask to include in flush trigger
1473  */
1474 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1475 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1476 {
1477 	struct dpu_hw_ctl *ctl;
1478 	int pending_kickoff_cnt;
1479 	u32 ret = UINT_MAX;
1480 
1481 	if (!phys->hw_pp) {
1482 		DPU_ERROR("invalid pingpong hw\n");
1483 		return;
1484 	}
1485 
1486 	ctl = phys->hw_ctl;
1487 	if (!ctl->ops.trigger_flush) {
1488 		DPU_ERROR("missing trigger cb\n");
1489 		return;
1490 	}
1491 
1492 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1493 
1494 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1495 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1496 
1497 	ctl->ops.trigger_flush(ctl);
1498 
1499 	if (ctl->ops.get_pending_flush)
1500 		ret = ctl->ops.get_pending_flush(ctl);
1501 
1502 	trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1503 			dpu_encoder_helper_get_intf_type(phys->intf_mode),
1504 			phys->hw_intf ? phys->hw_intf->idx : -1,
1505 			phys->hw_wb ? phys->hw_wb->idx : -1,
1506 			pending_kickoff_cnt, ctl->idx,
1507 			extra_flush_bits, ret);
1508 }
1509 
1510 /**
1511  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1512  * @phys: Pointer to physical encoder structure
1513  */
1514 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1515 {
1516 	if (!phys) {
1517 		DPU_ERROR("invalid argument(s)\n");
1518 		return;
1519 	}
1520 
1521 	if (!phys->hw_pp) {
1522 		DPU_ERROR("invalid pingpong hw\n");
1523 		return;
1524 	}
1525 
1526 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1527 		phys->ops.trigger_start(phys);
1528 }
1529 
1530 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1531 {
1532 	struct dpu_hw_ctl *ctl;
1533 
1534 	ctl = phys_enc->hw_ctl;
1535 	if (ctl->ops.trigger_start) {
1536 		ctl->ops.trigger_start(ctl);
1537 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1538 	}
1539 }
1540 
1541 static int dpu_encoder_helper_wait_event_timeout(
1542 		int32_t drm_id,
1543 		u32 irq_idx,
1544 		struct dpu_encoder_wait_info *info)
1545 {
1546 	int rc = 0;
1547 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1548 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1549 	s64 time;
1550 
1551 	do {
1552 		rc = wait_event_timeout(*(info->wq),
1553 				atomic_read(info->atomic_cnt) == 0, jiffies);
1554 		time = ktime_to_ms(ktime_get());
1555 
1556 		trace_dpu_enc_wait_event_timeout(drm_id, irq_idx, rc, time,
1557 						 expected_time,
1558 						 atomic_read(info->atomic_cnt));
1559 	/* If we timed out, counter is valid and time is less, wait again */
1560 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1561 			(time < expected_time));
1562 
1563 	return rc;
1564 }
1565 
1566 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1567 {
1568 	struct dpu_encoder_virt *dpu_enc;
1569 	struct dpu_hw_ctl *ctl;
1570 	int rc;
1571 	struct drm_encoder *drm_enc;
1572 
1573 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1574 	ctl = phys_enc->hw_ctl;
1575 	drm_enc = phys_enc->parent;
1576 
1577 	if (!ctl->ops.reset)
1578 		return;
1579 
1580 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1581 		      ctl->idx);
1582 
1583 	rc = ctl->ops.reset(ctl);
1584 	if (rc) {
1585 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1586 		msm_disp_snapshot_state(drm_enc->dev);
1587 	}
1588 
1589 	phys_enc->enable_state = DPU_ENC_ENABLED;
1590 }
1591 
1592 /**
1593  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1594  *	Iterate through the physical encoders and perform consolidated flush
1595  *	and/or control start triggering as needed. This is done in the virtual
1596  *	encoder rather than the individual physical ones in order to handle
1597  *	use cases that require visibility into multiple physical encoders at
1598  *	a time.
