1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2013 Red Hat
5  * Author: Rob Clark <robdclark@gmail.com>
6  */
7 
8 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/debugfs.h>
10 #include <linux/kthread.h>
11 #include <linux/seq_file.h>
12 
13 #include <drm/drm_crtc.h>
14 #include <drm/drm_file.h>
15 #include <drm/drm_probe_helper.h>
16 
17 #include "msm_drv.h"
18 #include "dpu_kms.h"
19 #include "dpu_hwio.h"
20 #include "dpu_hw_catalog.h"
21 #include "dpu_hw_intf.h"
22 #include "dpu_hw_ctl.h"
23 #include "dpu_hw_dspp.h"
24 #include "dpu_formats.h"
25 #include "dpu_encoder_phys.h"
26 #include "dpu_crtc.h"
27 #include "dpu_trace.h"
28 #include "dpu_core_irq.h"
29 
30 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\
31 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
32 
33 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
34 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
35 
36 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\
37 		(p) ? (p)->parent->base.id : -1, \
38 		(p) ? (p)->intf_idx - INTF_0 : -1, \
39 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
40 		##__VA_ARGS__)
41 
42 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
43 		(p) ? (p)->parent->base.id : -1, \
44 		(p) ? (p)->intf_idx - INTF_0 : -1, \
45 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
46 		##__VA_ARGS__)
47 
48 /*
49  * Two to anticipate panels that can do cmd/vid dynamic switching
50  * plan is to create all possible physical encoder types, and switch between
51  * them at runtime
52  */
53 #define NUM_PHYS_ENCODER_TYPES 2
54 
55 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
56 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
57 
58 #define MAX_CHANNELS_PER_ENC 2
59 
60 #define IDLE_SHORT_TIMEOUT	1
61 
62 #define MAX_HDISPLAY_SPLIT 1080
63 
64 /* timeout in frames waiting for frame done */
65 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
66 
67 /**
68  * enum dpu_enc_rc_events - events for resource control state machine
69  * @DPU_ENC_RC_EVENT_KICKOFF:
70  *	This event happens at NORMAL priority.
71  *	Event that signals the start of the transfer. When this event is
72  *	received, enable MDP/DSI core clocks. Regardless of the previous
73  *	state, the resource should be in ON state at the end of this event.
74  * @DPU_ENC_RC_EVENT_FRAME_DONE:
75  *	This event happens at INTERRUPT level.
76  *	Event signals the end of the data transfer after the PP FRAME_DONE
77  *	event. At the end of this event, a delayed work is scheduled to go to
78  *	IDLE_PC state after IDLE_TIMEOUT time.
79  * @DPU_ENC_RC_EVENT_PRE_STOP:
80  *	This event happens at NORMAL priority.
81  *	This event, when received during the ON state, leave the RC STATE
82  *	in the PRE_OFF state. It should be followed by the STOP event as
83  *	part of encoder disable.
84  *	If received during IDLE or OFF states, it will do nothing.
85  * @DPU_ENC_RC_EVENT_STOP:
86  *	This event happens at NORMAL priority.
87  *	When this event is received, disable all the MDP/DSI core clocks, and
88  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
89  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
90  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
91  *	Resource state should be in OFF at the end of the event.
92  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
93  *	This event happens at NORMAL priority from a work item.
94  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
95  *	This would disable MDP/DSI core clocks and change the resource state
96  *	to IDLE.
97  */
98 enum dpu_enc_rc_events {
99 	DPU_ENC_RC_EVENT_KICKOFF = 1,
100 	DPU_ENC_RC_EVENT_FRAME_DONE,
101 	DPU_ENC_RC_EVENT_PRE_STOP,
102 	DPU_ENC_RC_EVENT_STOP,
103 	DPU_ENC_RC_EVENT_ENTER_IDLE
104 };
105 
106 /*
107  * enum dpu_enc_rc_states - states that the resource control maintains
108  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
109  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
110  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
111  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
112  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
113  */
114 enum dpu_enc_rc_states {
115 	DPU_ENC_RC_STATE_OFF,
116 	DPU_ENC_RC_STATE_PRE_OFF,
117 	DPU_ENC_RC_STATE_ON,
118 	DPU_ENC_RC_STATE_IDLE
119 };
120 
121 /**
122  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
123  *	encoders. Virtual encoder manages one "logical" display. Physical
124  *	encoders manage one intf block, tied to a specific panel/sub-panel.
125  *	Virtual encoder defers as much as possible to the physical encoders.
126  *	Virtual encoder registers itself with the DRM Framework as the encoder.
127  * @base:		drm_encoder base class for registration with DRM
128  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
129  * @bus_scaling_client:	Client handle to the bus scaling interface
130  * @enabled:		True if the encoder is active, protected by enc_lock
131  * @num_phys_encs:	Actual number of physical encoders contained.
132  * @phys_encs:		Container of physical encoders managed.
133  * @cur_master:		Pointer to the current master in this mode. Optimization
134  *			Only valid after enable. Cleared as disable.
135  * @cur_slave:		As above but for the slave encoder.
136  * @hw_pp:		Handle to the pingpong blocks used for the display. No.
137  *			pingpong blocks can be different than num_phys_encs.
138  * @intfs_swapped:	Whether or not the phys_enc interfaces have been swapped
139  *			for partial update right-only cases, such as pingpong
140  *			split where virtual pingpong does not generate IRQs
141  * @crtc:		Pointer to the currently assigned crtc. Normally you
142  *			would use crtc->state->encoder_mask to determine the
143  *			link between encoder/crtc. However in this case we need
144  *			to track crtc in the disable() hook which is called
145  *			_after_ encoder_mask is cleared.
146  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
147  *				all CTL paths
148  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
149  * @debugfs_root:		Debug file system root file node
150  * @enc_lock:			Lock around physical encoder
151  *				create/destroy/enable/disable
152  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
153  *				busy processing current command.
154  *				Bit0 = phys_encs[0] etc.
155  * @crtc_frame_event_cb:	callback handler for frame event
156  * @crtc_frame_event_cb_data:	callback handler private data
157  * @frame_done_timeout_ms:	frame done timeout in ms
158  * @frame_done_timer:		watchdog timer for frame done event
159  * @vsync_event_timer:		vsync timer
160  * @disp_info:			local copy of msm_display_info struct
161  * @idle_pc_supported:		indicate if idle power collaps is supported
162  * @rc_lock:			resource control mutex lock to protect
163  *				virt encoder over various state changes
164  * @rc_state:			resource controller state
165  * @delayed_off_work:		delayed worker to schedule disabling of
166  *				clks and resources after IDLE_TIMEOUT time.
