1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2013 Red Hat
5  * Author: Rob Clark <robdclark@gmail.com>
6  */
7 
8 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/kthread.h>
10 #include <linux/debugfs.h>
11 #include <linux/seq_file.h>
12 
13 #include "msm_drv.h"
14 #include "dpu_kms.h"
15 #include <drm/drm_crtc.h>
16 #include <drm/drm_probe_helper.h>
17 #include "dpu_hwio.h"
18 #include "dpu_hw_catalog.h"
19 #include "dpu_hw_intf.h"
20 #include "dpu_hw_ctl.h"
21 #include "dpu_formats.h"
22 #include "dpu_encoder_phys.h"
23 #include "dpu_crtc.h"
24 #include "dpu_trace.h"
25 #include "dpu_core_irq.h"
26 
27 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\
28 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
29 
30 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
31 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
32 
33 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\
34 		(p) ? (p)->parent->base.id : -1, \
35 		(p) ? (p)->intf_idx - INTF_0 : -1, \
36 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
37 		##__VA_ARGS__)
38 
39 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
40 		(p) ? (p)->parent->base.id : -1, \
41 		(p) ? (p)->intf_idx - INTF_0 : -1, \
42 		(p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
43 		##__VA_ARGS__)
44 
45 /*
46  * Two to anticipate panels that can do cmd/vid dynamic switching
47  * plan is to create all possible physical encoder types, and switch between
48  * them at runtime
49  */
50 #define NUM_PHYS_ENCODER_TYPES 2
51 
52 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
53 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
54 
55 #define MAX_CHANNELS_PER_ENC 2
56 
57 #define IDLE_SHORT_TIMEOUT	1
58 
59 #define MAX_VDISPLAY_SPLIT 1080
60 
61 /* timeout in frames waiting for frame done */
62 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
63 
64 /**
65  * enum dpu_enc_rc_events - events for resource control state machine
66  * @DPU_ENC_RC_EVENT_KICKOFF:
67  *	This event happens at NORMAL priority.
68  *	Event that signals the start of the transfer. When this event is
69  *	received, enable MDP/DSI core clocks. Regardless of the previous
70  *	state, the resource should be in ON state at the end of this event.
71  * @DPU_ENC_RC_EVENT_FRAME_DONE:
72  *	This event happens at INTERRUPT level.
73  *	Event signals the end of the data transfer after the PP FRAME_DONE
74  *	event. At the end of this event, a delayed work is scheduled to go to
75  *	IDLE_PC state after IDLE_TIMEOUT time.
76  * @DPU_ENC_RC_EVENT_PRE_STOP:
77  *	This event happens at NORMAL priority.
78  *	This event, when received during the ON state, leave the RC STATE
79  *	in the PRE_OFF state. It should be followed by the STOP event as
80  *	part of encoder disable.
81  *	If received during IDLE or OFF states, it will do nothing.
82  * @DPU_ENC_RC_EVENT_STOP:
83  *	This event happens at NORMAL priority.
84  *	When this event is received, disable all the MDP/DSI core clocks, and
85  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
86  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
87  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
88  *	Resource state should be in OFF at the end of the event.
89  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
90  *	This event happens at NORMAL priority from a work item.
91  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
92  *	This would disable MDP/DSI core clocks and change the resource state
93  *	to IDLE.
94  */
95 enum dpu_enc_rc_events {
96 	DPU_ENC_RC_EVENT_KICKOFF = 1,
97 	DPU_ENC_RC_EVENT_FRAME_DONE,
98 	DPU_ENC_RC_EVENT_PRE_STOP,
99 	DPU_ENC_RC_EVENT_STOP,
100 	DPU_ENC_RC_EVENT_ENTER_IDLE
101 };
102 
103 /*
104  * enum dpu_enc_rc_states - states that the resource control maintains
105  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
106  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
107  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
108  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
109  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
110  */
111 enum dpu_enc_rc_states {
112 	DPU_ENC_RC_STATE_OFF,
113 	DPU_ENC_RC_STATE_PRE_OFF,
114 	DPU_ENC_RC_STATE_ON,
115 	DPU_ENC_RC_STATE_IDLE
116 };
117 
118 /**
119  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
120  *	encoders. Virtual encoder manages one "logical" display. Physical
121  *	encoders manage one intf block, tied to a specific panel/sub-panel.
122  *	Virtual encoder defers as much as possible to the physical encoders.
123  *	Virtual encoder registers itself with the DRM Framework as the encoder.
124  * @base:		drm_encoder base class for registration with DRM
125  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
126  * @bus_scaling_client:	Client handle to the bus scaling interface
127  * @enabled:		True if the encoder is active, protected by enc_lock
128  * @num_phys_encs:	Actual number of physical encoders contained.
129  * @phys_encs:		Container of physical encoders managed.
130  * @cur_master:		Pointer to the current master in this mode. Optimization
131  *			Only valid after enable. Cleared as disable.
132  * @hw_pp		Handle to the pingpong blocks used for the display. No.
133  *			pingpong blocks can be different than num_phys_encs.
134  * @intfs_swapped	Whether or not the phys_enc interfaces have been swapped
135  *			for partial update right-only cases, such as pingpong
136  *			split where virtual pingpong does not generate IRQs
137  * @crtc:		Pointer to the currently assigned crtc. Normally you
138  *			would use crtc->state->encoder_mask to determine the
139  *			link between encoder/crtc. However in this case we need
140  *			to track crtc in the disable() hook which is called
141  *			_after_ encoder_mask is cleared.
142  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
143  *				all CTL paths
144  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
145  * @debugfs_root:		Debug file system root file node
146  * @enc_lock:			Lock around physical encoder
147  *				create/destroy/enable/disable
148  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
149  *				busy processing current command.
150  *				Bit0 = phys_encs[0] etc.
151  * @crtc_frame_event_cb:	callback handler for frame event
152  * @crtc_frame_event_cb_data:	callback handler private data
153  * @frame_done_timeout_ms:	frame done timeout in ms
154  * @frame_done_timer:		watchdog timer for frame done event
155  * @vsync_event_timer:		vsync timer
156  * @disp_info:			local copy of msm_display_info struct
157  * @idle_pc_supported:		indicate if idle power collaps is supported
158  * @rc_lock:			resource control mutex lock to protect
159  *				virt encoder over various state changes
160  * @rc_state:			resource controller state
161  * @delayed_off_work:		delayed worker to schedule disabling of
162  *				clks and resources after IDLE_TIMEOUT time.