1599  * @dpu_enc: Pointer to virtual encoder structure
1600  */
1601 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1602 {
1603 	struct dpu_hw_ctl *ctl;
1604 	uint32_t i, pending_flush;
1605 	unsigned long lock_flags;
1606 
1607 	pending_flush = 0x0;
1608 
1609 	/* update pending counts and trigger kickoff ctl flush atomically */
1610 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1611 
1612 	/* don't perform flush/start operations for slave encoders */
1613 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1614 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1615 
1616 		if (phys->enable_state == DPU_ENC_DISABLED)
1617 			continue;
1618 
1619 		ctl = phys->hw_ctl;
1620 
1621 		/*
1622 		 * This is cleared in frame_done worker, which isn't invoked
1623 		 * for async commits. So don't set this for async, since it'll
1624 		 * roll over to the next commit.
1625 		 */
1626 		if (phys->split_role != ENC_ROLE_SLAVE)
1627 			set_bit(i, dpu_enc->frame_busy_mask);
1628 
1629 		if (!phys->ops.needs_single_flush ||
1630 				!phys->ops.needs_single_flush(phys))
1631 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1632 		else if (ctl->ops.get_pending_flush)
1633 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1634 	}
1635 
1636 	/* for split flush, combine pending flush masks and send to master */
1637 	if (pending_flush && dpu_enc->cur_master) {
1638 		_dpu_encoder_trigger_flush(
1639 				&dpu_enc->base,
1640 				dpu_enc->cur_master,
1641 				pending_flush);
1642 	}
1643 
1644 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1645 
1646 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1647 }
1648 
1649 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1650 {
1651 	struct dpu_encoder_virt *dpu_enc;
1652 	struct dpu_encoder_phys *phys;
1653 	unsigned int i;
1654 	struct dpu_hw_ctl *ctl;
1655 	struct msm_display_info *disp_info;
1656 
1657 	if (!drm_enc) {
1658 		DPU_ERROR("invalid encoder\n");
1659 		return;
1660 	}
1661 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1662 	disp_info = &dpu_enc->disp_info;
1663 
1664 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1665 		phys = dpu_enc->phys_encs[i];
1666 
1667 		ctl = phys->hw_ctl;
1668 		if (ctl->ops.clear_pending_flush)
1669 			ctl->ops.clear_pending_flush(ctl);
1670 
1671 		/* update only for command mode primary ctl */
1672 		if ((phys == dpu_enc->cur_master) &&
1673 		    disp_info->is_cmd_mode
1674 		    && ctl->ops.trigger_pending)
1675 			ctl->ops.trigger_pending(ctl);
1676 	}
1677 }
1678 
1679 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1680 		struct drm_display_mode *mode)
1681 {
1682 	u64 pclk_rate;
1683 	u32 pclk_period;
1684 	u32 line_time;
1685 
1686 	/*
1687 	 * For linetime calculation, only operate on master encoder.
1688 	 */
1689 	if (!dpu_enc->cur_master)
1690 		return 0;
1691 
1692 	if (!dpu_enc->cur_master->ops.get_line_count) {
1693 		DPU_ERROR("get_line_count function not defined\n");
1694 		return 0;
1695 	}
1696 
1697 	pclk_rate = mode->clock; /* pixel clock in kHz */
1698 	if (pclk_rate == 0) {
1699 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1700 		return 0;
1701 	}
1702 
1703 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1704 	if (pclk_period == 0) {
1705 		DPU_ERROR("pclk period is 0\n");
1706 		return 0;
1707 	}
1708 
1709 	/*
1710 	 * Line time calculation based on Pixel clock and HTOTAL.
1711 	 * Final unit is in ns.
