1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved. 4 * Copyright (C) 2013 Red Hat 5 * Author: Rob Clark <robdclark@gmail.com> 6 */ 7 8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 9 #include <linux/kthread.h> 10 #include <linux/debugfs.h> 11 #include <linux/seq_file.h> 12 13 #include "msm_drv.h" 14 #include "dpu_kms.h" 15 #include <drm/drm_crtc.h> 16 #include <drm/drm_probe_helper.h> 17 #include "dpu_hwio.h" 18 #include "dpu_hw_catalog.h" 19 #include "dpu_hw_intf.h" 20 #include "dpu_hw_ctl.h" 21 #include "dpu_formats.h" 22 #include "dpu_encoder_phys.h" 23 #include "dpu_crtc.h" 24 #include "dpu_trace.h" 25 #include "dpu_core_irq.h" 26 27 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\ 28 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 29 30 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\ 31 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__) 32 33 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\ 34 (p) ? (p)->parent->base.id : -1, \ 35 (p) ? (p)->intf_idx - INTF_0 : -1, \ 36 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 37 ##__VA_ARGS__) 38 39 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\ 40 (p) ? (p)->parent->base.id : -1, \ 41 (p) ? (p)->intf_idx - INTF_0 : -1, \ 42 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \ 43 ##__VA_ARGS__) 44 45 /* 46 * Two to anticipate panels that can do cmd/vid dynamic switching 47 * plan is to create all possible physical encoder types, and switch between 48 * them at runtime 49 */ 50 #define NUM_PHYS_ENCODER_TYPES 2 51 52 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \ 53 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES) 54 55 #define MAX_CHANNELS_PER_ENC 2 56 57 #define IDLE_SHORT_TIMEOUT 1 58 59 #define MAX_VDISPLAY_SPLIT 1080 60 61 /* timeout in frames waiting for frame done */ 62 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5 63 64 /** 65 * enum dpu_enc_rc_events - events for resource control state machine 66 * @DPU_ENC_RC_EVENT_KICKOFF: 67 * This event happens at NORMAL priority. 68 * Event that signals the start of the transfer. When this event is 69 * received, enable MDP/DSI core clocks. Regardless of the previous 70 * state, the resource should be in ON state at the end of this event. 71 * @DPU_ENC_RC_EVENT_FRAME_DONE: 72 * This event happens at INTERRUPT level. 73 * Event signals the end of the data transfer after the PP FRAME_DONE 74 * event. At the end of this event, a delayed work is scheduled to go to 75 * IDLE_PC state after IDLE_TIMEOUT time. 76 * @DPU_ENC_RC_EVENT_PRE_STOP: 77 * This event happens at NORMAL priority. 78 * This event, when received during the ON state, leave the RC STATE 79 * in the PRE_OFF state. It should be followed by the STOP event as 80 * part of encoder disable. 81 * If received during IDLE or OFF states, it will do nothing. 82 * @DPU_ENC_RC_EVENT_STOP: 83 * This event happens at NORMAL priority. 84 * When this event is received, disable all the MDP/DSI core clocks, and 85 * disable IRQs. It should be called from the PRE_OFF or IDLE states. 86 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing. 87 * PRE_OFF is expected when PRE_STOP was executed during the ON state. 88 * Resource state should be in OFF at the end of the event. 89 * @DPU_ENC_RC_EVENT_ENTER_IDLE: 90 * This event happens at NORMAL priority from a work item. 91 * Event signals that there were no frame updates for IDLE_TIMEOUT time. 92 * This would disable MDP/DSI core clocks and change the resource state 93 * to IDLE. 94 */ 95 enum dpu_enc_rc_events { 96 DPU_ENC_RC_EVENT_KICKOFF = 1, 97 DPU_ENC_RC_EVENT_FRAME_DONE, 98 DPU_ENC_RC_EVENT_PRE_STOP, 99 DPU_ENC_RC_EVENT_STOP, 100 DPU_ENC_RC_EVENT_ENTER_IDLE 101 }; 102 103 /* 104 * enum dpu_enc_rc_states - states that the resource control maintains 105 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state 106 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state 107 * @DPU_ENC_RC_STATE_ON: Resource is in ON state 108 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state 109 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state 110 */ 111 enum dpu_enc_rc_states { 112 DPU_ENC_RC_STATE_OFF, 113 DPU_ENC_RC_STATE_PRE_OFF, 114 DPU_ENC_RC_STATE_ON, 115 DPU_ENC_RC_STATE_IDLE 116 }; 117 118 /** 119 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical 120 * encoders. Virtual encoder manages one "logical" display. Physical 121 * encoders manage one intf block, tied to a specific panel/sub-panel. 122 * Virtual encoder defers as much as possible to the physical encoders. 123 * Virtual encoder registers itself with the DRM Framework as the encoder. 124 * @base: drm_encoder base class for registration with DRM 125 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes 126 * @bus_scaling_client: Client handle to the bus scaling interface 127 * @enabled: True if the encoder is active, protected by enc_lock 128 * @num_phys_encs: Actual number of physical encoders contained. 129 * @phys_encs: Container of physical encoders managed. 130 * @cur_master: Pointer to the current master in this mode. Optimization 131 * Only valid after enable. Cleared as disable. 132 * @hw_pp Handle to the pingpong blocks used for the display. No. 133 * pingpong blocks can be different than num_phys_encs. 134 * @intfs_swapped Whether or not the phys_enc interfaces have been swapped 135 * for partial update right-only cases, such as pingpong 136 * split where virtual pingpong does not generate IRQs 137 * @crtc: Pointer to the currently assigned crtc. Normally you 138 * would use crtc->state->encoder_mask to determine the 139 * link between encoder/crtc. However in this case we need 140 * to track crtc in the disable() hook which is called 141 * _after_ encoder_mask is cleared. 142 * @crtc_kickoff_cb: Callback into CRTC that will flush & start 143 * all CTL paths 144 * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb 145 * @debugfs_root: Debug file system root file node 146 * @enc_lock: Lock around physical encoder 147 * create/destroy/enable/disable 148 * @frame_busy_mask: Bitmask tracking which phys_enc we are still 149 * busy processing current command. 