1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2013 Red Hat
5  * Author: Rob Clark <robdclark@gmail.com>
6  */
7 
8 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/debugfs.h>
10 #include <linux/kthread.h>
11 #include <linux/seq_file.h>
12 
13 #include <drm/drm_crtc.h>
14 #include <drm/drm_file.h>
15 #include <drm/drm_probe_helper.h>
16 
17 #include "msm_drv.h"
18 #include "dpu_kms.h"
19 #include "dpu_hwio.h"
20 #include "dpu_hw_catalog.h"
21 #include "dpu_hw_intf.h"
22 #include "dpu_hw_ctl.h"
23 #include "dpu_hw_dspp.h"
24 #include "dpu_formats.h"
25 #include "dpu_encoder_phys.h"
26 #include "dpu_crtc.h"
27 #include "dpu_trace.h"
28 #include "dpu_core_irq.h"
29 
30 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\
31 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
32 
33 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
34 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
35 
36 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\
37 		(p) ? (p)->parent->base.id : -1, \
38 		(p) ? (p)->intf_idx - INTF_0 : -1, \
39 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
40 		##__VA_ARGS__)
41 
42 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
43 		(p) ? (p)->parent->base.id : -1, \
44 		(p) ? (p)->intf_idx - INTF_0 : -1, \
45 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
46 		##__VA_ARGS__)
47 
48 /*
49  * Two to anticipate panels that can do cmd/vid dynamic switching
50  * plan is to create all possible physical encoder types, and switch between
51  * them at runtime
52  */
53 #define NUM_PHYS_ENCODER_TYPES 2
54 
55 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
56 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
57 
58 #define MAX_CHANNELS_PER_ENC 2
59 
60 #define IDLE_SHORT_TIMEOUT	1
61 
62 #define MAX_HDISPLAY_SPLIT 1080
63 
64 /* timeout in frames waiting for frame done */
65 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
66 
67 /**
68  * enum dpu_enc_rc_events - events for resource control state machine
69  * @DPU_ENC_RC_EVENT_KICKOFF:
70  *	This event happens at NORMAL priority.
71  *	Event that signals the start of the transfer. When this event is
72  *	received, enable MDP/DSI core clocks. Regardless of the previous
73  *	state, the resource should be in ON state at the end of this event.
74  * @DPU_ENC_RC_EVENT_FRAME_DONE:
75  *	This event happens at INTERRUPT level.
76  *	Event signals the end of the data transfer after the PP FRAME_DONE
77  *	event. At the end of this event, a delayed work is scheduled to go to
78  *	IDLE_PC state after IDLE_TIMEOUT time.
79  * @DPU_ENC_RC_EVENT_PRE_STOP:
80  *	This event happens at NORMAL priority.
81  *	This event, when received during the ON state, leave the RC STATE
82  *	in the PRE_OFF state. It should be followed by the STOP event as
83  *	part of encoder disable.
84  *	If received during IDLE or OFF states, it will do nothing.
85  * @DPU_ENC_RC_EVENT_STOP:
86  *	This event happens at NORMAL priority.
87  *	When this event is received, disable all the MDP/DSI core clocks, and
88  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
89  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
90  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
91  *	Resource state should be in OFF at the end of the event.
92  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
93  *	This event happens at NORMAL priority from a work item.
94  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
95  *	This would disable MDP/DSI core clocks and change the resource state
96  *	to IDLE.
97  */
98 enum dpu_enc_rc_events {
99 	DPU_ENC_RC_EVENT_KICKOFF = 1,
100 	DPU_ENC_RC_EVENT_FRAME_DONE,
101 	DPU_ENC_RC_EVENT_PRE_STOP,
102 	DPU_ENC_RC_EVENT_STOP,
103 	DPU_ENC_RC_EVENT_ENTER_IDLE
104 };
105 
106 /*
107  * enum dpu_enc_rc_states - states that the resource control maintains
108  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
109  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
110  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
111  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
112  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
113  */
114 enum dpu_enc_rc_states {
115 	DPU_ENC_RC_STATE_OFF,
116 	DPU_ENC_RC_STATE_PRE_OFF,
117 	DPU_ENC_RC_STATE_ON,
118 	DPU_ENC_RC_STATE_IDLE
119 };
120 
121 /**
122  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
123  *	encoders. Virtual encoder manages one "logical" display. Physical
124  *	encoders manage one intf block, tied to a specific panel/sub-panel.
125  *	Virtual encoder defers as much as possible to the physical encoders.
126  *	Virtual encoder registers itself with the DRM Framework as the encoder.
127  * @base:		drm_encoder base class for registration with DRM
128  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
129  * @bus_scaling_client:	Client handle to the bus scaling interface
130  * @enabled:		True if the encoder is active, protected by enc_lock
131  * @num_phys_encs:	Actual number of physical encoders contained.
132  * @phys_encs:		Container of physical encoders managed.
133  * @cur_master:		Pointer to the current master in this mode. Optimization
134  *			Only valid after enable. Cleared as disable.
135  * @hw_pp		Handle to the pingpong blocks used for the display. No.
136  *			pingpong blocks can be different than num_phys_encs.
137  * @intfs_swapped	Whether or not the phys_enc interfaces have been swapped
138  *			for partial update right-only cases, such as pingpong
139  *			split where virtual pingpong does not generate IRQs
140  * @crtc:		Pointer to the currently assigned crtc. Normally you
141  *			would use crtc->state->encoder_mask to determine the
142  *			link between encoder/crtc. However in this case we need
143  *			to track crtc in the disable() hook which is called
144  *			_after_ encoder_mask is cleared.
145  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
146  *				all CTL paths
147  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
148  * @debugfs_root:		Debug file system root file node
149  * @enc_lock:			Lock around physical encoder
150  *				create/destroy/enable/disable
151  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
152  *				busy processing current command.
153  *				Bit0 = phys_encs[0] etc.
154  * @crtc_frame_event_cb:	callback handler for frame event
155  * @crtc_frame_event_cb_data:	callback handler private data
156  * @frame_done_timeout_ms:	frame done timeout in ms
157  * @frame_done_timer:		watchdog timer for frame done event
158  * @vsync_event_timer:		vsync timer
159  * @disp_info:			local copy of msm_display_info struct
160  * @idle_pc_supported:		indicate if idle power collaps is supported
161  * @rc_lock:			resource control mutex lock to protect
162  *				virt encoder over various state changes
163  * @rc_state:			resource controller state
164  * @delayed_off_work:		delayed worker to schedule disabling of
165  *				clks and resources after IDLE_TIMEOUT time.
