1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2013 Red Hat 5 * Author: Rob Clark <robdclark@gmail.com> 6 */ 7 8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 9 #include <linux/debugfs.h> 10 #include <linux/kthread.h> 11 #include <linux/seq_file.h> 12 13 #include <drm/drm_crtc.h> 14 #include <drm/drm_file.h> 15 #include <drm/drm_probe_helper.h> 16 17 #include "msm_drv.h" 18 #include "dpu_kms.h" 19 #include "dpu_hwio.h" 20 #include "dpu_hw_catalog.h" 21 #include "dpu_hw_intf.h" 22 #include "dpu_hw_ctl.h" 23 #include "dpu_formats.h" 24 #include "dpu_encoder_phys.h" 25 #include "dpu_crtc.h" 26 #include "dpu_trace.h" 27 #include "dpu_core_irq.h" 28 29 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\ 30 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 31 32 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\ 33 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 34 35 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\ 36 (p) ? (p)->parent->base.id : -1, \ 37 (p) ? (p)->intf_idx - INTF_0 : -1, \ 38 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 39 ##__VA_ARGS__) 40 41 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\ 42 (p) ? (p)->parent->base.id : -1, \ 43 (p) ? (p)->intf_idx - INTF_0 : -1, \ 44 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 45 ##__VA_ARGS__) 46 47 /* 48 * Two to anticipate panels that can do cmd/vid dynamic switching 49 * plan is to create all possible physical encoder types, and switch between 50 * them at runtime 51 */ 52 #define NUM_PHYS_ENCODER_TYPES 2 53 54 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \ 55 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES) 56 57 #define MAX_CHANNELS_PER_ENC 2 58 59 #define IDLE_SHORT_TIMEOUT 1 60 61 #define MAX_HDISPLAY_SPLIT 1080 62 63 /* timeout in frames waiting for frame done */ 64 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5 65 66 /** 67 * enum dpu_enc_rc_events - events for resource control state machine 68 * @DPU_ENC_RC_EVENT_KICKOFF: 69 * This event happens at NORMAL priority. 70 * Event that signals the start of the transfer. When this event is 71 * received, enable MDP/DSI core clocks. Regardless of the previous 72 * state, the resource should be in ON state at the end of this event. 73 * @DPU_ENC_RC_EVENT_FRAME_DONE: 74 * This event happens at INTERRUPT level. 75 * Event signals the end of the data transfer after the PP FRAME_DONE 76 * event. At the end of this event, a delayed work is scheduled to go to 77 * IDLE_PC state after IDLE_TIMEOUT time. 78 * @DPU_ENC_RC_EVENT_PRE_STOP: 79 * This event happens at NORMAL priority. 80 * This event, when received during the ON state, leave the RC STATE 81 * in the PRE_OFF state. It should be followed by the STOP event as 82 * part of encoder disable. 83 * If received during IDLE or OFF states, it will do nothing. 84 * @DPU_ENC_RC_EVENT_STOP: 85 * This event happens at NORMAL priority. 86 * When this event is received, disable all the MDP/DSI core clocks, and 87 * disable IRQs. It should be called from the PRE_OFF or IDLE states. 88 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing. 89 * PRE_OFF is expected when PRE_STOP was executed during the ON state. 90 * Resource state should be in OFF at the end of the event. 91 * @DPU_ENC_RC_EVENT_ENTER_IDLE: 92 * This event happens at NORMAL priority from a work item. 93 * Event signals that there were no frame updates for IDLE_TIMEOUT time. 94 * This would disable MDP/DSI core clocks and change the resource state 95 * to IDLE. 96 */ 97 enum dpu_enc_rc_events { 98 DPU_ENC_RC_EVENT_KICKOFF = 1, 99 DPU_ENC_RC_EVENT_FRAME_DONE, 100 DPU_ENC_RC_EVENT_PRE_STOP, 101 DPU_ENC_RC_EVENT_STOP, 102 DPU_ENC_RC_EVENT_ENTER_IDLE 103 }; 104 105 /* 106 * enum dpu_enc_rc_states - states that the resource control maintains 107 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state 108 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state 109 * @DPU_ENC_RC_STATE_ON: Resource is in ON state 110 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state 111 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state 112 */ 113 enum dpu_enc_rc_states { 114 DPU_ENC_RC_STATE_OFF, 115 DPU_ENC_RC_STATE_PRE_OFF, 116 DPU_ENC_RC_STATE_ON, 117 DPU_ENC_RC_STATE_IDLE 118 }; 119 120 /** 121 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical 122 * encoders. Virtual encoder manages one "logical" display. Physical 123 * encoders manage one intf block, tied to a specific panel/sub-panel. 124 * Virtual encoder defers as much as possible to the physical encoders. 125 * Virtual encoder registers itself with the DRM Framework as the encoder. 126 * @base: drm_encoder base class for registration with DRM 127 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes 128 * @bus_scaling_client: Client handle to the bus scaling interface 129 * @enabled: True if the encoder is active, protected by enc_lock 130 * @num_phys_encs: Actual number of physical encoders contained. 131 * @phys_encs: Container of physical encoders managed. 132 * @cur_master: Pointer to the current master in this mode. Optimization 133 * Only valid after enable. Cleared as disable. 134 * @hw_pp Handle to the pingpong blocks used for the display. No. 135 * pingpong blocks can be different than num_phys_encs. 136 * @intfs_swapped Whether or not the phys_enc interfaces have been swapped 137 * for partial update right-only cases, such as pingpong 138 * split where virtual pingpong does not generate IRQs 139 * @crtc: Pointer to the currently assigned crtc. Normally you 140 * would use crtc->state->encoder_mask to determine the 141 * link between encoder/crtc. However in this case we need 142 * to track crtc in the disable() hook which is called 143 * _after_ encoder_mask is cleared. 144 * @crtc_kickoff_cb: Callback into CRTC that will flush & start 145 * all CTL paths 146 * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb 147 * @debugfs_root: Debug file system root file node 148 * @enc_lock: Lock around physical encoder 149 * create/destroy/enable/disable 150 * @frame_busy_mask: Bitmask tracking which phys_enc we are still 151 * busy processing current command. 152 * Bit0 = phys_encs[0] etc. 153 * @crtc_frame_event_cb: callback handler for frame event 154 * @crtc_frame_event_cb_data: callback handler private data 155 * @frame_done_timeout_ms: frame done timeout in ms 156 * @frame_done_timer: watchdog timer for frame done event 157 * @vsync_event_timer: vsync timer 158 * @disp_info: local copy of msm_display_info struct 159 * @idle_pc_supported: indicate if idle power collaps is supported 160 * @rc_lock: resource control mutex lock to protect 161 * virt encoder over various state changes 162 * @rc_state: resource controller state 163 * @delayed_off_work: delayed worker to schedule disabling of 164 * clks and resources after IDLE_TIMEOUT time. 165 * @vsync_event_work: worker to handle vsync event for autorefresh 166 * @topology: topology of the display 167 * @mode_set_complete: flag to indicate modeset completion 168 * @idle_timeout: idle timeout duration in milliseconds 169 */ 170 struct dpu_encoder_virt { 171 struct drm_encoder base; 172 spinlock_t enc_spinlock; 173 uint32_t bus_scaling_client; 174 175 bool enabled; 176 177 unsigned int num_phys_encs; 178 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL]; 179 struct dpu_encoder_phys *cur_master; 180 struct dpu_encoder_phys *cur_slave; 181 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; 182 183 bool intfs_swapped; 184 185 struct drm_crtc *crtc; 186 187 struct dentry *debugfs_root; 188 struct mutex enc_lock; 189 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL); 190 void (*crtc_frame_event_cb)(void *, u32 event); 191 void *crtc_frame_event_cb_data; 192 193 atomic_t frame_done_timeout_ms; 194 struct timer_list frame_done_timer; 195 struct timer_list vsync_event_timer; 196 197 struct msm_display_info disp_info; 198 199 bool idle_pc_supported; 200 struct mutex rc_lock; 201 enum dpu_enc_rc_states rc_state; 202 struct delayed_work delayed_off_work; 203 struct kthread_work vsync_event_work; 204 struct msm_display_topology topology; 205 bool mode_set_complete; 206 207 u32 idle_timeout; 208 }; 209 210 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base) 211 212 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc, 213 enum dpu_intr_idx intr_idx) 214 { 215 DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n", 216 DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0, 217 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx); 218 219 if (phys_enc->parent_ops->handle_frame_done) 220 