150 * Bit0 = phys_encs[0] etc. 151 * @crtc_frame_event_cb: callback handler for frame event 152 * @crtc_frame_event_cb_data: callback handler private data 153 * @frame_done_timeout_ms: frame done timeout in ms 154 * @frame_done_timer: watchdog timer for frame done event 155 * @vsync_event_timer: vsync timer 156 * @disp_info: local copy of msm_display_info struct 157 * @idle_pc_supported: indicate if idle power collaps is supported 158 * @rc_lock: resource control mutex lock to protect 159 * virt encoder over various state changes 160 * @rc_state: resource controller state 161 * @delayed_off_work: delayed worker to schedule disabling of 162 * clks and resources after IDLE_TIMEOUT time. 163 * @vsync_event_work: worker to handle vsync event for autorefresh 164 * @topology: topology of the display 165 * @mode_set_complete: flag to indicate modeset completion 166 * @idle_timeout: idle timeout duration in milliseconds 167 */ 168 struct dpu_encoder_virt { 169 struct drm_encoder base; 170 spinlock_t enc_spinlock; 171 uint32_t bus_scaling_client; 172 173 bool enabled; 174 175 unsigned int num_phys_encs; 176 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL]; 177 struct dpu_encoder_phys *cur_master; 178 struct dpu_encoder_phys *cur_slave; 179 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC]; 180 181 bool intfs_swapped; 182 183 struct drm_crtc *crtc; 184 185 struct dentry *debugfs_root; 186 struct mutex enc_lock; 187 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL); 188 void (*crtc_frame_event_cb)(void *, u32 event); 189 void *crtc_frame_event_cb_data; 190 191 atomic_t frame_done_timeout_ms; 192 struct timer_list frame_done_timer; 193 struct timer_list vsync_event_timer; 194 195 struct msm_display_info disp_info; 196 197 bool idle_pc_supported; 198 struct mutex rc_lock; 199 enum dpu_enc_rc_states rc_state; 200 struct delayed_work delayed_off_work; 201 struct kthread_work vsync_event_work; 202 struct msm_display_topology topology; 203 bool mode_set_complete; 204 205 u32 idle_timeout; 206 }; 207 208 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base) 209 210 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc, 211 enum dpu_intr_idx intr_idx) 212 { 213 DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n", 214 DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0, 215 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx); 216 217 if (phys_enc->parent_ops->handle_frame_done) 218 phys_enc->parent_ops->handle_frame_done( 219 phys_enc->parent, phys_enc, 220 DPU_ENCODER_FRAME_EVENT_ERROR); 221 } 222 223 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id, 224 int32_t hw_id, struct dpu_encoder_wait_info *info); 225 226 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc, 227 enum dpu_intr_idx intr_idx, 228 struct dpu_encoder_wait_info *wait_info) 229 { 230 struct dpu_encoder_irq *irq; 231 u32 irq_status; 232 int ret; 233 234 if (!phys_enc || !wait_info || intr_idx >= INTR_IDX_MAX) { 235 DPU_ERROR("invalid params\n"); 236 return -EINVAL; 237 } 238 irq = &phys_enc->irq[intr_idx]; 239 240 /* note: do master / slave checking outside */ 241 242 /* return EWOULDBLOCK since we know the wait isn't necessary */ 243 if (phys_enc->enable_state == DPU_ENC_DISABLED) { 244 DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d", 245 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 246 irq->irq_idx); 247 return -EWOULDBLOCK; 248 } 249 250 if (irq->irq_idx < 0) { 251 DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s", 252 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 253 irq->name); 254 return 0; 255 } 256 257 DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d", 258 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 259 irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0, 260 atomic_read(wait_info->atomic_cnt)); 261 262 ret = dpu_encoder_helper_wait_event_timeout( 263 DRMID(phys_enc->parent), 264 irq->hw_idx, 265 wait_info); 266 267 if (ret <= 0) { 268 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, 269 irq->irq_idx, true); 270 if (irq_status) { 271 unsigned long flags; 272 273 DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, " 274 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", 275 DRMID(phys_enc->parent), intr_idx, 276 irq->hw_idx, irq->irq_idx, 277 phys_enc->hw_pp->idx - PINGPONG_0, 278 atomic_read(wait_info->atomic_cnt)); 279 local_irq_save(flags); 280 irq->cb.func(phys_enc, irq->irq_idx); 281 local_irq_restore(flags); 282 ret = 0; 283 } else { 284 ret = -ETIMEDOUT; 285 DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, " 286 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d", 287 DRMID(phys_enc->parent), intr_idx, 288 irq->hw_idx, irq->irq_idx, 289 phys_enc->hw_pp->idx - PINGPONG_0, 290 atomic_read(wait_info->atomic_cnt)); 291 } 292 } else { 293 ret = 0; 294 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent), 295 intr_idx, irq->hw_idx, irq->irq_idx, 296 phys_enc->hw_pp->idx - PINGPONG_0, 297 atomic_read(wait_info->atomic_cnt)); 298 } 299 300 return ret; 301 } 302 303 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc, 304 enum dpu_intr_idx intr_idx) 305 { 306 struct dpu_encoder_irq *irq; 307 int ret = 0; 308 309 if (!phys_enc || intr_idx >= INTR_IDX_MAX) { 310 DPU_ERROR("invalid params\n"); 311 return -EINVAL; 312 } 313 irq = &phys_enc->irq[intr_idx]; 314 315 if (irq->irq_idx >= 0) { 316 DPU_DEBUG_PHYS(phys_enc, 317 "skipping already registered irq %s type %d\n", 318 irq->name, irq->intr_type); 319 return 0; 320 } 321 322 irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms, 323 irq->intr_type, irq->hw_idx); 324 if (irq->irq_idx < 0) { 325 DPU_ERROR_PHYS(phys_enc, 326 "failed to lookup IRQ index for %s type:%d\n", 327 irq->name, irq->intr_type); 328 return -EINVAL; 329 } 330 331 ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx, 332 &irq->cb); 333 if (ret) { 334 DPU_ERROR_PHYS(phys_enc, 335 "failed to register IRQ callback for %s\n", 336 irq->name); 337 irq->irq_idx = -EINVAL; 338 return ret; 339 } 340 341 ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1); 342 if (ret) { 343 DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d", 344 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 345 irq->irq_idx); 346 dpu_core_irq_unregister_callback(phys_enc->dpu_kms, 347 irq->irq_idx, &irq->cb); 348 irq->irq_idx = -EINVAL; 349 return ret; 350 } 351 352 trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx, 353 irq->hw_idx, irq->irq_idx); 354 355 return ret; 356 } 357 358 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc, 359 enum dpu_intr_idx intr_idx) 360 { 361 struct dpu_encoder_irq *irq; 362 int ret; 363 364 if (!phys_enc) { 365 DPU_ERROR("invalid encoder\n"); 366 return -EINVAL; 367 } 368 irq = &phys_enc->irq[intr_idx]; 369 370 /* silently skip irqs that weren't registered */ 371 if (irq->irq_idx < 0) { 372 DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d", 373 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 374 irq->irq_idx); 375 return 0; 376 } 377 378 ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1); 379 if (ret) { 380 DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d", 381 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 382 irq->irq_idx, ret); 383 } 384 385 ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx, 386 &irq->cb); 387 if (ret) { 388 DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d", 389 DRMID(phys_enc->parent), intr_idx, irq->hw_idx, 390 irq->irq_idx, ret); 391 } 392 393 trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx, 394 irq->hw_idx, irq->irq_idx); 395 396 irq->irq_idx = -EINVAL; 397 398 return 