1712 	 */
1713 	line_time = (pclk_period * mode->htotal) / 1000;
1714 	if (line_time == 0) {
1715 		DPU_ERROR("line time calculation is 0\n");
1716 		return 0;
1717 	}
1718 
1719 	DPU_DEBUG_ENC(dpu_enc,
1720 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1721 			pclk_rate, pclk_period, line_time);
1722 
1723 	return line_time;
1724 }
1725 
1726 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1727 {
1728 	struct drm_display_mode *mode;
1729 	struct dpu_encoder_virt *dpu_enc;
1730 	u32 cur_line;
1731 	u32 line_time;
1732 	u32 vtotal, time_to_vsync;
1733 	ktime_t cur_time;
1734 
1735 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1736 
1737 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1738 		DPU_ERROR("crtc/crtc state object is NULL\n");
1739 		return -EINVAL;
1740 	}
1741 	mode = &drm_enc->crtc->state->adjusted_mode;
1742 
1743 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1744 	if (!line_time)
1745 		return -EINVAL;
1746 
1747 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1748 
1749 	vtotal = mode->vtotal;
1750 	if (cur_line >= vtotal)
1751 		time_to_vsync = line_time * vtotal;
1752 	else
1753 		time_to_vsync = line_time * (vtotal - cur_line);
1754 
1755 	if (time_to_vsync == 0) {
1756 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1757 				vtotal);
1758 		return -EINVAL;
1759 	}
1760 
1761 	cur_time = ktime_get();
1762 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1763 
1764 	DPU_DEBUG_ENC(dpu_enc,
1765 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1766 			cur_line, vtotal, time_to_vsync,
1767 			ktime_to_ms(cur_time),
1768 			ktime_to_ms(*wakeup_time));
1769 	return 0;
1770 }
1771 
1772 static u32
1773 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1774 				  u32 enc_ip_width)
1775 {
1776 	int ssm_delay, total_pixels, soft_slice_per_enc;
1777 
1778 	soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1779 
1780 	/*
1781 	 * minimum number of initial line pixels is a sum of:
1782 	 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1783 	 *    91 for 10 bpc) * 3
1784 	 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1785 	 * 3. the initial xmit delay
1786 	 * 4. total pipeline delay through the "lock step" of encoder (47)
1787 	 * 5. 6 additional pixels as the output of the rate buffer is
1788 	 *    48 bits wide
1789 	 */
1790 	ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1791 	total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1792 	if (soft_slice_per_enc > 1)
1793 		total_pixels += (ssm_delay * 3);
1794 	return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1795 }
1796 
1797 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl,
1798 				     struct dpu_hw_dsc *hw_dsc,
1799 				     struct dpu_hw_pingpong *hw_pp,
1800 				     struct drm_dsc_config *dsc,
1801 				     u32 common_mode,
1802 				     u32 initial_lines)
1803 {
1804 	if (hw_dsc->ops.dsc_config)
1805 		hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
1806 
1807 	if (hw_dsc->ops.dsc_config_thresh)
1808 		hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
1809 
1810 	if (hw_pp->ops.setup_dsc)
1811 		hw_pp->ops.setup_dsc(hw_pp);
1812 
1813 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
1814 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx);
1815 
1816 	if (hw_pp->ops.enable_dsc)
1817 		hw_pp->ops.enable_dsc(hw_pp);
1818 
1819 	if (ctl->ops.update_pending_flush_dsc)
1820 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
1821 }
1822 
1823 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
1824 				 struct drm_dsc_config *dsc)
1825 {
1826 	/* coding only for 2LM, 2enc, 1 dsc config */
1827 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
1828 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
1829 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
1830 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
1831 	int this_frame_slices;
1832 	int intf_ip_w, enc_ip_w;
1833 	int dsc_common_mode;
1834 	int pic_width;
1835 	u32 initial_lines;
1836 	int i;
1837 
1838 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1839 		hw_pp[i] = dpu_enc->hw_pp[i];
1840 		hw_dsc[i] = dpu_enc->hw_dsc[i];
1841 
1842 		if (!hw_pp[i] || !hw_dsc[i]) {
1843 			DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n");
1844 			return;
1845 		}
1846 	}
1847 
1848 	dsc_common_mode = 0;
1849 	pic_width = dsc->pic_width;
1850 
1851 	dsc_common_mode = DSC_MODE_MULTIPLEX | DSC_MODE_SPLIT_PANEL;
1852 	if (enc_master->intf_mode == INTF_MODE_VIDEO)
1853 		dsc_common_mode |= DSC_MODE_VIDEO;
1854 
1855 	this_frame_slices = pic_width / dsc->slice_width;
1856 	intf_ip_w = this_frame_slices * dsc->slice_width;
1857 
1858 	/*
1859 	 * dsc merge case: when using 2 encoders for the same stream,
1860 	 * no. of slices need to be same on both the encoders.