phys_enc->parent_ops->handle_frame_done( 221 phys_enc->parent, phys_enc, 222 DPU_ENCODER_FRAME_EVENT_ERROR); 223 } 224 225 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id, 226 int32_t hw_id, struct dpu_encoder_wait_info *info); 227 228 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc, 229 enum dpu_intr_idx intr_idx, 230 struct dpu_encoder_wait_info *wait_info) 231 { 232 struct dpu_encoder_irq *irq; 233 u32 irq_status; 234 int ret; 235 236 if (!wait_info || intr_idx >= INTR_IDX_MAX) { 237 DPU_ERROR("invalid params\n"); 238 return -EINVAL; 239 } 240 irq = &phys_enc->irq[intr_idx]; 241 242 /* note: do master / slave checking outside */ 243 244 /* return EWOULDBLOCK since we know the wait isn't necessary */ 245 if (phys_enc->enable_state == DPU_ENC_DISABLED) { 246 DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d", 247 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 248 irq->irq_idx); 249 return -EWOULDBLOCK; 250 } 251 252 if (irq->irq_idx < 0) { 253 DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s", 254 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 255 irq->name); 256 return 0; 257 } 258 259 DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d", 260 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 261 irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0, 262 atomic_read(wait_info->atomic_cnt)); 263 264 ret = dpu_encoder_helper_wait_event_timeout( 265 DRMID(phys_enc->parent), 266 irq->hw_idx, 267 wait_info); 268 269 if (ret <= 0) { 270 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, 271 irq->irq_idx, true); 272 if (irq_status) { 273 unsigned long flags; 274 275 DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, " 276 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", 277 DRMID(phys_enc->parent), intr_idx, 278 irq->hw_idx, irq->irq_idx, 279 phys_enc->hw_pp->idx - PINGPONG_0, 280 atomic_read(wait_info->atomic_cnt)); 281 local_irq_save(flags); 282 irq->cb.func(phys_enc, irq->irq_idx); 283 local_irq_restore(flags); 284 ret = 0; 285 } else { 286 ret = -ETIMEDOUT; 287 DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, " 288 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", 289 DRMID(phys_enc->parent), intr_idx, 290 irq->hw_idx, irq->irq_idx, 291 phys_enc->hw_pp->idx - PINGPONG_0, 292 atomic_read(wait_info->atomic_cnt)); 293 } 294 } else { 295 ret = 0; 296 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent), 297 intr_idx, irq->hw_idx, irq->irq_idx, 298 phys_enc->hw_pp->idx - PINGPONG_0, 299 atomic_read(wait_info->atomic_cnt)); 300 } 301 302 return ret; 303 } 304 305 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc, 306 enum dpu_intr_idx intr_idx) 307 { 308 struct dpu_encoder_irq *irq; 309 int ret = 0; 310 311 if (intr_idx >= INTR_IDX_MAX) { 312 DPU_ERROR("invalid params\n"); 313 return -EINVAL; 314 } 315 irq = &phys_enc->irq[intr_idx]; 316 317 if (irq->irq_idx >= 0) { 318 DPU_DEBUG_PHYS(phys_enc, 319 "skipping already registered irq %s type %d\n", 320 irq->name, irq->intr_type); 321 return 0; 322 } 323 324 irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms, 325 irq->intr_type, irq->hw_idx); 326 if (irq->irq_idx < 0) { 327 DPU_ERROR_PHYS(phys_enc, 328 "failed to lookup IRQ index for %s type:%d\n", 329 irq->name, irq->intr_type); 330 return -EINVAL; 331 } 332 333 ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx, 334 &irq->cb); 335 if (ret) { 336 DPU_ERROR_PHYS(phys_enc, 337 "failed to register IRQ callback for %s\n", 338 irq->name); 339 irq->irq_idx = -EINVAL; 340 return ret; 341 } 342 343 ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1); 344 if (ret) { 345 DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d", 346 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 347 irq->irq_idx); 348 dpu_core_irq_unregister_callback(phys_enc->dpu_kms, 349 irq->irq_idx, &irq->cb); 350 irq->irq_idx = -EINVAL; 351 return ret; 352 } 353 354 trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx, 355 irq->hw_idx, irq->irq_idx); 356 357 return ret; 358 } 359 360 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc, 361 enum dpu_intr_idx intr_idx) 362 { 363 struct dpu_encoder_irq *irq; 364 int ret; 365 366 irq = &phys_enc->irq[intr_idx]; 367 368 /* silently skip irqs that weren't registered */ 369 if (irq->irq_idx < 0) { 370 DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d", 371 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 372 irq->irq_idx); 373 return 0; 374 } 375 376 ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1); 377 if (ret) { 378 DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d", 379 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 380 irq->irq_idx, ret); 381 } 382 383 ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx, 384 &irq->cb); 385 if (ret) { 386 DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d", 387 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 388 irq->irq_idx, ret); 389 } 390 391 trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx, 392 irq->hw_idx, irq->irq_idx); 393 394 irq->irq_idx = -EINVAL; 395 396 return 0; 397 } 398 399 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc, 400 struct dpu_encoder_hw_resources *hw_res) 401 { 402 struct dpu_encoder_virt *dpu_enc = NULL; 403 int i = 0; 404 405 dpu_enc = to_dpu_encoder_virt(drm_enc); 406 DPU_DEBUG_ENC(dpu_enc, "\n"); 407 408 /* Query resources used by phys encs, expected to be without overlap */ 409 memset(hw_res, 0, sizeof(*hw_res)); 410 411 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 412 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 413 414 if (phys->ops.get_hw_resources) 415 phys->ops.get_hw_resources(phys, hw_res); 416 } 417 } 418 419 static void dpu_encoder_destroy(struct drm_encoder *drm_enc) 420 { 421 struct dpu_encoder_virt *dpu_enc = NULL; 422 int i = 0; 423 424 if (!drm_enc) { 425 DPU_ERROR("invalid encoder\n"); 426 return; 427 } 428 429 dpu_enc = to_dpu_encoder_virt(drm_enc); 430 DPU_DEBUG_ENC(dpu_enc, "\n"); 431 432 mutex_lock(&dpu_enc->enc_lock); 433 434 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 435 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 436 437 if (phys->ops.destroy) { 438 phys->ops.destroy(phys); 439 --dpu_enc->num_phys_encs; 440 dpu_enc->phys_encs[i] = NULL; 441 } 442 } 443 444 if (dpu_enc->num_phys_encs) 445 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n", 446 dpu_enc->num_phys_encs); 447 dpu_enc->num_phys_encs = 0; 448 mutex_unlock(&dpu_enc->enc_lock); 449 450 drm_encoder_cleanup(drm_enc); 451 mutex_destroy(&dpu_enc->enc_lock); 452 } 453 454 void dpu_encoder_helper_split_config( 455 struct dpu_encoder_phys *phys_enc, 456 enum dpu_intf interface) 457 { 458 struct dpu_encoder_virt *dpu_enc; 459 struct split_pipe_cfg cfg = { 0 }; 460 struct dpu_hw_mdp *hw_mdptop; 461 struct msm_display_info *disp_info; 462 463 if (!phys_enc->hw_mdptop || !phys_enc->parent) { 464 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != 0); 465 return; 466 } 467 468 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 469 hw_mdptop = phys_enc->hw_mdptop; 470 disp_info = &dpu_enc->disp_info; 471 472 if (disp_info->intf_type != DRM_MODE_ENCODER_DSI) 473 return; 474 475 /** 476 * disable split modes since encoder will be operating in as the only 477 * encoder, either for the entire use case in the case of, for example, 478 * single DSI, or for this frame in the case of left/right only partial 479 * update. 