163  * @vsync_event_work:		worker to handle vsync event for autorefresh
164  * @topology:                   topology of the display
165  * @mode_set_complete:          flag to indicate modeset completion
166  * @idle_timeout:		idle timeout duration in milliseconds
167  */
168 struct dpu_encoder_virt {
169 	struct drm_encoder base;
170 	spinlock_t enc_spinlock;
171 	uint32_t bus_scaling_client;
172 
173 	bool enabled;
174 
175 	unsigned int num_phys_encs;
176 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
177 	struct dpu_encoder_phys *cur_master;
178 	struct dpu_encoder_phys *cur_slave;
179 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
180 
181 	bool intfs_swapped;
182 
183 	struct drm_crtc *crtc;
184 
185 	struct dentry *debugfs_root;
186 	struct mutex enc_lock;
187 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
188 	void (*crtc_frame_event_cb)(void *, u32 event);
189 	void *crtc_frame_event_cb_data;
190 
191 	atomic_t frame_done_timeout_ms;
192 	struct timer_list frame_done_timer;
193 	struct timer_list vsync_event_timer;
194 
195 	struct msm_display_info disp_info;
196 
197 	bool idle_pc_supported;
198 	struct mutex rc_lock;
199 	enum dpu_enc_rc_states rc_state;
200 	struct delayed_work delayed_off_work;
201 	struct kthread_work vsync_event_work;
202 	struct msm_display_topology topology;
203 	bool mode_set_complete;
204 
205 	u32 idle_timeout;
206 };
207 
208 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
209 
210 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
211 		enum dpu_intr_idx intr_idx)
212 {
213 	DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
214 		  DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
215 		  phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
216 
217 	if (phys_enc->parent_ops->handle_frame_done)
218 		phys_enc->parent_ops->handle_frame_done(
219 				phys_enc->parent, phys_enc,
220 				DPU_ENCODER_FRAME_EVENT_ERROR);
221 }
222 
223 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
224 		int32_t hw_id, struct dpu_encoder_wait_info *info);
225 
226 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
227 		enum dpu_intr_idx intr_idx,
228 		struct dpu_encoder_wait_info *wait_info)
229 {
230 	struct dpu_encoder_irq *irq;
231 	u32 irq_status;
232 	int ret;
233 
234 	if (!phys_enc || !wait_info || intr_idx >= INTR_IDX_MAX) {
235 		DPU_ERROR("invalid params\n");
236 		return -EINVAL;
237 	}
238 	irq = &phys_enc->irq[intr_idx];
239 
240 	/* note: do master / slave checking outside */
241 
242 	/* return EWOULDBLOCK since we know the wait isn't necessary */
243 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
244 		DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d",
245 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
246 			  irq->irq_idx);
247 		return -EWOULDBLOCK;
248 	}
249 
250 	if (irq->irq_idx < 0) {
251 		DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s",
252 			      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
253 			      irq->name);
254 		return 0;
255 	}
256 
257 	DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d",
258 		      DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
259 		      irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
260 		      atomic_read(wait_info->atomic_cnt));
261 
262 	ret = dpu_encoder_helper_wait_event_timeout(
263 			DRMID(phys_enc->parent),
264 			irq->hw_idx,
265 			wait_info);
266 
267 	if (ret <= 0) {
268 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
269 				irq->irq_idx, true);
270 		if (irq_status) {
271 			unsigned long flags;
272 
273 			DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, "
274 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
275 				      DRMID(phys_enc->parent), intr_idx,
276 				      irq->hw_idx, irq->irq_idx,
277 				      phys_enc->hw_pp->idx - PINGPONG_0,
278 				      atomic_read(wait_info->atomic_cnt));
279 			local_irq_save(flags);
280 			irq->cb.func(phys_enc, irq->irq_idx);
281 			local_irq_restore(flags);
282 			ret = 0;
283 		} else {
284 			ret = -ETIMEDOUT;
285 			DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, "
286 				      "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
287 				      DRMID(phys_enc->parent), intr_idx,
288 				      irq->hw_idx, irq->irq_idx,
289 				      phys_enc->hw_pp->idx - PINGPONG_0,
290 				      atomic_read(wait_info->atomic_cnt));
291 		}
292 	} else {
293 		ret = 0;
294 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
295 			intr_idx, irq->hw_idx, irq->irq_idx,
296 			phys_enc->hw_pp->idx - PINGPONG_0,
297 			atomic_read(wait_info->atomic_cnt));
298 	}
299 
300 	return ret;
301 }
302 
303 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
304 		enum dpu_intr_idx intr_idx)
305 {
306 	struct dpu_encoder_irq *irq;
307 	int ret = 0;
308 
309 	if (!phys_enc || intr_idx >= INTR_IDX_MAX) {
310 		DPU_ERROR("invalid params\n");
311 		return -EINVAL;
312 	}
313 	irq = &phys_enc->irq[intr_idx];
314 
315 	if (irq->irq_idx >= 0) {
316 		DPU_DEBUG_PHYS(phys_enc,
317 				"skipping already registered irq %s type %d\n",
318 				irq->name, irq->intr_type);
319 		return 0;
320 	}
321 
322 	irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms,
323 			irq->intr_type, irq->hw_idx);
324 	if (irq->irq_idx < 0) {
325 		DPU_ERROR_PHYS(phys_enc,
326 			"failed to lookup IRQ index for %s type:%d\n",
327 			irq->name, irq->intr_type);
328 		return -EINVAL;
329 	}
330 
331 	ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
332 			&irq->cb);
333 	if (ret) {
334 		DPU_ERROR_PHYS(phys_enc,
335 			"failed to register IRQ callback for %s\n",
336 			irq->name);
337 		irq->irq_idx = -EINVAL;
338 		return ret;
339 	}
340 
341 	ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1);
342 	if (ret) {
343 		DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d",
344 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
345 			  irq->irq_idx);
346 		dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
347 				irq->irq_idx, &irq->cb);
348 		irq->irq_idx = -EINVAL;
349 		return ret;
350 	}
351 
352 	trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
353 				irq->hw_idx, irq->irq_idx);
354 
355 	return ret;
356 }
357 
358 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
359 		enum dpu_intr_idx intr_idx)
360 {
361 	struct dpu_encoder_irq *irq;
362 	int ret;
363 
364 	if (!phys_enc) {
365 		DPU_ERROR("invalid encoder\n");
366 		return -EINVAL;
367 	}
368 	irq = &phys_enc->irq[intr_idx];
369 
370 	/* silently skip irqs that weren't registered */
371 	if (irq->irq_idx < 0) {
372 		DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d",
373 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
374 			  irq->irq_idx);
375 		return 0;
376 	}
377 
378 	ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1);
379 	if (ret) {
380 		DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d",
381 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
382 			  irq->irq_idx, ret);
383 	}
384 
385 	ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
386 			&irq->cb);
387 	if (ret) {
388 		DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d",
389 			  DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
390 			  irq->irq_idx, ret);
391 	}
392 
393 	trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
394 					     irq->hw_idx, irq->irq_idx);
395 
396 	irq->irq_idx = -EINVAL;
397 
398 	return 0;
399 }
400 
401 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
402 				  struct dpu_encoder_hw_resources *hw_res)
403 {
404 	struct dpu_encoder_virt *dpu_enc = NULL;
405 	int i = 0;
406 
407 	dpu_enc = to_dpu_encoder_virt(drm_enc);
408 	DPU_DEBUG_ENC(dpu_enc, "\n");
409 
410 	/* Query resources used by phys encs, expected to be without overlap */
411 	memset(hw_res, 0, sizeof(*hw_res));
412 
413 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
414 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
415 
416 		if (phys && phys->ops.get_hw_resources)
417 			phys->ops.get_hw_resources(phys, hw_res);
418 	}
419 }
420 
421 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
422 {
423 	struct dpu_encoder_virt *dpu_enc = NULL;
424 	int i = 0;
425 
426 	if (!drm_enc) {
427 		DPU_ERROR("invalid encoder\n");
428 		return;
429 	}
430 
431 	dpu_enc = to_dpu_encoder_virt(drm_enc);
432 	DPU_DEBUG_ENC(dpu_enc, "\n");
433 
434 	mutex_lock(&dpu_enc->enc_lock);
435 
436 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
437 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
438 
439 		if (phys && phys->ops.destroy) {
440 			phys->ops.destroy(phys);
441 			--dpu_enc->num_phys_encs;
442 			dpu_enc->phys_encs[i] = NULL;
443 		}
444 	}
445 
446 	if (dpu_enc->num_phys_encs)
447 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
448 				dpu_enc->num_phys_encs);
449 	dpu_enc->num_phys_encs = 0;
450 	mutex_unlock(&dpu_enc->enc_lock);
451 
452 	drm_encoder_cleanup(drm_enc);
453 	mutex_destroy(&dpu_enc->enc_lock);
454 }
455 
456 void dpu_encoder_helper_split_config(
457 		struct dpu_encoder_phys *phys_enc,
458 		enum dpu_intf interface)
459 {
460 	struct dpu_encoder_virt *dpu_enc;
461 	struct split_pipe_cfg cfg = { 0 };
462 	struct dpu_hw_mdp *hw_mdptop;
463 	struct msm_display_info *disp_info;
464 
465 	if (!phys_enc || !phys_enc->hw_mdptop || !phys_enc->parent) {
466 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != 0);
467 		return;
468 	}
469 
470 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
471 	hw_mdptop = phys_enc->hw_mdptop;
472 	disp_info = &dpu_enc->disp_info;
473 
474 	if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
475 		return;
476 
477 	/**
478 	 * disable split modes since encoder will be operating in as the only
479 	 * encoder, either for the entire use case in the case of, for example,
480 	 * single DSI, or for this frame in the case of left/right only partial
481 	 * update.
482 	 */
483 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
484 		if (hw_mdptop->ops.setup_split_pipe)
485 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
486 		return;
487 	}
488 
489 	cfg.en = true;
490 	cfg.mode = phys_enc->intf_mode;
491 	cfg.intf = interface;
492 
493 	if (cfg.en && phys_enc->ops.needs_single_flush &&
494 			phys_enc->ops.needs_single_flush(phys_enc))
495 		cfg.split_flush_en = true;
496 
497 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
498 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
499 
500 		if (hw_mdptop->ops.setup_split_pipe)
501 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
502 	}
503 }
504 
505 static void _dpu_encoder_adjust_mode(struct drm_connector *connector,
506 		struct drm_display_mode *adj_mode)
507 {
508 	struct drm_display_mode *cur_mode;
509 
510 	if (!connector || !adj_mode)
511 		return;
512 
513 	list_for_each_entry(cur_mode, &connector->modes, head) {
514 		if (cur_mode->vdisplay == adj_mode->vdisplay &&
515 		    cur_mode->hdisplay == adj_mode->hdisplay &&
516 		    drm_mode_vrefresh(cur_mode) == drm_mode_vrefresh(adj_mode)) {
517 			adj_mode->private = cur_mode->private;
518 			adj_mode->private_flags |= cur_mode->private_flags;
519 		}
520 	}
521 }
522 
523 static struct msm_display_topology dpu_encoder_get_topology(
524 			struct dpu_encoder_virt *dpu_enc,
525 			struct dpu_kms *dpu_kms,
526 			struct drm_display_mode *mode)
527 {
528 	struct msm_display_topology topology;
529 	int i, intf_count = 0;
530 
531 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
532 		if (dpu_enc->phys_encs[i])
533 			intf_count++;
534 
535 	/* User split topology for width > 1080 */
536 	topology.num_lm = (mode->vdisplay > MAX_VDISPLAY_SPLIT) ? 2 : 1;
537 	topology.num_enc = 0;
538 	topology.num_intf = intf_count;
539 
540 	return topology;
541 }
542 static int dpu_encoder_virt_atomic_check(
543 		struct drm_encoder *drm_enc,
544 		struct drm_crtc_state *crtc_state,
545 		struct drm_connector_state *conn_state)
546 {
547 	struct dpu_encoder_virt *dpu_enc;
548 	struct msm_drm_private *priv;
549 	struct dpu_kms *dpu_kms;
550 	const struct drm_display_mode *mode;
551 	struct drm_display_mode *adj_mode;
552 	struct msm_display_topology topology;
553 	int i = 0;
554 	int ret = 0;
555 
556 	if (!drm_enc || !crtc_state || !conn_state) {
557 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
558 				drm_enc != 0, crtc_state != 0, conn_state != 0);
559 		return -EINVAL;
560 	}
561 
562 	dpu_enc = to_dpu_encoder_virt(drm_enc);
563 	DPU_DEBUG_ENC(dpu_enc, "\n");
564 
565 	priv = drm_enc->dev->dev_private;
566 	dpu_kms = to_dpu_kms(priv->kms);
567 	mode = &crtc_state->mode;
568 	adj_mode = &crtc_state->adjusted_mode;
569 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
570 
571 	/*
572 	 * display drivers may populate private fields of the drm display mode
573 	 * structure while registering possible modes of a connector with DRM.