166  * @vsync_event_work:		worker to handle vsync event for autorefresh
167  * @topology:                   topology of the display
168  * @idle_timeout:		idle timeout duration in milliseconds
169  */
170 struct dpu_encoder_virt {
171 	struct drm_encoder base;
172 	spinlock_t enc_spinlock;
173 	uint32_t bus_scaling_client;
174 
175 	bool enabled;
176 
177 	unsigned int num_phys_encs;
178 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
179 	struct dpu_encoder_phys *cur_master;
180 	struct dpu_encoder_phys *cur_slave;
181 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
182 
183 	bool intfs_swapped;
184 
185 	struct drm_crtc *crtc;
186 
187 	struct dentry *debugfs_root;
188 	struct mutex enc_lock;
189 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
190 	void (*crtc_frame_event_cb)(void *, u32 event);
191 	void *crtc_frame_event_cb_data;
192 
193 	atomic_t frame_done_timeout_ms;
194 	struct timer_list frame_done_timer;
195 	struct timer_list vsync_event_timer;
196 
197 	struct msm_display_info disp_info;
198 
199 	bool idle_pc_supported;
200 	struct mutex rc_lock;
201 	enum dpu_enc_rc_states rc_state;
202 	struct delayed_work delayed_off_work;
203 	struct kthread_work vsync_event_work;
204 	struct msm_display_topology topology;
205 
206 	u32 idle_timeout;
207 };
208 
209 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
210 
211 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
212 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
213 };
214 
215 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
216 {
217 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
218 
219 	if (!hw_pp->ops.setup_dither)
220 		return;
221 
222 	switch (bpc) {
223 	case 6:
224 		dither_cfg.c0_bitdepth = 6;
225 		dither_cfg.c1_bitdepth = 6;
226 		dither_cfg.c2_bitdepth = 6;
227 		dither_cfg.c3_bitdepth = 6;
228 		dither_cfg.temporal_en = 0;
229 		break;
230 	default:
231 		hw_pp->ops.setup_dither(hw_pp, NULL);
232 		return;
233 	}
234 
235 	memcpy(&dither_cfg.matrix, dither_matrix,
236 			sizeof(u32) * DITHER_MATRIX_SZ);
237 
238 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
239 }
240 
241 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
242 		enum dpu_intr_idx intr_idx)
243 {
244 	DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
245 		  DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
246 		  phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
247 
248 	if (phys_enc->parent_ops->handle_frame_done)
249 		phys_enc->parent_ops->handle_frame_done(
250 				phys_enc->parent, phys_enc,
251 				DPU_ENCODER_FRAME_EVENT_ERROR);
252 }
253 
254 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
255 		int32_t hw_id, struct dpu_encoder_wait_info *info);
256 
257 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
258 		enum dpu_intr_idx intr_idx,
259 		struct dpu_encoder_wait_info *wait_info)
260 {
261 	struct dpu_encoder_irq *irq;
262 	u32 irq_status;
263 	int ret;
264 
265 	if (!wait_info || intr_idx >= INTR_IDX_MAX) {
266 		DPU_ERROR("invalid params\n");
267 		return -EINVAL;
268 	}
269 	irq = &phys_enc->irq[intr_idx];
270 
271 	/* note: do master / slave checking outside */
272 
273 	/* return EWOULDBLOCK since we know the wait isn't necessary */
274 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
275 		DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d",
276 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
277 			  irq->irq_idx);
278 		return -EWOULDBLOCK;
279 	}
280 
281 	if (irq->irq_idx < 0) {
282 		DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s",
283 			      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
284 			      irq->name);
285 		return 0;
286 	}
287 
288 	DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d",
289 		      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
290 		      irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
291 		      atomic_read(wait_info->atomic_cnt));
292 
293 	ret = dpu_encoder_helper_wait_event_timeout(
294 			DRMID(phys_enc->parent),
295 			irq->hw_idx,
296 			wait_info);
297 
298 	if (ret <= 0) {
299 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
300 				irq->irq_idx, true);
301 		if (irq_status) {
302 			unsigned long flags;
303 
304 			DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, "
305 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
306 				      DRMID(phys_enc->parent), intr_idx,
307 				      irq->hw_idx, irq->irq_idx,
308 				      phys_enc->hw_pp->idx - PINGPONG_0,
309 				      atomic_read(wait_info->atomic_cnt));
310 			local_irq_save(flags);
311 			irq->cb.func(phys_enc, irq->irq_idx);
312 			local_irq_restore(flags);
313 			ret = 0;
314 		} else {
315 			ret = -ETIMEDOUT;
316 			DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, "
317 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
318 				      DRMID(phys_enc->parent), intr_idx,
319 				      irq->hw_idx, irq->irq_idx,
320 				      phys_enc->hw_pp->idx - PINGPONG_0,
321 				      atomic_read(wait_info->atomic_cnt));
322 		}
323 	} else {
324 		ret = 0;
325 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
326 			intr_idx, irq->hw_idx, irq->irq_idx,
327 			phys_enc->hw_pp->idx - PINGPONG_0,
328 			atomic_read(wait_info->atomic_cnt));
329 	}
330 
331 	return ret;
332 }
333 
334 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
335 		enum dpu_intr_idx intr_idx)
336 {
337 	struct dpu_encoder_irq *irq;
338 	int ret = 0;
339 
340 	if (intr_idx >= INTR_IDX_MAX) {
341 		DPU_ERROR("invalid params\n");
342 		return -EINVAL;
343 	}
344 	irq = &phys_enc->irq[intr_idx];
345 
346 	if (irq->irq_idx >= 0) {
347 		DPU_DEBUG_PHYS(phys_enc,
348 				"skipping already registered irq %s type %d\n",
349 				irq->name, irq->intr_type);
350 		return 0;
351 	}
352 
353 	irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms,
354 			irq->intr_type, irq->hw_idx);
355 	if (irq->irq_idx < 0) {
356 		DPU_ERROR_PHYS(phys_enc,
357 			"failed to lookup IRQ index for %s type:%d\n",
358 			irq->name, irq->intr_type);
359 		return -EINVAL;
360 	}
361 
362 	ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
363 			&irq->cb);
364 	if (ret) {
365 		DPU_ERROR_PHYS(phys_enc,
366 			"failed to register IRQ callback for %s\n",
367 			irq->name);
368 		irq->irq_idx = -EINVAL;
369 		return ret;
370 	}
371 
372 	ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1);
373 	if (ret) {
374 		DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d",
375 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
376 			  irq->irq_idx);
377 		dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
378 				irq->irq_idx, &irq->cb);
379 		irq->irq_idx = -EINVAL;
380 		return ret;
381 	}
382 
383 	trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
384 				irq->hw_idx, irq->irq_idx);
385 
386 	return ret;
387 }
388 
389 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
390 		enum dpu_intr_idx intr_idx)
391 {
392 	struct dpu_encoder_irq *irq;
393 	int ret;
394 
395 	irq = &phys_enc->irq[intr_idx];
396 
397 	/* silently skip irqs that weren't registered */
398 	if (irq->irq_idx < 0) {
399 		DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d",
400 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
401 			  irq->irq_idx);
402 		return 0;
403 	}
404 
405 	ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1);
406 	if (ret) {
407 		DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d",
408 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
409 			  irq->irq_idx, ret);
410 	}
411 
412 	ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
413 			&irq->cb);
414 	if (ret) {
415 		DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d",
416 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
417 			  irq->irq_idx, ret);
418 	}
419 
420 	trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
421 					     irq->hw_idx, irq->irq_idx);
422 
423 	irq->irq_idx = -EINVAL;
424 
425 	return 0;
426 }
427 
428 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
429 				  struct dpu_encoder_hw_resources *hw_res)
430 {
431 	struct dpu_encoder_virt *dpu_enc = NULL;
432 	int i = 0;
433 
434 	dpu_enc = to_dpu_encoder_virt(drm_enc);
435 	DPU_DEBUG_ENC(dpu_enc, "\n");
436 
437 	/* Query resources used by phys encs, expected to be without overlap */
438 	memset(hw_res, 0, sizeof(*hw_res));
439 
440 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
441 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
442 
443 		if (phys->ops.get_hw_resources)
444 			phys->ops.get_hw_resources(phys, hw_res);
445 	}
446 }
447 
448 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
449 {
450 	struct dpu_encoder_virt *dpu_enc = NULL;
451 	int i = 0;
452 
453 	if (!drm_enc) {
454 		DPU_ERROR("invalid encoder\n");
455 		return;
456 	}
457 
458 	dpu_enc = to_dpu_encoder_virt(drm_enc);
459 	DPU_DEBUG_ENC(dpu_enc, "\n");
460 
461 	mutex_lock(&dpu_enc->enc_lock);
462 
463 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
464 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
465 
466 		if (phys->ops.destroy) {
467 			phys->ops.destroy(phys);
468 			--dpu_enc->num_phys_encs;
469 			dpu_enc->phys_encs[i] = NULL;
470 		}
471 	}
472 
473 	if (dpu_enc->num_phys_encs)
474 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
475 				dpu_enc->num_phys_encs);
476 	dpu_enc->num_phys_encs = 0;
477 	mutex_unlock(&dpu_enc->enc_lock);
478 
479 	drm_encoder_cleanup(drm_enc);
480 	mutex_destroy(&dpu_enc->enc_lock);
481 }
482 
483 void dpu_encoder_helper_split_config(
484 		struct dpu_encoder_phys *phys_enc,
485 		enum dpu_intf interface)
486 {
487 	struct dpu_encoder_virt *dpu_enc;
488 	struct split_pipe_cfg cfg = { 0 };
489 	struct dpu_hw_mdp *hw_mdptop;
490 	struct msm_display_info *disp_info;
491 
492 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
493 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
494 		return;
495 	}
496 
497 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
498 	hw_mdptop = phys_enc->hw_mdptop;
499 	disp_info = &dpu_enc->disp_info;
500 
501 	if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
502 		return;
503 
504 	/**
505 	 * disable split modes since encoder will be operating in as the only
506 	 * encoder, either for the entire use case in the case of, for example,
507 	 * single DSI, or for this frame in the case of left/right only partial
508 	 * update.