480 */ 481 if (phys_enc->split_role == ENC_ROLE_SOLO) { 482 if (hw_mdptop->ops.setup_split_pipe) 483 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 484 return; 485 } 486 487 cfg.en = true; 488 cfg.mode = phys_enc->intf_mode; 489 cfg.intf = interface; 490 491 if (cfg.en && phys_enc->ops.needs_single_flush && 492 phys_enc->ops.needs_single_flush(phys_enc)) 493 cfg.split_flush_en = true; 494 495 if (phys_enc->split_role == ENC_ROLE_MASTER) { 496 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en); 497 498 if (hw_mdptop->ops.setup_split_pipe) 499 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 500 } 501 } 502 503 static void _dpu_encoder_adjust_mode(struct drm_connector *connector, 504 struct drm_display_mode *adj_mode) 505 { 506 struct drm_display_mode *cur_mode; 507 508 if (!connector || !adj_mode) 509 return; 510 511 list_for_each_entry(cur_mode, &connector->modes, head) { 512 if (cur_mode->vdisplay == adj_mode->vdisplay && 513 cur_mode->hdisplay == adj_mode->hdisplay && 514 drm_mode_vrefresh(cur_mode) == drm_mode_vrefresh(adj_mode)) { 515 adj_mode->private_flags |= cur_mode->private_flags; 516 } 517 } 518 } 519 520 static struct msm_display_topology dpu_encoder_get_topology( 521 struct dpu_encoder_virt *dpu_enc, 522 struct dpu_kms *dpu_kms, 523 struct drm_display_mode *mode) 524 { 525 struct msm_display_topology topology; 526 int i, intf_count = 0; 527 528 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) 529 if (dpu_enc->phys_encs[i]) 530 intf_count++; 531 532 /* Datapath topology selection 533 * 534 * Dual display 535 * 2 LM, 2 INTF ( Split display using 2 interfaces) 536 * 537 * Single display 538 * 1 LM, 1 INTF 539 * 2 LM, 1 INTF (stream merge to support high resolution interfaces) 540 * 541 */ 542 if (intf_count == 2) 543 topology.num_lm = 2; 544 else if (!dpu_kms->catalog->caps->has_3d_merge) 545 topology.num_lm = 1; 546 else 547 topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1; 548 549 topology.num_enc = 0; 550 topology.num_intf = intf_count; 551 552 return topology; 553 } 554 static int dpu_encoder_virt_atomic_check( 555 struct drm_encoder *drm_enc, 556 struct drm_crtc_state *crtc_state, 557 struct drm_connector_state *conn_state) 558 { 559 struct dpu_encoder_virt *dpu_enc; 560 struct msm_drm_private *priv; 561 struct dpu_kms *dpu_kms; 562 const struct drm_display_mode *mode; 563 struct drm_display_mode *adj_mode; 564 struct msm_display_topology topology; 565 int i = 0; 566 int ret = 0; 567 568 if (!drm_enc || !crtc_state || !conn_state) { 569 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n", 570 drm_enc != 0, crtc_state != 0, conn_state != 0); 571 return -EINVAL; 572 } 573 574 dpu_enc = to_dpu_encoder_virt(drm_enc); 575 DPU_DEBUG_ENC(dpu_enc, "\n"); 576 577 priv = drm_enc->dev->dev_private; 578 dpu_kms = to_dpu_kms(priv->kms); 579 mode = &crtc_state->mode; 580 adj_mode = &crtc_state->adjusted_mode; 581 trace_dpu_enc_atomic_check(DRMID(drm_enc)); 582 583 /* 584 * display drivers may populate private fields of the drm display mode 585 * structure while registering possible modes of a connector with DRM. 586 * These private fields are not populated back while DRM invokes 587 * the mode_set callbacks. This module retrieves and populates the 588 * private fields of the given mode. 589 */ 590 _dpu_encoder_adjust_mode(conn_state->connector, adj_mode); 591 592 /* perform atomic check on the first physical encoder (master) */ 593 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 594 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 595 596 if (phys->ops.atomic_check) 597 ret = phys->ops.atomic_check(phys, crtc_state, 598 conn_state); 599 else if (phys->ops.mode_fixup) 600 if (!phys->ops.mode_fixup(phys, mode, adj_mode)) 601 ret = -EINVAL; 602 603 if (ret) { 604 DPU_ERROR_ENC(dpu_enc, 605 "mode unsupported, phys idx %d\n", i); 606 break; 607 } 608 } 609 610 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 611 612 /* Reserve dynamic resources now. Indicating AtomicTest phase */ 613 if (!ret) { 614 /* 615 * Avoid reserving resources when mode set is pending. Topology 616 * info may not be available to complete reservation. 617 */ 618 if (drm_atomic_crtc_needs_modeset(crtc_state) 619 && dpu_enc->mode_set_complete) { 620 ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, crtc_state, 621 topology, true); 622 dpu_enc->mode_set_complete = false; 623 } 624 } 625 626 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags, 627 adj_mode->private_flags); 628 629 return ret; 630 } 631 632 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc, 633 struct msm_display_info *disp_info) 634 { 635 struct dpu_vsync_source_cfg vsync_cfg = { 0 }; 636 struct msm_drm_private *priv; 637 struct dpu_kms *dpu_kms; 638 struct dpu_hw_mdp *hw_mdptop; 639 struct drm_encoder *drm_enc; 640 int i; 641 642 if (!dpu_enc || !disp_info) { 643 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n", 644 dpu_enc != NULL, disp_info != NULL); 645 return; 646 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) { 647 DPU_ERROR("invalid num phys enc %d/%d\n", 648 dpu_enc->num_phys_encs, 649 (int) ARRAY_SIZE(dpu_enc->hw_pp)); 650 return; 651 } 652 653 drm_enc = &dpu_enc->base; 654 /* this pointers are checked in virt_enable_helper */ 655 priv = drm_enc->dev->dev_private; 656 657 dpu_kms = to_dpu_kms(priv->kms); 658 hw_mdptop = dpu_kms->hw_mdp; 659 if (!hw_mdptop) { 660 DPU_ERROR("invalid mdptop\n"); 661 return; 662 } 663 664 if (hw_mdptop->ops.setup_vsync_source && 665 disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) { 666 for (i = 0; i < dpu_enc->num_phys_encs; i++) 667 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx; 668 669 vsync_cfg.pp_count = dpu_enc->num_phys_encs; 670 if (disp_info->is_te_using_watchdog_timer) 671 vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0; 672 else 673 vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO; 674 675 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg); 676 } 677 } 678 679 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable) 680 { 681 struct dpu_encoder_virt *dpu_enc; 682 int i; 683 684 if (!drm_enc) { 685 DPU_ERROR("invalid encoder\n"); 686 return; 687 } 688 689 dpu_enc = to_dpu_encoder_virt(drm_enc); 690 691 DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable); 692 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 693 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 694 695 if (phys->ops.irq_control) 696 phys->ops.irq_control(phys, enable); 697 } 698 699 } 700 701 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc, 702 bool enable) 703 { 704 struct msm_drm_private *priv; 705 struct dpu_kms *dpu_kms; 706 struct dpu_encoder_virt *dpu_enc; 707 708 dpu_enc = to_dpu_encoder_virt(drm_enc); 709 priv = drm_enc->dev->dev_private; 710 dpu_kms = to_dpu_kms(priv->kms); 711 712 trace_dpu_enc_rc_helper(DRMID(drm_enc), enable); 713 714 if (!dpu_enc->cur_master) { 715 DPU_ERROR("encoder master not set\n"); 716 return; 717 } 718 719 if (enable) { 720 /* enable DPU core clks */ 721 pm_runtime_get_sync(&dpu_kms->pdev->dev); 722 723 /* enable all the irq */ 724 _dpu_encoder_irq_control(drm_enc, true); 725 726 } else { 727 /* disable all the irq */ 728 _dpu_encoder_irq_control(drm_enc, false); 729 730 /* disable DPU core clks */ 731 pm_runtime_put_sync(&dpu_kms->pdev->dev); 732 } 733 734 } 735 736 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc, 737 u32 sw_event) 738 { 739 struct dpu_encoder_virt *dpu_enc; 740 struct msm_drm_private *priv; 741 bool is_vid_mode = false; 742 743 if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) { 744 DPU_ERROR("invalid parameters\n"); 745 return -EINVAL; 746 } 747 dpu_enc = to_dpu_encoder_virt(drm_enc); 748 priv = drm_enc->dev->dev_private; 749 is_vid_mode = dpu_enc->disp_info.capabilities & 750 MSM_DISPLAY_CAP_VID_MODE; 751 752 /* 753 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET 754 * events and return early for other events (ie wb display). 755 */ 756 if (!dpu_enc->idle_pc_supported && 757 (sw_event != DPU_ENC_RC_EVENT_KICKOFF && 758 sw_event != DPU_ENC_RC_EVENT_STOP && 759 sw_event != DPU_ENC_RC_EVENT_PRE_STOP)) 760 return 0; 761 762 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, 763 dpu_enc->rc_state, "begin"); 764 765 switch (sw_event) { 766 case DPU_ENC_RC_EVENT_KICKOFF: 767 /* cancel delayed off work, if any */ 768 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 769 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 770 sw_event); 771 772 mutex_lock(&dpu_enc->rc_lock); 773 774 /* return if the resource control is already in ON state */ 775 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 776 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n", 777 DRMID(drm_enc), sw_event); 778 mutex_unlock(&dpu_enc->rc_lock); 779 return 0; 780 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF && 781 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) { 782 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n", 783 DRMID(drm_enc), sw_event, 784 dpu_enc->rc_state); 785 mutex_unlock(&dpu_enc->rc_lock); 786 return -EINVAL; 787 } 788 789 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) 790 _dpu_encoder_irq_control(drm_enc, true); 791 else 792 _dpu_encoder_resource_control_helper(drm_enc, true); 793 794 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON; 795 796 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 797 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 798 "kickoff"); 799 800 mutex_unlock(&dpu_enc->rc_lock); 801 break; 802 803 case DPU_ENC_RC_EVENT_FRAME_DONE: 804 /* 805 * mutex lock is not used as this event happens at interrupt 806 * context. And locking is not required as, the other events 807 * like KICKOFF and STOP does a wait-for-idle before executing 808 * the resource_control 809 */ 810 