1861 	 */
1862 	enc_ip_w = intf_ip_w / 2;
1863 	initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
1864 
1865 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1866 		dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i],
1867 					 dsc, dsc_common_mode, initial_lines);
1868 }
1869 
1870 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1871 {
1872 	struct dpu_encoder_virt *dpu_enc;
1873 	struct dpu_encoder_phys *phys;
1874 	bool needs_hw_reset = false;
1875 	unsigned int i;
1876 
1877 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1878 
1879 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1880 
1881 	/* prepare for next kickoff, may include waiting on previous kickoff */
1882 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1883 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1884 		phys = dpu_enc->phys_encs[i];
1885 		if (phys->ops.prepare_for_kickoff)
1886 			phys->ops.prepare_for_kickoff(phys);
1887 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1888 			needs_hw_reset = true;
1889 	}
1890 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1891 
1892 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1893 
1894 	/* if any phys needs reset, reset all phys, in-order */
1895 	if (needs_hw_reset) {
1896 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1897 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1898 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1899 		}
1900 	}
1901 
1902 	if (dpu_enc->dsc)
1903 		dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
1904 }
1905 
1906 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
1907 {
1908 	struct dpu_encoder_virt *dpu_enc;
1909 	unsigned int i;
1910 	struct dpu_encoder_phys *phys;
1911 
1912 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1913 
1914 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1915 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1916 			phys = dpu_enc->phys_encs[i];
1917 			if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
1918 				DPU_DEBUG("invalid FB not kicking off\n");
1919 				return false;
1920 			}
1921 		}
1922 	}
1923 
1924 	return true;
1925 }
1926 
1927 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1928 {
1929 	struct dpu_encoder_virt *dpu_enc;
1930 	struct dpu_encoder_phys *phys;
1931 	unsigned long timeout_ms;
1932 	unsigned int i;
1933 
1934 	DPU_ATRACE_BEGIN("encoder_kickoff");
1935 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1936 
1937 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1938 
1939 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1940 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1941 
1942 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1943 	mod_timer(&dpu_enc->frame_done_timer,
1944 			jiffies + msecs_to_jiffies(timeout_ms));
1945 
1946 	/* All phys encs are ready to go, trigger the kickoff */
1947 	_dpu_encoder_kickoff_phys(dpu_enc);
1948 
1949 	/* allow phys encs to handle any post-kickoff business */
1950 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1951 		phys = dpu_enc->phys_encs[i];
1952 		if (phys->ops.handle_post_kickoff)
1953 			phys->ops.handle_post_kickoff(phys);
1954 	}
1955 
1956 	DPU_ATRACE_END("encoder_kickoff");
1957 }
1958 
1959 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
1960 {
1961 	struct dpu_hw_mixer_cfg mixer;
1962 	int i, num_lm;
1963 	struct dpu_global_state *global_state;
1964 	struct dpu_hw_blk *hw_lm[2];
1965 	struct dpu_hw_mixer *hw_mixer[2];
1966 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
1967 
1968 	memset(&mixer, 0, sizeof(mixer));
1969 
1970 	/* reset all mixers for this encoder */
1971 	if (phys_enc->hw_ctl->ops.clear_all_blendstages)
1972 		phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl);
1973 
1974 	global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
1975 
1976 	num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
1977 		phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1978 
1979 	for (i = 0; i < num_lm; i++) {
1980 		hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
1981 		if (phys_enc->hw_ctl->ops.update_pending_flush_mixer)