509 	 */
510 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
511 		if (hw_mdptop->ops.setup_split_pipe)
512 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
513 		return;
514 	}
515 
516 	cfg.en = true;
517 	cfg.mode = phys_enc->intf_mode;
518 	cfg.intf = interface;
519 
520 	if (cfg.en && phys_enc->ops.needs_single_flush &&
521 			phys_enc->ops.needs_single_flush(phys_enc))
522 		cfg.split_flush_en = true;
523 
524 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
525 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
526 
527 		if (hw_mdptop->ops.setup_split_pipe)
528 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
529 	}
530 }
531 
532 static struct msm_display_topology dpu_encoder_get_topology(
533 			struct dpu_encoder_virt *dpu_enc,
534 			struct dpu_kms *dpu_kms,
535 			struct drm_display_mode *mode)
536 {
537 	struct msm_display_topology topology = {0};
538 	int i, intf_count = 0;
539 
540 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
541 		if (dpu_enc->phys_encs[i])
542 			intf_count++;
543 
544 	/* Datapath topology selection
545 	 *
546 	 * Dual display
547 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
548 	 *
549 	 * Single display
550 	 * 1 LM, 1 INTF
551 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
552 	 *
553 	 * Adding color blocks only to primary interface if available in
554 	 * sufficient number
555 	 */
556 	if (intf_count == 2)
557 		topology.num_lm = 2;
558 	else if (!dpu_kms->catalog->caps->has_3d_merge)
559 		topology.num_lm = 1;
560 	else
561 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
562 
563 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI) {
564 		if (dpu_kms->catalog->dspp &&
565 			(dpu_kms->catalog->dspp_count >= topology.num_lm))
566 			topology.num_dspp = topology.num_lm;
567 	}
568 
569 	topology.num_enc = 0;
570 	topology.num_intf = intf_count;
571 
572 	return topology;
573 }
574 static int dpu_encoder_virt_atomic_check(
575 		struct drm_encoder *drm_enc,
576 		struct drm_crtc_state *crtc_state,
577 		struct drm_connector_state *conn_state)
578 {
579 	struct dpu_encoder_virt *dpu_enc;
580 	struct msm_drm_private *priv;
581 	struct dpu_kms *dpu_kms;
582 	const struct drm_display_mode *mode;
583 	struct drm_display_mode *adj_mode;
584 	struct msm_display_topology topology;
585 	struct dpu_global_state *global_state;
586 	int i = 0;
587 	int ret = 0;
588 
589 	if (!drm_enc || !crtc_state || !conn_state) {
590 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
591 				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
592 		return -EINVAL;
593 	}
594 
595 	dpu_enc = to_dpu_encoder_virt(drm_enc);
596 	DPU_DEBUG_ENC(dpu_enc, "\n");
597 
598 	priv = drm_enc->dev->dev_private;
599 	dpu_kms = to_dpu_kms(priv->kms);
600 	mode = &crtc_state->mode;
601 	adj_mode = &crtc_state->adjusted_mode;
602 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
603 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
604 
605 	/* perform atomic check on the first physical encoder (master) */
606 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
607 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
608 
609 		if (phys->ops.atomic_check)
610 			ret = phys->ops.atomic_check(phys, crtc_state,
611 					conn_state);
612 		else if (phys->ops.mode_fixup)
613 			if (!phys->ops.mode_fixup(phys, mode, adj_mode))
614 				ret = -EINVAL;
615 
616 		if (ret) {
617 			DPU_ERROR_ENC(dpu_enc,
618 					"mode unsupported, phys idx %d\n", i);
619 			break;
620 		}
621 	}
622 
623 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
624 
625 	/* Reserve dynamic resources now. */
626 	if (!ret) {
627 		/*
628 		 * Avoid reserving resources when mode set is pending. Topology
629 		 * info may not be available to complete reservation.
630 		 */
631 		if (drm_atomic_crtc_needs_modeset(crtc_state)) {
632 			ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
633 					drm_enc, crtc_state, topology);
634 		}
635 	}
636 
637 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
638 
639 	return ret;
640 }
641 
642 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
643 			struct msm_display_info *disp_info)
644 {
645 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
646 	struct msm_drm_private *priv;
647 	struct dpu_kms *dpu_kms;
648 	struct dpu_hw_mdp *hw_mdptop;
649 	struct drm_encoder *drm_enc;
650 	int i;
651 
652 	if (!dpu_enc || !disp_info) {
653 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
654 					dpu_enc != NULL, disp_info != NULL);
655 		return;
656 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
657 		DPU_ERROR("invalid num phys enc %d/%d\n",
658 				dpu_enc->num_phys_encs,
659 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
660 		return;
661 	}
662 
663 	drm_enc = &dpu_enc->base;
664 	/* this pointers are checked in virt_enable_helper */
665 	priv = drm_enc->dev->dev_private;
666 
667 	dpu_kms = to_dpu_kms(priv->kms);
668 	hw_mdptop = dpu_kms->hw_mdp;
669 	if (!hw_mdptop) {
670 		DPU_ERROR("invalid mdptop\n");
671 		return;
672 	}
673 
674 	if (hw_mdptop->ops.setup_vsync_source &&
675 			disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
676 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
677 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
678 
679 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
680 		if (disp_info->is_te_using_watchdog_timer)
681 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
682 		else
683 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
684 
685 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
686 	}
687 }
688 
689 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
690 {
691 	struct dpu_encoder_virt *dpu_enc;
692 	int i;
693 
694 	if (!drm_enc) {
695 		DPU_ERROR("invalid encoder\n");
696 		return;
697 	}
698 
699 	dpu_enc = to_dpu_encoder_virt(drm_enc);
700 
701 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
702 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
703 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
704 
705 		if (phys->ops.irq_control)
706 			phys->ops.irq_control(phys, enable);
707 	}
708 
709 }
710 
711 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
712 		bool enable)
713 {
714 	struct msm_drm_private *priv;
715 	struct dpu_kms *dpu_kms;
716 	struct dpu_encoder_virt *dpu_enc;
717 
718 	dpu_enc = to_dpu_encoder_virt(drm_enc);
719 	priv = drm_enc->dev->dev_private;
720 	dpu_kms = to_dpu_kms(priv->kms);
721 
722 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
723 
724 	if (!dpu_enc->cur_master) {
725 		DPU_ERROR("encoder master not set\n");
726 		return;
727 	}
728 
729 	if (enable) {
730 		/* enable DPU core clks */
731 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
732 
733 		/* enable all the irq */
734 		_dpu_encoder_irq_control(drm_enc, true);
735 
736 	} else {
737 		/* disable all the irq */
738 		_dpu_encoder_irq_control(drm_enc, false);
739 
740 		/* disable DPU core clks */
741 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
742 	}
743 
744 }
745 
746 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
747 		u32 sw_event)
748 {
749 	struct dpu_encoder_virt *dpu_enc;
750 	struct msm_drm_private *priv;
751 	bool is_vid_mode = false;
752 
753 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
754 		DPU_ERROR("invalid parameters\n");
755 		return -EINVAL;
756 	}
757 	dpu_enc = to_dpu_encoder_virt(drm_enc);
758 	priv = drm_enc->dev->dev_private;
759 	is_vid_mode = dpu_enc->disp_info.capabilities &
760 						MSM_DISPLAY_CAP_VID_MODE;
761 
762 	/*
763 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
764 	 * events and return early for other events (ie wb display).