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 811 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n", 812 DRMID(drm_enc), sw_event, 813 dpu_enc->rc_state); 814 return -EINVAL; 815 } 816 817 /* 818 * schedule off work item only when there are no 819 * frames pending 820 */ 821 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) { 822 DRM_DEBUG_KMS("id:%d skip schedule work\n", 823 DRMID(drm_enc)); 824 return 0; 825 } 826 827 queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work, 828 msecs_to_jiffies(dpu_enc->idle_timeout)); 829 830 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 831 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 832 "frame done"); 833 break; 834 835 case DPU_ENC_RC_EVENT_PRE_STOP: 836 /* cancel delayed off work, if any */ 837 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 838 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 839 sw_event); 840 841 mutex_lock(&dpu_enc->rc_lock); 842 843 if (is_vid_mode && 844 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 845 _dpu_encoder_irq_control(drm_enc, true); 846 } 847 /* skip if is already OFF or IDLE, resources are off already */ 848 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF || 849 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 850 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n", 851 DRMID(drm_enc), sw_event, 852 dpu_enc->rc_state); 853 mutex_unlock(&dpu_enc->rc_lock); 854 return 0; 855 } 856 857 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF; 858 859 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 860 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 861 "pre stop"); 862 863 mutex_unlock(&dpu_enc->rc_lock); 864 break; 865 866 case DPU_ENC_RC_EVENT_STOP: 867 mutex_lock(&dpu_enc->rc_lock); 868 869 /* return if the resource control is already in OFF state */ 870 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) { 871 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n", 872 DRMID(drm_enc), sw_event); 873 mutex_unlock(&dpu_enc->rc_lock); 874 return 0; 875 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 876 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n", 877 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 878 mutex_unlock(&dpu_enc->rc_lock); 879 return -EINVAL; 880 } 881 882 /** 883 * expect to arrive here only if in either idle state or pre-off 884 * and in IDLE state the resources are already disabled 885 */ 886 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF) 887 _dpu_encoder_resource_control_helper(drm_enc, false); 888 889 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF; 890 891 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 892 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 893 "stop"); 894 895 mutex_unlock(&dpu_enc->rc_lock); 896 break; 897 898 case DPU_ENC_RC_EVENT_ENTER_IDLE: 899 mutex_lock(&dpu_enc->rc_lock); 900 901 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 902 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n", 903 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 904 mutex_unlock(&dpu_enc->rc_lock); 905 return 0; 906 } 907 908 /* 909 * if we are in ON but a frame was just kicked off, 910 * ignore the IDLE event, it's probably a stale timer event 911 */ 912 if (dpu_enc->frame_busy_mask[0]) { 913 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n", 914 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 915 mutex_unlock(&dpu_enc->rc_lock); 916 return 0; 917 } 918 919 if (is_vid_mode) 920 _dpu_encoder_irq_control(drm_enc, false); 921 else 922 _dpu_encoder_resource_control_helper(drm_enc, false); 923 924 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE; 925 926 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 927 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 928 "idle"); 929 930 mutex_unlock(&dpu_enc->rc_lock); 931 break; 932 933 default: 934 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc), 935 sw_event); 936 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 937 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 938 "error"); 939 break; 940 } 941 942 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 943 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 944 "end"); 945 return 0; 946 } 947 948 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc, 949 struct drm_display_mode *mode, 950 struct drm_display_mode *adj_mode) 951 { 952 struct dpu_encoder_virt *dpu_enc; 953 struct msm_drm_private *priv; 954 struct dpu_kms *dpu_kms; 955 struct list_head *connector_list; 956 struct drm_connector *conn = NULL, *conn_iter; 957 struct drm_crtc *drm_crtc; 958 struct dpu_crtc_state *cstate; 959 struct dpu_rm_hw_iter hw_iter; 960 struct msm_display_topology topology; 961 struct dpu_hw_ctl *hw_ctl[MAX_CHANNELS_PER_ENC] = { NULL }; 962 struct dpu_hw_mixer *hw_lm[MAX_CHANNELS_PER_ENC] = { NULL }; 963 int num_lm = 0, num_ctl = 0; 964 int i, j, ret; 965 966 if (!drm_enc) { 967 DPU_ERROR("invalid encoder\n"); 968 return; 969 } 970 971 dpu_enc = to_dpu_encoder_virt(drm_enc); 972 DPU_DEBUG_ENC(dpu_enc, "\n"); 973 974 priv = drm_enc->dev->dev_private; 975 dpu_kms = to_dpu_kms(priv->kms); 976 connector_list = &dpu_kms->dev->mode_config.connector_list; 977 978 trace_dpu_enc_mode_set(DRMID(drm_enc)); 979 980 list_for_each_entry(conn_iter, connector_list, head) 981 if (conn_iter->encoder == drm_enc) 982 conn = conn_iter; 983 984 if (!conn) { 985 DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n"); 986 return; 987 } else if (!conn->state) { 988 DPU_ERROR_ENC(dpu_enc, "invalid connector state\n"); 989 return; 990 } 991 992 drm_for_each_crtc(drm_crtc, drm_enc->dev) 993 if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc)) 994 break; 995 996 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 997 998 /* Reserve dynamic resources now. Indicating non-AtomicTest phase */ 999 ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, drm_crtc->state, 1000 topology, false); 1001 if (ret) { 1002 DPU_ERROR_ENC(dpu_enc, 1003 "failed to reserve hw resources, %d\n", ret); 1004 return; 1005 } 1006 1007 dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_PINGPONG); 1008 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1009 dpu_enc->hw_pp[i] = NULL; 1010 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter)) 1011 break; 1012 dpu_enc->hw_pp[i] = (struct dpu_hw_pingpong *) hw_iter.hw; 1013 } 1014 1015 dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_CTL); 1016 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1017 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter)) 1018 break; 1019 hw_ctl[i] = (struct dpu_hw_ctl *)hw_iter.hw; 1020 num_ctl++; 1021 } 1022 1023 dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_LM); 1024 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1025 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter)) 1026 break; 1027 hw_lm[i] = (struct dpu_hw_mixer *)hw_iter.hw; 1028 num_lm++; 1029 } 1030 1031 cstate = to_dpu_crtc_state(drm_crtc->state); 1032 1033 for (i = 0; i < num_lm; i++) { 1034 int ctl_idx = (i < num_ctl) ? i : (num_ctl-1); 1035 1036 cstate->mixers[i].hw_lm = hw_lm[i]; 1037 cstate->mixers[i].lm_ctl = hw_ctl[ctl_idx]; 1038 } 1039 1040 cstate->num_mixers = num_lm; 1041 1042 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1043 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1044 1045 if (!dpu_enc->hw_pp[i]) { 1046 DPU_ERROR_ENC(dpu_enc, 1047 "no pp block assigned at idx: %d\n", i); 1048 goto error; 1049 } 1050 1051 if (!hw_ctl[i]) { 1052 DPU_ERROR_ENC(dpu_enc, 1053 "no ctl block assigned at idx: %d\n", i); 1054 goto error; 1055 } 1056 1057 phys->hw_pp = dpu_enc->hw_pp[i]; 1058 phys->hw_ctl = hw_ctl[i]; 1059 1060 dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, 1061 DPU_HW_BLK_INTF); 1062 for (j = 0; j < MAX_CHANNELS_PER_ENC; j++) { 1063 struct dpu_hw_intf *hw_intf; 1064 1065 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter)) 1066 break; 1067 1068 hw_intf = (struct dpu_hw_intf *)hw_iter.hw; 1069 if (hw_intf->idx == phys->intf_idx) 1070 phys->hw_intf = hw_intf; 1071 } 1072 1073 if (!phys->hw_intf) { 1074 DPU_ERROR_ENC(dpu_enc, 1075 "no intf block assigned at idx: %d\n", i); 1076 goto error; 1077 } 1078 1079 phys->connector = conn->state->connector; 1080 if (phys->ops.mode_set) 1081 phys->ops.mode_set(phys, mode, adj_mode); 1082 } 1083 1084 dpu_enc->mode_set_complete = true; 1085 1086 error: 1087 dpu_rm_release(&dpu_kms->rm, drm_enc); 1088 } 1089 1090 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc) 1091 { 1092 struct dpu_encoder_virt *dpu_enc = NULL; 1093 struct msm_drm_private *priv; 1094 struct