574 	 * These private fields are not populated back while DRM invokes
575 	 * the mode_set callbacks. This module retrieves and populates the
576 	 * private fields of the given mode.
577 	 */
578 	_dpu_encoder_adjust_mode(conn_state->connector, adj_mode);
579 
580 	/* perform atomic check on the first physical encoder (master) */
581 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
582 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
583 
584 		if (phys && phys->ops.atomic_check)
585 			ret = phys->ops.atomic_check(phys, crtc_state,
586 					conn_state);
587 		else if (phys && phys->ops.mode_fixup)
588 			if (!phys->ops.mode_fixup(phys, mode, adj_mode))
589 				ret = -EINVAL;
590 
591 		if (ret) {
592 			DPU_ERROR_ENC(dpu_enc,
593 					"mode unsupported, phys idx %d\n", i);
594 			break;
595 		}
596 	}
597 
598 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
599 
600 	/* Reserve dynamic resources now. Indicating AtomicTest phase */
601 	if (!ret) {
602 		/*
603 		 * Avoid reserving resources when mode set is pending. Topology
604 		 * info may not be available to complete reservation.
605 		 */
606 		if (drm_atomic_crtc_needs_modeset(crtc_state)
607 				&& dpu_enc->mode_set_complete) {
608 			ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, crtc_state,
609 					     topology, true);
610 			dpu_enc->mode_set_complete = false;
611 		}
612 	}
613 
614 	if (!ret)
615 		drm_mode_set_crtcinfo(adj_mode, 0);
616 
617 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags,
618 			adj_mode->private_flags);
619 
620 	return ret;
621 }
622 
623 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
624 			struct msm_display_info *disp_info)
625 {
626 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
627 	struct msm_drm_private *priv;
628 	struct dpu_kms *dpu_kms;
629 	struct dpu_hw_mdp *hw_mdptop;
630 	struct drm_encoder *drm_enc;
631 	int i;
632 
633 	if (!dpu_enc || !disp_info) {
634 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
635 					dpu_enc != NULL, disp_info != NULL);
636 		return;
637 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
638 		DPU_ERROR("invalid num phys enc %d/%d\n",
639 				dpu_enc->num_phys_encs,
640 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
641 		return;
642 	}
643 
644 	drm_enc = &dpu_enc->base;
645 	/* this pointers are checked in virt_enable_helper */
646 	priv = drm_enc->dev->dev_private;
647 
648 	dpu_kms = to_dpu_kms(priv->kms);
649 	if (!dpu_kms) {
650 		DPU_ERROR("invalid dpu_kms\n");
651 		return;
652 	}
653 
654 	hw_mdptop = dpu_kms->hw_mdp;
655 	if (!hw_mdptop) {
656 		DPU_ERROR("invalid mdptop\n");
657 		return;
658 	}
659 
660 	if (hw_mdptop->ops.setup_vsync_source &&
661 			disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
662 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
663 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
664 
665 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
666 		if (disp_info->is_te_using_watchdog_timer)
667 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
668 		else
669 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
670 
671 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
672 	}
673 }
674 
675 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
676 {
677 	struct dpu_encoder_virt *dpu_enc;
678 	int i;
679 
680 	if (!drm_enc) {
681 		DPU_ERROR("invalid encoder\n");
682 		return;
683 	}
684 
685 	dpu_enc = to_dpu_encoder_virt(drm_enc);
686 
687 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
688 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
689 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
690 
691 		if (phys && phys->ops.irq_control)
692 			phys->ops.irq_control(phys, enable);
693 	}
694 
695 }
696 
697 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
698 		bool enable)
699 {
700 	struct msm_drm_private *priv;
701 	struct dpu_kms *dpu_kms;
702 	struct dpu_encoder_virt *dpu_enc;
703 
704 	dpu_enc = to_dpu_encoder_virt(drm_enc);
705 	priv = drm_enc->dev->dev_private;
706 	dpu_kms = to_dpu_kms(priv->kms);
707 
708 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
709 
710 	if (!dpu_enc->cur_master) {
711 		DPU_ERROR("encoder master not set\n");
712 		return;
713 	}
714 
715 	if (enable) {
716 		/* enable DPU core clks */
717 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
718 
719 		/* enable all the irq */
720 		_dpu_encoder_irq_control(drm_enc, true);
721 
722 	} else {
723 		/* disable all the irq */
724 		_dpu_encoder_irq_control(drm_enc, false);
725 
726 		/* disable DPU core clks */
727 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
728 	}
729 
730 }
731 
732 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
733 		u32 sw_event)
734 {
735 	struct dpu_encoder_virt *dpu_enc;
736 	struct msm_drm_private *priv;
737 	bool is_vid_mode = false;
738 
739 	if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private ||
740 			!drm_enc->crtc) {
741 		DPU_ERROR("invalid parameters\n");
742 		return -EINVAL;
743 	}
744 	dpu_enc = to_dpu_encoder_virt(drm_enc);
745 	priv = drm_enc->dev->dev_private;
746 	is_vid_mode = dpu_enc->disp_info.capabilities &
747 						MSM_DISPLAY_CAP_VID_MODE;
748 
749 	/*
750 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
751 	 * events and return early for other events (ie wb display).