765 	 */
766 	if (!dpu_enc->idle_pc_supported &&
767 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
768 			sw_event != DPU_ENC_RC_EVENT_STOP &&
769 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
770 		return 0;
771 
772 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
773 			 dpu_enc->rc_state, "begin");
774 
775 	switch (sw_event) {
776 	case DPU_ENC_RC_EVENT_KICKOFF:
777 		/* cancel delayed off work, if any */
778 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
779 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
780 					sw_event);
781 
782 		mutex_lock(&dpu_enc->rc_lock);
783 
784 		/* return if the resource control is already in ON state */
785 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
786 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n",
787 				      DRMID(drm_enc), sw_event);
788 			mutex_unlock(&dpu_enc->rc_lock);
789 			return 0;
790 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
791 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
792 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n",
793 				      DRMID(drm_enc), sw_event,
794 				      dpu_enc->rc_state);
795 			mutex_unlock(&dpu_enc->rc_lock);
796 			return -EINVAL;
797 		}
798 
799 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
800 			_dpu_encoder_irq_control(drm_enc, true);
801 		else
802 			_dpu_encoder_resource_control_helper(drm_enc, true);
803 
804 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
805 
806 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
807 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
808 				 "kickoff");
809 
810 		mutex_unlock(&dpu_enc->rc_lock);
811 		break;
812 
813 	case DPU_ENC_RC_EVENT_FRAME_DONE:
814 		/*
815 		 * mutex lock is not used as this event happens at interrupt
816 		 * context. And locking is not required as, the other events
817 		 * like KICKOFF and STOP does a wait-for-idle before executing
818 		 * the resource_control
819 		 */
820 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
821 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
822 				      DRMID(drm_enc), sw_event,
823 				      dpu_enc->rc_state);
824 			return -EINVAL;
825 		}
826 
827 		/*
828 		 * schedule off work item only when there are no
829 		 * frames pending
830 		 */
831 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
832 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
833 				      DRMID(drm_enc));
834 			return 0;
835 		}
836 
837 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
838 				   msecs_to_jiffies(dpu_enc->idle_timeout));
839 
840 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
841 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
842 				 "frame done");
843 		break;
844 
845 	case DPU_ENC_RC_EVENT_PRE_STOP:
846 		/* cancel delayed off work, if any */
847 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
848 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
849 					sw_event);
850 
851 		mutex_lock(&dpu_enc->rc_lock);
852 
853 		if (is_vid_mode &&
854 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
855 			_dpu_encoder_irq_control(drm_enc, true);
856 		}
857 		/* skip if is already OFF or IDLE, resources are off already */
858 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
859 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
860 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
861 				      DRMID(drm_enc), sw_event,
862 				      dpu_enc->rc_state);
863 			mutex_unlock(&dpu_enc->rc_lock);
864 			return 0;
865 		}
866 
867 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
868 
869 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
870 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
871 				 "pre stop");
872 
873 		mutex_unlock(&dpu_enc->rc_lock);
874 		break;
875 
876 	case DPU_ENC_RC_EVENT_STOP:
877 		mutex_lock(&dpu_enc->rc_lock);
878 
879 		/* return if the resource control is already in OFF state */
880 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
881 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
882 				      DRMID(drm_enc), sw_event);
883 			mutex_unlock(&dpu_enc->rc_lock);
884 			return 0;
885 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
886 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
887 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
888 			mutex_unlock(&dpu_enc->rc_lock);
889 			return -EINVAL;
890 		}
891 
892 		/**
893 		 * expect to arrive here only if in either idle state or pre-off
894 		 * and in IDLE state the resources are already disabled
895 		 */
896 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
897 			_dpu_encoder_resource_control_helper(drm_enc, false);
898 
899 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
900 
901 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
902 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
903 				 "stop");
904 
905 		mutex_unlock(&dpu_enc->rc_lock);
906 		break;
907 
908 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
909 		mutex_lock(&dpu_enc->rc_lock);
910 
911 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
912 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
913 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
914 			mutex_unlock(&dpu_enc->rc_lock);
915 			return 0;
916 		}
917 
918 		/*
919 		 * if we are in ON but a frame was just kicked off,
920 		 * ignore the IDLE event, it's probably a stale timer event
921 		 */
922 		if (dpu_enc->frame_busy_mask[0]) {
923 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
924 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
925 			mutex_unlock(&dpu_enc->rc_lock);
926 			return 0;
927 		}
928 
929 		if (is_vid_mode)
930 			_dpu_encoder_irq_control(drm_enc, false);
931 		else
932 			_dpu_encoder_resource_control_helper(drm_enc, false);
933 
934 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
935 
936 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
937 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
938 				 "idle");
939 
940 		mutex_unlock(&dpu_enc->rc_lock);
941 		break;
942 
943 	default:
944 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
945 			  sw_event);
946 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
947 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
948 				 "error");
949 		break;
950 	}
951 
952 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
953 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
954 			 "end");
955 	return 0;
956 }
957 
958 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
959 				      struct drm_display_mode *mode,
960 				      struct drm_display_mode *adj_mode)
961 {
962 	struct dpu_encoder_virt *dpu_enc;
963 	struct msm_drm_private *priv;
964 	struct dpu_kms *dpu_kms;
965 	struct list_head *connector_list;
966 	struct drm_connector *conn = NULL, *conn_iter;
967 	struct drm_crtc *drm_crtc;
968 	struct dpu_crtc_state *cstate;
969 	struct dpu_global_state *global_state;
970 	struct msm_display_topology topology;
971 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
972 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
973 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
974 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
975 	int num_lm, num_ctl, num_pp, num_dspp;
976 	int i, j;
977 
978 	if (!drm_enc) {
979 		DPU_ERROR("invalid encoder\n");
980 		return;
981 	}
982 
983 	dpu_enc = to_dpu_encoder_virt(drm_enc);
984 	DPU_DEBUG_ENC(dpu_enc, "\n");
985 
986 	priv = drm_enc->dev->dev_private;
987 	dpu_kms = to_dpu_kms(priv->kms);
988 	connector_list = &dpu_kms->dev->mode_config.connector_list;
989 
990 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
991 	if (IS_ERR_OR_NULL(global_state)) {
992 		DPU_ERROR("Failed to get global state");
993 		return;
994 	}
995 
996 	trace_dpu_enc_mode_set(DRMID(drm_enc));
997 
998 	list_for_each_entry(conn_iter, connector_list, head)
999 		if (conn_iter->encoder == drm_enc)
1000 			conn = conn_iter;
1001 
1002 	if (!conn) {
1003 		DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
1004 		return;
1005 	} else if (!conn->state) {
1006 		DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
1007 		return;
1008 	}
1009 
1010 	drm_for_each_crtc(drm_crtc, drm_enc->dev)
1011 		if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc))
1012 			break;
1013 
1014 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
1015 
1016 	/* Query resource that have been reserved in atomic check step. */
1017 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1018 		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1019 		ARRAY_SIZE(hw_pp));
1020 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1021 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1022 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1023 		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1024 	num_dspp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1025 		drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1026 		ARRAY_SIZE(hw_dspp));
1027 
1028 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1029 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1030 						: NULL;
1031 
1032 	cstate = to_dpu_crtc_state(drm_crtc->state);
1033 
1034 	for (i = 0; i < num_lm; i++) {
1035 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1036 