1982 			phys_enc->hw_ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
1983 
1984 		/* clear all blendstages */
1985 		if (phys_enc->hw_ctl->ops.setup_blendstage)
1986 			phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
1987 	}
1988 }
1989 
1990 static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl,
1991 				     struct dpu_hw_dsc *hw_dsc,
1992 				     struct dpu_hw_pingpong *hw_pp)
1993 {
1994 	if (hw_dsc->ops.dsc_disable)
1995 		hw_dsc->ops.dsc_disable(hw_dsc);
1996 
1997 	if (hw_pp->ops.disable_dsc)
1998 		hw_pp->ops.disable_dsc(hw_pp);
1999 
2000 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
2001 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE);
2002 
2003 	if (ctl->ops.update_pending_flush_dsc)
2004 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2005 }
2006 
2007 static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc)
2008 {
2009 	/* coding only for 2LM, 2enc, 1 dsc config */
2010 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2011 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2012 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2013 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2014 	int i;
2015 
2016 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2017 		hw_pp[i] = dpu_enc->hw_pp[i];
2018 		hw_dsc[i] = dpu_enc->hw_dsc[i];
2019 
2020 		if (hw_pp[i] && hw_dsc[i])
2021 			dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]);
2022 	}
2023 }
2024 
2025 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2026 {
2027 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2028 	struct dpu_hw_intf_cfg intf_cfg = { 0 };
2029 	int i;
2030 	struct dpu_encoder_virt *dpu_enc;
2031 
2032 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2033 
2034 	phys_enc->hw_ctl->ops.reset(ctl);
2035 
2036 	dpu_encoder_helper_reset_mixers(phys_enc);
2037 
2038 	/*
2039 	 * TODO: move the once-only operation like CTL flush/trigger
2040 	 * into dpu_encoder_virt_disable() and all operations which need
2041 	 * to be done per phys encoder into the phys_disable() op.
2042 	 */
2043 	if (phys_enc->hw_wb) {
2044 		/* disable the PP block */
2045 		if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2046 			phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE);
2047 
2048 		/* mark WB flush as pending */
2049 		if (phys_enc->hw_ctl->ops.update_pending_flush_wb)
2050 			phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2051 	} else {
2052 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2053 			if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2054 				phys_enc->hw_intf->ops.bind_pingpong_blk(
2055 						dpu_enc->phys_encs[i]->hw_intf,
2056 						PINGPONG_NONE);
2057 
2058 			/* mark INTF flush as pending */
2059 			if (phys_enc->hw_ctl->ops.update_pending_flush_intf)
2060 				phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl,
2061 						dpu_enc->phys_encs[i]->hw_intf->idx);
2062 		}
2063 	}
2064 
2065 	/* reset the merge 3D HW block */
2066 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) {
2067 		phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2068 				BLEND_3D_NONE);
2069 		if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d)
2070 			phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl,
2071 					phys_enc->hw_pp->merge_3d->idx);
2072 	}
2073 
2074 	if (dpu_enc->dsc) {
2075 		dpu_encoder_unprep_dsc(dpu_enc);
2076 		dpu_enc->dsc = NULL;
2077 	}
2078 
2079 	intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2080 	intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2081 	intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc);
2082 
2083 	if (phys_enc->hw_intf)
2084 		intf_cfg.intf = phys_enc->hw_intf->idx;
2085 	if (phys_enc->hw_wb)
2086 		intf_cfg.wb = phys_enc->hw_wb->idx;
2087 
2088 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d)
2089 		intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2090 
2091 	if (ctl->ops.reset_intf_cfg)
2092 		ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2093 
2094 	ctl->ops.trigger_flush(ctl);
2095 	ctl->ops.trigger_start(ctl);
2096 	ctl->ops.clear_pending_flush(ctl);
2097 }
