xref: /openbmc/linux/drivers/gpu/drm/msm/disp/dpu1/dpu_encoder.c (revision 19b438592238b3b40c3f945bb5f9c4ca971c0c45)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
4  * Copyright (C) 2013 Red Hat
5  * Author: Rob Clark <robdclark@gmail.com>
6  */
7 
8 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/debugfs.h>
10 #include <linux/kthread.h>
11 #include <linux/seq_file.h>
12 
13 #include <drm/drm_crtc.h>
14 #include <drm/drm_file.h>
15 #include <drm/drm_probe_helper.h>
16 
17 #include "msm_drv.h"
18 #include "dpu_kms.h"
19 #include "dpu_hwio.h"
20 #include "dpu_hw_catalog.h"
21 #include "dpu_hw_intf.h"
22 #include "dpu_hw_ctl.h"
23 #include "dpu_hw_dspp.h"
24 #include "dpu_formats.h"
25 #include "dpu_encoder_phys.h"
26 #include "dpu_crtc.h"
27 #include "dpu_trace.h"
28 #include "dpu_core_irq.h"
29 #include "disp/msm_disp_snapshot.h"
30 
31 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
32 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
33 
34 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
35 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
36 
37 #define DPU_DEBUG_PHYS(p, fmt, ...) DRM_DEBUG_ATOMIC("enc%d intf%d pp%d " fmt,\
38 		(p) ? (p)->parent->base.id : -1, \
39 		(p) ? (p)->intf_idx - INTF_0 : -1, \
40 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
41 		##__VA_ARGS__)
42 
43 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
44 		(p) ? (p)->parent->base.id : -1, \
45 		(p) ? (p)->intf_idx - INTF_0 : -1, \
46 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
47 		##__VA_ARGS__)
48 
49 /*
50  * Two to anticipate panels that can do cmd/vid dynamic switching
51  * plan is to create all possible physical encoder types, and switch between
52  * them at runtime
53  */
54 #define NUM_PHYS_ENCODER_TYPES 2
55 
56 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
57 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
58 
59 #define MAX_CHANNELS_PER_ENC 2
60 
61 #define IDLE_SHORT_TIMEOUT	1
62 
63 #define MAX_HDISPLAY_SPLIT 1080
64 
65 /* timeout in frames waiting for frame done */
66 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
67 
68 /**
69  * enum dpu_enc_rc_events - events for resource control state machine
70  * @DPU_ENC_RC_EVENT_KICKOFF:
71  *	This event happens at NORMAL priority.
72  *	Event that signals the start of the transfer. When this event is
73  *	received, enable MDP/DSI core clocks. Regardless of the previous
74  *	state, the resource should be in ON state at the end of this event.
75  * @DPU_ENC_RC_EVENT_FRAME_DONE:
76  *	This event happens at INTERRUPT level.
77  *	Event signals the end of the data transfer after the PP FRAME_DONE
78  *	event. At the end of this event, a delayed work is scheduled to go to
79  *	IDLE_PC state after IDLE_TIMEOUT time.
80  * @DPU_ENC_RC_EVENT_PRE_STOP:
81  *	This event happens at NORMAL priority.
82  *	This event, when received during the ON state, leave the RC STATE
83  *	in the PRE_OFF state. It should be followed by the STOP event as
84  *	part of encoder disable.
85  *	If received during IDLE or OFF states, it will do nothing.
86  * @DPU_ENC_RC_EVENT_STOP:
87  *	This event happens at NORMAL priority.
88  *	When this event is received, disable all the MDP/DSI core clocks, and
89  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
90  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
91  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
92  *	Resource state should be in OFF at the end of the event.
93  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
94  *	This event happens at NORMAL priority from a work item.
95  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
96  *	This would disable MDP/DSI core clocks and change the resource state
97  *	to IDLE.
98  */
99 enum dpu_enc_rc_events {
100 	DPU_ENC_RC_EVENT_KICKOFF = 1,
101 	DPU_ENC_RC_EVENT_FRAME_DONE,
102 	DPU_ENC_RC_EVENT_PRE_STOP,
103 	DPU_ENC_RC_EVENT_STOP,
104 	DPU_ENC_RC_EVENT_ENTER_IDLE
105 };
106 
107 /*
108  * enum dpu_enc_rc_states - states that the resource control maintains
109  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
110  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
111  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
112  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
113  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
114  */
115 enum dpu_enc_rc_states {
116 	DPU_ENC_RC_STATE_OFF,
117 	DPU_ENC_RC_STATE_PRE_OFF,
118 	DPU_ENC_RC_STATE_ON,
119 	DPU_ENC_RC_STATE_IDLE
120 };
121 
122 /**
123  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
124  *	encoders. Virtual encoder manages one "logical" display. Physical
125  *	encoders manage one intf block, tied to a specific panel/sub-panel.
126  *	Virtual encoder defers as much as possible to the physical encoders.
127  *	Virtual encoder registers itself with the DRM Framework as the encoder.
128  * @base:		drm_encoder base class for registration with DRM
129  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
130  * @bus_scaling_client:	Client handle to the bus scaling interface
131  * @enabled:		True if the encoder is active, protected by enc_lock
132  * @num_phys_encs:	Actual number of physical encoders contained.
133  * @phys_encs:		Container of physical encoders managed.
134  * @cur_master:		Pointer to the current master in this mode. Optimization
135  *			Only valid after enable. Cleared as disable.
136  * @cur_slave:		As above but for the slave encoder.
137  * @hw_pp:		Handle to the pingpong blocks used for the display. No.
138  *			pingpong blocks can be different than num_phys_encs.
139  * @intfs_swapped:	Whether or not the phys_enc interfaces have been swapped
140  *			for partial update right-only cases, such as pingpong
141  *			split where virtual pingpong does not generate IRQs
142  * @crtc:		Pointer to the currently assigned crtc. Normally you
143  *			would use crtc->state->encoder_mask to determine the
144  *			link between encoder/crtc. However in this case we need
145  *			to track crtc in the disable() hook which is called
146  *			_after_ encoder_mask is cleared.
147  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
148  *				all CTL paths
149  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
150  * @debugfs_root:		Debug file system root file node
151  * @enc_lock:			Lock around physical encoder
152  *				create/destroy/enable/disable
153  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
154  *				busy processing current command.
155  *				Bit0 = phys_encs[0] etc.
156  * @crtc_frame_event_cb:	callback handler for frame event
157  * @crtc_frame_event_cb_data:	callback handler private data
158  * @frame_done_timeout_ms:	frame done timeout in ms
159  * @frame_done_timer:		watchdog timer for frame done event
160  * @vsync_event_timer:		vsync timer
161  * @disp_info:			local copy of msm_display_info struct
162  * @idle_pc_supported:		indicate if idle power collaps is supported
163  * @rc_lock:			resource control mutex lock to protect
164  *				virt encoder over various state changes
165  * @rc_state:			resource controller state
166  * @delayed_off_work:		delayed worker to schedule disabling of
167  *				clks and resources after IDLE_TIMEOUT time.