752 	 */
753 	if (!dpu_enc->idle_pc_supported &&
754 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
755 			sw_event != DPU_ENC_RC_EVENT_STOP &&
756 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
757 		return 0;
758 
759 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
760 			 dpu_enc->rc_state, "begin");
761 
762 	switch (sw_event) {
763 	case DPU_ENC_RC_EVENT_KICKOFF:
764 		/* cancel delayed off work, if any */
765 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
766 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
767 					sw_event);
768 
769 		mutex_lock(&dpu_enc->rc_lock);
770 
771 		/* return if the resource control is already in ON state */
772 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
773 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n",
774 				      DRMID(drm_enc), sw_event);
775 			mutex_unlock(&dpu_enc->rc_lock);
776 			return 0;
777 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
778 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
779 			DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n",
780 				      DRMID(drm_enc), sw_event,
781 				      dpu_enc->rc_state);
782 			mutex_unlock(&dpu_enc->rc_lock);
783 			return -EINVAL;
784 		}
785 
786 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
787 			_dpu_encoder_irq_control(drm_enc, true);
788 		else
789 			_dpu_encoder_resource_control_helper(drm_enc, true);
790 
791 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
792 
793 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
794 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
795 				 "kickoff");
796 
797 		mutex_unlock(&dpu_enc->rc_lock);
798 		break;
799 
800 	case DPU_ENC_RC_EVENT_FRAME_DONE:
801 		/*
802 		 * mutex lock is not used as this event happens at interrupt
803 		 * context. And locking is not required as, the other events
804 		 * like KICKOFF and STOP does a wait-for-idle before executing
805 		 * the resource_control
806 		 */
807 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
808 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
809 				      DRMID(drm_enc), sw_event,
810 				      dpu_enc->rc_state);
811 			return -EINVAL;
812 		}
813 
814 		/*
815 		 * schedule off work item only when there are no
816 		 * frames pending
817 		 */
818 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
819 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
820 				      DRMID(drm_enc));
821 			return 0;
822 		}
823 
824 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
825 				   msecs_to_jiffies(dpu_enc->idle_timeout));
826 
827 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
828 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
829 				 "frame done");
830 		break;
831 
832 	case DPU_ENC_RC_EVENT_PRE_STOP:
833 		/* cancel delayed off work, if any */
834 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
835 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
836 					sw_event);
837 
838 		mutex_lock(&dpu_enc->rc_lock);
839 
840 		if (is_vid_mode &&
841 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
842 			_dpu_encoder_irq_control(drm_enc, true);
843 		}
844 		/* skip if is already OFF or IDLE, resources are off already */
845 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
846 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
847 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
848 				      DRMID(drm_enc), sw_event,
849 				      dpu_enc->rc_state);
850 			mutex_unlock(&dpu_enc->rc_lock);
851 			return 0;
852 		}
853 
854 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
855 
856 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
857 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
858 				 "pre stop");
859 
860 		mutex_unlock(&dpu_enc->rc_lock);
861 		break;
862 
863 	case DPU_ENC_RC_EVENT_STOP:
864 		mutex_lock(&dpu_enc->rc_lock);
865 
866 		/* return if the resource control is already in OFF state */
867 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
868 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
869 				      DRMID(drm_enc), sw_event);
870 			mutex_unlock(&dpu_enc->rc_lock);
871 			return 0;
872 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
873 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
874 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
875 			mutex_unlock(&dpu_enc->rc_lock);
876 			return -EINVAL;
877 		}
878 
879 		/**
880 		 * expect to arrive here only if in either idle state or pre-off
881 		 * and in IDLE state the resources are already disabled
882 		 */
883 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
884 			_dpu_encoder_resource_control_helper(drm_enc, false);
885 
886 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
887 
888 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
889 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
890 				 "stop");
891 
892 		mutex_unlock(&dpu_enc->rc_lock);
893 		break;
894 
895 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
896 		mutex_lock(&dpu_enc->rc_lock);
897 
898 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
899 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
900 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
901 			mutex_unlock(&dpu_enc->rc_lock);
902 			return 0;
903 		}
904 
905 		/*
906 		 * if we are in ON but a frame was just kicked off,
907 		 * ignore the IDLE event, it's probably a stale timer event
908 		 */
909 		if (dpu_enc->frame_busy_mask[0]) {
910 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
911 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
912 			mutex_unlock(&dpu_enc->rc_lock);
913 			return 0;
914 		}
915 
916 		if (is_vid_mode)
917 			_dpu_encoder_irq_control(drm_enc, false);
918 		else
919 			_dpu_encoder_resource_control_helper(drm_enc, false);
920 
921 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
922 
923 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
924 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
925 				 "idle");
926 
927 		mutex_unlock(&dpu_enc->rc_lock);
928 		break;
929 
930 	default:
931 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
932 			  sw_event);
933 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
934 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
935 				 "error");
936 		break;
937 	}
938 
939 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
940 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
941 			 "end");
942 	return 0;
943 }
944 
945 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
946 				      struct drm_display_mode *mode,
947 				      struct drm_display_mode *adj_mode)
948 {
949 	struct dpu_encoder_virt *dpu_enc;
950 	struct msm_drm_private *priv;
951 	struct dpu_kms *dpu_kms;
952 	struct list_head *connector_list;
953 	struct drm_connector *conn = NULL, *conn_iter;
954 	struct drm_crtc *drm_crtc;
955 	struct dpu_crtc_state *cstate;
956 	struct dpu_rm_hw_iter hw_iter;
957 	struct msm_display_topology topology;
958 	struct dpu_hw_ctl *hw_ctl[MAX_CHANNELS_PER_ENC] = { NULL };
959 	struct dpu_hw_mixer *hw_lm[MAX_CHANNELS_PER_ENC] = { NULL };
960 	int num_lm = 0, num_ctl = 0;
961 	int i, j, ret;
962 
963 	if (!drm_enc) {
964 		DPU_ERROR("invalid encoder\n");
965 		return;
966 	}
967 
968 	dpu_enc = to_dpu_encoder_virt(drm_enc);
969 	DPU_DEBUG_ENC(dpu_enc, "\n");
970 
971 	priv = drm_enc->dev->dev_private;
972 	dpu_kms = to_dpu_kms(priv->kms);
973 	connector_list = &dpu_kms->dev->mode_config.connector_list;
974 
975 	trace_dpu_enc_mode_set(DRMID(drm_enc));
976 
977 	list_for_each_entry(conn_iter, connector_list, head)
978 		if (conn_iter->encoder == drm_enc)
979 			conn = conn_iter;
980 
981 	if (!conn) {
982 		DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
983 		return;
984 	} else if (!conn->state) {
985 		DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
986 		return;
987 	}
988 
989 	drm_for_each_crtc(drm_crtc, drm_enc->dev)
990 		if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc))
991 			break;
992 
993 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
994 
995 	/* Reserve dynamic resources now. Indicating non-AtomicTest phase */
996 	ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, drm_crtc->state,
997 			     topology, false);
998 	if (ret) {
999 		DPU_ERROR_ENC(dpu_enc,
1000 				"failed to reserve hw resources, %d\n", ret);
1001 		return;
1002 	}
1003 
1004 	dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_PINGPONG);
1005 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1006 		dpu_enc->hw_pp[i] = NULL;
1007 		if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1008 			break;
1009 		dpu_enc->hw_pp[i] = (struct dpu_hw_pingpong *) hw_iter.hw;
1010 	}
1011 
1012 	dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_CTL);
1013 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1014 		if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1015 			break;
1016 		hw_ctl[i] = (struct dpu_hw_ctl *)hw_iter.hw;
1017 		num_ctl++;
1018 	}
1019 
1020 	dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_LM);
1021 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1022 		if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1023 			break;
1024 		hw_lm[i] = (struct dpu_hw_mixer *)hw_iter.hw;
1025 		num_lm++;
1026 	}
1027 
1028 	cstate = to_dpu_crtc_state(drm_crtc->state);
1029 
1030 	for (i = 0; i < num_lm; i++) {
1031 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1032 
1033 		cstate->mixers[i].hw_lm = hw_lm[i];
1034 		cstate->mixers[i].lm_ctl = hw_ctl[ctl_idx];
1035 	}
1036 
1037 	cstate->num_mixers = num_lm;
1038 
1039 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1040 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1041 