2098 
2099 #ifdef CONFIG_DEBUG_FS
2100 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2101 {
2102 	struct dpu_encoder_virt *dpu_enc = s->private;
2103 	int i;
2104 
2105 	mutex_lock(&dpu_enc->enc_lock);
2106 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2107 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2108 
2109 		seq_printf(s, "intf:%d  wb:%d  vsync:%8d     underrun:%8d    ",
2110 				phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1,
2111 				phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1,
2112 				atomic_read(&phys->vsync_cnt),
2113 				atomic_read(&phys->underrun_cnt));
2114 
2115 		seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2116 	}
2117 	mutex_unlock(&dpu_enc->enc_lock);
2118 
2119 	return 0;
2120 }
2121 
2122 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2123 
2124 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2125 {
2126 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2127 
2128 	char name[12];
2129 
2130 	if (!drm_enc->dev) {
2131 		DPU_ERROR("invalid encoder or kms\n");
2132 		return -EINVAL;
2133 	}
2134 
2135 	snprintf(name, sizeof(name), "encoder%u", drm_enc->base.id);
2136 
2137 	/* create overall sub-directory for the encoder */
2138 	dpu_enc->debugfs_root = debugfs_create_dir(name,
2139 			drm_enc->dev->primary->debugfs_root);
2140 
2141 	/* don't error check these */
2142 	debugfs_create_file("status", 0600,
2143 		dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops);
2144 
2145 	return 0;
2146 }
2147 #else
2148 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2149 {
2150 	return 0;
2151 }
2152 #endif
2153 
2154 static int dpu_encoder_late_register(struct drm_encoder *encoder)
2155 {
2156 	return _dpu_encoder_init_debugfs(encoder);
2157 }
2158 
2159 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
2160 {
2161 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2162 
2163 	debugfs_remove_recursive(dpu_enc->debugfs_root);
2164 }
2165 
2166 static int dpu_encoder_virt_add_phys_encs(
2167 		struct msm_display_info *disp_info,
2168 		struct dpu_encoder_virt *dpu_enc,
2169 		struct dpu_enc_phys_init_params *params)
2170 {
2171 	struct dpu_encoder_phys *enc = NULL;
2172 
2173 	DPU_DEBUG_ENC(dpu_enc, "\n");
2174 
2175 	/*
2176 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2177 	 * in this function, check up-front.
2178 	 */
2179 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2180 			ARRAY_SIZE(dpu_enc->phys_encs)) {
2181 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2182 			  dpu_enc->num_phys_encs);
2183 		return -EINVAL;
2184 	}
2185 
2186 
2187 	if (disp_info->intf_type == INTF_WB) {
2188 		enc = dpu_encoder_phys_wb_init(params);
2189 
2190 		if (IS_ERR(enc)) {
2191 			DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2192 				PTR_ERR(enc));
2193 			return PTR_ERR(enc);
2194 		}
2195 
2196 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2197 		++dpu_enc->num_phys_encs;
2198 	} else if (disp_info->is_cmd_mode) {
2199 		enc = dpu_encoder_phys_cmd_init(params);
2200 
2201 		if (IS_ERR(enc)) {
2202 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2203 				PTR_ERR(enc));
2204 			return PTR_ERR(enc);
2205 		}
2206 
2207 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2208 		++dpu_enc->num_phys_encs;
2209 	} else {
2210 		enc = dpu_encoder_phys_vid_init(params);
2211 
2212 		if (IS_ERR(enc)) {
2213 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2214 				PTR_ERR(enc));
2215 			return PTR_ERR(enc);
2216 		}
2217 
2218 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2219 		++dpu_enc->num_phys_encs;
2220 	}
2221 
2222 	if (params->split_role == ENC_ROLE_SLAVE)
2223 		dpu_enc->cur_slave = enc;
2224 	else
2225 		dpu_enc->cur_master = enc;
2226 
2227 	return 0;
2228 }
2229 
2230 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2231 				 struct dpu_kms *dpu_kms,
2232 				 struct msm_display_info *disp_info)
2233 {
2234 	int ret = 0;
2235 	int i = 0;
2236 	struct dpu_enc_phys_init_params phys_params;
2237 
2238 	if (!dpu_enc) {
2239 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2240 		return -EINVAL;