dpu_kms *dpu_kms; 1095 1096 if (!drm_enc || !drm_enc->dev) { 1097 DPU_ERROR("invalid parameters\n"); 1098 return; 1099 } 1100 1101 priv = drm_enc->dev->dev_private; 1102 dpu_kms = to_dpu_kms(priv->kms); 1103 1104 dpu_enc = to_dpu_encoder_virt(drm_enc); 1105 if (!dpu_enc || !dpu_enc->cur_master) { 1106 DPU_ERROR("invalid dpu encoder/master\n"); 1107 return; 1108 } 1109 1110 if (dpu_enc->cur_master->hw_mdptop && 1111 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc) 1112 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc( 1113 dpu_enc->cur_master->hw_mdptop, 1114 dpu_kms->catalog); 1115 1116 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info); 1117 } 1118 1119 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc) 1120 { 1121 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1122 1123 mutex_lock(&dpu_enc->enc_lock); 1124 1125 if (!dpu_enc->enabled) 1126 goto out; 1127 1128 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore) 1129 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave); 1130 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore) 1131 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master); 1132 1133 _dpu_encoder_virt_enable_helper(drm_enc); 1134 1135 out: 1136 mutex_unlock(&dpu_enc->enc_lock); 1137 } 1138 1139 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc) 1140 { 1141 struct dpu_encoder_virt *dpu_enc = NULL; 1142 int ret = 0; 1143 struct drm_display_mode *cur_mode = NULL; 1144 1145 if (!drm_enc) { 1146 DPU_ERROR("invalid encoder\n"); 1147 return; 1148 } 1149 dpu_enc = to_dpu_encoder_virt(drm_enc); 1150 1151 mutex_lock(&dpu_enc->enc_lock); 1152 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode; 1153 1154 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay, 1155 cur_mode->vdisplay); 1156 1157 /* always enable slave encoder before master */ 1158 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable) 1159 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave); 1160 1161 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable) 1162 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master); 1163 1164 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1165 if (ret) { 1166 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n", 1167 ret); 1168 goto out; 1169 } 1170 1171 _dpu_encoder_virt_enable_helper(drm_enc); 1172 1173 dpu_enc->enabled = true; 1174 1175 out: 1176 mutex_unlock(&dpu_enc->enc_lock); 1177 } 1178 1179 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc) 1180 { 1181 struct dpu_encoder_virt *dpu_enc = NULL; 1182 struct msm_drm_private *priv; 1183 struct dpu_kms *dpu_kms; 1184 int i = 0; 1185 1186 if (!drm_enc) { 1187 DPU_ERROR("invalid encoder\n"); 1188 return; 1189 } else if (!drm_enc->dev) { 1190 DPU_ERROR("invalid dev\n"); 1191 return; 1192 } 1193 1194 dpu_enc = to_dpu_encoder_virt(drm_enc); 1195 DPU_DEBUG_ENC(dpu_enc, "\n"); 1196 1197 mutex_lock(&dpu_enc->enc_lock); 1198 dpu_enc->enabled = false; 1199 1200 priv = drm_enc->dev->dev_private; 1201 dpu_kms = to_dpu_kms(priv->kms); 1202 1203 trace_dpu_enc_disable(DRMID(drm_enc)); 1204 1205 /* wait for idle */ 1206 dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE); 1207 1208 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP); 1209 1210 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1211 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1212 1213 if (phys->ops.disable) 1214 phys->ops.disable(phys); 1215 } 1216 1217 /* after phys waits for frame-done, should be no more frames pending */ 1218 if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 1219 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id); 1220 del_timer_sync(&dpu_enc->frame_done_timer); 1221 } 1222 1223 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP); 1224 1225 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1226 dpu_enc->phys_encs[i]->connector = NULL; 1227 } 1228 1229 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n"); 1230 1231 dpu_rm_release(&dpu_kms->rm, drm_enc); 1232 1233 mutex_unlock(&dpu_enc->enc_lock); 1234 } 1235 1236 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog, 1237 enum dpu_intf_type type, u32 controller_id) 1238 { 1239 int i = 0; 1240 1241 for (i = 0; i < catalog->intf_count; i++) { 1242 if (catalog->intf[i].type == type 1243 && catalog->intf[i].controller_id == controller_id) { 1244 return catalog->intf[i].id; 1245 } 1246 } 1247 1248 return INTF_MAX; 1249 } 1250 1251 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc, 1252 struct dpu_encoder_phys *phy_enc) 1253 { 1254 struct dpu_encoder_virt *dpu_enc = NULL; 1255 unsigned long lock_flags; 1256 1257 if (!drm_enc || !phy_enc) 1258 return; 1259 1260 DPU_ATRACE_BEGIN("encoder_vblank_callback"); 1261 dpu_enc = to_dpu_encoder_virt(drm_enc); 1262 1263 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1264 if (dpu_enc->crtc) 1265 dpu_crtc_vblank_callback(dpu_enc->crtc); 1266 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1267 1268 atomic_inc(&phy_enc->vsync_cnt); 1269 DPU_ATRACE_END("encoder_vblank_callback"); 1270 } 1271 1272 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc, 1273 struct dpu_encoder_phys *phy_enc) 1274 { 1275 if (!phy_enc) 1276 return; 1277 1278 DPU_ATRACE_BEGIN("encoder_underrun_callback"); 1279 atomic_inc(&phy_enc->underrun_cnt); 1280 trace_dpu_enc_underrun_cb(DRMID(drm_enc), 1281 atomic_read(&phy_enc->underrun_cnt)); 1282 DPU_ATRACE_END("encoder_underrun_callback"); 1283 } 1284 1285 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc) 1286 { 1287 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1288 unsigned long lock_flags; 1289 1290 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1291 /* crtc should always be cleared before re-assigning */ 1292 WARN_ON(crtc && dpu_enc->crtc); 1293 dpu_enc->crtc = crtc; 1294 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1295 } 1296 1297 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc, 1298 struct drm_crtc *crtc, bool enable) 1299 { 1300 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1301 unsigned long lock_flags; 1302 int i; 1303 1304 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable); 1305 1306 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1307 if (dpu_enc->crtc != crtc) { 1308 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1309 return; 1310 } 1311 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1312 1313 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1314 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1315 1316 if (phys->ops.control_vblank_irq) 1317 phys->ops.control_vblank_irq(phys, enable); 1318 } 1319 } 1320 1321 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc, 1322 void (*frame_event_cb)(void *, u32 event), 1323 void *frame_event_cb_data) 1324 { 1325 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1326 unsigned long lock_flags; 1327 bool enable; 1328 1329 enable = frame_event_cb ? true : false; 1330 1331 if (!drm_enc) { 1332 DPU_ERROR("invalid encoder\n"); 1333 return; 1334 } 1335 trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable); 1336 1337 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1338 dpu_enc->crtc_frame_event_cb = frame_event_cb; 1339 dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data; 1340 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1341 } 1342 1343 static void dpu_encoder_frame_done_callback( 1344 struct drm_encoder *drm_enc, 1345 struct dpu_encoder_phys *ready_phys, u32 event) 1346 { 1347 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1348 unsigned int i; 1349 1350 if (event & (DPU_ENCODER_FRAME_EVENT_DONE 1351 | DPU_ENCODER_FRAME_EVENT_ERROR 1352 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 1353 1354 if (!dpu_enc->frame_busy_mask[0]) { 1355 /** 1356 * suppress frame_done without waiter, 1357 * likely autorefresh 1358 */ 1359 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), 1360 event, ready_phys->intf_idx); 1361 return; 1362 } 1363 1364 /* One of the physical encoders has become idle */ 1365 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1366 if (dpu_enc->phys_encs[i] == ready_phys) { 1367 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i, 1368 dpu_enc->frame_busy_mask[0]); 1369 clear_bit(i, dpu_enc->frame_busy_mask); 1370 } 1371 } 1372 1373 if (!dpu_enc->frame_busy_mask[0]) { 1374 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 1375 del_timer(&dpu_enc->frame_done_timer); 1376 1377 dpu_encoder_resource_control(drm_enc, 1378 DPU_ENC_RC_EVENT_FRAME_DONE); 1379 1380 if (dpu_enc->crtc_frame_event_cb) 1381 dpu_enc->crtc_frame_event_cb( 1382 dpu_enc->crtc_frame_event_cb_data, 