0; 399 } 400 401 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc, 402 struct dpu_encoder_hw_resources *hw_res) 403 { 404 struct dpu_encoder_virt *dpu_enc = NULL; 405 int i = 0; 406 407 dpu_enc = to_dpu_encoder_virt(drm_enc); 408 DPU_DEBUG_ENC(dpu_enc, "\n"); 409 410 /* Query resources used by phys encs, expected to be without overlap */ 411 memset(hw_res, 0, sizeof(*hw_res)); 412 413 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 414 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 415 416 if (phys && phys->ops.get_hw_resources) 417 phys->ops.get_hw_resources(phys, hw_res); 418 } 419 } 420 421 static void dpu_encoder_destroy(struct drm_encoder *drm_enc) 422 { 423 struct dpu_encoder_virt *dpu_enc = NULL; 424 int i = 0; 425 426 if (!drm_enc) { 427 DPU_ERROR("invalid encoder\n"); 428 return; 429 } 430 431 dpu_enc = to_dpu_encoder_virt(drm_enc); 432 DPU_DEBUG_ENC(dpu_enc, "\n"); 433 434 mutex_lock(&dpu_enc->enc_lock); 435 436 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 437 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 438 439 if (phys && phys->ops.destroy) { 440 phys->ops.destroy(phys); 441 --dpu_enc->num_phys_encs; 442 dpu_enc->phys_encs[i] = NULL; 443 } 444 } 445 446 if (dpu_enc->num_phys_encs) 447 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n", 448 dpu_enc->num_phys_encs); 449 dpu_enc->num_phys_encs = 0; 450 mutex_unlock(&dpu_enc->enc_lock); 451 452 drm_encoder_cleanup(drm_enc); 453 mutex_destroy(&dpu_enc->enc_lock); 454 } 455 456 void dpu_encoder_helper_split_config( 457 struct dpu_encoder_phys *phys_enc, 458 enum dpu_intf interface) 459 { 460 struct dpu_encoder_virt *dpu_enc; 461 struct split_pipe_cfg cfg = { 0 }; 462 struct dpu_hw_mdp *hw_mdptop; 463 struct msm_display_info *disp_info; 464 465 if (!phys_enc || !phys_enc->hw_mdptop || !phys_enc->parent) { 466 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != 0); 467 return; 468 } 469 470 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 471 hw_mdptop = phys_enc->hw_mdptop; 472 disp_info = &dpu_enc->disp_info; 473 474 if (disp_info->intf_type != DRM_MODE_ENCODER_DSI) 475 return; 476 477 /** 478 * disable split modes since encoder will be operating in as the only 479 * encoder, either for the entire use case in the case of, for example, 480 * single DSI, or for this frame in the case of left/right only partial 481 * update. 482 */ 483 if (phys_enc->split_role == ENC_ROLE_SOLO) { 484 if (hw_mdptop->ops.setup_split_pipe) 485 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 486 return; 487 } 488 489 cfg.en = true; 490 cfg.mode = phys_enc->intf_mode; 491 cfg.intf = interface; 492 493 if (cfg.en && phys_enc->ops.needs_single_flush && 494 phys_enc->ops.needs_single_flush(phys_enc)) 495 cfg.split_flush_en = true; 496 497 if (phys_enc->split_role == ENC_ROLE_MASTER) { 498 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en); 499 500 if (hw_mdptop->ops.setup_split_pipe) 501 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg); 502 } 503 } 504 505 static void _dpu_encoder_adjust_mode(struct drm_connector *connector, 506 struct drm_display_mode *adj_mode) 507 { 508 struct drm_display_mode *cur_mode; 509 510 if (!connector || !adj_mode) 511 return; 512 513 list_for_each_entry(cur_mode, &connector->modes, head) { 514 if (cur_mode->vdisplay == adj_mode->vdisplay && 515 cur_mode->hdisplay == adj_mode->hdisplay && 516 drm_mode_vrefresh(cur_mode) == drm_mode_vrefresh(adj_mode)) { 517 adj_mode->private = cur_mode->private; 518 adj_mode->private_flags |= cur_mode->private_flags; 519 } 520 } 521 } 522 523 static struct msm_display_topology dpu_encoder_get_topology( 524 struct dpu_encoder_virt *dpu_enc, 525 struct dpu_kms *dpu_kms, 526 struct drm_display_mode *mode) 527 { 528 struct msm_display_topology topology; 529 int i, intf_count = 0; 530 531 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++) 532 if (dpu_enc->phys_encs[i]) 533 intf_count++; 534 535 /* User split topology for width > 1080 */ 536 topology.num_lm = (mode->vdisplay > MAX_VDISPLAY_SPLIT) ? 2 : 1; 537 topology.num_enc = 0; 538 topology.num_intf = intf_count; 539 540 return topology; 541 } 542 static int dpu_encoder_virt_atomic_check( 543 struct drm_encoder *drm_enc, 544 struct drm_crtc_state *crtc_state, 545 struct drm_connector_state *conn_state) 546 { 547 struct dpu_encoder_virt *dpu_enc; 548 struct msm_drm_private *priv; 549 struct dpu_kms *dpu_kms; 550 const struct drm_display_mode *mode; 551 struct drm_display_mode *adj_mode; 552 struct msm_display_topology topology; 553 int i = 0; 554 int ret = 0; 555 556 if (!drm_enc || !crtc_state || !conn_state) { 557 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n", 558 drm_enc != 0, crtc_state != 0, conn_state != 0); 559 return -EINVAL; 560 } 561 562 dpu_enc = to_dpu_encoder_virt(drm_enc); 563 DPU_DEBUG_ENC(dpu_enc, "\n"); 564 565 priv = drm_enc->dev->dev_private; 566 dpu_kms = to_dpu_kms(priv->kms); 567 mode = &crtc_state->mode; 568 adj_mode = &crtc_state->adjusted_mode; 569 trace_dpu_enc_atomic_check(DRMID(drm_enc)); 570 571 /* 572 * display drivers may populate private fields of the drm display mode 573 * structure while registering possible modes of a connector with DRM. 574 * These private fields are not populated back while DRM invokes 575 * the mode_set callbacks. This module retrieves and populates the 576 * private fields of the given mode. 577 */ 578 _dpu_encoder_adjust_mode(conn_state->connector, adj_mode); 579 580 /* perform atomic check on the first physical encoder (master) */ 581 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 582 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 583 584 if (phys && phys->ops.atomic_check) 585 ret = phys->ops.atomic_check(phys, crtc_state, 586 conn_state); 587 else if (phys && phys->ops.mode_fixup) 588 if (!phys->ops.mode_fixup(phys, mode, adj_mode)) 589 ret = -EINVAL; 590 591 if (ret) { 592 DPU_ERROR_ENC(dpu_enc, 593 "mode unsupported, phys idx %d\n", i); 594 break; 595 } 596 } 597 598 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 599 600 /* Reserve dynamic resources now. Indicating AtomicTest phase */ 601 if (!ret) { 602 /* 603 * Avoid reserving resources when mode set is pending. Topology 604 * info may not be available to complete reservation. 