2241 	}
2242 
2243 	dpu_enc->cur_master = NULL;
2244 
2245 	memset(&phys_params, 0, sizeof(phys_params));
2246 	phys_params.dpu_kms = dpu_kms;
2247 	phys_params.parent = &dpu_enc->base;
2248 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2249 
2250 	WARN_ON(disp_info->num_of_h_tiles < 1);
2251 
2252 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2253 
2254 	if (disp_info->intf_type != INTF_WB)
2255 		dpu_enc->idle_pc_supported =
2256 				dpu_kms->catalog->caps->has_idle_pc;
2257 
2258 	mutex_lock(&dpu_enc->enc_lock);
2259 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2260 		/*
2261 		 * Left-most tile is at index 0, content is controller id
2262 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2263 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2264 		 */
2265 		u32 controller_id = disp_info->h_tile_instance[i];
2266 
2267 		if (disp_info->num_of_h_tiles > 1) {
2268 			if (i == 0)
2269 				phys_params.split_role = ENC_ROLE_MASTER;
2270 			else
2271 				phys_params.split_role = ENC_ROLE_SLAVE;
2272 		} else {
2273 			phys_params.split_role = ENC_ROLE_SOLO;
2274 		}
2275 
2276 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2277 				i, controller_id, phys_params.split_role);
2278 
2279 		phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm,
2280 							   disp_info->intf_type,
2281 							   controller_id);
2282 
2283 		if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX)
2284 			phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id);
2285 
2286 		if (!phys_params.hw_intf && !phys_params.hw_wb) {
2287 			DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2288 			ret = -EINVAL;
2289 			break;
2290 		}
2291 
2292 		if (phys_params.hw_intf && phys_params.hw_wb) {
2293 			DPU_ERROR_ENC(dpu_enc,
2294 					"invalid phys both intf and wb block at idx: %d\n", i);
2295 			ret = -EINVAL;
2296 			break;
2297 		}
2298 
2299 		ret = dpu_encoder_virt_add_phys_encs(disp_info,
2300 				dpu_enc, &phys_params);
2301 		if (ret) {
2302 			DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2303 			break;
2304 		}
2305 	}
2306 
2307 	mutex_unlock(&dpu_enc->enc_lock);
2308 
2309 	return ret;
2310 }
2311 
2312 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2313 {
2314 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2315 			frame_done_timer);
2316 	struct drm_encoder *drm_enc = &dpu_enc->base;
2317 	u32 event;
2318 
2319 	if (!drm_enc->dev) {
2320 		DPU_ERROR("invalid parameters\n");
2321 		return;
2322 	}
2323 
2324 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2325 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2326 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2327 		return;
2328 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2329 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2330 		return;
2331 	}
2332 
2333 	DPU_ERROR_ENC_RATELIMITED(dpu_enc, "frame done timeout\n");
2334 
2335 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2336 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2337 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2338 }
2339 
2340 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2341 	.atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2342 	.atomic_disable = dpu_encoder_virt_atomic_disable,
2343 	.atomic_enable = dpu_encoder_virt_atomic_enable,
2344 	.atomic_check = dpu_encoder_virt_atomic_check,
2345 };
2346 
2347 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2348 		.destroy = dpu_encoder_destroy,
2349 		.late_register = dpu_encoder_late_register,
2350 		.early_unregister = dpu_encoder_early_unregister,
2351 };
2352 
2353 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2354 		int drm_enc_mode,
2355 		struct msm_display_info *disp_info)
2356 {
2357 	struct msm_drm_private *priv = dev->dev_private;
2358 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2359 	struct drm_encoder *drm_enc = NULL;
2360 	struct dpu_encoder_virt *dpu_enc = NULL;
2361 	int ret = 0;
2362 
2363 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2364 	if (!dpu_enc)
2365 		return ERR_PTR(-ENOMEM);
2366 