168  * @vsync_event_work:		worker to handle vsync event for autorefresh
169  * @topology:                   topology of the display
170  * @idle_timeout:		idle timeout duration in milliseconds
171  */
172 struct dpu_encoder_virt {
173 	struct drm_encoder base;
174 	spinlock_t enc_spinlock;
175 	uint32_t bus_scaling_client;
176 
177 	bool enabled;
178 
179 	unsigned int num_phys_encs;
180 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
181 	struct dpu_encoder_phys *cur_master;
182 	struct dpu_encoder_phys *cur_slave;
183 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
184 
185 	bool intfs_swapped;
186 
187 	struct drm_crtc *crtc;
188 
189 	struct dentry *debugfs_root;
190 	struct mutex enc_lock;
191 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
192 	void (*crtc_frame_event_cb)(void *, u32 event);
193 	void *crtc_frame_event_cb_data;
194 
195 	atomic_t frame_done_timeout_ms;
196 	struct timer_list frame_done_timer;
197 	struct timer_list vsync_event_timer;
198 
199 	struct msm_display_info disp_info;
200 
201 	bool idle_pc_supported;
202 	struct mutex rc_lock;
203 	enum dpu_enc_rc_states rc_state;
204 	struct delayed_work delayed_off_work;
205 	struct kthread_work vsync_event_work;
206 	struct msm_display_topology topology;
207 
208 	u32 idle_timeout;
209 };
210 
211 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
212 
213 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
214 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
215 };
216 
217 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
218 {
219 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
220 
221 	if (!hw_pp->ops.setup_dither)
222 		return;
223 
224 	switch (bpc) {
225 	case 6:
226 		dither_cfg.c0_bitdepth = 6;
227 		dither_cfg.c1_bitdepth = 6;
228 		dither_cfg.c2_bitdepth = 6;
229 		dither_cfg.c3_bitdepth = 6;
230 		dither_cfg.temporal_en = 0;
231 		break;
232 	default:
233 		hw_pp->ops.setup_dither(hw_pp, NULL);
234 		return;
235 	}
236 
237 	memcpy(&dither_cfg.matrix, dither_matrix,
238 			sizeof(u32) * DITHER_MATRIX_SZ);
239 
240 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
241 }
242 
243 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
244 		enum dpu_intr_idx intr_idx)
245 {
246 	DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
247 		  DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
248 		  phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
249 
250 	if (phys_enc->parent_ops->handle_frame_done)
251 		phys_enc->parent_ops->handle_frame_done(
252 				phys_enc->parent, phys_enc,
253 				DPU_ENCODER_FRAME_EVENT_ERROR);
254 }
255 
256 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
257 		u32 irq_idx, struct dpu_encoder_wait_info *info);
258 
259 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
260 		enum dpu_intr_idx intr_idx,
261 		struct dpu_encoder_wait_info *wait_info)
262 {
263 	struct dpu_encoder_irq *irq;
264 	u32 irq_status;
265 	int ret;
266 
267 	if (!wait_info || intr_idx >= INTR_IDX_MAX) {
268 		DPU_ERROR("invalid params\n");
269 		return -EINVAL;
270 	}
271 	irq = &phys_enc->irq[intr_idx];
272 
273 	/* note: do master / slave checking outside */
274 
275 	/* return EWOULDBLOCK since we know the wait isn't necessary */
276 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
277 		DRM_ERROR("encoder is disabled id=%u, intr=%d, irq=%d",
278 			  DRMID(phys_enc->parent), intr_idx,
279 			  irq->irq_idx);
280 		return -EWOULDBLOCK;
281 	}
282 
283 	if (irq->irq_idx < 0) {
284 		DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, irq=%s",
285 			      DRMID(phys_enc->parent), intr_idx,
286 			      irq->name);
287 		return 0;
288 	}
289 
290 	DRM_DEBUG_KMS("id=%u, intr=%d, irq=%d, pp=%d, pending_cnt=%d",
291 		      DRMID(phys_enc->parent), intr_idx,
292 		      irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
293 		      atomic_read(wait_info->atomic_cnt));
294 
295 	ret = dpu_encoder_helper_wait_event_timeout(
296 			DRMID(phys_enc->parent),
297 			irq->irq_idx,
298 			wait_info);
299 
300 	if (ret <= 0) {
301 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
302 				irq->irq_idx, true);
303 		if (irq_status) {
304 			unsigned long flags;
305 
306 			DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, "
307 				      "irq=%d, pp=%d, atomic_cnt=%d",
308 				      DRMID(phys_enc->parent), intr_idx,
309 				      irq->irq_idx,
310 				      phys_enc->hw_pp->idx - PINGPONG_0,
311 				      atomic_read(wait_info->atomic_cnt));
312 			local_irq_save(flags);
313 			irq->cb.func(phys_enc, irq->irq_idx);
314 			local_irq_restore(flags);
315 			ret = 0;
316 		} else {
317 			ret = -ETIMEDOUT;
318 			DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, "
319 				      "irq=%d, pp=%d, atomic_cnt=%d",
320 				      DRMID(phys_enc->parent), intr_idx,
321 				      irq->irq_idx,
322 				      phys_enc->hw_pp->idx - PINGPONG_0,
323 				      atomic_read(wait_info->atomic_cnt));
324 		}
325 	} else {
326 		ret = 0;
327 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
328 			intr_idx, irq->irq_idx,
329 			phys_enc->hw_pp->idx - PINGPONG_0,
330 			atomic_read(wait_info->atomic_cnt));
331 	}
332 
333 	return ret;
334 }
335 
336 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
337 		enum dpu_intr_idx intr_idx)
338 {
339 	struct dpu_encoder_irq *irq;
340 	int ret = 0;
341 
342 	if (intr_idx >= INTR_IDX_MAX) {
343 		DPU_ERROR("invalid params\n");
344 		return -EINVAL;
345 	}
346 	irq = &phys_enc->irq[intr_idx];
347 
348 	if (irq->irq_idx < 0) {
349 		DPU_ERROR_PHYS(phys_enc,
350 			"invalid IRQ index:%d\n", irq->irq_idx);
351 		return -EINVAL;
352 	}
353 
354 	ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
355 			&irq->cb);
356 	if (ret) {
357 		DPU_ERROR_PHYS(phys_enc,
358 			"failed to register IRQ callback for %s\n",
359 			irq->name);
360 		irq->irq_idx = -EINVAL;
361 		return ret;
362 	}
363 
364 	trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
365 				irq->irq_idx);
366 
367 	return ret;
368 }
369 
370 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
371 		enum dpu_intr_idx intr_idx)
372 {
373 	struct dpu_encoder_irq *irq;
374 	int ret;
375 
376 	irq = &phys_enc->irq[intr_idx];
377 
378 	/* silently skip irqs that weren't registered */
379 	if (irq->irq_idx < 0) {
380 		DRM_ERROR("duplicate unregister id=%u, intr=%d, irq=%d",
381 			  DRMID(phys_enc->parent), intr_idx,
382 			  irq->irq_idx);
383 		return 0;
384 	}
385 
386 	ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
387 			&irq->cb);
388 	if (ret) {
389 		DRM_ERROR("unreg cb fail id=%u, intr=%d, irq=%d ret=%d",
390 			  DRMID(phys_enc->parent), intr_idx,
391 			  irq->irq_idx, ret);
392 	}
393 
394 	trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
395 					     irq->irq_idx);
396 
397 	return 0;
398 }
399 
400 int dpu_encoder_get_frame_count(struct drm_encoder *drm_enc)
401 {
402 	struct dpu_encoder_virt *dpu_enc;
403 	struct dpu_encoder_phys *phys;
404 	int framecount = 0;
405 
406 	dpu_enc = to_dpu_encoder_virt(drm_enc);
407 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
408 
409 	if (phys && phys->ops.get_frame_count)
410 		framecount = phys->ops.get_frame_count(phys);
411 
412 	return framecount;
413 }
414 
415 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
416 {
417 	struct dpu_encoder_virt *dpu_enc;
418 	struct dpu_encoder_phys *phys;
419 	int linecount = 0;
420 
421 	dpu_enc = to_dpu_encoder_virt(drm_enc);
422 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
423 
424 	if (phys && phys->ops.get_line_count)
425 		linecount = phys->ops.get_line_count(phys);
426 
427 	return linecount;
428 }
429 
430 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
431 				  struct dpu_encoder_hw_resources *hw_res)
432 {
433 	struct dpu_encoder_virt *dpu_enc = NULL;
434 	int i = 0;
435 
436 	dpu_enc = to_dpu_encoder_virt(drm_enc);
437 	DPU_DEBUG_ENC(dpu_enc, "\n");
438 
439 	/* Query resources used by phys encs, expected to be without overlap */
440 	memset(hw_res, 0, sizeof(*hw_res));
441 
442 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
443 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
444 
445 		if (phys->ops.get_hw_resources)
446 			phys->ops.get_hw_resources(phys, hw_res);
447 	}
448 }
449 
450 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
451 {
452 	struct dpu_encoder_virt *dpu_enc = NULL;
453 	int i = 0;
454 
455 	if (!drm_enc) {
456 		DPU_ERROR("invalid encoder\n");
457 		return;
458 	}
459 
460 	dpu_enc = to_dpu_encoder_virt(drm_enc);
461 	DPU_DEBUG_ENC(dpu_enc, "\n");
462 
463 	mutex_lock(&dpu_enc->enc_lock);
464 
465 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
466 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
467 
468 		if (phys->ops.destroy) {
469 			phys->ops.destroy(phys);
470 			--dpu_enc->num_phys_encs;
471 			dpu_enc->phys_encs[i] = NULL;
472 		}
473 	}
474 
475 	if (dpu_enc->num_phys_encs)
476 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
477 				dpu_enc->num_phys_encs);
478 	dpu_enc->num_phys_encs = 0;
479 	mutex_unlock(&dpu_enc->enc_lock);
480 
481 	drm_encoder_cleanup(drm_enc);
482 	mutex_destroy(&dpu_enc->enc_lock);
483 }
484 
485 void dpu_encoder_helper_split_config(
486 		struct dpu_encoder_phys *phys_enc,
487 		enum dpu_intf interface)
488 {
489 	struct dpu_encoder_virt *dpu_enc;
490 	struct split_pipe_cfg cfg = { 0 };
491 	struct dpu_hw_mdp *hw_mdptop;
492 	struct msm_display_info *disp_info;
493 
494 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
495 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
496 		return;
497 	}
498 
499 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
500 	hw_mdptop = phys_enc->hw_mdptop;
501 	disp_info = &dpu_enc->disp_info;
502 
503 	if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
504 		return;
505 
506 	/**
507 	 * disable split modes since encoder will be operating in as the only
508 	 * encoder, either for the entire use case in the case of, for example,
509 	 * single DSI, or for this frame in the case of left/right only partial
510 	 * update.