167  * @vsync_event_work:		worker to handle vsync event for autorefresh
168  * @topology:                   topology of the display
169  * @idle_timeout:		idle timeout duration in milliseconds
170  */
171 struct dpu_encoder_virt {
172 	struct drm_encoder base;
173 	spinlock_t enc_spinlock;
174 	uint32_t bus_scaling_client;
175 
176 	bool enabled;
177 
178 	unsigned int num_phys_encs;
179 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
180 	struct dpu_encoder_phys *cur_master;
181 	struct dpu_encoder_phys *cur_slave;
182 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
183 
184 	bool intfs_swapped;
185 
186 	struct drm_crtc *crtc;
187 
188 	struct dentry *debugfs_root;
189 	struct mutex enc_lock;
190 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
191 	void (*crtc_frame_event_cb)(void *, u32 event);
192 	void *crtc_frame_event_cb_data;
193 
194 	atomic_t frame_done_timeout_ms;
195 	struct timer_list frame_done_timer;
196 	struct timer_list vsync_event_timer;
197 
198 	struct msm_display_info disp_info;
199 
200 	bool idle_pc_supported;
201 	struct mutex rc_lock;
202 	enum dpu_enc_rc_states rc_state;
203 	struct delayed_work delayed_off_work;
204 	struct kthread_work vsync_event_work;
205 	struct msm_display_topology topology;
206 
207 	u32 idle_timeout;
208 };
209 
210 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
211 
212 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
213 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
214 };
215 
216 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
217 {
218 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
219 
220 	if (!hw_pp->ops.setup_dither)
221 		return;
222 
223 	switch (bpc) {
224 	case 6:
225 		dither_cfg.c0_bitdepth = 6;
226 		dither_cfg.c1_bitdepth = 6;
227 		dither_cfg.c2_bitdepth = 6;
228 		dither_cfg.c3_bitdepth = 6;
229 		dither_cfg.temporal_en = 0;
230 		break;
231 	default:
232 		hw_pp->ops.setup_dither(hw_pp, NULL);
233 		return;
234 	}
235 
236 	memcpy(&dither_cfg.matrix, dither_matrix,
237 			sizeof(u32) * DITHER_MATRIX_SZ);
238 
239 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
240 }
241 
242 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
243 		enum dpu_intr_idx intr_idx)
244 {
245 	DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
246 		  DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
247 		  phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
248 
249 	if (phys_enc->parent_ops->handle_frame_done)
250 		phys_enc->parent_ops->handle_frame_done(
251 				phys_enc->parent, phys_enc,
252 				DPU_ENCODER_FRAME_EVENT_ERROR);
253 }
254 
255 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
256 		int32_t hw_id, struct dpu_encoder_wait_info *info);
257 
258 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
259 		enum dpu_intr_idx intr_idx,
260 		struct dpu_encoder_wait_info *wait_info)
261 {
262 	struct dpu_encoder_irq *irq;
263 	u32 irq_status;
264 	int ret;
265 
266 	if (!wait_info || intr_idx >= INTR_IDX_MAX) {
267 		DPU_ERROR("invalid params\n");
268 		return -EINVAL;
269 	}
270 	irq = &phys_enc->irq[intr_idx];
271 
272 	/* note: do master / slave checking outside */
273 
274 	/* return EWOULDBLOCK since we know the wait isn't necessary */
275 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
276 		DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d",
277 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
278 			  irq->irq_idx);
279 		return -EWOULDBLOCK;
280 	}
281 
282 	if (irq->irq_idx < 0) {
283 		DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s",
284 			      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
285 			      irq->name);
286 		return 0;
287 	}
288 
289 	DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d",
290 		      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
291 		      irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
292 		      atomic_read(wait_info->atomic_cnt));
293 
294 	ret = dpu_encoder_helper_wait_event_timeout(
295 			DRMID(phys_enc->parent),
296 			irq->hw_idx,
297 			wait_info);
298 
299 	if (ret <= 0) {
300 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
301 				irq->irq_idx, true);
302 		if (irq_status) {
303 			unsigned long flags;
304 
305 			DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, "
306 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
307 				      DRMID(phys_enc->parent), intr_idx,
308 				      irq->hw_idx, irq->irq_idx,
309 				      phys_enc->hw_pp->idx - PINGPONG_0,
310 				      atomic_read(wait_info->atomic_cnt));
311 			local_irq_save(flags);
312 			irq->cb.func(phys_enc, irq->irq_idx);
313 			local_irq_restore(flags);
314 			ret = 0;
315 		} else {
316 			ret = -ETIMEDOUT;
317 			DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, "
318 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
319 				      DRMID(phys_enc->parent), intr_idx,
320 				      irq->hw_idx, irq->irq_idx,
321 				      phys_enc->hw_pp->idx - PINGPONG_0,
322 				      atomic_read(wait_info->atomic_cnt));
323 		}
324 	} else {
325 		ret = 0;
326 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
327 			intr_idx, irq->hw_idx, irq->irq_idx,
328 			phys_enc->hw_pp->idx - PINGPONG_0,
329 			atomic_read(wait_info->atomic_cnt));
330 	}
331 
332 	return ret;
333 }
334 
335 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
336 		enum dpu_intr_idx intr_idx)
337 {
338 	struct dpu_encoder_irq *irq;
339 	int ret = 0;
340 
341 	if (intr_idx >= INTR_IDX_MAX) {
342 		DPU_ERROR("invalid params\n");
343 		return -EINVAL;
344 	}
345 	irq = &phys_enc->irq[intr_idx];
346 
347 	if (irq->irq_idx >= 0) {
348 		DPU_DEBUG_PHYS(phys_enc,
349 				"skipping already registered irq %s type %d\n",
350 				irq->name, irq->intr_type);
351 		return 0;
352 	}
353 
354 	irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms,
355 			irq->intr_type, irq->hw_idx);
356 	if (irq->irq_idx < 0) {
357 		DPU_ERROR_PHYS(phys_enc,
358 			"failed to lookup IRQ index for %s type:%d\n",
359 			irq->name, irq->intr_type);
360 		return -EINVAL;
361 	}
362 
363 	ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
364 			&irq->cb);
365 	if (ret) {
366 		DPU_ERROR_PHYS(phys_enc,
367 			"failed to register IRQ callback for %s\n",
368 			irq->name);
369 		irq->irq_idx = -EINVAL;
370 		return ret;
371 	}
372 
373 	ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1);
374 	if (ret) {
375 		DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d",
376 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
377 			  irq->irq_idx);
378 		dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
379 				irq->irq_idx, &irq->cb);
380 		irq->irq_idx = -EINVAL;
381 		return ret;
382 	}
383 
384 	trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
385 				irq->hw_idx, irq->irq_idx);
386 
387 	return ret;
388 }
389 
390 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
391 		enum dpu_intr_idx intr_idx)
392 {
393 	struct dpu_encoder_irq *irq;
394 	int ret;
395 
396 	irq = &phys_enc->irq[intr_idx];
397 
398 	/* silently skip irqs that weren't registered */
399 	if (irq->irq_idx < 0) {
400 		DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d",
401 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
402 			  irq->irq_idx);
403 		return 0;
404 	}
405 
406 	ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1);
407 	if (ret) {
408 		DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d",
409 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
410 			  irq->irq_idx, ret);
411 	}
412 
413 	ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
414 			&irq->cb);
415 	if (ret) {
416 		DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d",
417 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
418 			  irq->irq_idx, ret);
419 	}
420 
421 	trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
422 					     irq->hw_idx, irq->irq_idx);
423 
424 	irq->irq_idx = -EINVAL;
425 
426 	return 0;
427 }
428 
429 int dpu_encoder_get_frame_count(struct drm_encoder *drm_enc)
430 {
431 	struct dpu_encoder_virt *dpu_enc;
432 	struct dpu_encoder_phys *phys;
433 	int framecount = 0;
434 
435 	dpu_enc = to_dpu_encoder_virt(drm_enc);
436 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
437 
438 	if (phys && phys->ops.get_frame_count)
439 		framecount = phys->ops.get_frame_count(phys);
440 
441 	return framecount;
442 }
443 
444 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
445 {
446 	struct dpu_encoder_virt *dpu_enc;
447 	struct dpu_encoder_phys *phys;
448 	int linecount = 0;
449 
450 	dpu_enc = to_dpu_encoder_virt(drm_enc);
451 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
452 
453 	if (phys && phys->ops.get_line_count)
454 		linecount = phys->ops.get_line_count(phys);
455 
456 	return linecount;
457 }
458 
459 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
460 				  struct dpu_encoder_hw_resources *hw_res)
461 {
462 	struct dpu_encoder_virt *dpu_enc = NULL;
463 	int i = 0;
464 
465 	dpu_enc = to_dpu_encoder_virt(drm_enc);
466 	DPU_DEBUG_ENC(dpu_enc, "\n");
467 
468 	/* Query resources used by phys encs, expected to be without overlap */
469 	memset(hw_res, 0, sizeof(*hw_res));
470 
471 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
472 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
473 
474 		if (phys->ops.get_hw_resources)
475 			phys->ops.get_hw_resources(phys, hw_res);
476 	}
477 }
478 
479 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
480 {
481 	struct dpu_encoder_virt *dpu_enc = NULL;
482 	int i = 0;
483 
484 	if (!drm_enc) {
485 		DPU_ERROR("invalid encoder\n");
486 		return;
487 	}
488 
489 	dpu_enc = to_dpu_encoder_virt(drm_enc);
490 	DPU_DEBUG_ENC(dpu_enc, "\n");
491 
492 	mutex_lock(&dpu_enc->enc_lock);
493 
494 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
495 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
496 
497 		if (phys->ops.destroy) {
498 			phys->ops.destroy(phys);
499 			--dpu_enc->num_phys_encs;
500 			dpu_enc->phys_encs[i] = NULL;
501 		}
502 	}
503 
504 	if (dpu_enc->num_phys_encs)
505 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
506 				dpu_enc->num_phys_encs);
507 	dpu_enc->num_phys_encs = 0;
508 	mutex_unlock(&dpu_enc->enc_lock);
509 
510 	drm_encoder_cleanup(drm_enc);
511 	mutex_destroy(&dpu_enc->enc_lock);
512 }
513 
514 void dpu_encoder_helper_split_config(
515 		struct dpu_encoder_phys *phys_enc,
516 		enum dpu_intf interface)
517 {
518 	struct dpu_encoder_virt *dpu_enc;
519 	struct split_pipe_cfg cfg = { 0 };
520 	struct dpu_hw_mdp *hw_mdptop;
521 	struct msm_display_info *disp_info;
522 
523 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
524 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
525 		return;
526 	}
527 
528 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
529 	hw_mdptop = phys_enc->hw_mdptop;
530 	disp_info = &dpu_enc->disp_info;
531 
532 	if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
533 		return;
534 
535 	/**
536 	 * disable split modes since encoder will be operating in as the only
537 	 * encoder, either for the entire use case in the case of, for example,
538 	 * single DSI, or for this frame in the case of left/right only partial
539 	 * update.