605 */ 606 if (drm_atomic_crtc_needs_modeset(crtc_state) 607 && dpu_enc->mode_set_complete) { 608 ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, crtc_state, 609 topology, true); 610 dpu_enc->mode_set_complete = false; 611 } 612 } 613 614 if (!ret) 615 drm_mode_set_crtcinfo(adj_mode, 0); 616 617 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags, 618 adj_mode->private_flags); 619 620 return ret; 621 } 622 623 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc, 624 struct msm_display_info *disp_info) 625 { 626 struct dpu_vsync_source_cfg vsync_cfg = { 0 }; 627 struct msm_drm_private *priv; 628 struct dpu_kms *dpu_kms; 629 struct dpu_hw_mdp *hw_mdptop; 630 struct drm_encoder *drm_enc; 631 int i; 632 633 if (!dpu_enc || !disp_info) { 634 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n", 635 dpu_enc != NULL, disp_info != NULL); 636 return; 637 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) { 638 DPU_ERROR("invalid num phys enc %d/%d\n", 639 dpu_enc->num_phys_encs, 640 (int) ARRAY_SIZE(dpu_enc->hw_pp)); 641 return; 642 } 643 644 drm_enc = &dpu_enc->base; 645 /* this pointers are checked in virt_enable_helper */ 646 priv = drm_enc->dev->dev_private; 647 648 dpu_kms = to_dpu_kms(priv->kms); 649 if (!dpu_kms) { 650 DPU_ERROR("invalid dpu_kms\n"); 651 return; 652 } 653 654 hw_mdptop = dpu_kms->hw_mdp; 655 if (!hw_mdptop) { 656 DPU_ERROR("invalid mdptop\n"); 657 return; 658 } 659 660 if (hw_mdptop->ops.setup_vsync_source && 661 disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) { 662 for (i = 0; i < dpu_enc->num_phys_encs; i++) 663 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx; 664 665 vsync_cfg.pp_count = dpu_enc->num_phys_encs; 666 if (disp_info->is_te_using_watchdog_timer) 667 vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0; 668 else 669 vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO; 670 671 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg); 672 } 673 } 674 675 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable) 676 { 677 struct dpu_encoder_virt *dpu_enc; 678 int i; 679 680 if (!drm_enc) { 681 DPU_ERROR("invalid encoder\n"); 682 return; 683 } 684 685 dpu_enc = to_dpu_encoder_virt(drm_enc); 686 687 DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable); 688 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 689 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 690 691 if (phys && phys->ops.irq_control) 692 phys->ops.irq_control(phys, enable); 693 } 694 695 } 696 697 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc, 698 bool enable) 699 { 700 struct msm_drm_private *priv; 701 struct dpu_kms *dpu_kms; 702 struct dpu_encoder_virt *dpu_enc; 703 704 dpu_enc = to_dpu_encoder_virt(drm_enc); 705 priv = drm_enc->dev->dev_private; 706 dpu_kms = to_dpu_kms(priv->kms); 707 708 trace_dpu_enc_rc_helper(DRMID(drm_enc), enable); 709 710 if (!dpu_enc->cur_master) { 711 DPU_ERROR("encoder master not set\n"); 712 return; 713 } 714 715 if (enable) { 716 /* enable DPU core clks */ 717 pm_runtime_get_sync(&dpu_kms->pdev->dev); 718 719 /* enable all the irq */ 720 _dpu_encoder_irq_control(drm_enc, true); 721 722 } else { 723 /* disable all the irq */ 724 _dpu_encoder_irq_control(drm_enc, false); 725 726 /* disable DPU core clks */ 727 pm_runtime_put_sync(&dpu_kms->pdev->dev); 728 } 729 730 } 731 732 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc, 733 u32 sw_event) 734 { 735 struct dpu_encoder_virt *dpu_enc; 736 struct msm_drm_private *priv; 737 bool is_vid_mode = false; 738 739 if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private || 740 !drm_enc->crtc) { 741 DPU_ERROR("invalid parameters\n"); 742 return -EINVAL; 743 } 744 dpu_enc = to_dpu_encoder_virt(drm_enc); 745 priv = drm_enc->dev->dev_private; 746 is_vid_mode = dpu_enc->disp_info.capabilities & 747 MSM_DISPLAY_CAP_VID_MODE; 748 749 /* 750 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET 751 * events and return early for other events (ie wb display). 752 */ 753 if (!dpu_enc->idle_pc_supported && 754 (sw_event != DPU_ENC_RC_EVENT_KICKOFF && 755 sw_event != DPU_ENC_RC_EVENT_STOP && 756 sw_event != DPU_ENC_RC_EVENT_PRE_STOP)) 757 return 0; 758 759 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported, 760 dpu_enc->rc_state, "begin"); 761 762 switch (sw_event) { 763 case DPU_ENC_RC_EVENT_KICKOFF: 764 /* cancel delayed off work, if any */ 765 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 766 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 767 sw_event); 768 769 mutex_lock(&dpu_enc->rc_lock); 770 771 /* return if the resource control is already in ON state */ 772 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 773 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n", 774 DRMID(drm_enc), sw_event); 775 mutex_unlock(&dpu_enc->rc_lock); 776 return 0; 777 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF && 778 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) { 779 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n", 780 DRMID(drm_enc), sw_event, 781 dpu_enc->rc_state); 782 mutex_unlock(&dpu_enc->rc_lock); 783 return -EINVAL; 784 } 785 786 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) 787 _dpu_encoder_irq_control(drm_enc, true); 788 else 789 _dpu_encoder_resource_control_helper(drm_enc, true); 790 791 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON; 792 793 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 794 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 795 "kickoff"); 796 797 mutex_unlock(&dpu_enc->rc_lock); 798 break; 799 800 case DPU_ENC_RC_EVENT_FRAME_DONE: 801 /* 802 * mutex lock is not used as this event happens at interrupt 803 * context. And locking is not required as, the other events 804 * like KICKOFF and STOP does a wait-for-idle before executing 805 * the resource_control 806 */ 807 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 808 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n", 809 DRMID(drm_enc), sw_event, 810 dpu_enc->rc_state); 811 return -EINVAL; 812 } 813 814 /* 815 * schedule off work item only when there are no 816 * frames pending 817 */ 818 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) { 819 DRM_DEBUG_KMS("id:%d skip schedule work\n", 820 DRMID(drm_enc)); 821 return 0; 822 } 823 824 queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work, 825 msecs_to_jiffies(dpu_enc->idle_timeout)); 826 827 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 828 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 829 "frame done"); 830 break; 831 832 case DPU_ENC_RC_EVENT_PRE_STOP: 833 /* cancel delayed off work, if any */ 834 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work)) 835 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n", 836 sw_event); 837 838 mutex_lock(&dpu_enc->rc_lock); 839 840 if (is_vid_mode && 841 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 842 _dpu_encoder_irq_control(drm_enc, true); 843 } 844 /* skip if is already OFF or IDLE, resources are off already */ 845 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF || 846 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) { 847 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n", 848 DRMID(drm_enc), sw_event, 849 dpu_enc->rc_state); 850 mutex_unlock(&dpu_enc->rc_lock); 851 return 0; 852 } 853 854 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF; 855 856 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 857 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 858 "pre stop"); 859 860 