1037 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1038 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1039 		cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1040 	}
1041 
1042 	cstate->num_mixers = num_lm;
1043 
1044 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1045 		int num_blk;
1046 		struct dpu_hw_blk *hw_blk[MAX_CHANNELS_PER_ENC];
1047 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1048 
1049 		if (!dpu_enc->hw_pp[i]) {
1050 			DPU_ERROR_ENC(dpu_enc,
1051 				"no pp block assigned at idx: %d\n", i);
1052 			return;
1053 		}
1054 
1055 		if (!hw_ctl[i]) {
1056 			DPU_ERROR_ENC(dpu_enc,
1057 				"no ctl block assigned at idx: %d\n", i);
1058 			return;
1059 		}
1060 
1061 		phys->hw_pp = dpu_enc->hw_pp[i];
1062 		phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1063 
1064 		num_blk = dpu_rm_get_assigned_resources(&dpu_kms->rm,
1065 			global_state, drm_enc->base.id, DPU_HW_BLK_INTF,
1066 			hw_blk, ARRAY_SIZE(hw_blk));
1067 		for (j = 0; j < num_blk; j++) {
1068 			struct dpu_hw_intf *hw_intf;
1069 
1070 			hw_intf = to_dpu_hw_intf(hw_blk[i]);
1071 			if (hw_intf->idx == phys->intf_idx)
1072 				phys->hw_intf = hw_intf;
1073 		}
1074 
1075 		if (!phys->hw_intf) {
1076 			DPU_ERROR_ENC(dpu_enc,
1077 				      "no intf block assigned at idx: %d\n", i);
1078 			return;
1079 		}
1080 
1081 		phys->connector = conn->state->connector;
1082 		if (phys->ops.mode_set)
1083 			phys->ops.mode_set(phys, mode, adj_mode);
1084 	}
1085 }
1086 
1087 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1088 {
1089 	struct dpu_encoder_virt *dpu_enc = NULL;
1090 	struct msm_drm_private *priv;
1091 	int i;
1092 
1093 	if (!drm_enc || !drm_enc->dev) {
1094 		DPU_ERROR("invalid parameters\n");
1095 		return;
1096 	}
1097 
1098 	priv = drm_enc->dev->dev_private;
1099 
1100 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1101 	if (!dpu_enc || !dpu_enc->cur_master) {
1102 		DPU_ERROR("invalid dpu encoder/master\n");
1103 		return;
1104 	}
1105 
1106 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1107 
1108 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1109 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1110 		unsigned bpc = dpu_enc->phys_encs[0]->connector->display_info.bpc;
1111 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1112 			if (!dpu_enc->hw_pp[i])
1113 				continue;
1114 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1115 		}
1116 	}
1117 }
1118 
1119 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1120 {
1121 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1122 
1123 	mutex_lock(&dpu_enc->enc_lock);
1124 
1125 	if (!dpu_enc->enabled)
1126 		goto out;
1127 
1128 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1129 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1130 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1131 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1132 
1133 	_dpu_encoder_virt_enable_helper(drm_enc);
1134 
1135 out:
1136 	mutex_unlock(&dpu_enc->enc_lock);
1137 }
1138 
1139 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1140 {
1141 	struct dpu_encoder_virt *dpu_enc = NULL;
1142 	int ret = 0;
1143 	struct drm_display_mode *cur_mode = NULL;
1144 
1145 	if (!drm_enc) {
1146 		DPU_ERROR("invalid encoder\n");
1147 		return;
1148 	}
1149 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1150 
1151 	mutex_lock(&dpu_enc->enc_lock);
1152 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1153 
1154 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1155 			     cur_mode->vdisplay);
1156 
1157 	/* always enable slave encoder before master */
1158 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1159 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1160 
1161 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1162 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1163 
1164 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1165 	if (ret) {
1166 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1167 				ret);
1168 		goto out;
1169 	}
1170 
1171 	_dpu_encoder_virt_enable_helper(drm_enc);
1172 
1173 	dpu_enc->enabled = true;
1174 
1175 out:
1176 	mutex_unlock(&dpu_enc->enc_lock);
1177 }
1178 
1179 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1180 {
1181 	struct dpu_encoder_virt *dpu_enc = NULL;
1182 	struct msm_drm_private *priv;
1183 	struct dpu_kms *dpu_kms;
1184 	struct dpu_global_state *global_state;
1185 	int i = 0;
1186 
1187 	if (!drm_enc) {
1188 		DPU_ERROR("invalid encoder\n");
1189 		return;
1190 	} else if (!drm_enc->dev) {
1191 		DPU_ERROR("invalid dev\n");
1192 		return;
1193 	}
1194 
1195 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1196 	DPU_DEBUG_ENC(dpu_enc, "\n");
1197 
1198 	mutex_lock(&dpu_enc->enc_lock);
1199 	dpu_enc->enabled = false;
1200 
1201 	priv = drm_enc->dev->dev_private;
1202 	dpu_kms = to_dpu_kms(priv->kms);
1203 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
1204 
1205 	trace_dpu_enc_disable(DRMID(drm_enc));
1206 
1207 	/* wait for idle */
1208 	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1209 
1210 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1211 
1212 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1213 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1214 
1215 		if (phys->ops.disable)
1216 			phys->ops.disable(phys);
1217 	}
1218 
1219 	/* after phys waits for frame-done, should be no more frames pending */
1220 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1221 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1222 		del_timer_sync(&dpu_enc->frame_done_timer);
1223 	}
1224 
1225 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1226 
1227 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1228 		dpu_enc->phys_encs[i]->connector = NULL;
1229 	}
1230 
1231 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1232 
1233 	dpu_rm_release(global_state, drm_enc);
1234 
1235 	mutex_unlock(&dpu_enc->enc_lock);
1236 }
1237 
1238 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1239 		enum dpu_intf_type type, u32 controller_id)
1240 {
1241 	int i = 0;
1242 
1243 	for (i = 0; i < catalog->intf_count; i++) {
1244 		if (catalog->intf[i].type == type
1245 		    && catalog->intf[i].controller_id == controller_id) {
1246 			return catalog->intf[i].id;
1247 		}
1248 	}
1249 
1250 	return INTF_MAX;
1251 }
1252 
1253 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1254 		struct dpu_encoder_phys *phy_enc)
1255 {
1256 	struct dpu_encoder_virt *dpu_enc = NULL;
1257 	unsigned long lock_flags;
1258 
1259 	if (!drm_enc || !phy_enc)
1260 		return;
1261 
1262 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1263 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1264 
1265 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1266 	if (dpu_enc->crtc)
1267 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1268 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1269 
1270 	atomic_inc(&phy_enc->vsync_cnt);
1271 	DPU_ATRACE_END("encoder_vblank_callback");
1272 }
1273 
1274 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1275 		struct dpu_encoder_phys *phy_enc)
1276 {
1277 	if (!phy_enc)
1278 		return;
1279 
1280 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1281 	atomic_inc(&phy_enc->underrun_cnt);
1282 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1283 				  atomic_read(&phy_enc->underrun_cnt));
1284 	DPU_ATRACE_END("encoder_underrun_callback");
1285 }
1286 
1287 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1288 {
1289 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1290 	unsigned long lock_flags;
1291 
1292 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1293 	/* crtc should always be cleared before re-assigning */
1294 	WARN_ON(crtc && dpu_enc->crtc);
1295 	dpu_enc->crtc = crtc;
1296 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1297 }
1298 
1299 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1300 					struct drm_crtc *crtc, bool enable)
1301 {
1302 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1303 	unsigned long lock_flags;
1304 	int i;
1305 
1306 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1307 
1308 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1309 	if (dpu_enc->crtc != crtc) {
1310 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1311 		return;
1312 	}
1313 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1314 
1315 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1316 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1317 
1318 		if (phys->ops.control_vblank_irq)
1319 			phys->ops.control_vblank_irq(phys, enable);
1320 	}
1321 }
1322 
1323 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1324 		void (*frame_event_cb)(void *, u32 event),
1325 		void *frame_event_cb_data)
1326 {
1327 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1328 	unsigned long lock_flags;
1329 	bool enable;
1330 
1331 	enable = frame_event_cb ? true : false;
1332 
1333 	if (!drm_enc) {
1334 		DPU_ERROR("invalid encoder\n");
1335 		return;
1336 	}
1337 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1338 
1339 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1340 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1341 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1342 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1343 }