1042 		if (phys) {
1043 			if (!dpu_enc->hw_pp[i]) {
1044 				DPU_ERROR_ENC(dpu_enc, "no pp block assigned"
1045 					     "at idx: %d\n", i);
1046 				goto error;
1047 			}
1048 
1049 			if (!hw_ctl[i]) {
1050 				DPU_ERROR_ENC(dpu_enc, "no ctl block assigned"
1051 					     "at idx: %d\n", i);
1052 				goto error;
1053 			}
1054 
1055 			phys->hw_pp = dpu_enc->hw_pp[i];
1056 			phys->hw_ctl = hw_ctl[i];
1057 
1058 			dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id,
1059 					    DPU_HW_BLK_INTF);
1060 			for (j = 0; j < MAX_CHANNELS_PER_ENC; j++) {
1061 				struct dpu_hw_intf *hw_intf;
1062 
1063 				if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1064 					break;
1065 
1066 				hw_intf = (struct dpu_hw_intf *)hw_iter.hw;
1067 				if (hw_intf->idx == phys->intf_idx)
1068 					phys->hw_intf = hw_intf;
1069 			}
1070 
1071 			if (!phys->hw_intf) {
1072 				DPU_ERROR_ENC(dpu_enc,
1073 					      "no intf block assigned at idx: %d\n",
1074 					      i);
1075 				goto error;
1076 			}
1077 
1078 			phys->connector = conn->state->connector;
1079 			if (phys->ops.mode_set)
1080 				phys->ops.mode_set(phys, mode, adj_mode);
1081 		}
1082 	}
1083 
1084 	dpu_enc->mode_set_complete = true;
1085 
1086 error:
1087 	dpu_rm_release(&dpu_kms->rm, drm_enc);
1088 }
1089 
1090 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1091 {
1092 	struct dpu_encoder_virt *dpu_enc = NULL;
1093 	struct msm_drm_private *priv;
1094 	struct dpu_kms *dpu_kms;
1095 
1096 	if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) {
1097 		DPU_ERROR("invalid parameters\n");
1098 		return;
1099 	}
1100 
1101 	priv = drm_enc->dev->dev_private;
1102 	dpu_kms = to_dpu_kms(priv->kms);
1103 	if (!dpu_kms) {
1104 		DPU_ERROR("invalid dpu_kms\n");
1105 		return;
1106 	}
1107 
1108 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1109 	if (!dpu_enc || !dpu_enc->cur_master) {
1110 		DPU_ERROR("invalid dpu encoder/master\n");
1111 		return;
1112 	}
1113 
1114 	if (dpu_enc->cur_master->hw_mdptop &&
1115 			dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc)
1116 		dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc(
1117 				dpu_enc->cur_master->hw_mdptop,
1118 				dpu_kms->catalog);
1119 
1120 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1121 }
1122 
1123 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1124 {
1125 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1126 
1127 	mutex_lock(&dpu_enc->enc_lock);
1128 
1129 	if (!dpu_enc->enabled)
1130 		goto out;
1131 
1132 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1133 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1134 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1135 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1136 
1137 	_dpu_encoder_virt_enable_helper(drm_enc);
1138 
1139 out:
1140 	mutex_unlock(&dpu_enc->enc_lock);
1141 }
1142 
1143 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1144 {
1145 	struct dpu_encoder_virt *dpu_enc = NULL;
1146 	int ret = 0;
1147 	struct drm_display_mode *cur_mode = NULL;
1148 
1149 	if (!drm_enc) {
1150 		DPU_ERROR("invalid encoder\n");
1151 		return;
1152 	}
1153 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1154 
1155 	mutex_lock(&dpu_enc->enc_lock);
1156 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1157 
1158 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1159 			     cur_mode->vdisplay);
1160 
1161 	/* always enable slave encoder before master */
1162 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1163 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1164 
1165 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1166 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1167 
1168 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1169 	if (ret) {
1170 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1171 				ret);
1172 		goto out;
1173 	}
1174 
1175 	_dpu_encoder_virt_enable_helper(drm_enc);
1176 
1177 	dpu_enc->enabled = true;
1178 
1179 out:
1180 	mutex_unlock(&dpu_enc->enc_lock);
1181 }
1182 
1183 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1184 {
1185 	struct dpu_encoder_virt *dpu_enc = NULL;
1186 	struct msm_drm_private *priv;
1187 	struct dpu_kms *dpu_kms;
1188 	struct drm_display_mode *mode;
1189 	int i = 0;
1190 
1191 	if (!drm_enc) {
1192 		DPU_ERROR("invalid encoder\n");
1193 		return;
1194 	} else if (!drm_enc->dev) {
1195 		DPU_ERROR("invalid dev\n");
1196 		return;
1197 	} else if (!drm_enc->dev->dev_private) {
1198 		DPU_ERROR("invalid dev_private\n");
1199 		return;
1200 	}
1201 
1202 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1203 	DPU_DEBUG_ENC(dpu_enc, "\n");
1204 
1205 	mutex_lock(&dpu_enc->enc_lock);
1206 	dpu_enc->enabled = false;
1207 
1208 	mode = &drm_enc->crtc->state->adjusted_mode;
1209 
1210 	priv = drm_enc->dev->dev_private;
1211 	dpu_kms = to_dpu_kms(priv->kms);
1212 
1213 	trace_dpu_enc_disable(DRMID(drm_enc));
1214 
1215 	/* wait for idle */
1216 	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1217 
1218 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1219 
1220 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1221 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1222 
1223 		if (phys && phys->ops.disable)
1224 			phys->ops.disable(phys);
1225 	}
1226 
1227 	/* after phys waits for frame-done, should be no more frames pending */
1228 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1229 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1230 		del_timer_sync(&dpu_enc->frame_done_timer);
1231 	}
1232 
1233 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1234 
1235 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1236 		if (dpu_enc->phys_encs[i])
1237 			dpu_enc->phys_encs[i]->connector = NULL;
1238 	}
1239 
1240 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1241 
1242 	dpu_rm_release(&dpu_kms->rm, drm_enc);
1243 
1244 	mutex_unlock(&dpu_enc->enc_lock);
1245 }
1246 
1247 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1248 		enum dpu_intf_type type, u32 controller_id)
1249 {
1250 	int i = 0;
1251 
1252 	for (i = 0; i < catalog->intf_count; i++) {
1253 		if (catalog->intf[i].type == type
1254 		    && catalog->intf[i].controller_id == controller_id) {
1255 			return catalog->intf[i].id;
1256 		}
1257 	}
1258 
1259 	return INTF_MAX;
1260 }
1261 
1262 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1263 		struct dpu_encoder_phys *phy_enc)
1264 {
1265 	struct dpu_encoder_virt *dpu_enc = NULL;
1266 	unsigned long lock_flags;
1267 
1268 	if (!drm_enc || !phy_enc)
1269 		return;
1270 
1271 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1272 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1273 
1274 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1275 	if (dpu_enc->crtc)
1276 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1277 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1278 
1279 	atomic_inc(&phy_enc->vsync_cnt);
1280 	DPU_ATRACE_END("encoder_vblank_callback");
1281 }
1282 
1283 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1284 		struct dpu_encoder_phys *phy_enc)
1285 {
1286 	if (!phy_enc)
1287 		return;
1288 
1289 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1290 	atomic_inc(&phy_enc->underrun_cnt);
1291 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1292 				  atomic_read(&phy_enc->underrun_cnt));
1293 	DPU_ATRACE_END("encoder_underrun_callback");
1294 }
1295 
1296 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1297 {
1298 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1299 	unsigned long lock_flags;
1300 
1301 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1302 	/* crtc should always be cleared before re-assigning */
1303 	WARN_ON(crtc && dpu_enc->crtc);
1304 	dpu_enc->crtc = crtc;
1305 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1306 }
1307 
1308 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1309 					struct drm_crtc *crtc, bool enable)
1310 {
1311 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1312 	unsigned long lock_flags;
1313 	int i;
1314 
1315 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1316 
1317 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1318 	if (dpu_enc->crtc != crtc) {
1319 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1320 		return;
1321 	}
1322 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1323 
1324 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1325 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1326 
1327 		if (phys && phys->ops.control_vblank_irq)
1328 			phys->ops.control_vblank_irq(phys, enable);
1329 	}
1330 }
1331 
1332 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1333 		void (*frame_event_cb)(void *, u32 event),
1334 		void *frame_event_cb_data)
1335 {
1336 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1337 	unsigned long lock_flags;
1338 	bool enable;
1339 
1340 	enable = frame_event_cb ? true : false;
1341 
1342 	if (!drm_enc) {
1343 		DPU_ERROR("invalid encoder\n");
1344 		return;
1345 	}
1346 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1347 
1348 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1349 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1350 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1351 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1352 }
1353 
1354 static void dpu_encoder_frame_done_callback(
1355 		struct drm_encoder *drm_enc,
1356 		struct dpu_encoder_phys *ready_phys, u32 event)
1357 {
1358 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1359 	unsigned int i;
1360 
1361 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1362 			| DPU_ENCODER_FRAME_EVENT_ERROR