mutex_unlock(&dpu_enc->rc_lock); 861 break; 862 863 case DPU_ENC_RC_EVENT_STOP: 864 mutex_lock(&dpu_enc->rc_lock); 865 866 /* return if the resource control is already in OFF state */ 867 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) { 868 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n", 869 DRMID(drm_enc), sw_event); 870 mutex_unlock(&dpu_enc->rc_lock); 871 return 0; 872 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) { 873 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n", 874 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 875 mutex_unlock(&dpu_enc->rc_lock); 876 return -EINVAL; 877 } 878 879 /** 880 * expect to arrive here only if in either idle state or pre-off 881 * and in IDLE state the resources are already disabled 882 */ 883 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF) 884 _dpu_encoder_resource_control_helper(drm_enc, false); 885 886 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF; 887 888 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 889 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 890 "stop"); 891 892 mutex_unlock(&dpu_enc->rc_lock); 893 break; 894 895 case DPU_ENC_RC_EVENT_ENTER_IDLE: 896 mutex_lock(&dpu_enc->rc_lock); 897 898 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) { 899 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n", 900 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 901 mutex_unlock(&dpu_enc->rc_lock); 902 return 0; 903 } 904 905 /* 906 * if we are in ON but a frame was just kicked off, 907 * ignore the IDLE event, it's probably a stale timer event 908 */ 909 if (dpu_enc->frame_busy_mask[0]) { 910 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n", 911 DRMID(drm_enc), sw_event, dpu_enc->rc_state); 912 mutex_unlock(&dpu_enc->rc_lock); 913 return 0; 914 } 915 916 if (is_vid_mode) 917 _dpu_encoder_irq_control(drm_enc, false); 918 else 919 _dpu_encoder_resource_control_helper(drm_enc, false); 920 921 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE; 922 923 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 924 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 925 "idle"); 926 927 mutex_unlock(&dpu_enc->rc_lock); 928 break; 929 930 default: 931 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc), 932 sw_event); 933 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 934 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 935 "error"); 936 break; 937 } 938 939 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, 940 dpu_enc->idle_pc_supported, dpu_enc->rc_state, 941 "end"); 942 return 0; 943 } 944 945 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc, 946 struct drm_display_mode *mode, 947 struct drm_display_mode *adj_mode) 948 { 949 struct dpu_encoder_virt *dpu_enc; 950 struct msm_drm_private *priv; 951 struct dpu_kms *dpu_kms; 952 struct list_head *connector_list; 953 struct drm_connector *conn = NULL, *conn_iter; 954 struct drm_crtc *drm_crtc; 955 struct dpu_crtc_state *cstate; 956 struct dpu_rm_hw_iter hw_iter; 957 struct msm_display_topology topology; 958 struct dpu_hw_ctl *hw_ctl[MAX_CHANNELS_PER_ENC] = { NULL }; 959 struct dpu_hw_mixer *hw_lm[MAX_CHANNELS_PER_ENC] = { NULL }; 960 int num_lm = 0, num_ctl = 0; 961 int i, j, ret; 962 963 if (!drm_enc) { 964 DPU_ERROR("invalid encoder\n"); 965 return; 966 } 967 968 dpu_enc = to_dpu_encoder_virt(drm_enc); 969 DPU_DEBUG_ENC(dpu_enc, "\n"); 970 971 priv = drm_enc->dev->dev_private; 972 dpu_kms = to_dpu_kms(priv->kms); 973 connector_list = &dpu_kms->dev->mode_config.connector_list; 974 975 trace_dpu_enc_mode_set(DRMID(drm_enc)); 976 977 list_for_each_entry(conn_iter, connector_list, head) 978 if (conn_iter->encoder == drm_enc) 979 conn = conn_iter; 980 981 if (!conn) { 982 DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n"); 983 return; 984 } else if (!conn->state) { 985 DPU_ERROR_ENC(dpu_enc, "invalid connector state\n"); 986 return; 987 } 988 989 drm_for_each_crtc(drm_crtc, drm_enc->dev) 990 if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc)) 991 break; 992 993 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode); 994 995 /* Reserve dynamic resources now. Indicating non-AtomicTest phase */ 996 ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, drm_crtc->state, 997 topology, false); 998 if (ret) { 999 DPU_ERROR_ENC(dpu_enc, 1000 "failed to reserve hw resources, %d\n", ret); 1001 return; 1002 } 1003 1004 dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_PINGPONG); 1005 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1006 dpu_enc->hw_pp[i] = NULL; 1007 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter)) 1008 break; 1009 dpu_enc->hw_pp[i] = (struct dpu_hw_pingpong *) hw_iter.hw; 1010 } 1011 1012 dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_CTL); 1013 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1014 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter)) 1015 break; 1016 hw_ctl[i] = (struct dpu_hw_ctl *)hw_iter.hw; 1017 num_ctl++; 1018 } 1019 1020 dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_LM); 1021 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) { 1022 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter)) 1023 break; 1024 hw_lm[i] = (struct dpu_hw_mixer *)hw_iter.hw; 1025 num_lm++; 1026 } 1027 1028 cstate = to_dpu_crtc_state(drm_crtc->state); 1029 1030 for (i = 0; i < num_lm; i++) { 1031 int ctl_idx = (i < num_ctl) ? i : (num_ctl-1); 1032 1033 cstate->mixers[i].hw_lm = hw_lm[i]; 1034 cstate->mixers[i].lm_ctl = hw_ctl[ctl_idx]; 1035 } 1036 1037 cstate->num_mixers = num_lm; 1038 1039 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1040 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1041 1042 if (phys) { 1043 if (!dpu_enc->hw_pp[i]) { 1044 DPU_ERROR_ENC(dpu_enc, "no pp block assigned" 1045 "at idx: %d\n", i); 1046 goto error; 1047 } 1048 1049 if (!hw_ctl[i]) { 1050 DPU_ERROR_ENC(dpu_enc, "no ctl block assigned" 1051 "at idx: %d\n", i); 1052 goto error; 1053 } 1054 1055 phys->hw_pp = dpu_enc->hw_pp[i]; 1056 phys->hw_ctl = hw_ctl[i]; 1057 1058 dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, 1059 DPU_HW_BLK_INTF); 1060 for (j = 0; j < MAX_CHANNELS_PER_ENC; j++) { 1061 struct dpu_hw_intf *hw_intf; 1062 1063 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter)) 1064 break; 1065 1066 hw_intf = (struct dpu_hw_intf *)hw_iter.hw; 1067 if (hw_intf->idx == phys->intf_idx) 1068 phys->hw_intf = hw_intf; 1069 } 1070 1071 if (!phys->hw_intf) { 1072 DPU_ERROR_ENC(dpu_enc, 1073 "no intf block assigned at idx: %d\n", 1074 i); 1075 goto error; 1076 } 1077 1078 phys->connector = conn->state->connector; 1079 if (phys->ops.mode_set) 1080 phys->ops.mode_set(phys, mode, adj_mode); 1081 } 1082 } 1083 1084 dpu_enc->mode_set_complete = true; 1085 1086 error: 1087 dpu_rm_release(&dpu_kms->rm, drm_enc); 1088 } 1089 1090 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc) 1091 { 1092 