540 	 */
541 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
542 		if (hw_mdptop->ops.setup_split_pipe)
543 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
544 		return;
545 	}
546 
547 	cfg.en = true;
548 	cfg.mode = phys_enc->intf_mode;
549 	cfg.intf = interface;
550 
551 	if (cfg.en && phys_enc->ops.needs_single_flush &&
552 			phys_enc->ops.needs_single_flush(phys_enc))
553 		cfg.split_flush_en = true;
554 
555 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
556 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
557 
558 		if (hw_mdptop->ops.setup_split_pipe)
559 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
560 	}
561 }
562 
563 static struct msm_display_topology dpu_encoder_get_topology(
564 			struct dpu_encoder_virt *dpu_enc,
565 			struct dpu_kms *dpu_kms,
566 			struct drm_display_mode *mode)
567 {
568 	struct msm_display_topology topology = {0};
569 	int i, intf_count = 0;
570 
571 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
572 		if (dpu_enc->phys_encs[i])
573 			intf_count++;
574 
575 	/* Datapath topology selection
576 	 *
577 	 * Dual display
578 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
579 	 *
580 	 * Single display
581 	 * 1 LM, 1 INTF
582 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
583 	 *
584 	 * Adding color blocks only to primary interface if available in
585 	 * sufficient number
586 	 */
587 	if (intf_count == 2)
588 		topology.num_lm = 2;
589 	else if (!dpu_kms->catalog->caps->has_3d_merge)
590 		topology.num_lm = 1;
591 	else
592 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
593 
594 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI) {
595 		if (dpu_kms->catalog->dspp &&
596 			(dpu_kms->catalog->dspp_count >= topology.num_lm))
597 			topology.num_dspp = topology.num_lm;
598 	}
599 
600 	topology.num_enc = 0;
601 	topology.num_intf = intf_count;
602 
603 	return topology;
604 }
605 static int dpu_encoder_virt_atomic_check(
606 		struct drm_encoder *drm_enc,
607 		struct drm_crtc_state *crtc_state,
608 		struct drm_connector_state *conn_state)
609 {
610 	struct dpu_encoder_virt *dpu_enc;
611 	struct msm_drm_private *priv;
612 	struct dpu_kms *dpu_kms;
613 	const struct drm_display_mode *mode;
614 	struct drm_display_mode *adj_mode;
615 	struct msm_display_topology topology;
616 	struct dpu_global_state *global_state;
617 	int i = 0;
618 	int ret = 0;
619 
620 	if (!drm_enc || !crtc_state || !conn_state) {
621 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
622 				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
623 		return -EINVAL;
624 	}
625 
626 	dpu_enc = to_dpu_encoder_virt(drm_enc);
627 	DPU_DEBUG_ENC(dpu_enc, "\n");
628 
629 	priv = drm_enc->dev->dev_private;
630 	dpu_kms = to_dpu_kms(priv->kms);
631 	mode = &crtc_state->mode;
632 	adj_mode = &crtc_state->adjusted_mode;
633 	global_state = dpu_kms_get_global_state(crtc_state->state);
634 	if (IS_ERR(global_state))
635 		return PTR_ERR(global_state);
636 
637 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
638 
639 	/* perform atomic check on the first physical encoder (master) */
640 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
641 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
642 
643 		if (phys->ops.atomic_check)
644 			ret = phys->ops.atomic_check(phys, crtc_state,
645 					conn_state);
646 		else if (phys->ops.mode_fixup)
647 			if (!phys->ops.mode_fixup(phys, mode, adj_mode))
648 				ret = -EINVAL;
649 
650 		if (ret) {
651 			DPU_ERROR_ENC(dpu_enc,
652 					"mode unsupported, phys idx %d\n", i);
653 			break;
654 		}
655 	}
656 
657 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
658 
659 	/* Reserve dynamic resources now. */
660 	if (!ret) {
661 		/*
662 		 * Release and Allocate resources on every modeset
663 		 * Dont allocate when active is false.
664 		 */
665 		if (drm_atomic_crtc_needs_modeset(crtc_state)) {
666 			dpu_rm_release(global_state, drm_enc);
667 
668 			if (!crtc_state->active_changed || crtc_state->active)
669 				ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
670 						drm_enc, crtc_state, topology);
671 		}
672 	}
673 
674 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
675 
676 	return ret;
677 }
678 
679 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
680 			struct msm_display_info *disp_info)
681 {
682 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
683 	struct msm_drm_private *priv;
684 	struct dpu_kms *dpu_kms;
685 	struct dpu_hw_mdp *hw_mdptop;
686 	struct drm_encoder *drm_enc;
687 	int i;
688 
689 	if (!dpu_enc || !disp_info) {
690 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
691 					dpu_enc != NULL, disp_info != NULL);
692 		return;
693 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
694 		DPU_ERROR("invalid num phys enc %d/%d\n",
695 				dpu_enc->num_phys_encs,
696 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
697 		return;
698 	}
699 
700 	drm_enc = &dpu_enc->base;
701 	/* this pointers are checked in virt_enable_helper */
702 	priv = drm_enc->dev->dev_private;
703 
704 	dpu_kms = to_dpu_kms(priv->kms);
705 	hw_mdptop = dpu_kms->hw_mdp;
706 	if (!hw_mdptop) {
707 		DPU_ERROR("invalid mdptop\n");
708 		return;
709 	}
710 
711 	if (hw_mdptop->ops.setup_vsync_source &&
712 			disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
713 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
714 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
715 
716 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
717 		if (disp_info->is_te_using_watchdog_timer)
718 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
719 		else
720 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
721 
722 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
723 	}
724 }
725 
726 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
727 {
728 	struct dpu_encoder_virt *dpu_enc;
729 	int i;
730 
731 	if (!drm_enc) {
732 		DPU_ERROR("invalid encoder\n");
733 		return;
734 	}
735 
736 	dpu_enc = to_dpu_encoder_virt(drm_enc);
737 
738 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
739 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
740 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
741 
742 		if (phys->ops.irq_control)
743 			phys->ops.irq_control(phys, enable);
744 	}
745 
746 }
747 
748 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
749 		bool enable)
750 {
751 	struct msm_drm_private *priv;
752 	struct dpu_kms *dpu_kms;
753 	struct dpu_encoder_virt *dpu_enc;
754 
755 	dpu_enc = to_dpu_encoder_virt(drm_enc);
756 	priv = drm_enc->dev->dev_private;
757 	dpu_kms = to_dpu_kms(priv->kms);
758 
759 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
760 
761 	if (!dpu_enc->cur_master) {
762 		DPU_ERROR("encoder master not set\n");
763 		return;
764 	}
765 
766 	if (enable) {
767 		/* enable DPU core clks */
768 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
769 
770 		/* enable all the irq */
771 		_dpu_encoder_irq_control(drm_enc, true);
772 
773 	} else {
774 		/* disable all the irq */
775 		_dpu_encoder_irq_control(drm_enc, false);
776 
777 		/* disable DPU core clks */
778 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
779 	}
780 
781 }
782 
783 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
784 		u32 sw_event)
785 {
786 	struct dpu_encoder_virt *dpu_enc;
787 	struct msm_drm_private *priv;
788 	bool is_vid_mode = false;
789 
790 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
791 		DPU_ERROR("invalid parameters\n");
792 		return -EINVAL;
793 	}
794 	dpu_enc = to_dpu_encoder_virt(drm_enc);
795 	priv = drm_enc->dev->dev_private;
796 	is_vid_mode = dpu_enc->disp_info.capabilities &
797 						MSM_DISPLAY_CAP_VID_MODE;
798 
799 	/*
800 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
801 	 * events and return early for other events (ie wb display).