1363 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1364 
1365 		if (!dpu_enc->frame_busy_mask[0]) {
1366 			/**
1367 			 * suppress frame_done without waiter,
1368 			 * likely autorefresh
1369 			 */
1370 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
1371 					event, ready_phys->intf_idx);
1372 			return;
1373 		}
1374 
1375 		/* One of the physical encoders has become idle */
1376 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1377 			if (dpu_enc->phys_encs[i] == ready_phys) {
1378 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1379 						dpu_enc->frame_busy_mask[0]);
1380 				clear_bit(i, dpu_enc->frame_busy_mask);
1381 			}
1382 		}
1383 
1384 		if (!dpu_enc->frame_busy_mask[0]) {
1385 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1386 			del_timer(&dpu_enc->frame_done_timer);
1387 
1388 			dpu_encoder_resource_control(drm_enc,
1389 					DPU_ENC_RC_EVENT_FRAME_DONE);
1390 
1391 			if (dpu_enc->crtc_frame_event_cb)
1392 				dpu_enc->crtc_frame_event_cb(
1393 					dpu_enc->crtc_frame_event_cb_data,
1394 					event);
1395 		}
1396 	} else {
1397 		if (dpu_enc->crtc_frame_event_cb)
1398 			dpu_enc->crtc_frame_event_cb(
1399 				dpu_enc->crtc_frame_event_cb_data, event);
1400 	}
1401 }
1402 
1403 static void dpu_encoder_off_work(struct work_struct *work)
1404 {
1405 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1406 			struct dpu_encoder_virt, delayed_off_work.work);
1407 
1408 	if (!dpu_enc) {
1409 		DPU_ERROR("invalid dpu encoder\n");
1410 		return;
1411 	}
1412 
1413 	dpu_encoder_resource_control(&dpu_enc->base,
1414 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1415 
1416 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1417 				DPU_ENCODER_FRAME_EVENT_IDLE);
1418 }
1419 
1420 /**
1421  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1422  * drm_enc: Pointer to drm encoder structure
1423  * phys: Pointer to physical encoder structure
1424  * extra_flush_bits: Additional bit mask to include in flush trigger
1425  */
1426 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1427 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits,
1428 		bool async)
1429 {
1430 	struct dpu_hw_ctl *ctl;
1431 	int pending_kickoff_cnt;
1432 	u32 ret = UINT_MAX;
1433 
1434 	if (!drm_enc || !phys) {
1435 		DPU_ERROR("invalid argument(s), drm_enc %d, phys_enc %d\n",
1436 				drm_enc != 0, phys != 0);
1437 		return;
1438 	}
1439 
1440 	if (!phys->hw_pp) {
1441 		DPU_ERROR("invalid pingpong hw\n");
1442 		return;
1443 	}
1444 
1445 	ctl = phys->hw_ctl;
1446 	if (!ctl || !ctl->ops.trigger_flush) {
1447 		DPU_ERROR("missing trigger cb\n");
1448 		return;
1449 	}
1450 
1451 	if (!async)
1452 		pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1453 	else
1454 		pending_kickoff_cnt = atomic_read(&phys->pending_kickoff_cnt);
1455 
1456 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1457 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1458 
1459 	ctl->ops.trigger_flush(ctl);
1460 
1461 	if (ctl->ops.get_pending_flush)
1462 		ret = ctl->ops.get_pending_flush(ctl);
1463 
1464 	trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1465 				    pending_kickoff_cnt, ctl->idx,
1466 				    extra_flush_bits, ret);
1467 }
1468 
1469 /**
1470  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1471  * phys: Pointer to physical encoder structure
1472  */
1473 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1474 {
1475 	if (!phys) {
1476 		DPU_ERROR("invalid argument(s)\n");
1477 		return;
1478 	}
1479 
1480 	if (!phys->hw_pp) {
1481 		DPU_ERROR("invalid pingpong hw\n");
1482 		return;
1483 	}
1484 
1485 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1486 		phys->ops.trigger_start(phys);
1487 }
1488 
1489 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1490 {
1491 	struct dpu_hw_ctl *ctl;
1492 
1493 	if (!phys_enc) {
1494 		DPU_ERROR("invalid encoder\n");
1495 		return;
1496 	}
1497 
1498 	ctl = phys_enc->hw_ctl;
1499 	if (ctl && ctl->ops.trigger_start) {
1500 		ctl->ops.trigger_start(ctl);
1501 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1502 	}
1503 }
1504 
1505 static int dpu_encoder_helper_wait_event_timeout(
1506 		int32_t drm_id,
1507 		int32_t hw_id,
1508 		struct dpu_encoder_wait_info *info)
1509 {
1510 	int rc = 0;
1511 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1512 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1513 	s64 time;
1514 
1515 	do {
1516 		rc = wait_event_timeout(*(info->wq),
1517 				atomic_read(info->atomic_cnt) == 0, jiffies);
1518 		time = ktime_to_ms(ktime_get());
1519 
1520 		trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time,
1521 						 expected_time,
1522 						 atomic_read(info->atomic_cnt));
1523 	/* If we timed out, counter is valid and time is less, wait again */
1524 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1525 			(time < expected_time));
1526 
1527 	return rc;
1528 }
1529 
1530 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1531 {
1532 	struct dpu_encoder_virt *dpu_enc;
1533 	struct dpu_hw_ctl *ctl;
1534 	int rc;
1535 
1536 	if (!phys_enc) {
1537 		DPU_ERROR("invalid encoder\n");
1538 		return;
1539 	}
1540 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1541 	ctl = phys_enc->hw_ctl;
1542 
1543 	if (!ctl || !ctl->ops.reset)
1544 		return;
1545 
1546 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent),
1547 		      ctl->idx);
1548 
1549 	rc = ctl->ops.reset(ctl);
1550 	if (rc)
1551 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1552 
1553 	phys_enc->enable_state = DPU_ENC_ENABLED;
1554 }
1555 
1556 /**
1557  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1558  *	Iterate through the physical encoders and perform consolidated flush
1559  *	and/or control start triggering as needed. This is done in the virtual
1560  *	encoder rather than the individual physical ones in order to handle
1561  *	use cases that require visibility into multiple physical encoders at
1562  *	a time.
1563  * dpu_enc: Pointer to virtual encoder structure
1564  */
1565 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc,
1566 				      bool async)
1567 {
1568 	struct dpu_hw_ctl *ctl;
1569 	uint32_t i, pending_flush;
1570 	unsigned long lock_flags;
1571 
1572 	if (!dpu_enc) {
1573 		DPU_ERROR("invalid encoder\n");
1574 		return;
1575 	}
1576 
1577 	pending_flush = 0x0;
1578 
1579 	/* update pending counts and trigger kickoff ctl flush atomically */
1580 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1581 
1582 	/* don't perform flush/start operations for slave encoders */
1583 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1584 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1585 
1586 		if (!phys || phys->enable_state == DPU_ENC_DISABLED)
1587 			continue;
1588 
1589 		ctl = phys->hw_ctl;
1590 		if (!ctl)
1591 			continue;
1592 
1593 		/*
1594 		 * This is cleared in frame_done worker, which isn't invoked
1595 		 * for async commits. So don't set this for async, since it'll
1596 		 * roll over to the next commit.
1597 		 */
1598 		if (!async && phys->split_role != ENC_ROLE_SLAVE)
1599 			set_bit(i, dpu_enc->frame_busy_mask);
1600 
1601 		if (!phys->ops.needs_single_flush ||
1602 				!phys->ops.needs_single_flush(phys))
1603 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0,
1604 						   async);
1605 		else if (ctl->ops.get_pending_flush)
1606 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1607 	}
1608 
1609 	/* for split flush, combine pending flush masks and send to master */
1610 	if (pending_flush && dpu_enc->cur_master) {
1611 		_dpu_encoder_trigger_flush(
1612 				&dpu_enc->base,
1613 				dpu_enc->cur_master,
1614 				pending_flush, async);
1615 	}
1616 
1617 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1618 
1619 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1620 }
1621 
1622 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1623 {
1624 	struct dpu_encoder_virt *dpu_enc;
1625 	struct dpu_encoder_phys *phys;
1626 	unsigned int i;
1627 	struct dpu_hw_ctl *ctl;
1628 	struct msm_display_info *disp_info;
1629 
1630 	if (!drm_enc) {
1631 		DPU_ERROR("invalid encoder\n");
1632 		return;
1633 	}
1634 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1635 	disp_info = &dpu_enc->disp_info;
1636 
1637 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1638 		phys = dpu_enc->phys_encs[i];
1639 
1640 		if (phys && phys->hw_ctl) {
1641 			ctl = phys->hw_ctl;
1642 			if (ctl->ops.clear_pending_flush)
1643 				ctl->ops.clear_pending_flush(ctl);
1644 
1645 			/* update only for command mode primary ctl */
1646 			if ((phys == dpu_enc->cur_master) &&
1647 			   (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1648 			    && ctl->ops.trigger_pending)
1649 				ctl->ops.trigger_pending(ctl);
1650 		}
1651 	}
1652 }
1653 
1654 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1655 		struct drm_display_mode *mode)
1656 {
1657 	u64 pclk_rate;
1658 	u32 pclk_period;
1659 	u32 line_time;
1660 
1661 	/*
1662 	 * For linetime calculation, only operate on master encoder.
1663 	 */
1664 	if (!dpu_enc->cur_master)
1665 		return 0;
1666 
1667 	if (!dpu_enc->cur_master->ops.get_line_count) {
1668 		DPU_ERROR("get_line_count function not defined\n");
1669 		return 0;
1670 	}
1671 
1672 	pclk_rate = mode->clock; /* pixel clock in kHz */
1673 	if (pclk_rate == 0) {
1674 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1675 		return 0;
1676 	}
1677 
1678 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1679 	if (pclk_period == 0) {
1680 		DPU_ERROR("pclk period is 0\n");
1681 		return 0;
1682 	}
1683 
1684 	/*
1685 	 * Line time calculation based on Pixel clock and HTOTAL.
1686 	 * Final unit is in ns.