511 	 */
512 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
513 		if (hw_mdptop->ops.setup_split_pipe)
514 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
515 		return;
516 	}
517 
518 	cfg.en = true;
519 	cfg.mode = phys_enc->intf_mode;
520 	cfg.intf = interface;
521 
522 	if (cfg.en && phys_enc->ops.needs_single_flush &&
523 			phys_enc->ops.needs_single_flush(phys_enc))
524 		cfg.split_flush_en = true;
525 
526 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
527 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
528 
529 		if (hw_mdptop->ops.setup_split_pipe)
530 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
531 	}
532 }
533 
534 static struct msm_display_topology dpu_encoder_get_topology(
535 			struct dpu_encoder_virt *dpu_enc,
536 			struct dpu_kms *dpu_kms,
537 			struct drm_display_mode *mode)
538 {
539 	struct msm_display_topology topology = {0};
540 	int i, intf_count = 0;
541 
542 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
543 		if (dpu_enc->phys_encs[i])
544 			intf_count++;
545 
546 	/* Datapath topology selection
547 	 *
548 	 * Dual display
549 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
550 	 *
551 	 * Single display
552 	 * 1 LM, 1 INTF
553 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
554 	 *
555 	 * Adding color blocks only to primary interface if available in
556 	 * sufficient number
557 	 */
558 	if (intf_count == 2)
559 		topology.num_lm = 2;
560 	else if (!dpu_kms->catalog->caps->has_3d_merge)
561 		topology.num_lm = 1;
562 	else
563 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
564 
565 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI) {
566 		if (dpu_kms->catalog->dspp &&
567 			(dpu_kms->catalog->dspp_count >= topology.num_lm))
568 			topology.num_dspp = topology.num_lm;
569 	}
570 
571 	topology.num_enc = 0;
572 	topology.num_intf = intf_count;
573 
574 	return topology;
575 }
576 static int dpu_encoder_virt_atomic_check(
577 		struct drm_encoder *drm_enc,
578 		struct drm_crtc_state *crtc_state,
579 		struct drm_connector_state *conn_state)
580 {
581 	struct dpu_encoder_virt *dpu_enc;
582 	struct msm_drm_private *priv;
583 	struct dpu_kms *dpu_kms;
584 	const struct drm_display_mode *mode;
585 	struct drm_display_mode *adj_mode;
586 	struct msm_display_topology topology;
587 	struct dpu_global_state *global_state;
588 	int i = 0;
589 	int ret = 0;
590 
591 	if (!drm_enc || !crtc_state || !conn_state) {
592 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
593 				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
594 		return -EINVAL;
595 	}
596 
597 	dpu_enc = to_dpu_encoder_virt(drm_enc);
598 	DPU_DEBUG_ENC(dpu_enc, "\n");
599 
600 	priv = drm_enc->dev->dev_private;
601 	dpu_kms = to_dpu_kms(priv->kms);
602 	mode = &crtc_state->mode;
603 	adj_mode = &crtc_state->adjusted_mode;
604 	global_state = dpu_kms_get_global_state(crtc_state->state);
605 	if (IS_ERR(global_state))
606 		return PTR_ERR(global_state);
607 
608 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
609 
610 	/* perform atomic check on the first physical encoder (master) */
611 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
612 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
613 
614 		if (phys->ops.atomic_check)
615 			ret = phys->ops.atomic_check(phys, crtc_state,
616 					conn_state);
617 		else if (phys->ops.mode_fixup)
618 			if (!phys->ops.mode_fixup(phys, mode, adj_mode))
619 				ret = -EINVAL;
620 
621 		if (ret) {
622 			DPU_ERROR_ENC(dpu_enc,
623 					"mode unsupported, phys idx %d\n", i);
624 			break;
625 		}
626 	}
627 
628 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
629 
630 	/* Reserve dynamic resources now. */
631 	if (!ret) {
632 		/*
633 		 * Release and Allocate resources on every modeset
634 		 * Dont allocate when active is false.
635 		 */
636 		if (drm_atomic_crtc_needs_modeset(crtc_state)) {
637 			dpu_rm_release(global_state, drm_enc);
638 
639 			if (!crtc_state->active_changed || crtc_state->active)
640 				ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
641 						drm_enc, crtc_state, topology);
642 		}
643 	}
644 
645 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
646 
647 	return ret;
648 }
649 
650 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
651 			struct msm_display_info *disp_info)
652 {
653 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
654 	struct msm_drm_private *priv;
655 	struct dpu_kms *dpu_kms;
656 	struct dpu_hw_mdp *hw_mdptop;
657 	struct drm_encoder *drm_enc;
658 	int i;
659 
660 	if (!dpu_enc || !disp_info) {
661 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
662 					dpu_enc != NULL, disp_info != NULL);
663 		return;
664 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
665 		DPU_ERROR("invalid num phys enc %d/%d\n",
666 				dpu_enc->num_phys_encs,
667 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
668 		return;
669 	}
670 
671 	drm_enc = &dpu_enc->base;
672 	/* this pointers are checked in virt_enable_helper */
673 	priv = drm_enc->dev->dev_private;
674 
675 	dpu_kms = to_dpu_kms(priv->kms);
676 	hw_mdptop = dpu_kms->hw_mdp;
677 	if (!hw_mdptop) {
678 		DPU_ERROR("invalid mdptop\n");
679 		return;
680 	}
681 
682 	if (hw_mdptop->ops.setup_vsync_source &&
683 			disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
684 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
685 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
686 
687 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
688 		if (disp_info->is_te_using_watchdog_timer)
689 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
690 		else
691 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
692 
693 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
694 	}
695 }
696 
697 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
698 {
699 	struct dpu_encoder_virt *dpu_enc;
700 	int i;
701 
702 	if (!drm_enc) {
703 		DPU_ERROR("invalid encoder\n");
704 		return;
705 	}
706 
707 	dpu_enc = to_dpu_encoder_virt(drm_enc);
708 
709 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
710 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
711 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
712 
713 		if (phys->ops.irq_control)
714 			phys->ops.irq_control(phys, enable);
715 	}
716 
717 }
718 
719 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
720 		bool enable)
721 {
722 	struct msm_drm_private *priv;
723 	struct dpu_kms *dpu_kms;
724 	struct dpu_encoder_virt *dpu_enc;
725 
726 	dpu_enc = to_dpu_encoder_virt(drm_enc);
727 	priv = drm_enc->dev->dev_private;
728 	dpu_kms = to_dpu_kms(priv->kms);
729 
730 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
731 
732 	if (!dpu_enc->cur_master) {
733 		DPU_ERROR("encoder master not set\n");
734 		return;
735 	}
736 
737 	if (enable) {
738 		/* enable DPU core clks */
739 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
740 
741 		/* enable all the irq */
742 		_dpu_encoder_irq_control(drm_enc, true);
743 
744 	} else {
745 		/* disable all the irq */
746 		_dpu_encoder_irq_control(drm_enc, false);
747 
748 		/* disable DPU core clks */
749 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
750 	}
751 
752 }
753 
754 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
755 		u32 sw_event)
756 {
757 	struct dpu_encoder_virt *dpu_enc;
758 	struct msm_drm_private *priv;
759 	bool is_vid_mode = false;
760 
761 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
762 		DPU_ERROR("invalid parameters\n");
763 		return -EINVAL;
764 	}
765 	dpu_enc = to_dpu_encoder_virt(drm_enc);
766 	priv = drm_enc->dev->dev_private;
767 	is_vid_mode = dpu_enc->disp_info.capabilities &
768 						MSM_DISPLAY_CAP_VID_MODE;
769 
770 	/*
771 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
772 	 * events and return early for other events (ie wb display).