802 	 */
803 	if (!dpu_enc->idle_pc_supported &&
804 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
805 			sw_event != DPU_ENC_RC_EVENT_STOP &&
806 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
807 		return 0;
808 
809 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
810 			 dpu_enc->rc_state, "begin");
811 
812 	switch (sw_event) {
813 	case DPU_ENC_RC_EVENT_KICKOFF:
814 		/* cancel delayed off work, if any */
815 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
816 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
817 					sw_event);
818 
819 		mutex_lock(&dpu_enc->rc_lock);
820 
821 		/* return if the resource control is already in ON state */
822 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
823 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n",
824 				      DRMID(drm_enc), sw_event);
825 			mutex_unlock(&dpu_enc->rc_lock);
826 			return 0;
827 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
828 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
829 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n",
830 				      DRMID(drm_enc), sw_event,
831 				      dpu_enc->rc_state);
832 			mutex_unlock(&dpu_enc->rc_lock);
833 			return -EINVAL;
834 		}
835 
836 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
837 			_dpu_encoder_irq_control(drm_enc, true);
838 		else
839 			_dpu_encoder_resource_control_helper(drm_enc, true);
840 
841 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
842 
843 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
844 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
845 				 "kickoff");
846 
847 		mutex_unlock(&dpu_enc->rc_lock);
848 		break;
849 
850 	case DPU_ENC_RC_EVENT_FRAME_DONE:
851 		/*
852 		 * mutex lock is not used as this event happens at interrupt
853 		 * context. And locking is not required as, the other events
854 		 * like KICKOFF and STOP does a wait-for-idle before executing
855 		 * the resource_control
856 		 */
857 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
858 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
859 				      DRMID(drm_enc), sw_event,
860 				      dpu_enc->rc_state);
861 			return -EINVAL;
862 		}
863 
864 		/*
865 		 * schedule off work item only when there are no
866 		 * frames pending
867 		 */
868 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
869 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
870 				      DRMID(drm_enc));
871 			return 0;
872 		}
873 
874 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
875 				   msecs_to_jiffies(dpu_enc->idle_timeout));
876 
877 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
878 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
879 				 "frame done");
880 		break;
881 
882 	case DPU_ENC_RC_EVENT_PRE_STOP:
883 		/* cancel delayed off work, if any */
884 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
885 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
886 					sw_event);
887 
888 		mutex_lock(&dpu_enc->rc_lock);
889 
890 		if (is_vid_mode &&
891 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
892 			_dpu_encoder_irq_control(drm_enc, true);
893 		}
894 		/* skip if is already OFF or IDLE, resources are off already */
895 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
896 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
897 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
898 				      DRMID(drm_enc), sw_event,
899 				      dpu_enc->rc_state);
900 			mutex_unlock(&dpu_enc->rc_lock);
901 			return 0;
902 		}
903 
904 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
905 
906 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
907 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
908 				 "pre stop");
909 
910 		mutex_unlock(&dpu_enc->rc_lock);
911 		break;
912 
913 	case DPU_ENC_RC_EVENT_STOP:
914 		mutex_lock(&dpu_enc->rc_lock);
915 
916 		/* return if the resource control is already in OFF state */
917 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
918 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
919 				      DRMID(drm_enc), sw_event);
920 			mutex_unlock(&dpu_enc->rc_lock);
921 			return 0;
922 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
923 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
924 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
925 			mutex_unlock(&dpu_enc->rc_lock);
926 			return -EINVAL;
927 		}
928 
929 		/**
930 		 * expect to arrive here only if in either idle state or pre-off
931 		 * and in IDLE state the resources are already disabled
932 		 */
933 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
934 			_dpu_encoder_resource_control_helper(drm_enc, false);
935 
936 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
937 
938 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
939 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
940 				 "stop");
941 
942 		mutex_unlock(&dpu_enc->rc_lock);
943 		break;
944 
945 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
946 		mutex_lock(&dpu_enc->rc_lock);
947 
948 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
949 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
950 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
951 			mutex_unlock(&dpu_enc->rc_lock);
952 			return 0;
953 		}
954 
955 		/*
956 		 * if we are in ON but a frame was just kicked off,
957 		 * ignore the IDLE event, it's probably a stale timer event
958 		 */
959 		if (dpu_enc->frame_busy_mask[0]) {
960 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
961 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
962 			mutex_unlock(&dpu_enc->rc_lock);
963 			return 0;
964 		}
965 
966 		if (is_vid_mode)
967 			_dpu_encoder_irq_control(drm_enc, false);
968 		else
969 			_dpu_encoder_resource_control_helper(drm_enc, false);
970 
971 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
972 
973 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
974 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
975 				 "idle");
976 
977 		mutex_unlock(&dpu_enc->rc_lock);
978 		break;
979 
980 	default:
981 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
982 			  sw_event);
983 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
984 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
985 				 "error");
986 		break;
987 	}
988 
989 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
990 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
991 			 "end");
992 	return 0;
993 }
994 
995 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
996 				      struct drm_display_mode *mode,
997 				      struct drm_display_mode *adj_mode)
998 {
999 	struct dpu_encoder_virt *dpu_enc;
1000 	struct msm_drm_private *priv;
1001 	struct dpu_kms *dpu_kms;
1002 	struct list_head *connector_list;
1003 	struct drm_connector *conn = NULL, *conn_iter;
1004 	struct drm_crtc *drm_crtc;
1005 	struct dpu_crtc_state *cstate;
1006 	struct dpu_global_state *global_state;
1007 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1008 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1009 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
1010 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
1011 	int num_lm, num_ctl, num_pp;
1012 	int i, j;
1013 
1014 	if (!drm_enc) {
1015 		DPU_ERROR("invalid encoder\n");
1016 		return;
1017 	}
1018 
1019 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1020 	DPU_DEBUG_ENC(dpu_enc, "\n");
1021 
1022 	priv = drm_enc->dev->dev_private;
1023 	dpu_kms = to_dpu_kms(priv->kms);
1024 	connector_list = &dpu_kms->dev->mode_config.connector_list;
1025 
1026 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
1027 	if (IS_ERR_OR_NULL(global_state)) {
1028 		DPU_ERROR("Failed to get global state");
1029 		return;
1030 	}
1031 
1032 	trace_dpu_enc_mode_set(DRMID(drm_enc));
1033 
1034 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp)
1035 		msm_dp_display_mode_set(priv->dp, drm_enc, mode, adj_mode);
1036 
1037 	list_for_each_entry(conn_iter, connector_list, head)
1038 		if (conn_iter->encoder == drm_enc)
1039 			conn = conn_iter;
1040 
1041 	if (!conn) {
1042 		DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
1043 		return;
1044 	} else if (!conn->state) {
1045 		DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
1046 		return;
1047 	}
1048 
1049 	drm_for_each_crtc(drm_crtc, drm_enc->dev)
1050 		if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc))
1051 			break;
1052 
1053 	/* Query resource that have been reserved in atomic check step. */
1054 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1055 		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1056 		ARRAY_SIZE(hw_pp));
1057 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1058 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1059 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1060 		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1061 	dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1062 		drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1063 		ARRAY_SIZE(hw_dspp));
1064 
1065 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1066 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1067 						: NULL;
1068 
1069 	cstate = to_dpu_crtc_state(drm_crtc->state);
1070 
1071 	for (i = 0; i < num_lm; i++) {
1072 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1073 
1074 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1075 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1076 		cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1077 	}
1078 
1079 	cstate->num_mixers = num_lm;