1687 	 */
1688 	line_time = (pclk_period * mode->htotal) / 1000;
1689 	if (line_time == 0) {
1690 		DPU_ERROR("line time calculation is 0\n");
1691 		return 0;
1692 	}
1693 
1694 	DPU_DEBUG_ENC(dpu_enc,
1695 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1696 			pclk_rate, pclk_period, line_time);
1697 
1698 	return line_time;
1699 }
1700 
1701 static int _dpu_encoder_wakeup_time(struct drm_encoder *drm_enc,
1702 		ktime_t *wakeup_time)
1703 {
1704 	struct drm_display_mode *mode;
1705 	struct dpu_encoder_virt *dpu_enc;
1706 	u32 cur_line;
1707 	u32 line_time;
1708 	u32 vtotal, time_to_vsync;
1709 	ktime_t cur_time;
1710 
1711 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1712 
1713 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1714 		DPU_ERROR("crtc/crtc state object is NULL\n");
1715 		return -EINVAL;
1716 	}
1717 	mode = &drm_enc->crtc->state->adjusted_mode;
1718 
1719 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1720 	if (!line_time)
1721 		return -EINVAL;
1722 
1723 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1724 
1725 	vtotal = mode->vtotal;
1726 	if (cur_line >= vtotal)
1727 		time_to_vsync = line_time * vtotal;
1728 	else
1729 		time_to_vsync = line_time * (vtotal - cur_line);
1730 
1731 	if (time_to_vsync == 0) {
1732 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1733 				vtotal);
1734 		return -EINVAL;
1735 	}
1736 
1737 	cur_time = ktime_get();
1738 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1739 
1740 	DPU_DEBUG_ENC(dpu_enc,
1741 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1742 			cur_line, vtotal, time_to_vsync,
1743 			ktime_to_ms(cur_time),
1744 			ktime_to_ms(*wakeup_time));
1745 	return 0;
1746 }
1747 
1748 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1749 {
1750 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1751 			vsync_event_timer);
1752 	struct drm_encoder *drm_enc = &dpu_enc->base;
1753 	struct msm_drm_private *priv;
1754 	struct msm_drm_thread *event_thread;
1755 
1756 	if (!drm_enc->dev || !drm_enc->dev->dev_private ||
1757 			!drm_enc->crtc) {
1758 		DPU_ERROR("invalid parameters\n");
1759 		return;
1760 	}
1761 
1762 	priv = drm_enc->dev->dev_private;
1763 
1764 	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1765 		DPU_ERROR("invalid crtc index\n");
1766 		return;
1767 	}
1768 	event_thread = &priv->event_thread[drm_enc->crtc->index];
1769 	if (!event_thread) {
1770 		DPU_ERROR("event_thread not found for crtc:%d\n",
1771 				drm_enc->crtc->index);
1772 		return;
1773 	}
1774 
1775 	del_timer(&dpu_enc->vsync_event_timer);
1776 }
1777 
1778 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1779 {
1780 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1781 			struct dpu_encoder_virt, vsync_event_work);
1782 	ktime_t wakeup_time;
1783 
1784 	if (!dpu_enc) {
1785 		DPU_ERROR("invalid dpu encoder\n");
1786 		return;
1787 	}
1788 
1789 	if (_dpu_encoder_wakeup_time(&dpu_enc->base, &wakeup_time))
1790 		return;
1791 
1792 	trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1793 	mod_timer(&dpu_enc->vsync_event_timer,
1794 			nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1795 }
1796 
1797 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc, bool async)
1798 {
1799 	struct dpu_encoder_virt *dpu_enc;
1800 	struct dpu_encoder_phys *phys;
1801 	bool needs_hw_reset = false;
1802 	unsigned int i;
1803 
1804 	if (!drm_enc) {
1805 		DPU_ERROR("invalid args\n");
1806 		return;
1807 	}
1808 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1809 
1810 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1811 
1812 	/* prepare for next kickoff, may include waiting on previous kickoff */
1813 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1814 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1815 		phys = dpu_enc->phys_encs[i];
1816 		if (phys) {
1817 			if (phys->ops.prepare_for_kickoff)
1818 				phys->ops.prepare_for_kickoff(phys);
1819 			if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1820 				needs_hw_reset = true;
1821 		}
1822 	}
1823 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1824 
1825 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1826 
1827 	/* if any phys needs reset, reset all phys, in-order */
1828 	if (needs_hw_reset) {
1829 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1830 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1831 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1832 		}
1833 	}
1834 }
1835 
1836 void dpu_encoder_kickoff(struct drm_encoder *drm_enc, bool async)
1837 {
1838 	struct dpu_encoder_virt *dpu_enc;
1839 	struct dpu_encoder_phys *phys;
1840 	ktime_t wakeup_time;
1841 	unsigned int i;
1842 
1843 	if (!drm_enc) {
1844 		DPU_ERROR("invalid encoder\n");
1845 		return;
1846 	}
1847 	DPU_ATRACE_BEGIN("encoder_kickoff");
1848 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1849 
1850 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1851 
1852 	/*
1853 	 * Asynchronous frames don't handle FRAME_DONE events. As such, they
1854 	 * shouldn't enable the frame_done watchdog since it will always time
1855 	 * out.
1856 	 */
1857 	if (!async) {
1858 		unsigned long timeout_ms;
1859 		timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1860 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1861 
1862 		atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1863 		mod_timer(&dpu_enc->frame_done_timer,
1864 			  jiffies + msecs_to_jiffies(timeout_ms));
1865 	}
1866 
1867 	/* All phys encs are ready to go, trigger the kickoff */
1868 	_dpu_encoder_kickoff_phys(dpu_enc, async);
1869 
1870 	/* allow phys encs to handle any post-kickoff business */
1871 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1872 		phys = dpu_enc->phys_encs[i];
1873 		if (phys && phys->ops.handle_post_kickoff)
1874 			phys->ops.handle_post_kickoff(phys);
1875 	}
1876 
1877 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1878 			!_dpu_encoder_wakeup_time(drm_enc, &wakeup_time)) {
1879 		trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1880 					    ktime_to_ms(wakeup_time));
1881 		mod_timer(&dpu_enc->vsync_event_timer,
1882 				nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1883 	}
1884 
1885 	DPU_ATRACE_END("encoder_kickoff");
1886 }
1887 
1888 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
1889 {
1890 	struct dpu_encoder_virt *dpu_enc;
1891 	struct dpu_encoder_phys *phys;
1892 	int i;
1893 
1894 	if (!drm_enc) {
1895 		DPU_ERROR("invalid encoder\n");
1896 		return;
1897 	}
1898 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1899 
1900 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1901 		phys = dpu_enc->phys_encs[i];
1902 		if (phys && phys->ops.prepare_commit)
1903 			phys->ops.prepare_commit(phys);
1904 	}
1905 }
1906 
1907 #ifdef CONFIG_DEBUG_FS
1908 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
1909 {
1910 	struct dpu_encoder_virt *dpu_enc = s->private;
1911 	int i;
1912 
1913 	mutex_lock(&dpu_enc->enc_lock);
1914 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1915 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1916 
1917 		if (!phys)
1918 			continue;
1919 
1920 		seq_printf(s, "intf:%d    vsync:%8d     underrun:%8d    ",
1921 				phys->intf_idx - INTF_0,
1922 				atomic_read(&phys->vsync_cnt),
1923 				atomic_read(&phys->underrun_cnt));
1924 
1925 		switch (phys->intf_mode) {
1926 		case INTF_MODE_VIDEO:
1927 			seq_puts(s, "mode: video\n");
1928 			break;
1929 		case INTF_MODE_CMD:
1930 			seq_puts(s, "mode: command\n");
1931 			break;
1932 		default:
1933 			seq_puts(s, "mode: ???\n");
1934 			break;
1935 		}
1936 	}
1937 	mutex_unlock(&dpu_enc->enc_lock);
1938 
1939 	return 0;
1940 }
1941 
1942 static int _dpu_encoder_debugfs_status_open(struct inode *inode,
1943 		struct file *file)
1944 {
1945 	return single_open(file, _dpu_encoder_status_show, inode->i_private);
1946 }
1947 
1948 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1949 {
1950 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1951 	struct msm_drm_private *priv;
1952 	struct dpu_kms *dpu_kms;
1953 	int i;
1954 
1955 	static const struct file_operations debugfs_status_fops = {
1956 		.open =		_dpu_encoder_debugfs_status_open,
1957 		.read =		seq_read,
1958 		.llseek =	seq_lseek,
1959 		.release =	single_release,
1960 	};
1961 
1962 	char name[DPU_NAME_SIZE];
1963 
1964 	if (!drm_enc->dev || !drm_enc->dev->dev_private) {
1965 		DPU_ERROR("invalid encoder or kms\n");
1966 		return -EINVAL;
1967 	}
1968 
1969 	priv = drm_enc->dev->dev_private;
1970 	dpu_kms = to_dpu_kms(priv->kms);
1971 
1972 	snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
1973 
1974 	/* create overall sub-directory for the encoder */
1975 	dpu_enc->debugfs_root = debugfs_create_dir(name,
1976 			drm_enc->dev->primary->debugfs_root);
1977 	if (!dpu_enc->debugfs_root)
1978 		return -ENOMEM;
1979 
1980 	/* don't error check these */
1981 	debugfs_create_file("status", 0600,
1982 		dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops);
1983 
1984 	for (i = 0; i < dpu_enc->num_phys_encs; i++)
1985 		if (dpu_enc->phys_encs[i] &&
1986 				dpu_enc->phys_encs[i]->ops.late_register)
1987 			dpu_enc->phys_encs[i]->ops.late_register(
1988 					dpu_enc->phys_encs[i],
1989 					dpu_enc->debugfs_root);
1990 
1991 	return 0;
1992 }
1993 #else
1994 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1995 {
1996 	return 0;
1997 }
1998 #endif
1999 
2000 static int dpu_encoder_late_register(struct drm_encoder *encoder)
2001 {
2002 	return _dpu_encoder_init_debugfs(encoder);
2003 }
2004 
2005 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
2006 {
2007 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2008 
2009 	debugfs_remove_recursive(dpu_enc->debugfs_root);
2010 }
2011 
2012 static int dpu_encoder_virt_add_phys_encs(
2013 		u32 display_caps,
2014 		struct dpu_encoder_virt *dpu_enc,
2015 		struct dpu_enc_phys_init_params *params)
2016 {
2017 	struct dpu_encoder_phys *enc = NULL;
2018 
2019 	DPU_DEBUG_ENC(dpu_enc, "\n");
2020 
2021 	/*
2022 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2023 	 * in this function, check up-front.