1383 event); 1384 } 1385 } else { 1386 if (dpu_enc->crtc_frame_event_cb) 1387 dpu_enc->crtc_frame_event_cb( 1388 dpu_enc->crtc_frame_event_cb_data, event); 1389 } 1390 } 1391 1392 static void dpu_encoder_off_work(struct work_struct *work) 1393 { 1394 struct dpu_encoder_virt *dpu_enc = container_of(work, 1395 struct dpu_encoder_virt, delayed_off_work.work); 1396 1397 if (!dpu_enc) { 1398 DPU_ERROR("invalid dpu encoder\n"); 1399 return; 1400 } 1401 1402 dpu_encoder_resource_control(&dpu_enc->base, 1403 DPU_ENC_RC_EVENT_ENTER_IDLE); 1404 1405 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL, 1406 DPU_ENCODER_FRAME_EVENT_IDLE); 1407 } 1408 1409 /** 1410 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder 1411 * drm_enc: Pointer to drm encoder structure 1412 * phys: Pointer to physical encoder structure 1413 * extra_flush_bits: Additional bit mask to include in flush trigger 1414 */ 1415 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc, 1416 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits) 1417 { 1418 struct dpu_hw_ctl *ctl; 1419 int pending_kickoff_cnt; 1420 u32 ret = UINT_MAX; 1421 1422 if (!phys->hw_pp) { 1423 DPU_ERROR("invalid pingpong hw\n"); 1424 return; 1425 } 1426 1427 ctl = phys->hw_ctl; 1428 if (!ctl->ops.trigger_flush) { 1429 DPU_ERROR("missing trigger cb\n"); 1430 return; 1431 } 1432 1433 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys); 1434 1435 if (extra_flush_bits && ctl->ops.update_pending_flush) 1436 ctl->ops.update_pending_flush(ctl, extra_flush_bits); 1437 1438 ctl->ops.trigger_flush(ctl); 1439 1440 if (ctl->ops.get_pending_flush) 1441 ret = ctl->ops.get_pending_flush(ctl); 1442 1443 trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx, 1444 pending_kickoff_cnt, ctl->idx, 1445 extra_flush_bits, ret); 1446 } 1447 1448 /** 1449 * _dpu_encoder_trigger_start - trigger start for a physical encoder 1450 * phys: Pointer to physical encoder structure 1451 */ 1452 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys) 1453 { 1454 if (!phys) { 1455 DPU_ERROR("invalid argument(s)\n"); 1456 return; 1457 } 1458 1459 if (!phys->hw_pp) { 1460 DPU_ERROR("invalid pingpong hw\n"); 1461 return; 1462 } 1463 1464 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED) 1465 phys->ops.trigger_start(phys); 1466 } 1467 1468 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc) 1469 { 1470 struct dpu_hw_ctl *ctl; 1471 1472 ctl = phys_enc->hw_ctl; 1473 if (ctl->ops.trigger_start) { 1474 ctl->ops.trigger_start(ctl); 1475 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx); 1476 } 1477 } 1478 1479 static int dpu_encoder_helper_wait_event_timeout( 1480 int32_t drm_id, 1481 int32_t hw_id, 1482 struct dpu_encoder_wait_info *info) 1483 { 1484 int rc = 0; 1485 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms; 1486 s64 jiffies = msecs_to_jiffies(info->timeout_ms); 1487 s64 time; 1488 1489 do { 1490 rc = wait_event_timeout(*(info->wq), 1491 atomic_read(info->atomic_cnt) == 0, jiffies); 1492 time = ktime_to_ms(ktime_get()); 1493 1494 trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time, 1495 expected_time, 1496 atomic_read(info->atomic_cnt)); 1497 /* If we timed out, counter is valid and time is less, wait again */ 1498 } while (atomic_read(info->atomic_cnt) && (rc == 0) && 1499 (time < expected_time)); 1500 1501 return rc; 1502 } 1503 1504 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc) 1505 { 1506 struct dpu_encoder_virt *dpu_enc; 1507 struct dpu_hw_ctl *ctl; 1508 int rc; 1509 1510 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 1511 ctl = phys_enc->hw_ctl; 1512 1513 if (!ctl->ops.reset) 1514 return; 1515 1516 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent), 1517 ctl->idx); 1518 1519 rc = ctl->ops.reset(ctl); 1520 if (rc) 1521 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx); 1522 1523 phys_enc->enable_state = DPU_ENC_ENABLED; 1524 } 1525 1526 /** 1527 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff 1528 * Iterate through the physical encoders and perform consolidated flush 1529 * and/or control start triggering as needed. This is done in the virtual 1530 * encoder rather than the individual physical ones in order to handle 1531 * use cases that require visibility into multiple physical encoders at 1532 * a time. 1533 * dpu_enc: Pointer to virtual encoder structure 1534 */ 1535 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc) 1536 { 1537 struct dpu_hw_ctl *ctl; 1538 uint32_t i, pending_flush; 1539 unsigned long lock_flags; 1540 1541 pending_flush = 0x0; 1542 1543 /* update pending counts and trigger kickoff ctl flush atomically */ 1544 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1545 1546 /* don't perform flush/start operations for slave encoders */ 1547 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1548 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1549 1550 if (phys->enable_state == DPU_ENC_DISABLED) 1551 continue; 1552 1553 ctl = phys->hw_ctl; 1554 1555 /* 1556 * This is cleared in frame_done worker, which isn't invoked 1557 * for async commits. So don't set this for async, since it'll 1558 * roll over to the next commit. 1559 */ 1560 if (phys->split_role != ENC_ROLE_SLAVE) 1561 set_bit(i, dpu_enc->frame_busy_mask); 1562 1563 if (!phys->ops.needs_single_flush || 1564 !phys->ops.needs_single_flush(phys)) 1565 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0); 1566 else if (ctl->ops.get_pending_flush) 1567 pending_flush |= ctl->ops.get_pending_flush(ctl); 1568 } 1569 1570 /* for split flush, combine pending flush masks and send to master */ 1571 if (pending_flush && dpu_enc->cur_master) { 1572 _dpu_encoder_trigger_flush( 1573 &dpu_enc->base, 1574 dpu_enc->cur_master, 1575 pending_flush); 1576 } 1577 1578 _dpu_encoder_trigger_start(dpu_enc->cur_master); 1579 1580 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1581 } 1582 1583 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc) 1584 { 1585 struct dpu_encoder_virt *dpu_enc; 1586 struct dpu_encoder_phys *phys; 1587 unsigned int i; 1588 struct dpu_hw_ctl *ctl; 1589 struct msm_display_info *disp_info; 1590 1591 if (!drm_enc) { 1592 DPU_ERROR("invalid encoder\n"); 1593 return; 1594 } 1595 dpu_enc = to_dpu_encoder_virt(drm_enc); 1596 disp_info = &dpu_enc->disp_info; 1597 1598 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1599 phys = dpu_enc->phys_encs[i]; 1600 1601 ctl = phys->hw_ctl; 1602 if (ctl->ops.clear_pending_flush) 1603 ctl->ops.clear_pending_flush(ctl); 1604 1605 /* update only for command mode primary ctl */ 1606 if ((phys == dpu_enc->cur_master) && 1607 (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) 1608 && ctl->ops.trigger_pending) 1609 ctl->ops.trigger_pending(ctl); 1610 } 1611 } 1612 1613 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc, 1614 struct drm_display_mode *mode) 1615 { 1616 u64 pclk_rate; 1617 u32 pclk_period; 1618 u32 line_time; 1619 1620 /* 1621 * For linetime calculation, only operate on master encoder. 1622 */ 1623 if (!dpu_enc->cur_master) 1624 return 0; 1625 1626 if (!dpu_enc->cur_master->ops.get_line_count) { 1627 DPU_ERROR("get_line_count function not defined\n"); 1628 return 0; 1629 } 1630 1631 pclk_rate = mode->clock; /* pixel clock in kHz */ 1632 if (pclk_rate == 0) { 1633 DPU_ERROR("pclk is 0, cannot calculate line time\n"); 1634 return 0; 1635 } 1636 1637 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate); 1638 if (pclk_period == 0) { 1639 DPU_ERROR("pclk period is 0\n"); 1640 return 0; 1641 } 1642 1643 /* 1644 * Line time calculation based on Pixel clock and HTOTAL. 