1080 
1081 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1082 		int num_blk;
1083 		struct dpu_hw_blk *hw_blk[MAX_CHANNELS_PER_ENC];
1084 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1085 
1086 		if (!dpu_enc->hw_pp[i]) {
1087 			DPU_ERROR_ENC(dpu_enc,
1088 				"no pp block assigned at idx: %d\n", i);
1089 			return;
1090 		}
1091 
1092 		if (!hw_ctl[i]) {
1093 			DPU_ERROR_ENC(dpu_enc,
1094 				"no ctl block assigned at idx: %d\n", i);
1095 			return;
1096 		}
1097 
1098 		phys->hw_pp = dpu_enc->hw_pp[i];
1099 		phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1100 
1101 		num_blk = dpu_rm_get_assigned_resources(&dpu_kms->rm,
1102 			global_state, drm_enc->base.id, DPU_HW_BLK_INTF,
1103 			hw_blk, ARRAY_SIZE(hw_blk));
1104 		for (j = 0; j < num_blk; j++) {
1105 			struct dpu_hw_intf *hw_intf;
1106 
1107 			hw_intf = to_dpu_hw_intf(hw_blk[i]);
1108 			if (hw_intf->idx == phys->intf_idx)
1109 				phys->hw_intf = hw_intf;
1110 		}
1111 
1112 		if (!phys->hw_intf) {
1113 			DPU_ERROR_ENC(dpu_enc,
1114 				      "no intf block assigned at idx: %d\n", i);
1115 			return;
1116 		}
1117 
1118 		phys->connector = conn->state->connector;
1119 		if (phys->ops.mode_set)
1120 			phys->ops.mode_set(phys, mode, adj_mode);
1121 	}
1122 }
1123 
1124 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1125 {
1126 	struct dpu_encoder_virt *dpu_enc = NULL;
1127 	int i;
1128 
1129 	if (!drm_enc || !drm_enc->dev) {
1130 		DPU_ERROR("invalid parameters\n");
1131 		return;
1132 	}
1133 
1134 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1135 	if (!dpu_enc || !dpu_enc->cur_master) {
1136 		DPU_ERROR("invalid dpu encoder/master\n");
1137 		return;
1138 	}
1139 
1140 
1141 	if (dpu_enc->disp_info.intf_type == DRM_MODE_CONNECTOR_DisplayPort &&
1142 		dpu_enc->cur_master->hw_mdptop &&
1143 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1144 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1145 			dpu_enc->cur_master->hw_mdptop);
1146 
1147 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1148 
1149 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1150 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1151 		unsigned bpc = dpu_enc->phys_encs[0]->connector->display_info.bpc;
1152 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1153 			if (!dpu_enc->hw_pp[i])
1154 				continue;
1155 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1156 		}
1157 	}
1158 }
1159 
1160 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1161 {
1162 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1163 
1164 	mutex_lock(&dpu_enc->enc_lock);
1165 
1166 	if (!dpu_enc->enabled)
1167 		goto out;
1168 
1169 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1170 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1171 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1172 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1173 
1174 	_dpu_encoder_virt_enable_helper(drm_enc);
1175 
1176 out:
1177 	mutex_unlock(&dpu_enc->enc_lock);
1178 }
1179 
1180 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1181 {
1182 	struct dpu_encoder_virt *dpu_enc = NULL;
1183 	int ret = 0;
1184 	struct msm_drm_private *priv;
1185 	struct drm_display_mode *cur_mode = NULL;
1186 
1187 	if (!drm_enc) {
1188 		DPU_ERROR("invalid encoder\n");
1189 		return;
1190 	}
1191 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1192 
1193 	mutex_lock(&dpu_enc->enc_lock);
1194 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1195 	priv = drm_enc->dev->dev_private;
1196 
1197 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1198 			     cur_mode->vdisplay);
1199 
1200 	/* always enable slave encoder before master */
1201 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1202 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1203 
1204 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1205 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1206 
1207 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1208 	if (ret) {
1209 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1210 				ret);
1211 		goto out;
1212 	}
1213 
1214 	_dpu_encoder_virt_enable_helper(drm_enc);
1215 
1216 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp) {
1217 		ret = msm_dp_display_enable(priv->dp,
1218 						drm_enc);
1219 		if (ret) {
1220 			DPU_ERROR_ENC(dpu_enc, "dp display enable failed: %d\n",
1221 				ret);
1222 			goto out;
1223 		}
1224 	}
1225 	dpu_enc->enabled = true;
1226 
1227 out:
1228 	mutex_unlock(&dpu_enc->enc_lock);
1229 }
1230 
1231 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1232 {
1233 	struct dpu_encoder_virt *dpu_enc = NULL;
1234 	struct msm_drm_private *priv;
1235 	int i = 0;
1236 
1237 	if (!drm_enc) {
1238 		DPU_ERROR("invalid encoder\n");
1239 		return;
1240 	} else if (!drm_enc->dev) {
1241 		DPU_ERROR("invalid dev\n");
1242 		return;
1243 	}
1244 
1245 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1246 	DPU_DEBUG_ENC(dpu_enc, "\n");
1247 
1248 	mutex_lock(&dpu_enc->enc_lock);
1249 	dpu_enc->enabled = false;
1250 
1251 	priv = drm_enc->dev->dev_private;
1252 
1253 	trace_dpu_enc_disable(DRMID(drm_enc));
1254 
1255 	/* wait for idle */
1256 	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1257 
1258 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp) {
1259 		if (msm_dp_display_pre_disable(priv->dp, drm_enc))
1260 			DPU_ERROR_ENC(dpu_enc, "dp display push idle failed\n");
1261 	}
1262 
1263 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1264 
1265 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1266 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1267 
1268 		if (phys->ops.disable)
1269 			phys->ops.disable(phys);
1270 	}
1271 
1272 
1273 	/* after phys waits for frame-done, should be no more frames pending */
1274 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1275 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1276 		del_timer_sync(&dpu_enc->frame_done_timer);
1277 	}
1278 
1279 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1280 
1281 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1282 		dpu_enc->phys_encs[i]->connector = NULL;
1283 	}
1284 
1285 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1286 
1287 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp) {
1288 		if (msm_dp_display_disable(priv->dp, drm_enc))
1289 			DPU_ERROR_ENC(dpu_enc, "dp display disable failed\n");
1290 	}
1291 
1292 	mutex_unlock(&dpu_enc->enc_lock);
1293 }
1294 
1295 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1296 		enum dpu_intf_type type, u32 controller_id)
1297 {
1298 	int i = 0;
1299 
1300 	for (i = 0; i < catalog->intf_count; i++) {
1301 		if (catalog->intf[i].type == type
1302 		    && catalog->intf[i].controller_id == controller_id) {
1303 			return catalog->intf[i].id;
1304 		}
1305 	}
1306 
1307 	return INTF_MAX;
1308 }
1309 
1310 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1311 		struct dpu_encoder_phys *phy_enc)
1312 {
1313 	struct dpu_encoder_virt *dpu_enc = NULL;
1314 	unsigned long lock_flags;
1315 
1316 	if (!drm_enc || !phy_enc)
1317 		return;
1318 
1319 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1320 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1321 
1322 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1323 	if (dpu_enc->crtc)
1324 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1325 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1326 
1327 	atomic_inc(&phy_enc->vsync_cnt);
1328 	DPU_ATRACE_END("encoder_vblank_callback");
1329 }
1330 
1331 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1332 		struct dpu_encoder_phys *phy_enc)
1333 {
1334 	if (!phy_enc)
1335 		return;
1336 
1337 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1338 	atomic_inc(&phy_enc->underrun_cnt);
1339 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1340 				  atomic_read(&phy_enc->underrun_cnt));
1341 	DPU_ATRACE_END("encoder_underrun_callback");
1342 }
1343 
1344 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1345 {
1346 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1347 	unsigned long lock_flags;
1348 
1349 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1350 	/* crtc should always be cleared before re-assigning */
1351 	WARN_ON(crtc && dpu_enc->crtc);
1352 	dpu_enc->crtc = crtc;
1353 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1354 }
1355 
1356 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1357 					struct drm_crtc *crtc, bool enable)
1358 {
1359 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1360 	unsigned long lock_flags;
1361 	int i;
1362 
1363 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1364 
1365 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1366 	if (dpu_enc->crtc != crtc) {
1367 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1368 		return;
1369 	}
1370 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1371 
1372 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1373 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1374 
1375 		if (phys->ops.control_vblank_irq)
1376 			phys->ops.control_vblank_irq(phys, enable);
1377 	}
1378 }
1379 
1380 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1381 		void (*frame_event_cb)(void *, u32 event),
1382 		void *frame_event_cb_data)
1383 {
1384 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1385 	unsigned long lock_flags;
1386 	bool enable;
1387 
1388 	enable = frame_event_cb ? true : false;
1389 
1390 	if (!drm_enc) {
1391 		DPU_ERROR("invalid encoder\n");
1392 		return;
1393 	}