2024 	 */
2025 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2026 			ARRAY_SIZE(dpu_enc->phys_encs)) {
2027 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2028 			  dpu_enc->num_phys_encs);
2029 		return -EINVAL;
2030 	}
2031 
2032 	if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
2033 		enc = dpu_encoder_phys_vid_init(params);
2034 
2035 		if (IS_ERR_OR_NULL(enc)) {
2036 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2037 				PTR_ERR(enc));
2038 			return enc == 0 ? -EINVAL : PTR_ERR(enc);
2039 		}
2040 
2041 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2042 		++dpu_enc->num_phys_encs;
2043 	}
2044 
2045 	if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
2046 		enc = dpu_encoder_phys_cmd_init(params);
2047 
2048 		if (IS_ERR_OR_NULL(enc)) {
2049 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2050 				PTR_ERR(enc));
2051 			return enc == 0 ? -EINVAL : PTR_ERR(enc);
2052 		}
2053 
2054 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2055 		++dpu_enc->num_phys_encs;
2056 	}
2057 
2058 	if (params->split_role == ENC_ROLE_SLAVE)
2059 		dpu_enc->cur_slave = enc;
2060 	else
2061 		dpu_enc->cur_master = enc;
2062 
2063 	return 0;
2064 }
2065 
2066 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
2067 	.handle_vblank_virt = dpu_encoder_vblank_callback,
2068 	.handle_underrun_virt = dpu_encoder_underrun_callback,
2069 	.handle_frame_done = dpu_encoder_frame_done_callback,
2070 };
2071 
2072 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2073 				 struct dpu_kms *dpu_kms,
2074 				 struct msm_display_info *disp_info)
2075 {
2076 	int ret = 0;
2077 	int i = 0;
2078 	enum dpu_intf_type intf_type;
2079 	struct dpu_enc_phys_init_params phys_params;
2080 
2081 	if (!dpu_enc || !dpu_kms) {
2082 		DPU_ERROR("invalid arg(s), enc %d kms %d\n",
2083 				dpu_enc != 0, dpu_kms != 0);
2084 		return -EINVAL;
2085 	}
2086 
2087 	dpu_enc->cur_master = NULL;
2088 
2089 	memset(&phys_params, 0, sizeof(phys_params));
2090 	phys_params.dpu_kms = dpu_kms;
2091 	phys_params.parent = &dpu_enc->base;
2092 	phys_params.parent_ops = &dpu_encoder_parent_ops;
2093 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2094 
2095 	DPU_DEBUG("\n");
2096 
2097 	switch (disp_info->intf_type) {
2098 	case DRM_MODE_ENCODER_DSI:
2099 		intf_type = INTF_DSI;
2100 		break;
2101 	default:
2102 		DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n");
2103 		return -EINVAL;
2104 	}
2105 
2106 	WARN_ON(disp_info->num_of_h_tiles < 1);
2107 
2108 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2109 
2110 	if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
2111 	    (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
2112 		dpu_enc->idle_pc_supported =
2113 				dpu_kms->catalog->caps->has_idle_pc;
2114 
2115 	mutex_lock(&dpu_enc->enc_lock);
2116 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2117 		/*
2118 		 * Left-most tile is at index 0, content is controller id
2119 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2120 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2121 		 */
2122 		u32 controller_id = disp_info->h_tile_instance[i];
2123 
2124 		if (disp_info->num_of_h_tiles > 1) {
2125 			if (i == 0)
2126 				phys_params.split_role = ENC_ROLE_MASTER;
2127 			else
2128 				phys_params.split_role = ENC_ROLE_SLAVE;
2129 		} else {
2130 			phys_params.split_role = ENC_ROLE_SOLO;
2131 		}
2132 
2133 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2134 				i, controller_id, phys_params.split_role);
2135 
2136 		phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2137 													intf_type,
2138 													controller_id);
2139 		if (phys_params.intf_idx == INTF_MAX) {
2140 			DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
2141 						  intf_type, controller_id);
2142 			ret = -EINVAL;
2143 		}
2144 
2145 		if (!ret) {
2146 			ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
2147 												 dpu_enc,
2148 												 &phys_params);
2149 			if (ret)
2150 				DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2151 		}
2152 	}
2153 
2154 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2155 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2156 
2157 		if (phys) {
2158 			atomic_set(&phys->vsync_cnt, 0);
2159 			atomic_set(&phys->underrun_cnt, 0);
2160 		}
2161 	}
2162 	mutex_unlock(&dpu_enc->enc_lock);
2163 
2164 	return ret;
2165 }
2166 
2167 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2168 {
2169 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2170 			frame_done_timer);
2171 	struct drm_encoder *drm_enc = &dpu_enc->base;
2172 	struct msm_drm_private *priv;
2173 	u32 event;
2174 
2175 	if (!drm_enc->dev || !drm_enc->dev->dev_private) {
2176 		DPU_ERROR("invalid parameters\n");
2177 		return;
2178 	}
2179 	priv = drm_enc->dev->dev_private;
2180 
2181 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2182 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2183 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2184 		return;
2185 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2186 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2187 		return;
2188 	}
2189 
2190 	DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2191 
2192 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2193 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2194 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2195 }
2196 
2197 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2198 	.mode_set = dpu_encoder_virt_mode_set,
2199 	.disable = dpu_encoder_virt_disable,
2200 	.enable = dpu_kms_encoder_enable,
2201 	.atomic_check = dpu_encoder_virt_atomic_check,
2202 
2203 	/* This is called by dpu_kms_encoder_enable */
2204 	.commit = dpu_encoder_virt_enable,
2205 };
2206 
2207 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2208 		.destroy = dpu_encoder_destroy,
2209 		.late_register = dpu_encoder_late_register,
2210 		.early_unregister = dpu_encoder_early_unregister,
2211 };
2212 
2213 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2214 		struct msm_display_info *disp_info)
2215 {
2216 	struct msm_drm_private *priv = dev->dev_private;
2217 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2218 	struct drm_encoder *drm_enc = NULL;
2219 	struct dpu_encoder_virt *dpu_enc = NULL;
2220 	int ret = 0;
2221 
2222 	dpu_enc = to_dpu_encoder_virt(enc);
2223 
2224 	mutex_init(&dpu_enc->enc_lock);
2225 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2226 	if (ret)
2227 		goto fail;
2228 
2229 	spin_lock_init(&dpu_enc->enc_spinlock);
2230 
2231 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2232 	timer_setup(&dpu_enc->frame_done_timer,
2233 			dpu_encoder_frame_done_timeout, 0);
2234 
2235 	if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2236 		timer_setup(&dpu_enc->vsync_event_timer,
2237 				dpu_encoder_vsync_event_handler,
2238 				0);
2239 
2240 
2241 	mutex_init(&dpu_enc->rc_lock);
2242 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2243 			dpu_encoder_off_work);
2244 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2245 
2246 	kthread_init_work(&dpu_enc->vsync_event_work,
2247 			dpu_encoder_vsync_event_work_handler);
2248 
2249 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2250 
2251 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2252 
2253 	return ret;
2254 
2255 fail:
2256 	DPU_ERROR("failed to create encoder\n");
2257 	if (drm_enc)
2258 		dpu_encoder_destroy(drm_enc);
2259 
2260 	return ret;
2261 
2262 
2263 }
2264 
2265 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2266 		int drm_enc_mode)
2267 {
2268 	struct dpu_encoder_virt *dpu_enc = NULL;
2269 	int rc = 0;
2270 
2271 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2272 	if (!dpu_enc)
2273 		return ERR_PTR(ENOMEM);
2274 
2275 	rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2276 			drm_enc_mode, NULL);
2277 	if (rc) {
2278 		devm_kfree(dev->dev, dpu_enc);
2279 		return ERR_PTR(rc);
2280 	}
2281 
2282 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2283 
2284 	dpu_enc->enabled = false;
2285 
2286 	return &dpu_enc->base;
2287 }
2288 
2289 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2290 	enum msm_event_wait event)
2291 {
2292 	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2293 	struct dpu_encoder_virt *dpu_enc = NULL;
2294 	int i, ret = 0;
2295 
2296 	if (!drm_enc) {
2297 		DPU_ERROR("invalid encoder\n");
2298 		return -EINVAL;
2299 	}
2300 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2301 	DPU_DEBUG_ENC(dpu_enc, "\n");
2302 
2303 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2304 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2305 		if (!phys)
2306 			continue;
2307 
2308 		switch (event) {
2309 		case MSM_ENC_COMMIT_DONE:
2310 			fn_wait = phys->ops.wait_for_commit_done;
2311 			break;
2312 		case MSM_ENC_TX_COMPLETE:
2313 			fn_wait = phys->ops.wait_for_tx_complete;
2314 			break;
2315 		case MSM_ENC_VBLANK:
2316 			fn_wait = phys->ops.wait_for_vblank;
2317 			break;
2318 		default:
2319 			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2320 					event);
2321 			return -EINVAL;
2322 		};
2323 
2324 		if (fn_wait) {
2325 			DPU_ATRACE_BEGIN("wait_for_completion_event");
2326 			ret = fn_wait(phys);
2327 			DPU_ATRACE_END("wait_for_completion_event");
2328 			if (ret)
2329 				return ret;
2330 		}
2331 	}
2332 
2333 	return ret;
2334 }
2335 
2336 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2337 {
2338 	struct dpu_encoder_virt *dpu_enc = NULL;
2339 	int i;
2340 
2341 	if (!encoder) {
2342 		DPU_ERROR("invalid encoder\n");
2343 		return INTF_MODE_NONE;
2344 	}
2345 	dpu_enc = to_dpu_encoder_virt(encoder);
2346 
2347 	if (dpu_enc->cur_master)
2348 		return dpu_enc->cur_master->intf_mode;
2349 
2350 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2351 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2352 
2353 		if (phys)
2354 			return phys->intf_mode;
2355 	}
2356 
2357 	return INTF_MODE_NONE;
2358 }
2359