struct dpu_encoder_virt *dpu_enc = NULL; 1093 struct msm_drm_private *priv; 1094 struct dpu_kms *dpu_kms; 1095 1096 if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) { 1097 DPU_ERROR("invalid parameters\n"); 1098 return; 1099 } 1100 1101 priv = drm_enc->dev->dev_private; 1102 dpu_kms = to_dpu_kms(priv->kms); 1103 if (!dpu_kms) { 1104 DPU_ERROR("invalid dpu_kms\n"); 1105 return; 1106 } 1107 1108 dpu_enc = to_dpu_encoder_virt(drm_enc); 1109 if (!dpu_enc || !dpu_enc->cur_master) { 1110 DPU_ERROR("invalid dpu encoder/master\n"); 1111 return; 1112 } 1113 1114 if (dpu_enc->cur_master->hw_mdptop && 1115 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc) 1116 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc( 1117 dpu_enc->cur_master->hw_mdptop, 1118 dpu_kms->catalog); 1119 1120 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info); 1121 } 1122 1123 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc) 1124 { 1125 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1126 1127 mutex_lock(&dpu_enc->enc_lock); 1128 1129 if (!dpu_enc->enabled) 1130 goto out; 1131 1132 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore) 1133 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave); 1134 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore) 1135 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master); 1136 1137 _dpu_encoder_virt_enable_helper(drm_enc); 1138 1139 out: 1140 mutex_unlock(&dpu_enc->enc_lock); 1141 } 1142 1143 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc) 1144 { 1145 struct dpu_encoder_virt *dpu_enc = NULL; 1146 int ret = 0; 1147 struct drm_display_mode *cur_mode = NULL; 1148 1149 if (!drm_enc) { 1150 DPU_ERROR("invalid encoder\n"); 1151 return; 1152 } 1153 dpu_enc = to_dpu_encoder_virt(drm_enc); 1154 1155 mutex_lock(&dpu_enc->enc_lock); 1156 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode; 1157 1158 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay, 1159 cur_mode->vdisplay); 1160 1161 /* always enable slave encoder before master */ 1162 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable) 1163 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave); 1164 1165 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable) 1166 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master); 1167 1168 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1169 if (ret) { 1170 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n", 1171 ret); 1172 goto out; 1173 } 1174 1175 _dpu_encoder_virt_enable_helper(drm_enc); 1176 1177 dpu_enc->enabled = true; 1178 1179 out: 1180 mutex_unlock(&dpu_enc->enc_lock); 1181 } 1182 1183 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc) 1184 { 1185 struct dpu_encoder_virt *dpu_enc = NULL; 1186 struct msm_drm_private *priv; 1187 struct dpu_kms *dpu_kms; 1188 struct drm_display_mode *mode; 1189 int i = 0; 1190 1191 if (!drm_enc) { 1192 DPU_ERROR("invalid encoder\n"); 1193 return; 1194 } else if (!drm_enc->dev) { 1195 DPU_ERROR("invalid dev\n"); 1196 return; 1197 } else if (!drm_enc->dev->dev_private) { 1198 DPU_ERROR("invalid dev_private\n"); 1199 return; 1200 } 1201 1202 dpu_enc = to_dpu_encoder_virt(drm_enc); 1203 DPU_DEBUG_ENC(dpu_enc, "\n"); 1204 1205 mutex_lock(&dpu_enc->enc_lock); 1206 dpu_enc->enabled = false; 1207 1208 mode = &drm_enc->crtc->state->adjusted_mode; 1209 1210 priv = drm_enc->dev->dev_private; 1211 dpu_kms = to_dpu_kms(priv->kms); 1212 1213 trace_dpu_enc_disable(DRMID(drm_enc)); 1214 1215 /* wait for idle */ 1216 dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE); 1217 1218 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP); 1219 1220 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1221 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1222 1223 if (phys && phys->ops.disable) 1224 phys->ops.disable(phys); 1225 } 1226 1227 /* after phys waits for frame-done, should be no more frames pending */ 1228 if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 1229 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id); 1230 del_timer_sync(&dpu_enc->frame_done_timer); 1231 } 1232 1233 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP); 1234 1235 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1236 if (dpu_enc->phys_encs[i]) 1237 dpu_enc->phys_encs[i]->connector = NULL; 1238 } 1239 1240 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n"); 1241 1242 dpu_rm_release(&dpu_kms->rm, drm_enc); 1243 1244 mutex_unlock(&dpu_enc->enc_lock); 1245 } 1246 1247 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog, 1248 enum dpu_intf_type type, u32 controller_id) 1249 { 1250 int i = 0; 1251 1252 for (i = 0; i < catalog->intf_count; i++) { 1253 if (catalog->intf[i].type == type 1254 && catalog->intf[i].controller_id == controller_id) { 1255 return catalog->intf[i].id; 1256 } 1257 } 1258 1259 return INTF_MAX; 1260 } 1261 1262 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc, 1263 struct dpu_encoder_phys *phy_enc) 1264 { 1265 struct dpu_encoder_virt *dpu_enc = NULL; 1266 unsigned long lock_flags; 1267 1268 if (!drm_enc || !phy_enc) 1269 return; 1270 1271 DPU_ATRACE_BEGIN("encoder_vblank_callback"); 1272 dpu_enc = to_dpu_encoder_virt(drm_enc); 1273 1274 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1275 if (dpu_enc->crtc) 1276 dpu_crtc_vblank_callback(dpu_enc->crtc); 1277 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1278 1279 atomic_inc(&phy_enc->vsync_cnt); 1280 DPU_ATRACE_END("encoder_vblank_callback"); 1281 } 1282 1283 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc, 1284 struct dpu_encoder_phys *phy_enc) 1285 { 1286 if (!phy_enc) 1287 return; 1288 1289 DPU_ATRACE_BEGIN("encoder_underrun_callback"); 1290 atomic_inc(&phy_enc->underrun_cnt); 1291 trace_dpu_enc_underrun_cb(DRMID(drm_enc), 1292 atomic_read(&phy_enc->underrun_cnt)); 1293 DPU_ATRACE_END("encoder_underrun_callback"); 1294 } 1295 1296 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc) 1297 { 1298 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1299 unsigned long lock_flags; 1300 1301 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1302 /* crtc should always be cleared before re-assigning */ 1303 WARN_ON(crtc && dpu_enc->crtc); 1304 dpu_enc->crtc = crtc; 1305 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1306 } 1307 1308 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc, 1309 struct drm_crtc *crtc, bool enable) 1310 { 1311 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1312 unsigned long lock_flags; 1313 int i; 1314 1315 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable); 1316 1317 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1318 if (dpu_enc->crtc != crtc) { 1319 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1320 return; 1321 } 1322 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1323 1324 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1325 