1645 * Final unit is in ns. 1646 */ 1647 line_time = (pclk_period * mode->htotal) / 1000; 1648 if (line_time == 0) { 1649 DPU_ERROR("line time calculation is 0\n"); 1650 return 0; 1651 } 1652 1653 DPU_DEBUG_ENC(dpu_enc, 1654 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n", 1655 pclk_rate, pclk_period, line_time); 1656 1657 return line_time; 1658 } 1659 1660 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time) 1661 { 1662 struct drm_display_mode *mode; 1663 struct dpu_encoder_virt *dpu_enc; 1664 u32 cur_line; 1665 u32 line_time; 1666 u32 vtotal, time_to_vsync; 1667 ktime_t cur_time; 1668 1669 dpu_enc = to_dpu_encoder_virt(drm_enc); 1670 1671 if (!drm_enc->crtc || !drm_enc->crtc->state) { 1672 DPU_ERROR("crtc/crtc state object is NULL\n"); 1673 return -EINVAL; 1674 } 1675 mode = &drm_enc->crtc->state->adjusted_mode; 1676 1677 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode); 1678 if (!line_time) 1679 return -EINVAL; 1680 1681 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master); 1682 1683 vtotal = mode->vtotal; 1684 if (cur_line >= vtotal) 1685 time_to_vsync = line_time * vtotal; 1686 else 1687 time_to_vsync = line_time * (vtotal - cur_line); 1688 1689 if (time_to_vsync == 0) { 1690 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n", 1691 vtotal); 1692 return -EINVAL; 1693 } 1694 1695 cur_time = ktime_get(); 1696 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync); 1697 1698 DPU_DEBUG_ENC(dpu_enc, 1699 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n", 1700 cur_line, vtotal, time_to_vsync, 1701 ktime_to_ms(cur_time), 1702 ktime_to_ms(*wakeup_time)); 1703 return 0; 1704 } 1705 1706 static void dpu_encoder_vsync_event_handler(struct timer_list *t) 1707 { 1708 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 1709 vsync_event_timer); 1710 struct drm_encoder *drm_enc = &dpu_enc->base; 1711 struct msm_drm_private *priv; 1712 struct msm_drm_thread *event_thread; 1713 1714 if (!drm_enc->dev || !drm_enc->crtc) { 1715 DPU_ERROR("invalid parameters\n"); 1716 return; 1717 } 1718 1719 priv = drm_enc->dev->dev_private; 1720 1721 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) { 1722 DPU_ERROR("invalid crtc index\n"); 1723 return; 1724 } 1725 event_thread = &priv->event_thread[drm_enc->crtc->index]; 1726 if (!event_thread) { 1727 DPU_ERROR("event_thread not found for crtc:%d\n", 1728 drm_enc->crtc->index); 1729 return; 1730 } 1731 1732 del_timer(&dpu_enc->vsync_event_timer); 1733 } 1734 1735 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work) 1736 { 1737 struct dpu_encoder_virt *dpu_enc = container_of(work, 1738 struct dpu_encoder_virt, vsync_event_work); 1739 ktime_t wakeup_time; 1740 1741 if (!dpu_enc) { 1742 DPU_ERROR("invalid dpu encoder\n"); 1743 return; 1744 } 1745 1746 if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time)) 1747 return; 1748 1749 trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time); 1750 mod_timer(&dpu_enc->vsync_event_timer, 1751 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1752 } 1753 1754 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc) 1755 { 1756 struct dpu_encoder_virt *dpu_enc; 1757 struct dpu_encoder_phys *phys; 1758 bool needs_hw_reset = false; 1759 unsigned int i; 1760 1761 dpu_enc = to_dpu_encoder_virt(drm_enc); 1762 1763 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc)); 1764 1765 /* prepare for next kickoff, may include waiting on previous kickoff */ 1766 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff"); 1767 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1768 phys = dpu_enc->phys_encs[i]; 1769 if (phys->ops.prepare_for_kickoff) 1770 phys->ops.prepare_for_kickoff(phys); 1771 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET) 1772 needs_hw_reset = true; 1773 } 1774 DPU_ATRACE_END("enc_prepare_for_kickoff"); 1775 1776 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1777 1778 /* if any phys needs reset, reset all phys, in-order */ 1779 if (needs_hw_reset) { 1780 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc)); 1781 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1782 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]); 1783 } 1784 } 1785 } 1786 1787 void dpu_encoder_kickoff(struct drm_encoder *drm_enc) 1788 { 1789 struct dpu_encoder_virt *dpu_enc; 1790 struct dpu_encoder_phys *phys; 1791 ktime_t wakeup_time; 1792 unsigned long timeout_ms; 1793 unsigned int i; 1794 1795 DPU_ATRACE_BEGIN("encoder_kickoff"); 1796 dpu_enc = to_dpu_encoder_virt(drm_enc); 1797 1798 trace_dpu_enc_kickoff(DRMID(drm_enc)); 1799 1800 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 / 1801 drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode); 1802 1803 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms); 1804 mod_timer(&dpu_enc->frame_done_timer, 1805 jiffies + msecs_to_jiffies(timeout_ms)); 1806 1807 /* All phys encs are ready to go, trigger the kickoff */ 1808 _dpu_encoder_kickoff_phys(dpu_enc); 1809 1810 /* allow phys encs to handle any post-kickoff business */ 1811 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1812 phys = dpu_enc->phys_encs[i]; 1813 if (phys->ops.handle_post_kickoff) 1814 phys->ops.handle_post_kickoff(phys); 1815 } 1816 1817 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI && 1818 !dpu_encoder_vsync_time(drm_enc, &wakeup_time)) { 1819 trace_dpu_enc_early_kickoff(DRMID(drm_enc), 1820 ktime_to_ms(wakeup_time)); 1821 mod_timer(&dpu_enc->vsync_event_timer, 1822 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1823 } 1824 1825 DPU_ATRACE_END("encoder_kickoff"); 1826 } 1827 1828 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc) 1829 { 1830 struct dpu_encoder_virt *dpu_enc; 1831 struct dpu_encoder_phys *phys; 1832 int i; 1833 1834 if (!drm_enc) { 1835 DPU_ERROR("invalid encoder\n"); 1836 return; 1837 } 1838 dpu_enc = to_dpu_encoder_virt(drm_enc); 1839 1840 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1841 phys = dpu_enc->phys_encs[i]; 1842 if (phys->ops.prepare_commit) 1843 phys->ops.prepare_commit(phys); 1844 } 1845 } 1846 1847 #ifdef CONFIG_DEBUG_FS 1848 static int _dpu_encoder_status_show(struct seq_file *s, void *data) 1849 { 1850 struct dpu_encoder_virt *dpu_enc = s->private; 1851 int i; 1852 1853 mutex_lock(&dpu_enc->enc_lock); 1854 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1855 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1856 1857 seq_printf(s, "intf:%d vsync:%8d underrun:%8d ", 1858 phys->intf_idx - INTF_0, 1859 atomic_read(&phys->vsync_cnt), 1860 atomic_read(&phys->underrun_cnt)); 1861 1862 switch (phys->intf_mode) { 1863 case INTF_MODE_VIDEO: 1864 seq_puts(s, "mode: video\n"); 1865 break; 1866 case INTF_MODE_CMD: 1867 seq_puts(s, "mode: command\n"); 1868 break; 1869 default: 1870 seq_puts(s, "mode: ???\n"); 1871 break; 1872 } 1873 } 1874 mutex_unlock(&dpu_enc->enc_lock); 1875 1876 return 0; 1877 } 1878 1879 static int _dpu_encoder_debugfs_status_open(struct inode *inode, 1880 struct file *file) 1881 { 1882 return single_open(file, _dpu_encoder_status_show, inode->i_private); 1883 } 1884 1885 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 1886 { 1887 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1888 int i; 1889 1890 static const struct file_operations debugfs_status_fops = { 1891 .open = _dpu_encoder_debugfs_status_open, 1892 .read = seq_read, 1893 .llseek = seq_lseek, 1894 .release = single_release, 1895 }; 1896 1897 char name[DPU_NAME_SIZE]; 1898 1899 if (!drm_enc->dev) { 1900 DPU_ERROR("invalid encoder or kms\n"); 1901 return -EINVAL; 1902 } 1903 1904 snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id); 1905 1906 /* create overall sub-directory for the encoder */ 1907 dpu_enc->debugfs_root = debugfs_create_dir(name, 1908 drm_enc->dev->primary->debugfs_root); 1909 1910 /* don't error check these */ 1911 debugfs_create_file("status", 0600, 1912 dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops); 1913 1914 for (i = 0; i < dpu_enc->num_phys_encs; i++) 1915 if (dpu_enc->phys_encs[i]->ops.late_register) 1916 dpu_enc->phys_encs[i]->ops.late_register( 1917 dpu_enc->phys_encs[i], 1918 dpu_enc->debugfs_root); 1919 1920 return 0; 1921 } 1922 #else 1923 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 1924 { 1925 return 0; 1926 } 1927 #endif 1928 1929 static int dpu_encoder_late_register(struct drm_encoder *encoder) 1930 { 1931 return _dpu_encoder_init_debugfs(encoder); 1932 } 1933 1934 static void dpu_encoder_early_unregister(struct drm_encoder *encoder) 1935 { 1936 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder); 1937 1938 debugfs_remove_recursive(dpu_enc->debugfs_root); 1939 } 1940 1941 static int dpu_encoder_virt_add_phys_encs( 1942 u32 display_caps, 1943 struct dpu_encoder_virt *dpu_enc, 1944 struct dpu_enc_phys_init_params *params) 1945 { 1946 struct dpu_encoder_phys *enc = NULL; 1947 1948 DPU_DEBUG_ENC(dpu_enc, "\n"); 1949 1950 /* 1951 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types 1952 * in this function, check up-front. 