1394 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1395 
1396 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1397 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1398 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1399 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1400 }
1401 
1402 static void dpu_encoder_frame_done_callback(
1403 		struct drm_encoder *drm_enc,
1404 		struct dpu_encoder_phys *ready_phys, u32 event)
1405 {
1406 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1407 	unsigned int i;
1408 
1409 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1410 			| DPU_ENCODER_FRAME_EVENT_ERROR
1411 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1412 
1413 		if (!dpu_enc->frame_busy_mask[0]) {
1414 			/**
1415 			 * suppress frame_done without waiter,
1416 			 * likely autorefresh
1417 			 */
1418 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
1419 					event, ready_phys->intf_idx);
1420 			return;
1421 		}
1422 
1423 		/* One of the physical encoders has become idle */
1424 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1425 			if (dpu_enc->phys_encs[i] == ready_phys) {
1426 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1427 						dpu_enc->frame_busy_mask[0]);
1428 				clear_bit(i, dpu_enc->frame_busy_mask);
1429 			}
1430 		}
1431 
1432 		if (!dpu_enc->frame_busy_mask[0]) {
1433 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1434 			del_timer(&dpu_enc->frame_done_timer);
1435 
1436 			dpu_encoder_resource_control(drm_enc,
1437 					DPU_ENC_RC_EVENT_FRAME_DONE);
1438 
1439 			if (dpu_enc->crtc_frame_event_cb)
1440 				dpu_enc->crtc_frame_event_cb(
1441 					dpu_enc->crtc_frame_event_cb_data,
1442 					event);
1443 		}
1444 	} else {
1445 		if (dpu_enc->crtc_frame_event_cb)
1446 			dpu_enc->crtc_frame_event_cb(
1447 				dpu_enc->crtc_frame_event_cb_data, event);
1448 	}
1449 }
1450 
1451 static void dpu_encoder_off_work(struct work_struct *work)
1452 {
1453 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1454 			struct dpu_encoder_virt, delayed_off_work.work);
1455 
1456 	if (!dpu_enc) {
1457 		DPU_ERROR("invalid dpu encoder\n");
1458 		return;
1459 	}
1460 
1461 	dpu_encoder_resource_control(&dpu_enc->base,
1462 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1463 
1464 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1465 				DPU_ENCODER_FRAME_EVENT_IDLE);
1466 }
1467 
1468 /**
1469  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1470  * @drm_enc: Pointer to drm encoder structure
1471  * @phys: Pointer to physical encoder structure
1472  * @extra_flush_bits: Additional bit mask to include in flush trigger
1473  */
1474 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1475 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1476 {
1477 	struct dpu_hw_ctl *ctl;
1478 	int pending_kickoff_cnt;
1479 	u32 ret = UINT_MAX;
1480 
1481 	if (!phys->hw_pp) {
1482 		DPU_ERROR("invalid pingpong hw\n");
1483 		return;
1484 	}
1485 
1486 	ctl = phys->hw_ctl;
1487 	if (!ctl->ops.trigger_flush) {
1488 		DPU_ERROR("missing trigger cb\n");
1489 		return;
1490 	}
1491 
1492 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1493 
1494 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1495 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1496 
1497 	ctl->ops.trigger_flush(ctl);
1498 
1499 	if (ctl->ops.get_pending_flush)
1500 		ret = ctl->ops.get_pending_flush(ctl);
1501 
1502 	trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1503 				    pending_kickoff_cnt, ctl->idx,
1504 				    extra_flush_bits, ret);
1505 }
1506 
1507 /**
1508  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1509  * @phys: Pointer to physical encoder structure
1510  */
1511 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1512 {
1513 	if (!phys) {
1514 		DPU_ERROR("invalid argument(s)\n");
1515 		return;
1516 	}
1517 
1518 	if (!phys->hw_pp) {
1519 		DPU_ERROR("invalid pingpong hw\n");
1520 		return;
1521 	}
1522 
1523 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1524 		phys->ops.trigger_start(phys);
1525 }
1526 
1527 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1528 {
1529 	struct dpu_hw_ctl *ctl;
1530 
1531 	ctl = phys_enc->hw_ctl;
1532 	if (ctl->ops.trigger_start) {
1533 		ctl->ops.trigger_start(ctl);
1534 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1535 	}
1536 }
1537 
1538 static int dpu_encoder_helper_wait_event_timeout(
1539 		int32_t drm_id,
1540 		int32_t hw_id,
1541 		struct dpu_encoder_wait_info *info)
1542 {
1543 	int rc = 0;
1544 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1545 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1546 	s64 time;
1547 
1548 	do {
1549 		rc = wait_event_timeout(*(info->wq),
1550 				atomic_read(info->atomic_cnt) == 0, jiffies);
1551 		time = ktime_to_ms(ktime_get());
1552 
1553 		trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time,
1554 						 expected_time,
1555 						 atomic_read(info->atomic_cnt));
1556 	/* If we timed out, counter is valid and time is less, wait again */
1557 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1558 			(time < expected_time));
1559 
1560 	return rc;
1561 }
1562 
1563 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1564 {
1565 	struct dpu_encoder_virt *dpu_enc;
1566 	struct dpu_hw_ctl *ctl;
1567 	int rc;
1568 
1569 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1570 	ctl = phys_enc->hw_ctl;
1571 
1572 	if (!ctl->ops.reset)
1573 		return;
1574 
1575 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent),
1576 		      ctl->idx);
1577 
1578 	rc = ctl->ops.reset(ctl);
1579 	if (rc)
1580 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1581 
1582 	phys_enc->enable_state = DPU_ENC_ENABLED;
1583 }
1584 
1585 /**
1586  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1587  *	Iterate through the physical encoders and perform consolidated flush
1588  *	and/or control start triggering as needed. This is done in the virtual
1589  *	encoder rather than the individual physical ones in order to handle
1590  *	use cases that require visibility into multiple physical encoders at
1591  *	a time.
1592  * @dpu_enc: Pointer to virtual encoder structure
1593  */
1594 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1595 {
1596 	struct dpu_hw_ctl *ctl;
1597 	uint32_t i, pending_flush;
1598 	unsigned long lock_flags;
1599 
1600 	pending_flush = 0x0;
1601 
1602 	/* update pending counts and trigger kickoff ctl flush atomically */
1603 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1604 
1605 	/* don't perform flush/start operations for slave encoders */
1606 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1607 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1608 
1609 		if (phys->enable_state == DPU_ENC_DISABLED)
1610 			continue;
1611 
1612 		ctl = phys->hw_ctl;
1613 
1614 		/*
1615 		 * This is cleared in frame_done worker, which isn't invoked
1616 		 * for async commits. So don't set this for async, since it'll
1617 		 * roll over to the next commit.
1618 		 */
1619 		if (phys->split_role != ENC_ROLE_SLAVE)
1620 			set_bit(i, dpu_enc->frame_busy_mask);
1621 
1622 		if (!phys->ops.needs_single_flush ||
1623 				!phys->ops.needs_single_flush(phys))
1624 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1625 		else if (ctl->ops.get_pending_flush)
1626 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1627 	}
1628 
1629 	/* for split flush, combine pending flush masks and send to master */
1630 	if (pending_flush && dpu_enc->cur_master) {
1631 		_dpu_encoder_trigger_flush(
1632 				&dpu_enc->base,
1633 				dpu_enc->cur_master,
1634 				pending_flush);
1635 	}
1636 
1637 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1638 
1639 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1640 }
1641 
1642 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1643 {
1644 	struct dpu_encoder_virt *dpu_enc;
1645 	struct dpu_encoder_phys *phys;
1646 	unsigned int i;
1647 	struct dpu_hw_ctl *ctl;
1648 	struct msm_display_info *disp_info;
1649 
1650 	if (!drm_enc) {
1651 		DPU_ERROR("invalid encoder\n");
1652 		return;
1653 	}
1654 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1655 	disp_info = &dpu_enc->disp_info;
1656 
1657 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1658 		phys = dpu_enc->phys_encs[i];
1659 
1660 		ctl = phys->hw_ctl;
1661 		if (ctl->ops.clear_pending_flush)
1662 			ctl->ops.clear_pending_flush(ctl);
1663 
1664 		/* update only for command mode primary ctl */
1665 		if ((phys == dpu_enc->cur_master) &&
1666 		   (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1667 		    && ctl->ops.trigger_pending)
1668 			ctl->ops.trigger_pending(ctl);
1669 	}
1670 }
1671 
1672 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1673 		struct drm_display_mode *mode)
1674 {
1675 	u64 pclk_rate;
1676 	u32 pclk_period;
1677 	u32 line_time;
1678 
1679 	/*
1680 	 * For linetime calculation, only operate on master encoder.
1681 	 */
1682 	if (!dpu_enc->cur_master)
1683 		return 0;
1684 
1685 	if (!dpu_enc->cur_master->ops.get_line_count) {
1686 		DPU_ERROR("get_line_count function not defined\n");
1687 		return 0;
1688 	}
1689 
1690 	pclk_rate = mode->clock; /* pixel clock in kHz */
1691 	if (pclk_rate == 0) {
1692 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1693 		return 0;
1694 	}
1695 
1696 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1697 	if (pclk_period == 0) {
1698 		DPU_ERROR("pclk period is 0\n");
1699 		return 0;
1700 	}
1701 
1702 	/*
1703 	 * Line time calculation based on Pixel clock and HTOTAL.
1704 	 * Final unit is in ns.