1344 
1345 static void dpu_encoder_frame_done_callback(
1346 		struct drm_encoder *drm_enc,
1347 		struct dpu_encoder_phys *ready_phys, u32 event)
1348 {
1349 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1350 	unsigned int i;
1351 
1352 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1353 			| DPU_ENCODER_FRAME_EVENT_ERROR
1354 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1355 
1356 		if (!dpu_enc->frame_busy_mask[0]) {
1357 			/**
1358 			 * suppress frame_done without waiter,
1359 			 * likely autorefresh
1360 			 */
1361 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
1362 					event, ready_phys->intf_idx);
1363 			return;
1364 		}
1365 
1366 		/* One of the physical encoders has become idle */
1367 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1368 			if (dpu_enc->phys_encs[i] == ready_phys) {
1369 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1370 						dpu_enc->frame_busy_mask[0]);
1371 				clear_bit(i, dpu_enc->frame_busy_mask);
1372 			}
1373 		}
1374 
1375 		if (!dpu_enc->frame_busy_mask[0]) {
1376 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1377 			del_timer(&dpu_enc->frame_done_timer);
1378 
1379 			dpu_encoder_resource_control(drm_enc,
1380 					DPU_ENC_RC_EVENT_FRAME_DONE);
1381 
1382 			if (dpu_enc->crtc_frame_event_cb)
1383 				dpu_enc->crtc_frame_event_cb(
1384 					dpu_enc->crtc_frame_event_cb_data,
1385 					event);
1386 		}
1387 	} else {
1388 		if (dpu_enc->crtc_frame_event_cb)
1389 			dpu_enc->crtc_frame_event_cb(
1390 				dpu_enc->crtc_frame_event_cb_data, event);
1391 	}
1392 }
1393 
1394 static void dpu_encoder_off_work(struct work_struct *work)
1395 {
1396 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1397 			struct dpu_encoder_virt, delayed_off_work.work);
1398 
1399 	if (!dpu_enc) {
1400 		DPU_ERROR("invalid dpu encoder\n");
1401 		return;
1402 	}
1403 
1404 	dpu_encoder_resource_control(&dpu_enc->base,
1405 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1406 
1407 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1408 				DPU_ENCODER_FRAME_EVENT_IDLE);
1409 }
1410 
1411 /**
1412  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1413  * drm_enc: Pointer to drm encoder structure
1414  * phys: Pointer to physical encoder structure
1415  * extra_flush_bits: Additional bit mask to include in flush trigger
1416  */
1417 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1418 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1419 {
1420 	struct dpu_hw_ctl *ctl;
1421 	int pending_kickoff_cnt;
1422 	u32 ret = UINT_MAX;
1423 
1424 	if (!phys->hw_pp) {
1425 		DPU_ERROR("invalid pingpong hw\n");
1426 		return;
1427 	}
1428 
1429 	ctl = phys->hw_ctl;
1430 	if (!ctl->ops.trigger_flush) {
1431 		DPU_ERROR("missing trigger cb\n");
1432 		return;
1433 	}
1434 
1435 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1436 
1437 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1438 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1439 
1440 	ctl->ops.trigger_flush(ctl);
1441 
1442 	if (ctl->ops.get_pending_flush)
1443 		ret = ctl->ops.get_pending_flush(ctl);
1444 
1445 	trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1446 				    pending_kickoff_cnt, ctl->idx,
1447 				    extra_flush_bits, ret);
1448 }
1449 
1450 /**
1451  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1452  * phys: Pointer to physical encoder structure
1453  */
1454 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1455 {
1456 	if (!phys) {
1457 		DPU_ERROR("invalid argument(s)\n");
1458 		return;
1459 	}
1460 
1461 	if (!phys->hw_pp) {
1462 		DPU_ERROR("invalid pingpong hw\n");
1463 		return;
1464 	}
1465 
1466 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1467 		phys->ops.trigger_start(phys);
1468 }
1469 
1470 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1471 {
1472 	struct dpu_hw_ctl *ctl;
1473 
1474 	ctl = phys_enc->hw_ctl;
1475 	if (ctl->ops.trigger_start) {
1476 		ctl->ops.trigger_start(ctl);
1477 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1478 	}
1479 }
1480 
1481 static int dpu_encoder_helper_wait_event_timeout(
1482 		int32_t drm_id,
1483 		int32_t hw_id,
1484 		struct dpu_encoder_wait_info *info)
1485 {
1486 	int rc = 0;
1487 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1488 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1489 	s64 time;
1490 
1491 	do {
1492 		rc = wait_event_timeout(*(info->wq),
1493 				atomic_read(info->atomic_cnt) == 0, jiffies);
1494 		time = ktime_to_ms(ktime_get());
1495 
1496 		trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time,
1497 						 expected_time,
1498 						 atomic_read(info->atomic_cnt));
1499 	/* If we timed out, counter is valid and time is less, wait again */
1500 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1501 			(time < expected_time));
1502 
1503 	return rc;
1504 }
1505 
1506 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1507 {
1508 	struct dpu_encoder_virt *dpu_enc;
1509 	struct dpu_hw_ctl *ctl;
1510 	int rc;
1511 
1512 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1513 	ctl = phys_enc->hw_ctl;
1514 
1515 	if (!ctl->ops.reset)
1516 		return;
1517 
1518 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent),
1519 		      ctl->idx);
1520 
1521 	rc = ctl->ops.reset(ctl);
1522 	if (rc)
1523 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1524 
1525 	phys_enc->enable_state = DPU_ENC_ENABLED;
1526 }
1527 
1528 /**
1529  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1530  *	Iterate through the physical encoders and perform consolidated flush
1531  *	and/or control start triggering as needed. This is done in the virtual
1532  *	encoder rather than the individual physical ones in order to handle
1533  *	use cases that require visibility into multiple physical encoders at
1534  *	a time.
1535  * dpu_enc: Pointer to virtual encoder structure
1536  */
1537 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1538 {
1539 	struct dpu_hw_ctl *ctl;
1540 	uint32_t i, pending_flush;
1541 	unsigned long lock_flags;
1542 
1543 	pending_flush = 0x0;
1544 
1545 	/* update pending counts and trigger kickoff ctl flush atomically */
1546 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1547 
1548 	/* don't perform flush/start operations for slave encoders */
1549 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1550 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1551 
1552 		if (phys->enable_state == DPU_ENC_DISABLED)
1553 			continue;
1554 
1555 		ctl = phys->hw_ctl;
1556 
1557 		/*
1558 		 * This is cleared in frame_done worker, which isn't invoked
1559 		 * for async commits. So don't set this for async, since it'll
1560 		 * roll over to the next commit.
1561 		 */
1562 		if (phys->split_role != ENC_ROLE_SLAVE)
1563 			set_bit(i, dpu_enc->frame_busy_mask);
1564 
1565 		if (!phys->ops.needs_single_flush ||
1566 				!phys->ops.needs_single_flush(phys))
1567 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1568 		else if (ctl->ops.get_pending_flush)
1569 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1570 	}
1571 
1572 	/* for split flush, combine pending flush masks and send to master */
1573 	if (pending_flush && dpu_enc->cur_master) {
1574 		_dpu_encoder_trigger_flush(
1575 				&dpu_enc->base,
1576 				dpu_enc->cur_master,
1577 				pending_flush);
1578 	}
1579 
1580 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1581 
1582 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1583 }
1584 
1585 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1586 {
1587 	struct dpu_encoder_virt *dpu_enc;
1588 	struct dpu_encoder_phys *phys;
1589 	unsigned int i;
1590 	struct dpu_hw_ctl *ctl;
1591 	struct msm_display_info *disp_info;
1592 
1593 	if (!drm_enc) {
1594 		DPU_ERROR("invalid encoder\n");
1595 		return;
1596 	}
1597 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1598 	disp_info = &dpu_enc->disp_info;
1599 
1600 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1601 		phys = dpu_enc->phys_encs[i];
1602 
1603 		ctl = phys->hw_ctl;
1604 		if (ctl->ops.clear_pending_flush)
1605 			ctl->ops.clear_pending_flush(ctl);
1606 
1607 		/* update only for command mode primary ctl */
1608 		if ((phys == dpu_enc->cur_master) &&
1609 		   (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1610 		    && ctl->ops.trigger_pending)
1611 			ctl->ops.trigger_pending(ctl);
1612 	}
1613 }
1614 
1615 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1616 		struct drm_display_mode *mode)
1617 {
1618 	u64 pclk_rate;
1619 	u32 pclk_period;
1620 	u32 line_time;
1621 
1622 	/*
1623 	 * For linetime calculation, only operate on master encoder.
1624 	 */
1625 	if (!dpu_enc->cur_master)
1626 		return 0;
1627 
1628 	if (!dpu_enc->cur_master->ops.get_line_count) {
1629 		DPU_ERROR("get_line_count function not defined\n");
1630 		return 0;
1631 	}
1632 
1633 	pclk_rate = mode->clock; /* pixel clock in kHz */
1634 	if (pclk_rate == 0) {
1635 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1636 		return 0;
1637 	}
1638 
1639 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1640 	if (pclk_period == 0) {
1641 		DPU_ERROR("pclk period is 0\n");
1642 		return 0;
1643 	}
1644 
1645 	/*
1646 	 * Line time calculation based on Pixel clock and HTOTAL.
1647 	 * Final unit is in ns.