773 	 */
774 	if (!dpu_enc->idle_pc_supported &&
775 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
776 			sw_event != DPU_ENC_RC_EVENT_STOP &&
777 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
778 		return 0;
779 
780 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
781 			 dpu_enc->rc_state, "begin");
782 
783 	switch (sw_event) {
784 	case DPU_ENC_RC_EVENT_KICKOFF:
785 		/* cancel delayed off work, if any */
786 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
787 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
788 					sw_event);
789 
790 		mutex_lock(&dpu_enc->rc_lock);
791 
792 		/* return if the resource control is already in ON state */
793 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
794 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
795 				      DRMID(drm_enc), sw_event);
796 			mutex_unlock(&dpu_enc->rc_lock);
797 			return 0;
798 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
799 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
800 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
801 				      DRMID(drm_enc), sw_event,
802 				      dpu_enc->rc_state);
803 			mutex_unlock(&dpu_enc->rc_lock);
804 			return -EINVAL;
805 		}
806 
807 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
808 			_dpu_encoder_irq_control(drm_enc, true);
809 		else
810 			_dpu_encoder_resource_control_helper(drm_enc, true);
811 
812 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
813 
814 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
815 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
816 				 "kickoff");
817 
818 		mutex_unlock(&dpu_enc->rc_lock);
819 		break;
820 
821 	case DPU_ENC_RC_EVENT_FRAME_DONE:
822 		/*
823 		 * mutex lock is not used as this event happens at interrupt
824 		 * context. And locking is not required as, the other events
825 		 * like KICKOFF and STOP does a wait-for-idle before executing
826 		 * the resource_control
827 		 */
828 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
829 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
830 				      DRMID(drm_enc), sw_event,
831 				      dpu_enc->rc_state);
832 			return -EINVAL;
833 		}
834 
835 		/*
836 		 * schedule off work item only when there are no
837 		 * frames pending
838 		 */
839 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
840 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
841 				      DRMID(drm_enc));
842 			return 0;
843 		}
844 
845 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
846 				   msecs_to_jiffies(dpu_enc->idle_timeout));
847 
848 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
849 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
850 				 "frame done");
851 		break;
852 
853 	case DPU_ENC_RC_EVENT_PRE_STOP:
854 		/* cancel delayed off work, if any */
855 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
856 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
857 					sw_event);
858 
859 		mutex_lock(&dpu_enc->rc_lock);
860 
861 		if (is_vid_mode &&
862 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
863 			_dpu_encoder_irq_control(drm_enc, true);
864 		}
865 		/* skip if is already OFF or IDLE, resources are off already */
866 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
867 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
868 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
869 				      DRMID(drm_enc), sw_event,
870 				      dpu_enc->rc_state);
871 			mutex_unlock(&dpu_enc->rc_lock);
872 			return 0;
873 		}
874 
875 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
876 
877 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
878 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
879 				 "pre stop");
880 
881 		mutex_unlock(&dpu_enc->rc_lock);
882 		break;
883 
884 	case DPU_ENC_RC_EVENT_STOP:
885 		mutex_lock(&dpu_enc->rc_lock);
886 
887 		/* return if the resource control is already in OFF state */
888 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
889 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
890 				      DRMID(drm_enc), sw_event);
891 			mutex_unlock(&dpu_enc->rc_lock);
892 			return 0;
893 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
894 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
895 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
896 			mutex_unlock(&dpu_enc->rc_lock);
897 			return -EINVAL;
898 		}
899 
900 		/**
901 		 * expect to arrive here only if in either idle state or pre-off
902 		 * and in IDLE state the resources are already disabled
903 		 */
904 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
905 			_dpu_encoder_resource_control_helper(drm_enc, false);
906 
907 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
908 
909 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
910 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
911 				 "stop");
912 
913 		mutex_unlock(&dpu_enc->rc_lock);
914 		break;
915 
916 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
917 		mutex_lock(&dpu_enc->rc_lock);
918 
919 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
920 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
921 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
922 			mutex_unlock(&dpu_enc->rc_lock);
923 			return 0;
924 		}
925 
926 		/*
927 		 * if we are in ON but a frame was just kicked off,
928 		 * ignore the IDLE event, it's probably a stale timer event
929 		 */
930 		if (dpu_enc->frame_busy_mask[0]) {
931 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
932 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
933 			mutex_unlock(&dpu_enc->rc_lock);
934 			return 0;
935 		}
936 
937 		if (is_vid_mode)
938 			_dpu_encoder_irq_control(drm_enc, false);
939 		else
940 			_dpu_encoder_resource_control_helper(drm_enc, false);
941 
942 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
943 
944 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
945 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
946 				 "idle");
947 
948 		mutex_unlock(&dpu_enc->rc_lock);
949 		break;
950 
951 	default:
952 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
953 			  sw_event);
954 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
955 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
956 				 "error");
957 		break;
958 	}
959 
960 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
961 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
962 			 "end");
963 	return 0;
964 }
965 
966 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
967 				      struct drm_display_mode *mode,
968 				      struct drm_display_mode *adj_mode)
969 {
970 	struct dpu_encoder_virt *dpu_enc;
971 	struct msm_drm_private *priv;
972 	struct dpu_kms *dpu_kms;
973 	struct list_head *connector_list;
974 	struct drm_connector *conn = NULL, *conn_iter;
975 	struct drm_crtc *drm_crtc;
976 	struct dpu_crtc_state *cstate;
977 	struct dpu_global_state *global_state;
978 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
979 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
980 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
981 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
982 	int num_lm, num_ctl, num_pp;
983 	int i, j;
984 
985 	if (!drm_enc) {
986 		DPU_ERROR("invalid encoder\n");
987 		return;
988 	}
989 
990 	dpu_enc = to_dpu_encoder_virt(drm_enc);
991 	DPU_DEBUG_ENC(dpu_enc, "\n");
992 
993 	priv = drm_enc->dev->dev_private;
994 	dpu_kms = to_dpu_kms(priv->kms);
995 	connector_list = &dpu_kms->dev->mode_config.connector_list;
996 
997 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
998 	if (IS_ERR_OR_NULL(global_state)) {
999 		DPU_ERROR("Failed to get global state");
1000 		return;
1001 	}
1002 
1003 	trace_dpu_enc_mode_set(DRMID(drm_enc));
1004 
1005 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp)
1006 		msm_dp_display_mode_set(priv->dp, drm_enc, mode, adj_mode);
1007 
1008 	list_for_each_entry(conn_iter, connector_list, head)
1009 		if (conn_iter->encoder == drm_enc)
1010 			conn = conn_iter;
1011 
1012 	if (!conn) {
1013 		DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
1014 		return;
1015 	} else if (!conn->state) {
1016 		DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
1017 		return;
1018 	}
1019 
1020 	drm_for_each_crtc(drm_crtc, drm_enc->dev)
1021 		if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc))
1022 			break;
1023 
1024 	/* Query resource that have been reserved in atomic check step. */
1025 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1026 		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1027 		ARRAY_SIZE(hw_pp));
1028 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1029 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1030 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1031 		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1032 	dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1033 		drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1034 		ARRAY_SIZE(hw_dspp));
1035 
1036 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1037 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1038 						: NULL;
1039 
1040 	cstate = to_dpu_crtc_state(drm_crtc->state);
1041 
1042 	for (i = 0; i < num_lm; i++) {
1043 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1044 
1045 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1046 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1047 		cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1048 	}
1049 
1050 	cstate->num_mixers = num_lm;
1051 
1052 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1053 		int num_blk;