1705 	 */
1706 	line_time = (pclk_period * mode->htotal) / 1000;
1707 	if (line_time == 0) {
1708 		DPU_ERROR("line time calculation is 0\n");
1709 		return 0;
1710 	}
1711 
1712 	DPU_DEBUG_ENC(dpu_enc,
1713 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1714 			pclk_rate, pclk_period, line_time);
1715 
1716 	return line_time;
1717 }
1718 
1719 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1720 {
1721 	struct drm_display_mode *mode;
1722 	struct dpu_encoder_virt *dpu_enc;
1723 	u32 cur_line;
1724 	u32 line_time;
1725 	u32 vtotal, time_to_vsync;
1726 	ktime_t cur_time;
1727 
1728 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1729 
1730 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1731 		DPU_ERROR("crtc/crtc state object is NULL\n");
1732 		return -EINVAL;
1733 	}
1734 	mode = &drm_enc->crtc->state->adjusted_mode;
1735 
1736 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1737 	if (!line_time)
1738 		return -EINVAL;
1739 
1740 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1741 
1742 	vtotal = mode->vtotal;
1743 	if (cur_line >= vtotal)
1744 		time_to_vsync = line_time * vtotal;
1745 	else
1746 		time_to_vsync = line_time * (vtotal - cur_line);
1747 
1748 	if (time_to_vsync == 0) {
1749 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1750 				vtotal);
1751 		return -EINVAL;
1752 	}
1753 
1754 	cur_time = ktime_get();
1755 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1756 
1757 	DPU_DEBUG_ENC(dpu_enc,
1758 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1759 			cur_line, vtotal, time_to_vsync,
1760 			ktime_to_ms(cur_time),
1761 			ktime_to_ms(*wakeup_time));
1762 	return 0;
1763 }
1764 
1765 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1766 {
1767 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1768 			vsync_event_timer);
1769 	struct drm_encoder *drm_enc = &dpu_enc->base;
1770 	struct msm_drm_private *priv;
1771 	struct msm_drm_thread *event_thread;
1772 
1773 	if (!drm_enc->dev || !drm_enc->crtc) {
1774 		DPU_ERROR("invalid parameters\n");
1775 		return;
1776 	}
1777 
1778 	priv = drm_enc->dev->dev_private;
1779 
1780 	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1781 		DPU_ERROR("invalid crtc index\n");
1782 		return;
1783 	}
1784 	event_thread = &priv->event_thread[drm_enc->crtc->index];
1785 	if (!event_thread) {
1786 		DPU_ERROR("event_thread not found for crtc:%d\n",
1787 				drm_enc->crtc->index);
1788 		return;
1789 	}
1790 
1791 	del_timer(&dpu_enc->vsync_event_timer);
1792 }
1793 
1794 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1795 {
1796 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1797 			struct dpu_encoder_virt, vsync_event_work);
1798 	ktime_t wakeup_time;
1799 
1800 	if (!dpu_enc) {
1801 		DPU_ERROR("invalid dpu encoder\n");
1802 		return;
1803 	}
1804 
1805 	if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
1806 		return;
1807 
1808 	trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1809 	mod_timer(&dpu_enc->vsync_event_timer,
1810 			nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1811 }
1812 
1813 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1814 {
1815 	struct dpu_encoder_virt *dpu_enc;
1816 	struct dpu_encoder_phys *phys;
1817 	bool needs_hw_reset = false;
1818 	unsigned int i;
1819 
1820 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1821 
1822 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1823 
1824 	/* prepare for next kickoff, may include waiting on previous kickoff */
1825 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1826 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1827 		phys = dpu_enc->phys_encs[i];
1828 		if (phys->ops.prepare_for_kickoff)
1829 			phys->ops.prepare_for_kickoff(phys);
1830 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1831 			needs_hw_reset = true;
1832 	}
1833 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1834 
1835 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1836 
1837 	/* if any phys needs reset, reset all phys, in-order */
1838 	if (needs_hw_reset) {
1839 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1840 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1841 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1842 		}
1843 	}
1844 }
1845 
1846 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1847 {
1848 	struct dpu_encoder_virt *dpu_enc;
1849 	struct dpu_encoder_phys *phys;
1850 	ktime_t wakeup_time;
1851 	unsigned long timeout_ms;
1852 	unsigned int i;
1853 
1854 	DPU_ATRACE_BEGIN("encoder_kickoff");
1855 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1856 
1857 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1858 
1859 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1860 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1861 
1862 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1863 	mod_timer(&dpu_enc->frame_done_timer,
1864 			jiffies + msecs_to_jiffies(timeout_ms));
1865 
1866 	/* All phys encs are ready to go, trigger the kickoff */
1867 	_dpu_encoder_kickoff_phys(dpu_enc);
1868 
1869 	/* allow phys encs to handle any post-kickoff business */
1870 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1871 		phys = dpu_enc->phys_encs[i];
1872 		if (phys->ops.handle_post_kickoff)
1873 			phys->ops.handle_post_kickoff(phys);
1874 	}
1875 
1876 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1877 			!dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
1878 		trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1879 					    ktime_to_ms(wakeup_time));
1880 		mod_timer(&dpu_enc->vsync_event_timer,
1881 				nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1882 	}
1883 
1884 	DPU_ATRACE_END("encoder_kickoff");
1885 }
1886 
1887 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
1888 {
1889 	struct dpu_encoder_virt *dpu_enc;
1890 	struct dpu_encoder_phys *phys;
1891 	int i;
1892 
1893 	if (!drm_enc) {
1894 		DPU_ERROR("invalid encoder\n");
1895 		return;
1896 	}
1897 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1898 
1899 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1900 		phys = dpu_enc->phys_encs[i];
1901 		if (phys->ops.prepare_commit)
1902 			phys->ops.prepare_commit(phys);
1903 	}
1904 }
1905 
1906 #ifdef CONFIG_DEBUG_FS
1907 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
1908 {
1909 	struct dpu_encoder_virt *dpu_enc = s->private;
1910 	int i;
1911 
1912 	mutex_lock(&dpu_enc->enc_lock);
1913 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1914 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1915 
1916 		seq_printf(s, "intf:%d    vsync:%8d     underrun:%8d    ",
1917 				phys->intf_idx - INTF_0,
1918 				atomic_read(&phys->vsync_cnt),
1919 				atomic_read(&phys->underrun_cnt));
1920 
1921 		switch (phys->intf_mode) {
1922 		case INTF_MODE_VIDEO:
1923 			seq_puts(s, "mode: video\n");
1924 			break;
1925 		case INTF_MODE_CMD:
1926 			seq_puts(s, "mode: command\n");
1927 			break;
1928 		default:
1929 			seq_puts(s, "mode: ???\n");
1930 			break;
1931 		}
1932 	}
1933 	mutex_unlock(&dpu_enc->enc_lock);
1934 
1935 	return 0;
1936 }
1937 
1938 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
1939 
1940 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1941 {
1942 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1943 	int i;
1944 
1945 	char name[DPU_NAME_SIZE];
1946 
1947 	if (!drm_enc->dev) {
1948 		DPU_ERROR("invalid encoder or kms\n");
1949 		return -EINVAL;
1950 	}
1951 
1952 	snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
1953 
1954 	/* create overall sub-directory for the encoder */
1955 	dpu_enc->debugfs_root = debugfs_create_dir(name,
1956 			drm_enc->dev->primary->debugfs_root);
1957 
1958 	/* don't error check these */
1959 	debugfs_create_file("status", 0600,
1960 		dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops);
1961 
1962 	for (i = 0; i < dpu_enc->num_phys_encs; i++)
1963 		if (dpu_enc->phys_encs[i]->ops.late_register)
1964 			dpu_enc->phys_encs[i]->ops.late_register(
1965 					dpu_enc->phys_encs[i],
1966 					dpu_enc->debugfs_root);
1967 
1968 	return 0;
1969 }
1970 #else
1971 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1972 {
1973 	return 0;
1974 }
1975 #endif
1976 
1977 static int dpu_encoder_late_register(struct drm_encoder *encoder)
1978 {
1979 	return _dpu_encoder_init_debugfs(encoder);
1980 }
1981 
1982 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
1983 {
1984 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
1985 
1986 	debugfs_remove_recursive(dpu_enc->debugfs_root);
1987 }
1988 
1989 static int dpu_encoder_virt_add_phys_encs(
1990 		u32 display_caps,
1991 		struct dpu_encoder_virt *dpu_enc,
1992 		struct dpu_enc_phys_init_params *params)
1993 {
1994 	struct dpu_encoder_phys *enc = NULL;
1995 
1996 	DPU_DEBUG_ENC(dpu_enc, "\n");
1997 
1998 	/*
1999 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2000 	 * in this function, check up-front.