1648 	 */
1649 	line_time = (pclk_period * mode->htotal) / 1000;
1650 	if (line_time == 0) {
1651 		DPU_ERROR("line time calculation is 0\n");
1652 		return 0;
1653 	}
1654 
1655 	DPU_DEBUG_ENC(dpu_enc,
1656 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1657 			pclk_rate, pclk_period, line_time);
1658 
1659 	return line_time;
1660 }
1661 
1662 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1663 {
1664 	struct drm_display_mode *mode;
1665 	struct dpu_encoder_virt *dpu_enc;
1666 	u32 cur_line;
1667 	u32 line_time;
1668 	u32 vtotal, time_to_vsync;
1669 	ktime_t cur_time;
1670 
1671 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1672 
1673 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1674 		DPU_ERROR("crtc/crtc state object is NULL\n");
1675 		return -EINVAL;
1676 	}
1677 	mode = &drm_enc->crtc->state->adjusted_mode;
1678 
1679 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1680 	if (!line_time)
1681 		return -EINVAL;
1682 
1683 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1684 
1685 	vtotal = mode->vtotal;
1686 	if (cur_line >= vtotal)
1687 		time_to_vsync = line_time * vtotal;
1688 	else
1689 		time_to_vsync = line_time * (vtotal - cur_line);
1690 
1691 	if (time_to_vsync == 0) {
1692 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1693 				vtotal);
1694 		return -EINVAL;
1695 	}
1696 
1697 	cur_time = ktime_get();
1698 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1699 
1700 	DPU_DEBUG_ENC(dpu_enc,
1701 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1702 			cur_line, vtotal, time_to_vsync,
1703 			ktime_to_ms(cur_time),
1704 			ktime_to_ms(*wakeup_time));
1705 	return 0;
1706 }
1707 
1708 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1709 {
1710 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1711 			vsync_event_timer);
1712 	struct drm_encoder *drm_enc = &dpu_enc->base;
1713 	struct msm_drm_private *priv;
1714 	struct msm_drm_thread *event_thread;
1715 
1716 	if (!drm_enc->dev || !drm_enc->crtc) {
1717 		DPU_ERROR("invalid parameters\n");
1718 		return;
1719 	}
1720 
1721 	priv = drm_enc->dev->dev_private;
1722 
1723 	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1724 		DPU_ERROR("invalid crtc index\n");
1725 		return;
1726 	}
1727 	event_thread = &priv->event_thread[drm_enc->crtc->index];
1728 	if (!event_thread) {
1729 		DPU_ERROR("event_thread not found for crtc:%d\n",
1730 				drm_enc->crtc->index);
1731 		return;
1732 	}
1733 
1734 	del_timer(&dpu_enc->vsync_event_timer);
1735 }
1736 
1737 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1738 {
1739 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1740 			struct dpu_encoder_virt, vsync_event_work);
1741 	ktime_t wakeup_time;
1742 
1743 	if (!dpu_enc) {
1744 		DPU_ERROR("invalid dpu encoder\n");
1745 		return;
1746 	}
1747 
1748 	if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
1749 		return;
1750 
1751 	trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1752 	mod_timer(&dpu_enc->vsync_event_timer,
1753 			nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1754 }
1755 
1756 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1757 {
1758 	struct dpu_encoder_virt *dpu_enc;
1759 	struct dpu_encoder_phys *phys;
1760 	bool needs_hw_reset = false;
1761 	unsigned int i;
1762 
1763 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1764 
1765 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1766 
1767 	/* prepare for next kickoff, may include waiting on previous kickoff */
1768 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1769 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1770 		phys = dpu_enc->phys_encs[i];
1771 		if (phys->ops.prepare_for_kickoff)
1772 			phys->ops.prepare_for_kickoff(phys);
1773 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1774 			needs_hw_reset = true;
1775 	}
1776 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1777 
1778 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1779 
1780 	/* if any phys needs reset, reset all phys, in-order */
1781 	if (needs_hw_reset) {
1782 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1783 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1784 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1785 		}
1786 	}
1787 }
1788 
1789 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1790 {
1791 	struct dpu_encoder_virt *dpu_enc;
1792 	struct dpu_encoder_phys *phys;
1793 	ktime_t wakeup_time;
1794 	unsigned long timeout_ms;
1795 	unsigned int i;
1796 
1797 	DPU_ATRACE_BEGIN("encoder_kickoff");
1798 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1799 
1800 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1801 
1802 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1803 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1804 
1805 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1806 	mod_timer(&dpu_enc->frame_done_timer,
1807 			jiffies + msecs_to_jiffies(timeout_ms));
1808 
1809 	/* All phys encs are ready to go, trigger the kickoff */
1810 	_dpu_encoder_kickoff_phys(dpu_enc);
1811 
1812 	/* allow phys encs to handle any post-kickoff business */
1813 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1814 		phys = dpu_enc->phys_encs[i];
1815 		if (phys->ops.handle_post_kickoff)
1816 			phys->ops.handle_post_kickoff(phys);
1817 	}
1818 
1819 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1820 			!dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
1821 		trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1822 					    ktime_to_ms(wakeup_time));
1823 		mod_timer(&dpu_enc->vsync_event_timer,
1824 				nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1825 	}
1826 
1827 	DPU_ATRACE_END("encoder_kickoff");
1828 }
1829 
1830 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
1831 {
1832 	struct dpu_encoder_virt *dpu_enc;
1833 	struct dpu_encoder_phys *phys;
1834 	int i;
1835 
1836 	if (!drm_enc) {
1837 		DPU_ERROR("invalid encoder\n");
1838 		return;
1839 	}
1840 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1841 
1842 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1843 		phys = dpu_enc->phys_encs[i];
1844 		if (phys->ops.prepare_commit)
1845 			phys->ops.prepare_commit(phys);
1846 	}
1847 }
1848 
1849 #ifdef CONFIG_DEBUG_FS
1850 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
1851 {
1852 	struct dpu_encoder_virt *dpu_enc = s->private;
1853 	int i;
1854 
1855 	mutex_lock(&dpu_enc->enc_lock);
1856 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1857 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1858 
1859 		seq_printf(s, "intf:%d    vsync:%8d     underrun:%8d    ",
1860 				phys->intf_idx - INTF_0,
1861 				atomic_read(&phys->vsync_cnt),
1862 				atomic_read(&phys->underrun_cnt));
1863 
1864 		switch (phys->intf_mode) {
1865 		case INTF_MODE_VIDEO:
1866 			seq_puts(s, "mode: video\n");
1867 			break;
1868 		case INTF_MODE_CMD:
1869 			seq_puts(s, "mode: command\n");
1870 			break;
1871 		default:
1872 			seq_puts(s, "mode: ???\n");
1873 			break;
1874 		}
1875 	}
1876 	mutex_unlock(&dpu_enc->enc_lock);
1877 
1878 	return 0;
1879 }
1880 
1881 static int _dpu_encoder_debugfs_status_open(struct inode *inode,
1882 		struct file *file)
1883 {
1884 	return single_open(file, _dpu_encoder_status_show, inode->i_private);
1885 }
1886 
1887 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1888 {
1889 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1890 	int i;
1891 
1892 	static const struct file_operations debugfs_status_fops = {
1893 		.open =		_dpu_encoder_debugfs_status_open,
1894 		.read =		seq_read,
1895 		.llseek =	seq_lseek,
1896 		.release =	single_release,
1897 	};
1898 
1899 	char name[DPU_NAME_SIZE];
1900 
1901 	if (!drm_enc->dev) {
1902 		DPU_ERROR("invalid encoder or kms\n");
1903 		return -EINVAL;
1904 	}
1905 
1906 	snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
1907 
1908 	/* create overall sub-directory for the encoder */
1909 	dpu_enc->debugfs_root = debugfs_create_dir(name,
1910 			drm_enc->dev->primary->debugfs_root);
1911 
1912 	/* don't error check these */
1913 	debugfs_create_file("status", 0600,
1914 		dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops);
1915 
1916 	for (i = 0; i < dpu_enc->num_phys_encs; i++)
1917 		if (dpu_enc->phys_encs[i]->ops.late_register)
1918 			dpu_enc->phys_encs[i]->ops.late_register(
1919 					dpu_enc->phys_encs[i],
1920 					dpu_enc->debugfs_root);
1921 
1922 	return 0;
1923 }
1924 #else
1925 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1926 {
1927 	return 0;
1928 }
1929 #endif
1930 
1931 static int dpu_encoder_late_register(struct drm_encoder *encoder)
1932 {
1933 	return _dpu_encoder_init_debugfs(encoder);
1934 }
1935 
1936 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
1937 {
1938 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
1939 
1940 	debugfs_remove_recursive(dpu_enc->debugfs_root);
1941 }
1942 
1943 static int dpu_encoder_virt_add_phys_encs(
1944 		u32 display_caps,
1945 		struct dpu_encoder_virt *dpu_enc,
1946 		struct dpu_enc_phys_init_params *params)
1947 {
1948 	struct dpu_encoder_phys *enc = NULL;
1949 
1950 	DPU_DEBUG_ENC(dpu_enc, "\n");
1951 
1952 	/*
1953 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
1954 	 * in this function, check up-front.