1054 		struct dpu_hw_blk *hw_blk[MAX_CHANNELS_PER_ENC];
1055 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1056 
1057 		if (!dpu_enc->hw_pp[i]) {
1058 			DPU_ERROR_ENC(dpu_enc,
1059 				"no pp block assigned at idx: %d\n", i);
1060 			return;
1061 		}
1062 
1063 		if (!hw_ctl[i]) {
1064 			DPU_ERROR_ENC(dpu_enc,
1065 				"no ctl block assigned at idx: %d\n", i);
1066 			return;
1067 		}
1068 
1069 		phys->hw_pp = dpu_enc->hw_pp[i];
1070 		phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1071 
1072 		num_blk = dpu_rm_get_assigned_resources(&dpu_kms->rm,
1073 			global_state, drm_enc->base.id, DPU_HW_BLK_INTF,
1074 			hw_blk, ARRAY_SIZE(hw_blk));
1075 		for (j = 0; j < num_blk; j++) {
1076 			struct dpu_hw_intf *hw_intf;
1077 
1078 			hw_intf = to_dpu_hw_intf(hw_blk[i]);
1079 			if (hw_intf->idx == phys->intf_idx)
1080 				phys->hw_intf = hw_intf;
1081 		}
1082 
1083 		if (!phys->hw_intf) {
1084 			DPU_ERROR_ENC(dpu_enc,
1085 				      "no intf block assigned at idx: %d\n", i);
1086 			return;
1087 		}
1088 
1089 		phys->connector = conn->state->connector;
1090 		if (phys->ops.mode_set)
1091 			phys->ops.mode_set(phys, mode, adj_mode);
1092 	}
1093 }
1094 
1095 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1096 {
1097 	struct dpu_encoder_virt *dpu_enc = NULL;
1098 	int i;
1099 
1100 	if (!drm_enc || !drm_enc->dev) {
1101 		DPU_ERROR("invalid parameters\n");
1102 		return;
1103 	}
1104 
1105 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1106 	if (!dpu_enc || !dpu_enc->cur_master) {
1107 		DPU_ERROR("invalid dpu encoder/master\n");
1108 		return;
1109 	}
1110 
1111 
1112 	if (dpu_enc->disp_info.intf_type == DRM_MODE_CONNECTOR_DisplayPort &&
1113 		dpu_enc->cur_master->hw_mdptop &&
1114 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1115 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1116 			dpu_enc->cur_master->hw_mdptop);
1117 
1118 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1119 
1120 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1121 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1122 		unsigned bpc = dpu_enc->phys_encs[0]->connector->display_info.bpc;
1123 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1124 			if (!dpu_enc->hw_pp[i])
1125 				continue;
1126 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1127 		}
1128 	}
1129 }
1130 
1131 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1132 {
1133 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1134 
1135 	mutex_lock(&dpu_enc->enc_lock);
1136 
1137 	if (!dpu_enc->enabled)
1138 		goto out;
1139 
1140 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1141 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1142 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1143 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1144 
1145 	_dpu_encoder_virt_enable_helper(drm_enc);
1146 
1147 out:
1148 	mutex_unlock(&dpu_enc->enc_lock);
1149 }
1150 
1151 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1152 {
1153 	struct dpu_encoder_virt *dpu_enc = NULL;
1154 	int ret = 0;
1155 	struct msm_drm_private *priv;
1156 	struct drm_display_mode *cur_mode = NULL;
1157 
1158 	if (!drm_enc) {
1159 		DPU_ERROR("invalid encoder\n");
1160 		return;
1161 	}
1162 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1163 
1164 	mutex_lock(&dpu_enc->enc_lock);
1165 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1166 	priv = drm_enc->dev->dev_private;
1167 
1168 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1169 			     cur_mode->vdisplay);
1170 
1171 	/* always enable slave encoder before master */
1172 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1173 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1174 
1175 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1176 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1177 
1178 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1179 	if (ret) {
1180 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1181 				ret);
1182 		goto out;
1183 	}
1184 
1185 	_dpu_encoder_virt_enable_helper(drm_enc);
1186 
1187 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp) {
1188 		ret = msm_dp_display_enable(priv->dp,
1189 						drm_enc);
1190 		if (ret) {
1191 			DPU_ERROR_ENC(dpu_enc, "dp display enable failed: %d\n",
1192 				ret);
1193 			goto out;
1194 		}
1195 	}
1196 	dpu_enc->enabled = true;
1197 
1198 out:
1199 	mutex_unlock(&dpu_enc->enc_lock);
1200 }
1201 
1202 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1203 {
1204 	struct dpu_encoder_virt *dpu_enc = NULL;
1205 	struct msm_drm_private *priv;
1206 	int i = 0;
1207 
1208 	if (!drm_enc) {
1209 		DPU_ERROR("invalid encoder\n");
1210 		return;
1211 	} else if (!drm_enc->dev) {
1212 		DPU_ERROR("invalid dev\n");
1213 		return;
1214 	}
1215 
1216 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1217 	DPU_DEBUG_ENC(dpu_enc, "\n");
1218 
1219 	mutex_lock(&dpu_enc->enc_lock);
1220 	dpu_enc->enabled = false;
1221 
1222 	priv = drm_enc->dev->dev_private;
1223 
1224 	trace_dpu_enc_disable(DRMID(drm_enc));
1225 
1226 	/* wait for idle */
1227 	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1228 
1229 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp) {
1230 		if (msm_dp_display_pre_disable(priv->dp, drm_enc))
1231 			DPU_ERROR_ENC(dpu_enc, "dp display push idle failed\n");
1232 	}
1233 
1234 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1235 
1236 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1237 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1238 
1239 		if (phys->ops.disable)
1240 			phys->ops.disable(phys);
1241 	}
1242 
1243 
1244 	/* after phys waits for frame-done, should be no more frames pending */
1245 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1246 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1247 		del_timer_sync(&dpu_enc->frame_done_timer);
1248 	}
1249 
1250 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1251 
1252 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1253 		dpu_enc->phys_encs[i]->connector = NULL;
1254 	}
1255 
1256 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1257 
1258 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp) {
1259 		if (msm_dp_display_disable(priv->dp, drm_enc))
1260 			DPU_ERROR_ENC(dpu_enc, "dp display disable failed\n");
1261 	}
1262 
1263 	mutex_unlock(&dpu_enc->enc_lock);
1264 }
1265 
1266 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1267 		enum dpu_intf_type type, u32 controller_id)
1268 {
1269 	int i = 0;
1270 
1271 	for (i = 0; i < catalog->intf_count; i++) {
1272 		if (catalog->intf[i].type == type
1273 		    && catalog->intf[i].controller_id == controller_id) {
1274 			return catalog->intf[i].id;
1275 		}
1276 	}
1277 
1278 	return INTF_MAX;
1279 }
1280 
1281 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1282 		struct dpu_encoder_phys *phy_enc)
1283 {
1284 	struct dpu_encoder_virt *dpu_enc = NULL;
1285 	unsigned long lock_flags;
1286 
1287 	if (!drm_enc || !phy_enc)
1288 		return;
1289 
1290 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1291 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1292 
1293 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1294 	if (dpu_enc->crtc)
1295 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1296 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1297 
1298 	atomic_inc(&phy_enc->vsync_cnt);
1299 	DPU_ATRACE_END("encoder_vblank_callback");
1300 }
1301 
1302 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1303 		struct dpu_encoder_phys *phy_enc)
1304 {
1305 	if (!phy_enc)
1306 		return;
1307 
1308 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1309 	atomic_inc(&phy_enc->underrun_cnt);
1310 
1311 	/* trigger dump only on the first underrun */
1312 	if (atomic_read(&phy_enc->underrun_cnt) == 1)
1313 		msm_disp_snapshot_state(drm_enc->dev);
1314 
1315 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1316 				  atomic_read(&phy_enc->underrun_cnt));
1317 	DPU_ATRACE_END("encoder_underrun_callback");
1318 }
1319 
1320 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1321 {
1322 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1323 	unsigned long lock_flags;
1324 
1325 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1326 	/* crtc should always be cleared before re-assigning */
1327 	WARN_ON(crtc && dpu_enc->crtc);
1328 	dpu_enc->crtc = crtc;
1329 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1330 }
1331 
1332 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1333 					struct drm_crtc *crtc, bool enable)
1334 {
1335 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1336 	unsigned long lock_flags;
1337 	int i;
1338 
1339 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1340 
1341 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1342 	if (dpu_enc->crtc != crtc) {
1343 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1344 		return;
1345 	}
1346 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1347 
1348 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1349 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1350 
1351 		if (phys->ops.control_vblank_irq)
1352 			phys->ops.control_vblank_irq(phys, enable);
1353 	}
1354 }
1355 
1356 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1357 		void (*frame_event_cb)(void *, u32 event),
1358 		void *frame_event_cb_data)
1359 {
1360 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1361 	unsigned long lock_flags;
1362 	bool enable;
1363 
1364 	enable = frame_event_cb ? true : false;
1365 
1366 	if (!drm_enc) {
1367 		DPU_ERROR("invalid encoder\n");
1368 		return;
1369 	}