2367 	ret = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2368 			       drm_enc_mode, NULL);
2369 	if (ret) {
2370 		devm_kfree(dev->dev, dpu_enc);
2371 		return ERR_PTR(ret);
2372 	}
2373 
2374 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2375 
2376 	spin_lock_init(&dpu_enc->enc_spinlock);
2377 	dpu_enc->enabled = false;
2378 	mutex_init(&dpu_enc->enc_lock);
2379 	mutex_init(&dpu_enc->rc_lock);
2380 
2381 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2382 	if (ret)
2383 		goto fail;
2384 
2385 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2386 	timer_setup(&dpu_enc->frame_done_timer,
2387 			dpu_encoder_frame_done_timeout, 0);
2388 
2389 	if (disp_info->intf_type == INTF_DP)
2390 		dpu_enc->wide_bus_en = msm_dp_wide_bus_available(
2391 				priv->dp[disp_info->h_tile_instance[0]]);
2392 
2393 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2394 			dpu_encoder_off_work);
2395 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2396 
2397 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2398 
2399 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2400 
2401 	return &dpu_enc->base;
2402 
2403 fail:
2404 	DPU_ERROR("failed to create encoder\n");
2405 	if (drm_enc)
2406 		dpu_encoder_destroy(drm_enc);
2407 
2408 	return ERR_PTR(ret);
2409 }
2410 
2411 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2412 	enum msm_event_wait event)
2413 {
2414 	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2415 	struct dpu_encoder_virt *dpu_enc = NULL;
2416 	int i, ret = 0;
2417 
2418 	if (!drm_enc) {
2419 		DPU_ERROR("invalid encoder\n");
2420 		return -EINVAL;
2421 	}
2422 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2423 	DPU_DEBUG_ENC(dpu_enc, "\n");
2424 
2425 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2426 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2427 
2428 		switch (event) {
2429 		case MSM_ENC_COMMIT_DONE:
2430 			fn_wait = phys->ops.wait_for_commit_done;
2431 			break;
2432 		case MSM_ENC_TX_COMPLETE:
2433 			fn_wait = phys->ops.wait_for_tx_complete;
2434 			break;
2435 		case MSM_ENC_VBLANK:
2436 			fn_wait = phys->ops.wait_for_vblank;
2437 			break;
2438 		default:
2439 			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2440 					event);
2441 			return -EINVAL;
2442 		}
2443 
2444 		if (fn_wait) {
2445 			DPU_ATRACE_BEGIN("wait_for_completion_event");
2446 			ret = fn_wait(phys);
2447 			DPU_ATRACE_END("wait_for_completion_event");
2448 			if (ret)
2449 				return ret;
2450 		}
2451 	}
2452 
2453 	return ret;
2454 }
2455 
2456 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2457 {
2458 	struct dpu_encoder_virt *dpu_enc = NULL;
2459 
2460 	if (!encoder) {
2461 		DPU_ERROR("invalid encoder\n");
2462 		return INTF_MODE_NONE;
2463 	}
2464 	dpu_enc = to_dpu_encoder_virt(encoder);
2465 
2466 	if (dpu_enc->cur_master)
2467 		return dpu_enc->cur_master->intf_mode;
2468 
2469 	if (dpu_enc->num_phys_encs)
2470 		return dpu_enc->phys_encs[0]->intf_mode;
2471 
2472 	return INTF_MODE_NONE;
2473 }
2474 
2475 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2476 {
2477 	struct drm_encoder *encoder = phys_enc->parent;
2478 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2479 
2480 	return dpu_enc->dsc_mask;
2481 }
2482 
2483 void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc,
2484 			  struct dpu_enc_phys_init_params *p)
2485 {
2486 	int i;
2487 
2488 	phys_enc->hw_mdptop = p->dpu_kms->hw_mdp;
2489 	phys_enc->hw_intf = p->hw_intf;
2490 	phys_enc->hw_wb = p->hw_wb;
2491 	phys_enc->parent = p->parent;
2492 	phys_enc->dpu_kms = p->dpu_kms;
2493 	phys_enc->split_role = p->split_role;
2494 	phys_enc->enc_spinlock = p->enc_spinlock;
2495 	phys_enc->enable_state = DPU_ENC_DISABLED;
2496 
2497 	for (i = 0; i < ARRAY_SIZE(phys_enc->irq); i++)
2498 		phys_enc->irq[i] = -EINVAL;
2499 
2500 	atomic_set(&phys_enc->vblank_refcount, 0);
2501 	atomic_set(&phys_enc->pending_kickoff_cnt, 0);
2502 	atomic_set(&phys_enc->pending_ctlstart_cnt, 0);
2503 
2504 	atomic_set(&phys_enc->vsync_cnt, 0);
2505 	atomic_set(&phys_enc->underrun_cnt, 0);
2506 
2507 	init_waitqueue_head(&phys_enc->pending_kickoff_wq);
2508 }
2509