2001 	 */
2002 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2003 			ARRAY_SIZE(dpu_enc->phys_encs)) {
2004 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2005 			  dpu_enc->num_phys_encs);
2006 		return -EINVAL;
2007 	}
2008 
2009 	if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
2010 		enc = dpu_encoder_phys_vid_init(params);
2011 
2012 		if (IS_ERR_OR_NULL(enc)) {
2013 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2014 				PTR_ERR(enc));
2015 			return enc == NULL ? -EINVAL : PTR_ERR(enc);
2016 		}
2017 
2018 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2019 		++dpu_enc->num_phys_encs;
2020 	}
2021 
2022 	if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
2023 		enc = dpu_encoder_phys_cmd_init(params);
2024 
2025 		if (IS_ERR_OR_NULL(enc)) {
2026 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2027 				PTR_ERR(enc));
2028 			return enc == NULL ? -EINVAL : PTR_ERR(enc);
2029 		}
2030 
2031 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2032 		++dpu_enc->num_phys_encs;
2033 	}
2034 
2035 	if (params->split_role == ENC_ROLE_SLAVE)
2036 		dpu_enc->cur_slave = enc;
2037 	else
2038 		dpu_enc->cur_master = enc;
2039 
2040 	return 0;
2041 }
2042 
2043 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
2044 	.handle_vblank_virt = dpu_encoder_vblank_callback,
2045 	.handle_underrun_virt = dpu_encoder_underrun_callback,
2046 	.handle_frame_done = dpu_encoder_frame_done_callback,
2047 };
2048 
2049 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2050 				 struct dpu_kms *dpu_kms,
2051 				 struct msm_display_info *disp_info)
2052 {
2053 	int ret = 0;
2054 	int i = 0;
2055 	enum dpu_intf_type intf_type = INTF_NONE;
2056 	struct dpu_enc_phys_init_params phys_params;
2057 
2058 	if (!dpu_enc) {
2059 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2060 		return -EINVAL;
2061 	}
2062 
2063 	dpu_enc->cur_master = NULL;
2064 
2065 	memset(&phys_params, 0, sizeof(phys_params));
2066 	phys_params.dpu_kms = dpu_kms;
2067 	phys_params.parent = &dpu_enc->base;
2068 	phys_params.parent_ops = &dpu_encoder_parent_ops;
2069 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2070 
2071 	DPU_DEBUG("\n");
2072 
2073 	switch (disp_info->intf_type) {
2074 	case DRM_MODE_ENCODER_DSI:
2075 		intf_type = INTF_DSI;
2076 		break;
2077 	case DRM_MODE_ENCODER_TMDS:
2078 		intf_type = INTF_DP;
2079 		break;
2080 	}
2081 
2082 	WARN_ON(disp_info->num_of_h_tiles < 1);
2083 
2084 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2085 
2086 	if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
2087 	    (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
2088 		dpu_enc->idle_pc_supported =
2089 				dpu_kms->catalog->caps->has_idle_pc;
2090 
2091 	mutex_lock(&dpu_enc->enc_lock);
2092 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2093 		/*
2094 		 * Left-most tile is at index 0, content is controller id
2095 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2096 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2097 		 */
2098 		u32 controller_id = disp_info->h_tile_instance[i];
2099 
2100 		if (disp_info->num_of_h_tiles > 1) {
2101 			if (i == 0)
2102 				phys_params.split_role = ENC_ROLE_MASTER;
2103 			else
2104 				phys_params.split_role = ENC_ROLE_SLAVE;
2105 		} else {
2106 			phys_params.split_role = ENC_ROLE_SOLO;
2107 		}
2108 
2109 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2110 				i, controller_id, phys_params.split_role);
2111 
2112 		phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2113 													intf_type,
2114 													controller_id);
2115 		if (phys_params.intf_idx == INTF_MAX) {
2116 			DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
2117 						  intf_type, controller_id);
2118 			ret = -EINVAL;
2119 		}
2120 
2121 		if (!ret) {
2122 			ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
2123 												 dpu_enc,
2124 												 &phys_params);
2125 			if (ret)
2126 				DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2127 		}
2128 	}
2129 
2130 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2131 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2132 		atomic_set(&phys->vsync_cnt, 0);
2133 		atomic_set(&phys->underrun_cnt, 0);
2134 	}
2135 	mutex_unlock(&dpu_enc->enc_lock);
2136 
2137 	return ret;
2138 }
2139 
2140 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2141 {
2142 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2143 			frame_done_timer);
2144 	struct drm_encoder *drm_enc = &dpu_enc->base;
2145 	u32 event;
2146 
2147 	if (!drm_enc->dev) {
2148 		DPU_ERROR("invalid parameters\n");
2149 		return;
2150 	}
2151 
2152 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2153 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2154 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2155 		return;
2156 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2157 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2158 		return;
2159 	}
2160 
2161 	DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2162 
2163 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2164 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2165 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2166 }
2167 
2168 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2169 	.mode_set = dpu_encoder_virt_mode_set,
2170 	.disable = dpu_encoder_virt_disable,
2171 	.enable = dpu_kms_encoder_enable,
2172 	.atomic_check = dpu_encoder_virt_atomic_check,
2173 
2174 	/* This is called by dpu_kms_encoder_enable */
2175 	.commit = dpu_encoder_virt_enable,
2176 };
2177 
2178 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2179 		.destroy = dpu_encoder_destroy,
2180 		.late_register = dpu_encoder_late_register,
2181 		.early_unregister = dpu_encoder_early_unregister,
2182 };
2183 
2184 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2185 		struct msm_display_info *disp_info)
2186 {
2187 	struct msm_drm_private *priv = dev->dev_private;
2188 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2189 	struct drm_encoder *drm_enc = NULL;
2190 	struct dpu_encoder_virt *dpu_enc = NULL;
2191 	int ret = 0;
2192 
2193 	dpu_enc = to_dpu_encoder_virt(enc);
2194 
2195 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2196 	if (ret)
2197 		goto fail;
2198 
2199 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2200 	timer_setup(&dpu_enc->frame_done_timer,
2201 			dpu_encoder_frame_done_timeout, 0);
2202 
2203 	if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2204 		timer_setup(&dpu_enc->vsync_event_timer,
2205 				dpu_encoder_vsync_event_handler,
2206 				0);
2207 
2208 
2209 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2210 			dpu_encoder_off_work);
2211 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2212 
2213 	kthread_init_work(&dpu_enc->vsync_event_work,
2214 			dpu_encoder_vsync_event_work_handler);
2215 
2216 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2217 
2218 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2219 
2220 	return ret;
2221 
2222 fail:
2223 	DPU_ERROR("failed to create encoder\n");
2224 	if (drm_enc)
2225 		dpu_encoder_destroy(drm_enc);
2226 
2227 	return ret;
2228 
2229 
2230 }
2231 
2232 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2233 		int drm_enc_mode)
2234 {
2235 	struct dpu_encoder_virt *dpu_enc = NULL;
2236 	int rc = 0;
2237 
2238 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2239 	if (!dpu_enc)
2240 		return ERR_PTR(-ENOMEM);
2241 
2242 	rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2243 			drm_enc_mode, NULL);
2244 	if (rc) {
2245 		devm_kfree(dev->dev, dpu_enc);
2246 		return ERR_PTR(rc);
2247 	}
2248 
2249 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2250 
2251 	spin_lock_init(&dpu_enc->enc_spinlock);
2252 	dpu_enc->enabled = false;
2253 	mutex_init(&dpu_enc->enc_lock);
2254 	mutex_init(&dpu_enc->rc_lock);
2255 
2256 	return &dpu_enc->base;
2257 }
2258 
2259 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2260 	enum msm_event_wait event)
2261 {
2262 	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2263 	struct dpu_encoder_virt *dpu_enc = NULL;
2264 	int i, ret = 0;
2265 
2266 	if (!drm_enc) {
2267 		DPU_ERROR("invalid encoder\n");
2268 		return -EINVAL;
2269 	}
2270 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2271 	DPU_DEBUG_ENC(dpu_enc, "\n");
2272 
2273 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2274 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2275 
2276 		switch (event) {
2277 		case MSM_ENC_COMMIT_DONE:
2278 			fn_wait = phys->ops.wait_for_commit_done;
2279 			break;
2280 		case MSM_ENC_TX_COMPLETE:
2281 			fn_wait = phys->ops.wait_for_tx_complete;
2282 			break;
2283 		case MSM_ENC_VBLANK:
2284 			fn_wait = phys->ops.wait_for_vblank;
2285 			break;
2286 		default:
2287 			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2288 					event);
2289 			return -EINVAL;
2290 		}
2291 
2292 		if (fn_wait) {
2293 			DPU_ATRACE_BEGIN("wait_for_completion_event");
2294 			ret = fn_wait(phys);
2295 			DPU_ATRACE_END("wait_for_completion_event");
2296 			if (ret)
2297 				return ret;
2298 		}
2299 	}
2300 
2301 	return ret;
2302 }
2303 
2304 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2305 {
2306 	struct dpu_encoder_virt *dpu_enc = NULL;
2307 
2308 	if (!encoder) {
2309 		DPU_ERROR("invalid encoder\n");
2310 		return INTF_MODE_NONE;
2311 	}
2312 	dpu_enc = to_dpu_encoder_virt(encoder);
2313 
2314 	if (dpu_enc->cur_master)
2315 		return dpu_enc->cur_master->intf_mode;
2316 
2317 	if (dpu_enc->num_phys_encs)
2318 		return dpu_enc->phys_encs[0]->intf_mode;
2319 
2320 	return INTF_MODE_NONE;
2321 }
2322