1370 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1371 
1372 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1373 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1374 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1375 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1376 }
1377 
1378 static void dpu_encoder_frame_done_callback(
1379 		struct drm_encoder *drm_enc,
1380 		struct dpu_encoder_phys *ready_phys, u32 event)
1381 {
1382 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1383 	unsigned int i;
1384 
1385 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1386 			| DPU_ENCODER_FRAME_EVENT_ERROR
1387 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1388 
1389 		if (!dpu_enc->frame_busy_mask[0]) {
1390 			/**
1391 			 * suppress frame_done without waiter,
1392 			 * likely autorefresh
1393 			 */
1394 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
1395 					event, ready_phys->intf_idx);
1396 			return;
1397 		}
1398 
1399 		/* One of the physical encoders has become idle */
1400 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1401 			if (dpu_enc->phys_encs[i] == ready_phys) {
1402 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1403 						dpu_enc->frame_busy_mask[0]);
1404 				clear_bit(i, dpu_enc->frame_busy_mask);
1405 			}
1406 		}
1407 
1408 		if (!dpu_enc->frame_busy_mask[0]) {
1409 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1410 			del_timer(&dpu_enc->frame_done_timer);
1411 
1412 			dpu_encoder_resource_control(drm_enc,
1413 					DPU_ENC_RC_EVENT_FRAME_DONE);
1414 
1415 			if (dpu_enc->crtc_frame_event_cb)
1416 				dpu_enc->crtc_frame_event_cb(
1417 					dpu_enc->crtc_frame_event_cb_data,
1418 					event);
1419 		}
1420 	} else {
1421 		if (dpu_enc->crtc_frame_event_cb)
1422 			dpu_enc->crtc_frame_event_cb(
1423 				dpu_enc->crtc_frame_event_cb_data, event);
1424 	}
1425 }
1426 
1427 static void dpu_encoder_off_work(struct work_struct *work)
1428 {
1429 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1430 			struct dpu_encoder_virt, delayed_off_work.work);
1431 
1432 	dpu_encoder_resource_control(&dpu_enc->base,
1433 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1434 
1435 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1436 				DPU_ENCODER_FRAME_EVENT_IDLE);
1437 }
1438 
1439 /**
1440  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1441  * @drm_enc: Pointer to drm encoder structure
1442  * @phys: Pointer to physical encoder structure
1443  * @extra_flush_bits: Additional bit mask to include in flush trigger
1444  */
1445 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1446 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1447 {
1448 	struct dpu_hw_ctl *ctl;
1449 	int pending_kickoff_cnt;
1450 	u32 ret = UINT_MAX;
1451 
1452 	if (!phys->hw_pp) {
1453 		DPU_ERROR("invalid pingpong hw\n");
1454 		return;
1455 	}
1456 
1457 	ctl = phys->hw_ctl;
1458 	if (!ctl->ops.trigger_flush) {
1459 		DPU_ERROR("missing trigger cb\n");
1460 		return;
1461 	}
1462 
1463 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1464 
1465 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1466 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1467 
1468 	ctl->ops.trigger_flush(ctl);
1469 
1470 	if (ctl->ops.get_pending_flush)
1471 		ret = ctl->ops.get_pending_flush(ctl);
1472 
1473 	trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1474 				    pending_kickoff_cnt, ctl->idx,
1475 				    extra_flush_bits, ret);
1476 }
1477 
1478 /**
1479  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1480  * @phys: Pointer to physical encoder structure
1481  */
1482 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1483 {
1484 	if (!phys) {
1485 		DPU_ERROR("invalid argument(s)\n");
1486 		return;
1487 	}
1488 
1489 	if (!phys->hw_pp) {
1490 		DPU_ERROR("invalid pingpong hw\n");
1491 		return;
1492 	}
1493 
1494 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1495 		phys->ops.trigger_start(phys);
1496 }
1497 
1498 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1499 {
1500 	struct dpu_hw_ctl *ctl;
1501 
1502 	ctl = phys_enc->hw_ctl;
1503 	if (ctl->ops.trigger_start) {
1504 		ctl->ops.trigger_start(ctl);
1505 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1506 	}
1507 }
1508 
1509 static int dpu_encoder_helper_wait_event_timeout(
1510 		int32_t drm_id,
1511 		u32 irq_idx,
1512 		struct dpu_encoder_wait_info *info)
1513 {
1514 	int rc = 0;
1515 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1516 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1517 	s64 time;
1518 
1519 	do {
1520 		rc = wait_event_timeout(*(info->wq),
1521 				atomic_read(info->atomic_cnt) == 0, jiffies);
1522 		time = ktime_to_ms(ktime_get());
1523 
1524 		trace_dpu_enc_wait_event_timeout(drm_id, irq_idx, rc, time,
1525 						 expected_time,
1526 						 atomic_read(info->atomic_cnt));
1527 	/* If we timed out, counter is valid and time is less, wait again */
1528 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1529 			(time < expected_time));
1530 
1531 	return rc;
1532 }
1533 
1534 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1535 {
1536 	struct dpu_encoder_virt *dpu_enc;
1537 	struct dpu_hw_ctl *ctl;
1538 	int rc;
1539 	struct drm_encoder *drm_enc;
1540 
1541 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1542 	ctl = phys_enc->hw_ctl;
1543 	drm_enc = phys_enc->parent;
1544 
1545 	if (!ctl->ops.reset)
1546 		return;
1547 
1548 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1549 		      ctl->idx);
1550 
1551 	rc = ctl->ops.reset(ctl);
1552 	if (rc) {
1553 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1554 		msm_disp_snapshot_state(drm_enc->dev);
1555 	}
1556 
1557 	phys_enc->enable_state = DPU_ENC_ENABLED;
1558 }
1559 
1560 /**
1561  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1562  *	Iterate through the physical encoders and perform consolidated flush
1563  *	and/or control start triggering as needed. This is done in the virtual
1564  *	encoder rather than the individual physical ones in order to handle
1565  *	use cases that require visibility into multiple physical encoders at
1566  *	a time.
1567  * @dpu_enc: Pointer to virtual encoder structure
1568  */
1569 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1570 {
1571 	struct dpu_hw_ctl *ctl;
1572 	uint32_t i, pending_flush;
1573 	unsigned long lock_flags;
1574 
1575 	pending_flush = 0x0;
1576 
1577 	/* update pending counts and trigger kickoff ctl flush atomically */
1578 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1579 
1580 	/* don't perform flush/start operations for slave encoders */
1581 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1582 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1583 
1584 		if (phys->enable_state == DPU_ENC_DISABLED)
1585 			continue;
1586 
1587 		ctl = phys->hw_ctl;
1588 
1589 		/*
1590 		 * This is cleared in frame_done worker, which isn't invoked
1591 		 * for async commits. So don't set this for async, since it'll
1592 		 * roll over to the next commit.
1593 		 */
1594 		if (phys->split_role != ENC_ROLE_SLAVE)
1595 			set_bit(i, dpu_enc->frame_busy_mask);
1596 
1597 		if (!phys->ops.needs_single_flush ||
1598 				!phys->ops.needs_single_flush(phys))
1599 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1600 		else if (ctl->ops.get_pending_flush)
1601 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1602 	}
1603 
1604 	/* for split flush, combine pending flush masks and send to master */
1605 	if (pending_flush && dpu_enc->cur_master) {
1606 		_dpu_encoder_trigger_flush(
1607 				&dpu_enc->base,
1608 				dpu_enc->cur_master,
1609 				pending_flush);
1610 	}
1611 
1612 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1613 
1614 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1615 }
1616 
1617 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1618 {
1619 	struct dpu_encoder_virt *dpu_enc;
1620 	struct dpu_encoder_phys *phys;
1621 	unsigned int i;
1622 	struct dpu_hw_ctl *ctl;
1623 	struct msm_display_info *disp_info;
1624 
1625 	if (!drm_enc) {
1626 		DPU_ERROR("invalid encoder\n");
1627 		return;
1628 	}
1629 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1630 	disp_info = &dpu_enc->disp_info;
1631 
1632 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1633 		phys = dpu_enc->phys_encs[i];
1634 
1635 		ctl = phys->hw_ctl;
1636 		if (ctl->ops.clear_pending_flush)
1637 			ctl->ops.clear_pending_flush(ctl);
1638 
1639 		/* update only for command mode primary ctl */
1640 		if ((phys == dpu_enc->cur_master) &&
1641 		   (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1642 		    && ctl->ops.trigger_pending)
1643 			ctl->ops.trigger_pending(ctl);
1644 	}
1645 }
1646 
1647 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1648 		struct drm_display_mode *mode)
1649 {
1650 	u64 pclk_rate;
1651 	u32 pclk_period;
1652 	u32 line_time;
1653 
1654 	/*
1655 	 * For linetime calculation, only operate on master encoder.
1656 	 */
1657 	if (!dpu_enc->cur_master)
1658 		return 0;
1659 
1660 	if (!dpu_enc->cur_master->ops.get_line_count) {
1661 		DPU_ERROR("get_line_count function not defined\n");
1662 		return 0;
1663 	}
1664 
1665 	pclk_rate = mode->clock; /* pixel clock in kHz */
1666 	if (pclk_rate == 0) {
1667 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1668 		return 0;
1669 	}
1670 
1671 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1672 	if (pclk_period == 0) {
1673 		DPU_ERROR("pclk period is 0\n");
1674 		return 0;
1675 	}
1676 
1677 	/*
1678 	 * Line time calculation based on Pixel clock and HTOTAL.
1679 	 * Final unit is in ns.