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1326 1327 if (phys && phys->ops.control_vblank_irq) 1328 phys->ops.control_vblank_irq(phys, enable); 1329 } 1330 } 1331 1332 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc, 1333 void (*frame_event_cb)(void *, u32 event), 1334 void *frame_event_cb_data) 1335 { 1336 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1337 unsigned long lock_flags; 1338 bool enable; 1339 1340 enable = frame_event_cb ? true : false; 1341 1342 if (!drm_enc) { 1343 DPU_ERROR("invalid encoder\n"); 1344 return; 1345 } 1346 trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable); 1347 1348 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1349 dpu_enc->crtc_frame_event_cb = frame_event_cb; 1350 dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data; 1351 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1352 } 1353 1354 static void dpu_encoder_frame_done_callback( 1355 struct drm_encoder *drm_enc, 1356 struct dpu_encoder_phys *ready_phys, u32 event) 1357 { 1358 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1359 unsigned int i; 1360 1361 if (event & (DPU_ENCODER_FRAME_EVENT_DONE 1362 | DPU_ENCODER_FRAME_EVENT_ERROR 1363 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 1364 1365 if (!dpu_enc->frame_busy_mask[0]) { 1366 /** 1367 * suppress frame_done without waiter, 1368 * likely autorefresh 1369 */ 1370 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), 1371 event, ready_phys->intf_idx); 1372 return; 1373 } 1374 1375 /* One of the physical encoders has become idle */ 1376 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1377 if (dpu_enc->phys_encs[i] == ready_phys) { 1378 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i, 1379 dpu_enc->frame_busy_mask[0]); 1380 clear_bit(i, dpu_enc->frame_busy_mask); 1381 } 1382 } 1383 1384 if (!dpu_enc->frame_busy_mask[0]) { 1385 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 1386 del_timer(&dpu_enc->frame_done_timer); 1387 1388 dpu_encoder_resource_control(drm_enc, 1389 DPU_ENC_RC_EVENT_FRAME_DONE); 1390 1391 if (dpu_enc->crtc_frame_event_cb) 1392 dpu_enc->crtc_frame_event_cb( 1393 dpu_enc->crtc_frame_event_cb_data, 1394 event); 1395 } 1396 } else { 1397 if (dpu_enc->crtc_frame_event_cb) 1398 dpu_enc->crtc_frame_event_cb( 1399 dpu_enc->crtc_frame_event_cb_data, event); 1400 } 1401 } 1402 1403 static void dpu_encoder_off_work(struct work_struct *work) 1404 { 1405 struct dpu_encoder_virt *dpu_enc = container_of(work, 1406 struct dpu_encoder_virt, delayed_off_work.work); 1407 1408 if (!dpu_enc) { 1409 DPU_ERROR("invalid dpu encoder\n"); 1410 return; 1411 } 1412 1413 dpu_encoder_resource_control(&dpu_enc->base, 1414 DPU_ENC_RC_EVENT_ENTER_IDLE); 1415 1416 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL, 1417 DPU_ENCODER_FRAME_EVENT_IDLE); 1418 } 1419 1420 /** 1421 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder 1422 * drm_enc: Pointer to drm encoder structure 1423 * phys: Pointer to physical encoder structure 1424 * extra_flush_bits: Additional bit mask to include in flush trigger 1425 */ 1426 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc, 1427 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits, 1428 bool async) 1429 { 1430 struct dpu_hw_ctl *ctl; 1431 int pending_kickoff_cnt; 1432 u32 ret = UINT_MAX; 1433 1434 if (!drm_enc || !phys) { 1435 DPU_ERROR("invalid argument(s), drm_enc %d, phys_enc %d\n", 1436 drm_enc != 0, phys != 0); 1437 return; 1438 } 1439 1440 if (!phys->hw_pp) { 1441 DPU_ERROR("invalid pingpong hw\n"); 1442 return; 1443 } 1444 1445 ctl = phys->hw_ctl; 1446 if (!ctl || !ctl->ops.trigger_flush) { 1447 DPU_ERROR("missing trigger cb\n"); 1448 return; 1449 } 1450 1451 if (!async) 1452 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys); 1453 else 1454 pending_kickoff_cnt = atomic_read(&phys->pending_kickoff_cnt); 1455 1456 if (extra_flush_bits && ctl->ops.update_pending_flush) 1457 ctl->ops.update_pending_flush(ctl, extra_flush_bits); 1458 1459 ctl->ops.trigger_flush(ctl); 1460 1461 if (ctl->ops.get_pending_flush) 1462 ret = ctl->ops.get_pending_flush(ctl); 1463 1464 trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx, 1465 pending_kickoff_cnt, ctl->idx, 1466 extra_flush_bits, ret); 1467 } 1468 1469 /** 1470 * _dpu_encoder_trigger_start - trigger start for a physical encoder 1471 * phys: Pointer to physical encoder structure 1472 */ 1473 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys) 1474 { 1475 if (!phys) { 1476 DPU_ERROR("invalid argument(s)\n"); 1477 return; 1478 } 1479 1480 if (!phys->hw_pp) { 1481 DPU_ERROR("invalid pingpong hw\n"); 1482 return; 1483 } 1484 1485 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED) 1486 phys->ops.trigger_start(phys); 1487 } 1488 1489 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc) 1490 { 1491 struct dpu_hw_ctl *ctl; 1492 1493 if (!phys_enc) { 1494 DPU_ERROR("invalid encoder\n"); 1495 return; 1496 } 1497 1498 ctl = phys_enc->hw_ctl; 1499 if (ctl && ctl->ops.trigger_start) { 1500 ctl->ops.trigger_start(ctl); 1501 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx); 1502 } 1503 } 1504 1505 static int dpu_encoder_helper_wait_event_timeout( 1506 int32_t drm_id, 1507 int32_t hw_id, 1508 struct dpu_encoder_wait_info *info) 1509 { 1510 int rc = 0; 1511 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms; 1512 s64 jiffies = msecs_to_jiffies(info->timeout_ms); 1513 s64 time; 1514 1515 do { 1516 rc = wait_event_timeout(*(info->wq), 1517 atomic_read(info->atomic_cnt) == 0, jiffies); 1518 time = ktime_to_ms(ktime_get()); 1519 1520 trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time, 1521 expected_time, 1522 atomic_read(info->atomic_cnt)); 1523 /* If we timed out, counter is valid and time is less, wait again */ 1524 } while (atomic_read(info->atomic_cnt) && (rc == 0) && 1525 (time < expected_time)); 1526 1527 return rc; 1528 } 1529 1530 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc) 1531 { 1532 struct dpu_encoder_virt *dpu_enc; 1533 struct dpu_hw_ctl *ctl; 1534 int rc; 1535 1536 if (!phys_enc) { 1537 DPU_ERROR("invalid encoder\n"); 1538 return; 1539 } 1540 dpu_enc = to_dpu_encoder_virt(phys_enc->parent); 1541 ctl = phys_enc->hw_ctl; 1542 1543 if (!ctl || !ctl->ops.reset) 1544 return; 1545 1546 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent), 1547 ctl->idx); 1548 1549 rc = ctl->ops.reset(ctl); 1550 if (rc) 1551 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx); 1552 1553 phys_enc->enable_state = DPU_ENC_ENABLED; 1554 } 1555 1556 /** 1557 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff 1558 * Iterate through the physical encoders and perform consolidated flush 1559 * and/or control start triggering as needed. This is done in the virtual 1560 * encoder rather than the individual physical ones in order to handle 1561 * use cases that require visibility into multiple physical encoders at 1562 * a time. 1563 * dpu_enc: Pointer to virtual encoder structure 1564 */ 1565 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc, 1566 bool async) 1567 { 1568 struct dpu_hw_ctl *ctl; 1569 uint32_t i, pending_flush; 1570 unsigned long lock_flags; 1571 1572 if (!dpu_enc) { 1573 DPU_ERROR("invalid encoder\n"); 1574 return; 1575 } 1576 1577 pending_flush = 0x0; 1578 1579 /* update pending counts and trigger kickoff ctl flush atomically */ 1580 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags); 1581 1582 /* don't perform flush/start operations for slave encoders */ 1583 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1584 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1585 1586 if (!phys || phys->enable_state == DPU_ENC_DISABLED) 1587 continue; 1588 1589 ctl = phys->hw_ctl; 1590 if (!ctl) 1591 continue; 1592 1593 /* 1594 * This is cleared in frame_done worker, which isn't invoked 1595 * for async commits. So don't set this for async, since it'll 1596 * roll over to the next commit. 