1955 	 */
1956 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
1957 			ARRAY_SIZE(dpu_enc->phys_encs)) {
1958 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
1959 			  dpu_enc->num_phys_encs);
1960 		return -EINVAL;
1961 	}
1962 
1963 	if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
1964 		enc = dpu_encoder_phys_vid_init(params);
1965 
1966 		if (IS_ERR_OR_NULL(enc)) {
1967 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
1968 				PTR_ERR(enc));
1969 			return enc == NULL ? -EINVAL : PTR_ERR(enc);
1970 		}
1971 
1972 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
1973 		++dpu_enc->num_phys_encs;
1974 	}
1975 
1976 	if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
1977 		enc = dpu_encoder_phys_cmd_init(params);
1978 
1979 		if (IS_ERR_OR_NULL(enc)) {
1980 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
1981 				PTR_ERR(enc));
1982 			return enc == NULL ? -EINVAL : PTR_ERR(enc);
1983 		}
1984 
1985 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
1986 		++dpu_enc->num_phys_encs;
1987 	}
1988 
1989 	if (params->split_role == ENC_ROLE_SLAVE)
1990 		dpu_enc->cur_slave = enc;
1991 	else
1992 		dpu_enc->cur_master = enc;
1993 
1994 	return 0;
1995 }
1996 
1997 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
1998 	.handle_vblank_virt = dpu_encoder_vblank_callback,
1999 	.handle_underrun_virt = dpu_encoder_underrun_callback,
2000 	.handle_frame_done = dpu_encoder_frame_done_callback,
2001 };
2002 
2003 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2004 				 struct dpu_kms *dpu_kms,
2005 				 struct msm_display_info *disp_info)
2006 {
2007 	int ret = 0;
2008 	int i = 0;
2009 	enum dpu_intf_type intf_type;
2010 	struct dpu_enc_phys_init_params phys_params;
2011 
2012 	if (!dpu_enc) {
2013 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2014 		return -EINVAL;
2015 	}
2016 
2017 	dpu_enc->cur_master = NULL;
2018 
2019 	memset(&phys_params, 0, sizeof(phys_params));
2020 	phys_params.dpu_kms = dpu_kms;
2021 	phys_params.parent = &dpu_enc->base;
2022 	phys_params.parent_ops = &dpu_encoder_parent_ops;
2023 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2024 
2025 	DPU_DEBUG("\n");
2026 
2027 	switch (disp_info->intf_type) {
2028 	case DRM_MODE_ENCODER_DSI:
2029 		intf_type = INTF_DSI;
2030 		break;
2031 	default:
2032 		DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n");
2033 		return -EINVAL;
2034 	}
2035 
2036 	WARN_ON(disp_info->num_of_h_tiles < 1);
2037 
2038 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2039 
2040 	if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
2041 	    (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
2042 		dpu_enc->idle_pc_supported =
2043 				dpu_kms->catalog->caps->has_idle_pc;
2044 
2045 	mutex_lock(&dpu_enc->enc_lock);
2046 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2047 		/*
2048 		 * Left-most tile is at index 0, content is controller id
2049 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2050 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2051 		 */
2052 		u32 controller_id = disp_info->h_tile_instance[i];
2053 
2054 		if (disp_info->num_of_h_tiles > 1) {
2055 			if (i == 0)
2056 				phys_params.split_role = ENC_ROLE_MASTER;
2057 			else
2058 				phys_params.split_role = ENC_ROLE_SLAVE;
2059 		} else {
2060 			phys_params.split_role = ENC_ROLE_SOLO;
2061 		}
2062 
2063 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2064 				i, controller_id, phys_params.split_role);
2065 
2066 		phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2067 													intf_type,
2068 													controller_id);
2069 		if (phys_params.intf_idx == INTF_MAX) {
2070 			DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
2071 						  intf_type, controller_id);
2072 			ret = -EINVAL;
2073 		}
2074 
2075 		if (!ret) {
2076 			ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
2077 												 dpu_enc,
2078 												 &phys_params);
2079 			if (ret)
2080 				DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2081 		}
2082 	}
2083 
2084 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2085 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2086 		atomic_set(&phys->vsync_cnt, 0);
2087 		atomic_set(&phys->underrun_cnt, 0);
2088 	}
2089 	mutex_unlock(&dpu_enc->enc_lock);
2090 
2091 	return ret;
2092 }
2093 
2094 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2095 {
2096 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2097 			frame_done_timer);
2098 	struct drm_encoder *drm_enc = &dpu_enc->base;
2099 	u32 event;
2100 
2101 	if (!drm_enc->dev) {
2102 		DPU_ERROR("invalid parameters\n");
2103 		return;
2104 	}
2105 
2106 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2107 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2108 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2109 		return;
2110 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2111 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2112 		return;
2113 	}
2114 
2115 	DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2116 
2117 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2118 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2119 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2120 }
2121 
2122 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2123 	.mode_set = dpu_encoder_virt_mode_set,
2124 	.disable = dpu_encoder_virt_disable,
2125 	.enable = dpu_kms_encoder_enable,
2126 	.atomic_check = dpu_encoder_virt_atomic_check,
2127 
2128 	/* This is called by dpu_kms_encoder_enable */
2129 	.commit = dpu_encoder_virt_enable,
2130 };
2131 
2132 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2133 		.destroy = dpu_encoder_destroy,
2134 		.late_register = dpu_encoder_late_register,
2135 		.early_unregister = dpu_encoder_early_unregister,
2136 };
2137 
2138 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2139 		struct msm_display_info *disp_info)
2140 {
2141 	struct msm_drm_private *priv = dev->dev_private;
2142 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2143 	struct drm_encoder *drm_enc = NULL;
2144 	struct dpu_encoder_virt *dpu_enc = NULL;
2145 	int ret = 0;
2146 
2147 	dpu_enc = to_dpu_encoder_virt(enc);
2148 
2149 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2150 	if (ret)
2151 		goto fail;
2152 
2153 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2154 	timer_setup(&dpu_enc->frame_done_timer,
2155 			dpu_encoder_frame_done_timeout, 0);
2156 
2157 	if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2158 		timer_setup(&dpu_enc->vsync_event_timer,
2159 				dpu_encoder_vsync_event_handler,
2160 				0);
2161 
2162 
2163 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2164 			dpu_encoder_off_work);
2165 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2166 
2167 	kthread_init_work(&dpu_enc->vsync_event_work,
2168 			dpu_encoder_vsync_event_work_handler);
2169 
2170 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2171 
2172 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2173 
2174 	return ret;
2175 
2176 fail:
2177 	DPU_ERROR("failed to create encoder\n");
2178 	if (drm_enc)
2179 		dpu_encoder_destroy(drm_enc);
2180 
2181 	return ret;
2182 
2183 
2184 }
2185 
2186 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2187 		int drm_enc_mode)
2188 {
2189 	struct dpu_encoder_virt *dpu_enc = NULL;
2190 	int rc = 0;
2191 
2192 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2193 	if (!dpu_enc)
2194 		return ERR_PTR(-ENOMEM);
2195 
2196 	rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2197 			drm_enc_mode, NULL);
2198 	if (rc) {
2199 		devm_kfree(dev->dev, dpu_enc);
2200 		return ERR_PTR(rc);
2201 	}
2202 
2203 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2204 
2205 	spin_lock_init(&dpu_enc->enc_spinlock);
2206 	dpu_enc->enabled = false;
2207 	mutex_init(&dpu_enc->enc_lock);
2208 	mutex_init(&dpu_enc->rc_lock);
2209 
2210 	return &dpu_enc->base;
2211 }
2212 
2213 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2214 	enum msm_event_wait event)
2215 {
2216 	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2217 	struct dpu_encoder_virt *dpu_enc = NULL;
2218 	int i, ret = 0;
2219 
2220 	if (!drm_enc) {
2221 		DPU_ERROR("invalid encoder\n");
2222 		return -EINVAL;
2223 	}
2224 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2225 	DPU_DEBUG_ENC(dpu_enc, "\n");
2226 
2227 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2228 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2229 
2230 		switch (event) {
2231 		case MSM_ENC_COMMIT_DONE:
2232 			fn_wait = phys->ops.wait_for_commit_done;
2233 			break;
2234 		case MSM_ENC_TX_COMPLETE:
2235 			fn_wait = phys->ops.wait_for_tx_complete;
2236 			break;
2237 		case MSM_ENC_VBLANK:
2238 			fn_wait = phys->ops.wait_for_vblank;
2239 			break;
2240 		default:
2241 			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2242 					event);
2243 			return -EINVAL;
2244 		}
2245 
2246 		if (fn_wait) {
2247 			DPU_ATRACE_BEGIN("wait_for_completion_event");
2248 			ret = fn_wait(phys);
2249 			DPU_ATRACE_END("wait_for_completion_event");
2250 			if (ret)
2251 				return ret;
2252 		}
2253 	}
2254 
2255 	return ret;
2256 }
2257 
2258 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2259 {
2260 	struct dpu_encoder_virt *dpu_enc = NULL;
2261 
2262 	if (!encoder) {
2263 		DPU_ERROR("invalid encoder\n");
2264 		return INTF_MODE_NONE;
2265 	}
2266 	dpu_enc = to_dpu_encoder_virt(encoder);
2267 
2268 	if (dpu_enc->cur_master)
2269 		return dpu_enc->cur_master->intf_mode;
2270 
2271 	if (dpu_enc->num_phys_encs)
2272 		return dpu_enc->phys_encs[0]->intf_mode;
2273 
2274 	return INTF_MODE_NONE;
2275 }
2276