1680 	 */
1681 	line_time = (pclk_period * mode->htotal) / 1000;
1682 	if (line_time == 0) {
1683 		DPU_ERROR("line time calculation is 0\n");
1684 		return 0;
1685 	}
1686 
1687 	DPU_DEBUG_ENC(dpu_enc,
1688 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1689 			pclk_rate, pclk_period, line_time);
1690 
1691 	return line_time;
1692 }
1693 
1694 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1695 {
1696 	struct drm_display_mode *mode;
1697 	struct dpu_encoder_virt *dpu_enc;
1698 	u32 cur_line;
1699 	u32 line_time;
1700 	u32 vtotal, time_to_vsync;
1701 	ktime_t cur_time;
1702 
1703 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1704 
1705 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1706 		DPU_ERROR("crtc/crtc state object is NULL\n");
1707 		return -EINVAL;
1708 	}
1709 	mode = &drm_enc->crtc->state->adjusted_mode;
1710 
1711 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1712 	if (!line_time)
1713 		return -EINVAL;
1714 
1715 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1716 
1717 	vtotal = mode->vtotal;
1718 	if (cur_line >= vtotal)
1719 		time_to_vsync = line_time * vtotal;
1720 	else
1721 		time_to_vsync = line_time * (vtotal - cur_line);
1722 
1723 	if (time_to_vsync == 0) {
1724 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1725 				vtotal);
1726 		return -EINVAL;
1727 	}
1728 
1729 	cur_time = ktime_get();
1730 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1731 
1732 	DPU_DEBUG_ENC(dpu_enc,
1733 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1734 			cur_line, vtotal, time_to_vsync,
1735 			ktime_to_ms(cur_time),
1736 			ktime_to_ms(*wakeup_time));
1737 	return 0;
1738 }
1739 
1740 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1741 {
1742 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1743 			vsync_event_timer);
1744 	struct drm_encoder *drm_enc = &dpu_enc->base;
1745 	struct msm_drm_private *priv;
1746 	struct msm_drm_thread *event_thread;
1747 
1748 	if (!drm_enc->dev || !drm_enc->crtc) {
1749 		DPU_ERROR("invalid parameters\n");
1750 		return;
1751 	}
1752 
1753 	priv = drm_enc->dev->dev_private;
1754 
1755 	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1756 		DPU_ERROR("invalid crtc index\n");
1757 		return;
1758 	}
1759 	event_thread = &priv->event_thread[drm_enc->crtc->index];
1760 	if (!event_thread) {
1761 		DPU_ERROR("event_thread not found for crtc:%d\n",
1762 				drm_enc->crtc->index);
1763 		return;
1764 	}
1765 
1766 	del_timer(&dpu_enc->vsync_event_timer);
1767 }
1768 
1769 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1770 {
1771 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1772 			struct dpu_encoder_virt, vsync_event_work);
1773 	ktime_t wakeup_time;
1774 
1775 	if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
1776 		return;
1777 
1778 	trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1779 	mod_timer(&dpu_enc->vsync_event_timer,
1780 			nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1781 }
1782 
1783 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1784 {
1785 	struct dpu_encoder_virt *dpu_enc;
1786 	struct dpu_encoder_phys *phys;
1787 	bool needs_hw_reset = false;
1788 	unsigned int i;
1789 
1790 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1791 
1792 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1793 
1794 	/* prepare for next kickoff, may include waiting on previous kickoff */
1795 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1796 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1797 		phys = dpu_enc->phys_encs[i];
1798 		if (phys->ops.prepare_for_kickoff)
1799 			phys->ops.prepare_for_kickoff(phys);
1800 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1801 			needs_hw_reset = true;
1802 	}
1803 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1804 
1805 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1806 
1807 	/* if any phys needs reset, reset all phys, in-order */
1808 	if (needs_hw_reset) {
1809 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1810 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1811 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1812 		}
1813 	}
1814 }
1815 
1816 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1817 {
1818 	struct dpu_encoder_virt *dpu_enc;
1819 	struct dpu_encoder_phys *phys;
1820 	ktime_t wakeup_time;
1821 	unsigned long timeout_ms;
1822 	unsigned int i;
1823 
1824 	DPU_ATRACE_BEGIN("encoder_kickoff");
1825 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1826 
1827 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1828 
1829 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1830 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1831 
1832 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1833 	mod_timer(&dpu_enc->frame_done_timer,
1834 			jiffies + msecs_to_jiffies(timeout_ms));
1835 
1836 	/* All phys encs are ready to go, trigger the kickoff */
1837 	_dpu_encoder_kickoff_phys(dpu_enc);
1838 
1839 	/* allow phys encs to handle any post-kickoff business */
1840 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1841 		phys = dpu_enc->phys_encs[i];
1842 		if (phys->ops.handle_post_kickoff)
1843 			phys->ops.handle_post_kickoff(phys);
1844 	}
1845 
1846 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1847 			!dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
1848 		trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1849 					    ktime_to_ms(wakeup_time));
1850 		mod_timer(&dpu_enc->vsync_event_timer,
1851 				nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1852 	}
1853 
1854 	DPU_ATRACE_END("encoder_kickoff");
1855 }
1856 
1857 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
1858 {
1859 	struct dpu_encoder_virt *dpu_enc;
1860 	struct dpu_encoder_phys *phys;
1861 	int i;
1862 
1863 	if (!drm_enc) {
1864 		DPU_ERROR("invalid encoder\n");
1865 		return;
1866 	}
1867 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1868 
1869 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1870 		phys = dpu_enc->phys_encs[i];
1871 		if (phys->ops.prepare_commit)
1872 			phys->ops.prepare_commit(phys);
1873 	}
1874 }
1875 
1876 #ifdef CONFIG_DEBUG_FS
1877 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
1878 {
1879 	struct dpu_encoder_virt *dpu_enc = s->private;
1880 	int i;
1881 
1882 	mutex_lock(&dpu_enc->enc_lock);
1883 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1884 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1885 
1886 		seq_printf(s, "intf:%d    vsync:%8d     underrun:%8d    ",
1887 				phys->intf_idx - INTF_0,
1888 				atomic_read(&phys->vsync_cnt),
1889 				atomic_read(&phys->underrun_cnt));
1890 
1891 		switch (phys->intf_mode) {
1892 		case INTF_MODE_VIDEO:
1893 			seq_puts(s, "mode: video\n");
1894 			break;
1895 		case INTF_MODE_CMD:
1896 			seq_puts(s, "mode: command\n");
1897 			break;
1898 		default:
1899 			seq_puts(s, "mode: ???\n");
1900 			break;
1901 		}
1902 	}
1903 	mutex_unlock(&dpu_enc->enc_lock);
1904 
1905 	return 0;
1906 }
1907 
1908 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
1909 
1910 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1911 {
1912 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1913 	int i;
1914 
1915 	char name[DPU_NAME_SIZE];
1916 
1917 	if (!drm_enc->dev) {
1918 		DPU_ERROR("invalid encoder or kms\n");
1919 		return -EINVAL;
1920 	}
1921 
1922 	snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
1923 
1924 	/* create overall sub-directory for the encoder */
1925 	dpu_enc->debugfs_root = debugfs_create_dir(name,
1926 			drm_enc->dev->primary->debugfs_root);
1927 
1928 	/* don't error check these */
1929 	debugfs_create_file("status", 0600,
1930 		dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops);
1931 
1932 	for (i = 0; i < dpu_enc->num_phys_encs; i++)
1933 		if (dpu_enc->phys_encs[i]->ops.late_register)
1934 			dpu_enc->phys_encs[i]->ops.late_register(
1935 					dpu_enc->phys_encs[i],
1936 					dpu_enc->debugfs_root);
1937 
1938 	return 0;
1939 }
1940 #else
1941 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1942 {
1943 	return 0;
1944 }
1945 #endif
1946 
1947 static int dpu_encoder_late_register(struct drm_encoder *encoder)
1948 {
1949 	return _dpu_encoder_init_debugfs(encoder);
1950 }
1951 
1952 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
1953 {
1954 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
1955 
1956 	debugfs_remove_recursive(dpu_enc->debugfs_root);
1957 }
1958 
1959 static int dpu_encoder_virt_add_phys_encs(
1960 		u32 display_caps,
1961 		struct dpu_encoder_virt *dpu_enc,
1962 		struct dpu_enc_phys_init_params *params)
1963 {
1964 	struct dpu_encoder_phys *enc = NULL;
1965 
1966 	DPU_DEBUG_ENC(dpu_enc, "\n");
1967 
1968 	/*
1969 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
1970 	 * in this function, check up-front.