1953 */ 1954 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >= 1955 ARRAY_SIZE(dpu_enc->phys_encs)) { 1956 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n", 1957 dpu_enc->num_phys_encs); 1958 return -EINVAL; 1959 } 1960 1961 if (display_caps & MSM_DISPLAY_CAP_VID_MODE) { 1962 enc = dpu_encoder_phys_vid_init(params); 1963 1964 if (IS_ERR_OR_NULL(enc)) { 1965 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n", 1966 PTR_ERR(enc)); 1967 return enc == 0 ? -EINVAL : PTR_ERR(enc); 1968 } 1969 1970 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 1971 ++dpu_enc->num_phys_encs; 1972 } 1973 1974 if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) { 1975 enc = dpu_encoder_phys_cmd_init(params); 1976 1977 if (IS_ERR_OR_NULL(enc)) { 1978 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n", 1979 PTR_ERR(enc)); 1980 return enc == 0 ? -EINVAL : PTR_ERR(enc); 1981 } 1982 1983 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 1984 ++dpu_enc->num_phys_encs; 1985 } 1986 1987 if (params->split_role == ENC_ROLE_SLAVE) 1988 dpu_enc->cur_slave = enc; 1989 else 1990 dpu_enc->cur_master = enc; 1991 1992 return 0; 1993 } 1994 1995 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = { 1996 .handle_vblank_virt = dpu_encoder_vblank_callback, 1997 .handle_underrun_virt = dpu_encoder_underrun_callback, 1998 .handle_frame_done = dpu_encoder_frame_done_callback, 1999 }; 2000 2001 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc, 2002 struct dpu_kms *dpu_kms, 2003 struct msm_display_info *disp_info) 2004 { 2005 int ret = 0; 2006 int i = 0; 2007 enum dpu_intf_type intf_type; 2008 struct dpu_enc_phys_init_params phys_params; 2009 2010 if (!dpu_enc) { 2011 DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != 0); 2012 return -EINVAL; 2013 } 2014 2015 dpu_enc->cur_master = NULL; 2016 2017 memset(&phys_params, 0, sizeof(phys_params)); 2018 phys_params.dpu_kms = dpu_kms; 2019 phys_params.parent = &dpu_enc->base; 2020 phys_params.parent_ops = &dpu_encoder_parent_ops; 2021 phys_params.enc_spinlock = &dpu_enc->enc_spinlock; 2022 2023 DPU_DEBUG("\n"); 2024 2025 switch (disp_info->intf_type) { 2026 case DRM_MODE_ENCODER_DSI: 2027 intf_type = INTF_DSI; 2028 break; 2029 default: 2030 DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n"); 2031 return -EINVAL; 2032 } 2033 2034 WARN_ON(disp_info->num_of_h_tiles < 1); 2035 2036 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles); 2037 2038 if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) || 2039 (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE)) 2040 dpu_enc->idle_pc_supported = 2041 dpu_kms->catalog->caps->has_idle_pc; 2042 2043 mutex_lock(&dpu_enc->enc_lock); 2044 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) { 2045 /* 2046 * Left-most tile is at index 0, content is controller id 2047 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right 2048 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right 2049 */ 2050 u32 controller_id = disp_info->h_tile_instance[i]; 2051 2052 if (disp_info->num_of_h_tiles > 1) { 2053 if (i == 0) 2054 phys_params.split_role = ENC_ROLE_MASTER; 2055 else 2056 phys_params.split_role = ENC_ROLE_SLAVE; 2057 } else { 2058 phys_params.split_role = ENC_ROLE_SOLO; 2059 } 2060 2061 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n", 2062 i, controller_id, phys_params.split_role); 2063 2064 phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog, 2065 intf_type, 2066 controller_id); 2067 if (phys_params.intf_idx == INTF_MAX) { 2068 DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n", 2069 intf_type, controller_id); 2070 ret = -EINVAL; 2071 } 2072 2073 if (!ret) { 2074 ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities, 2075 dpu_enc, 2076 &phys_params); 2077 if (ret) 2078 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n"); 2079 } 2080 } 2081 2082 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2083 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2084 atomic_set(&phys->vsync_cnt, 0); 2085 atomic_set(&phys->underrun_cnt, 0); 2086 } 2087 mutex_unlock(&dpu_enc->enc_lock); 2088 2089 return ret; 2090 } 2091 2092 static void dpu_encoder_frame_done_timeout(struct timer_list *t) 2093 { 2094 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 2095 frame_done_timer); 2096 struct drm_encoder *drm_enc = &dpu_enc->base; 2097 u32 event; 2098 2099 if (!drm_enc->dev) { 2100 DPU_ERROR("invalid parameters\n"); 2101 return; 2102 } 2103 2104 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) { 2105 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n", 2106 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]); 2107 return; 2108 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 2109 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc)); 2110 return; 2111 } 2112 2113 DPU_ERROR_ENC(dpu_enc, "frame done timeout\n"); 2114 2115 event = DPU_ENCODER_FRAME_EVENT_ERROR; 2116 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event); 2117 dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event); 2118 } 2119 2120 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = { 2121 .mode_set = dpu_encoder_virt_mode_set, 2122 .disable = dpu_encoder_virt_disable, 2123 .enable = dpu_kms_encoder_enable, 2124 .atomic_check = dpu_encoder_virt_atomic_check, 2125 2126 /* This is called by dpu_kms_encoder_enable */ 2127 .commit = dpu_encoder_virt_enable, 2128 }; 2129 2130 static const struct drm_encoder_funcs dpu_encoder_funcs = { 2131 .destroy = dpu_encoder_destroy, 2132 .late_register = dpu_encoder_late_register, 2133 .early_unregister = dpu_encoder_early_unregister, 2134 }; 2135 2136 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc, 2137 struct msm_display_info *disp_info) 2138 { 2139 struct msm_drm_private *priv = dev->dev_private; 2140 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 2141 struct drm_encoder *drm_enc = NULL; 2142 struct dpu_encoder_virt *dpu_enc = NULL; 2143 int ret = 0; 2144 2145 dpu_enc = to_dpu_encoder_virt(enc); 2146 2147 mutex_init(&dpu_enc->enc_lock); 2148 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info); 2149 if (ret) 2150 goto fail; 2151 2152 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 2153 timer_setup(&dpu_enc->frame_done_timer, 2154 dpu_encoder_frame_done_timeout, 0); 2155 2156 if (disp_info->intf_type == DRM_MODE_ENCODER_DSI) 2157 timer_setup(&dpu_enc->vsync_event_timer, 2158 dpu_encoder_vsync_event_handler, 2159 0); 2160 2161 2162 mutex_init(&dpu_enc->rc_lock); 2163 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work, 2164 dpu_encoder_off_work); 2165 dpu_enc->idle_timeout = IDLE_TIMEOUT; 2166 2167 kthread_init_work(&dpu_enc->vsync_event_work, 2168 dpu_encoder_vsync_event_work_handler); 2169 2170 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info)); 2171 2172 DPU_DEBUG_ENC(dpu_enc, "created\n"); 2173 2174 return ret; 2175 2176 fail: 2177 DPU_ERROR("failed to create encoder\n"); 2178 if (drm_enc) 2179 dpu_encoder_destroy(drm_enc); 2180 2181 return ret; 2182 2183 2184 } 2185 2186 struct drm_encoder *dpu_encoder_init(struct drm_device *dev, 2187 int drm_enc_mode) 2188 { 2189 struct dpu_encoder_virt *dpu_enc = NULL; 2190 int rc = 0; 2191 2192 dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL); 2193 if (!dpu_enc) 2194 return ERR_PTR(ENOMEM); 2195 2196 rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs, 2197 drm_enc_mode, NULL); 2198 if (rc) { 2199 devm_kfree(dev->dev, dpu_enc); 2200 return ERR_PTR(rc); 2201 } 2202 2203 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs); 2204 2205 spin_lock_init(&dpu_enc->enc_spinlock); 2206 dpu_enc->enabled = false; 2207 2208 return &dpu_enc->base; 2209 } 2210 2211 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc, 2212 enum msm_event_wait event) 2213 { 2214 int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL; 2215 struct dpu_encoder_virt *dpu_enc = NULL; 2216 int i, ret = 0; 2217 2218 if (!drm_enc) { 2219 DPU_ERROR("invalid encoder\n"); 2220 return -EINVAL; 2221 } 2222 dpu_enc = to_dpu_encoder_virt(drm_enc); 2223 DPU_DEBUG_ENC(dpu_enc, "\n"); 2224 2225 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2226 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2227 2228 switch (event) { 2229 case MSM_ENC_COMMIT_DONE: 2230 fn_wait = phys->ops.wait_for_commit_done; 2231 break; 2232 case MSM_ENC_TX_COMPLETE: 2233 fn_wait = phys->ops.wait_for_tx_complete; 2234 break; 2235 case MSM_ENC_VBLANK: 2236 fn_wait = phys->ops.wait_for_vblank; 2237 break; 2238 default: 2239 DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n", 2240 event); 2241 return -EINVAL; 2242 } 2243 2244 if (fn_wait) { 2245 DPU_ATRACE_BEGIN("wait_for_completion_event"); 2246 ret = fn_wait(phys); 2247 DPU_ATRACE_END("wait_for_completion_event"); 2248 if (ret) 2249 return ret; 2250 } 2251 } 2252 2253 return ret; 2254 } 2255 2256 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder) 2257 { 2258 struct dpu_encoder_virt *dpu_enc = NULL; 2259 2260 if (!encoder) { 2261 DPU_ERROR("invalid encoder\n"); 2262 return INTF_MODE_NONE; 2263 } 2264 dpu_enc = to_dpu_encoder_virt(encoder); 2265 2266 if (dpu_enc->cur_master) 2267 return dpu_enc->cur_master->intf_mode; 2268 2269 if (dpu_enc->num_phys_encs) 2270 return dpu_enc->phys_encs[0]->intf_mode; 2271 2272 return INTF_MODE_NONE; 2273 } 2274