1971 	 */
1972 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
1973 			ARRAY_SIZE(dpu_enc->phys_encs)) {
1974 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
1975 			  dpu_enc->num_phys_encs);
1976 		return -EINVAL;
1977 	}
1978 
1979 	if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
1980 		enc = dpu_encoder_phys_vid_init(params);
1981 
1982 		if (IS_ERR_OR_NULL(enc)) {
1983 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
1984 				PTR_ERR(enc));
1985 			return enc == NULL ? -EINVAL : PTR_ERR(enc);
1986 		}
1987 
1988 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
1989 		++dpu_enc->num_phys_encs;
1990 	}
1991 
1992 	if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
1993 		enc = dpu_encoder_phys_cmd_init(params);
1994 
1995 		if (IS_ERR_OR_NULL(enc)) {
1996 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
1997 				PTR_ERR(enc));
1998 			return enc == NULL ? -EINVAL : PTR_ERR(enc);
1999 		}
2000 
2001 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2002 		++dpu_enc->num_phys_encs;
2003 	}
2004 
2005 	if (params->split_role == ENC_ROLE_SLAVE)
2006 		dpu_enc->cur_slave = enc;
2007 	else
2008 		dpu_enc->cur_master = enc;
2009 
2010 	return 0;
2011 }
2012 
2013 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
2014 	.handle_vblank_virt = dpu_encoder_vblank_callback,
2015 	.handle_underrun_virt = dpu_encoder_underrun_callback,
2016 	.handle_frame_done = dpu_encoder_frame_done_callback,
2017 };
2018 
2019 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2020 				 struct dpu_kms *dpu_kms,
2021 				 struct msm_display_info *disp_info)
2022 {
2023 	int ret = 0;
2024 	int i = 0;
2025 	enum dpu_intf_type intf_type = INTF_NONE;
2026 	struct dpu_enc_phys_init_params phys_params;
2027 
2028 	if (!dpu_enc) {
2029 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2030 		return -EINVAL;
2031 	}
2032 
2033 	dpu_enc->cur_master = NULL;
2034 
2035 	memset(&phys_params, 0, sizeof(phys_params));
2036 	phys_params.dpu_kms = dpu_kms;
2037 	phys_params.parent = &dpu_enc->base;
2038 	phys_params.parent_ops = &dpu_encoder_parent_ops;
2039 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2040 
2041 	switch (disp_info->intf_type) {
2042 	case DRM_MODE_ENCODER_DSI:
2043 		intf_type = INTF_DSI;
2044 		break;
2045 	case DRM_MODE_ENCODER_TMDS:
2046 		intf_type = INTF_DP;
2047 		break;
2048 	}
2049 
2050 	WARN_ON(disp_info->num_of_h_tiles < 1);
2051 
2052 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2053 
2054 	if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
2055 	    (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
2056 		dpu_enc->idle_pc_supported =
2057 				dpu_kms->catalog->caps->has_idle_pc;
2058 
2059 	mutex_lock(&dpu_enc->enc_lock);
2060 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2061 		/*
2062 		 * Left-most tile is at index 0, content is controller id
2063 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2064 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2065 		 */
2066 		u32 controller_id = disp_info->h_tile_instance[i];
2067 
2068 		if (disp_info->num_of_h_tiles > 1) {
2069 			if (i == 0)
2070 				phys_params.split_role = ENC_ROLE_MASTER;
2071 			else
2072 				phys_params.split_role = ENC_ROLE_SLAVE;
2073 		} else {
2074 			phys_params.split_role = ENC_ROLE_SOLO;
2075 		}
2076 
2077 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2078 				i, controller_id, phys_params.split_role);
2079 
2080 		phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2081 													intf_type,
2082 													controller_id);
2083 		if (phys_params.intf_idx == INTF_MAX) {
2084 			DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
2085 						  intf_type, controller_id);
2086 			ret = -EINVAL;
2087 		}
2088 
2089 		if (!ret) {
2090 			ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
2091 												 dpu_enc,
2092 												 &phys_params);
2093 			if (ret)
2094 				DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2095 		}
2096 	}
2097 
2098 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2099 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2100 		atomic_set(&phys->vsync_cnt, 0);
2101 		atomic_set(&phys->underrun_cnt, 0);
2102 	}
2103 	mutex_unlock(&dpu_enc->enc_lock);
2104 
2105 	return ret;
2106 }
2107 
2108 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2109 {
2110 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2111 			frame_done_timer);
2112 	struct drm_encoder *drm_enc = &dpu_enc->base;
2113 	u32 event;
2114 
2115 	if (!drm_enc->dev) {
2116 		DPU_ERROR("invalid parameters\n");
2117 		return;
2118 	}
2119 
2120 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2121 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2122 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2123 		return;
2124 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2125 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2126 		return;
2127 	}
2128 
2129 	DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2130 
2131 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2132 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2133 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2134 }
2135 
2136 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2137 	.mode_set = dpu_encoder_virt_mode_set,
2138 	.disable = dpu_encoder_virt_disable,
2139 	.enable = dpu_kms_encoder_enable,
2140 	.atomic_check = dpu_encoder_virt_atomic_check,
2141 
2142 	/* This is called by dpu_kms_encoder_enable */
2143 	.commit = dpu_encoder_virt_enable,
2144 };
2145 
2146 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2147 		.destroy = dpu_encoder_destroy,
2148 		.late_register = dpu_encoder_late_register,
2149 		.early_unregister = dpu_encoder_early_unregister,
2150 };
2151 
2152 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2153 		struct msm_display_info *disp_info)
2154 {
2155 	struct msm_drm_private *priv = dev->dev_private;
2156 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2157 	struct drm_encoder *drm_enc = NULL;
2158 	struct dpu_encoder_virt *dpu_enc = NULL;
2159 	int ret = 0;
2160 
2161 	dpu_enc = to_dpu_encoder_virt(enc);
2162 
2163 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2164 	if (ret)
2165 		goto fail;
2166 
2167 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2168 	timer_setup(&dpu_enc->frame_done_timer,
2169 			dpu_encoder_frame_done_timeout, 0);
2170 
2171 	if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2172 		timer_setup(&dpu_enc->vsync_event_timer,
2173 				dpu_encoder_vsync_event_handler,
2174 				0);
2175 
2176 
2177 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2178 			dpu_encoder_off_work);
2179 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2180 
2181 	kthread_init_work(&dpu_enc->vsync_event_work,
2182 			dpu_encoder_vsync_event_work_handler);
2183 
2184 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2185 
2186 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2187 
2188 	return ret;
2189 
2190 fail:
2191 	DPU_ERROR("failed to create encoder\n");
2192 	if (drm_enc)
2193 		dpu_encoder_destroy(drm_enc);
2194 
2195 	return ret;
2196 
2197 
2198 }
2199 
2200 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2201 		int drm_enc_mode)
2202 {
2203 	struct dpu_encoder_virt *dpu_enc = NULL;
2204 	int rc = 0;
2205 
2206 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2207 	if (!dpu_enc)
2208 		return ERR_PTR(-ENOMEM);
2209 
2210 	rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2211 			drm_enc_mode, NULL);
2212 	if (rc) {
2213 		devm_kfree(dev->dev, dpu_enc);
2214 		return ERR_PTR(rc);
2215 	}
2216 
2217 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2218 
2219 	spin_lock_init(&dpu_enc->enc_spinlock);
2220 	dpu_enc->enabled = false;
2221 	mutex_init(&dpu_enc->enc_lock);
2222 	mutex_init(&dpu_enc->rc_lock);
2223 
2224 	return &dpu_enc->base;
2225 }
2226 
2227 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2228 	enum msm_event_wait event)
2229 {
2230 	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2231 	struct dpu_encoder_virt *dpu_enc = NULL;
2232 	int i, ret = 0;
2233 
2234 	if (!drm_enc) {
2235 		DPU_ERROR("invalid encoder\n");
2236 		return -EINVAL;
2237 	}
2238 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2239 	DPU_DEBUG_ENC(dpu_enc, "\n");
2240 
2241 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2242 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2243 
2244 		switch (event) {
2245 		case MSM_ENC_COMMIT_DONE:
2246 			fn_wait = phys->ops.wait_for_commit_done;
2247 			break;
2248 		case MSM_ENC_TX_COMPLETE:
2249 			fn_wait = phys->ops.wait_for_tx_complete;
2250 			break;
2251 		case MSM_ENC_VBLANK:
2252 			fn_wait = phys->ops.wait_for_vblank;
2253 			break;
2254 		default:
2255 			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2256 					event);
2257 			return -EINVAL;
2258 		}
2259 
2260 		if (fn_wait) {
2261 			DPU_ATRACE_BEGIN("wait_for_completion_event");
2262 			ret = fn_wait(phys);
2263 			DPU_ATRACE_END("wait_for_completion_event");
2264 			if (ret)
2265 				return ret;
2266 		}
2267 	}
2268 
2269 	return ret;
2270 }
2271 
2272 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2273 {
2274 	struct dpu_encoder_virt *dpu_enc = NULL;
2275 
2276 	if (!encoder) {
2277 		DPU_ERROR("invalid encoder\n");
2278 		return INTF_MODE_NONE;
2279 	}
2280 	dpu_enc = to_dpu_encoder_virt(encoder);
2281 
2282 	if (dpu_enc->cur_master)
2283 		return dpu_enc->cur_master->intf_mode;
2284 
2285 	if (dpu_enc->num_phys_encs)
2286 		return dpu_enc->phys_encs[0]->intf_mode;
2287 
2288 	return INTF_MODE_NONE;
2289 }
2290