1597 */ 1598 if (!async && phys->split_role != ENC_ROLE_SLAVE) 1599 set_bit(i, dpu_enc->frame_busy_mask); 1600 1601 if (!phys->ops.needs_single_flush || 1602 !phys->ops.needs_single_flush(phys)) 1603 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0, 1604 async); 1605 else if (ctl->ops.get_pending_flush) 1606 pending_flush |= ctl->ops.get_pending_flush(ctl); 1607 } 1608 1609 /* for split flush, combine pending flush masks and send to master */ 1610 if (pending_flush && dpu_enc->cur_master) { 1611 _dpu_encoder_trigger_flush( 1612 &dpu_enc->base, 1613 dpu_enc->cur_master, 1614 pending_flush, async); 1615 } 1616 1617 _dpu_encoder_trigger_start(dpu_enc->cur_master); 1618 1619 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags); 1620 } 1621 1622 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc) 1623 { 1624 struct dpu_encoder_virt *dpu_enc; 1625 struct dpu_encoder_phys *phys; 1626 unsigned int i; 1627 struct dpu_hw_ctl *ctl; 1628 struct msm_display_info *disp_info; 1629 1630 if (!drm_enc) { 1631 DPU_ERROR("invalid encoder\n"); 1632 return; 1633 } 1634 dpu_enc = to_dpu_encoder_virt(drm_enc); 1635 disp_info = &dpu_enc->disp_info; 1636 1637 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1638 phys = dpu_enc->phys_encs[i]; 1639 1640 if (phys && phys->hw_ctl) { 1641 ctl = phys->hw_ctl; 1642 if (ctl->ops.clear_pending_flush) 1643 ctl->ops.clear_pending_flush(ctl); 1644 1645 /* update only for command mode primary ctl */ 1646 if ((phys == dpu_enc->cur_master) && 1647 (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) 1648 && ctl->ops.trigger_pending) 1649 ctl->ops.trigger_pending(ctl); 1650 } 1651 } 1652 } 1653 1654 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc, 1655 struct drm_display_mode *mode) 1656 { 1657 u64 pclk_rate; 1658 u32 pclk_period; 1659 u32 line_time; 1660 1661 /* 1662 * For linetime calculation, only operate on master encoder. 1663 */ 1664 if (!dpu_enc->cur_master) 1665 return 0; 1666 1667 if (!dpu_enc->cur_master->ops.get_line_count) { 1668 DPU_ERROR("get_line_count function not defined\n"); 1669 return 0; 1670 } 1671 1672 pclk_rate = mode->clock; /* pixel clock in kHz */ 1673 if (pclk_rate == 0) { 1674 DPU_ERROR("pclk is 0, cannot calculate line time\n"); 1675 return 0; 1676 } 1677 1678 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate); 1679 if (pclk_period == 0) { 1680 DPU_ERROR("pclk period is 0\n"); 1681 return 0; 1682 } 1683 1684 /* 1685 * Line time calculation based on Pixel clock and HTOTAL. 1686 * Final unit is in ns. 1687 */ 1688 line_time = (pclk_period * mode->htotal) / 1000; 1689 if (line_time == 0) { 1690 DPU_ERROR("line time calculation is 0\n"); 1691 return 0; 1692 } 1693 1694 DPU_DEBUG_ENC(dpu_enc, 1695 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n", 1696 pclk_rate, pclk_period, line_time); 1697 1698 return line_time; 1699 } 1700 1701 static int _dpu_encoder_wakeup_time(struct drm_encoder *drm_enc, 1702 ktime_t *wakeup_time) 1703 { 1704 struct drm_display_mode *mode; 1705 struct dpu_encoder_virt *dpu_enc; 1706 u32 cur_line; 1707 u32 line_time; 1708 u32 vtotal, time_to_vsync; 1709 ktime_t cur_time; 1710 1711 dpu_enc = to_dpu_encoder_virt(drm_enc); 1712 1713 if (!drm_enc->crtc || !drm_enc->crtc->state) { 1714 DPU_ERROR("crtc/crtc state object is NULL\n"); 1715 return -EINVAL; 1716 } 1717 mode = &drm_enc->crtc->state->adjusted_mode; 1718 1719 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode); 1720 if (!line_time) 1721 return -EINVAL; 1722 1723 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master); 1724 1725 vtotal = mode->vtotal; 1726 if (cur_line >= vtotal) 1727 time_to_vsync = line_time * vtotal; 1728 else 1729 time_to_vsync = line_time * (vtotal - cur_line); 1730 1731 if (time_to_vsync == 0) { 1732 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n", 1733 vtotal); 1734 return -EINVAL; 1735 } 1736 1737 cur_time = ktime_get(); 1738 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync); 1739 1740 DPU_DEBUG_ENC(dpu_enc, 1741 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n", 1742 cur_line, vtotal, time_to_vsync, 1743 ktime_to_ms(cur_time), 1744 ktime_to_ms(*wakeup_time)); 1745 return 0; 1746 } 1747 1748 static void dpu_encoder_vsync_event_handler(struct timer_list *t) 1749 { 1750 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 1751 vsync_event_timer); 1752 struct drm_encoder *drm_enc = &dpu_enc->base; 1753 struct msm_drm_private *priv; 1754 struct msm_drm_thread *event_thread; 1755 1756 if (!drm_enc->dev || !drm_enc->dev->dev_private || 1757 !drm_enc->crtc) { 1758 DPU_ERROR("invalid parameters\n"); 1759 return; 1760 } 1761 1762 priv = drm_enc->dev->dev_private; 1763 1764 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) { 1765 DPU_ERROR("invalid crtc index\n"); 1766 return; 1767 } 1768 event_thread = &priv->event_thread[drm_enc->crtc->index]; 1769 if (!event_thread) { 1770 DPU_ERROR("event_thread not found for crtc:%d\n", 1771 drm_enc->crtc->index); 1772 return; 1773 } 1774 1775 del_timer(&dpu_enc->vsync_event_timer); 1776 } 1777 1778 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work) 1779 { 1780 struct dpu_encoder_virt *dpu_enc = container_of(work, 1781 struct dpu_encoder_virt, vsync_event_work); 1782 ktime_t wakeup_time; 1783 1784 if (!dpu_enc) { 1785 DPU_ERROR("invalid dpu encoder\n"); 1786 return; 1787 } 1788 1789 if (_dpu_encoder_wakeup_time(&dpu_enc->base, &wakeup_time)) 1790 return; 1791 1792 trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time); 1793 mod_timer(&dpu_enc->vsync_event_timer, 1794 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1795 } 1796 1797 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc, bool async) 1798 { 1799 struct dpu_encoder_virt *dpu_enc; 1800 struct dpu_encoder_phys *phys; 1801 bool needs_hw_reset = false; 1802 unsigned int i; 1803 1804 if (!drm_enc) { 1805 DPU_ERROR("invalid args\n"); 1806 return; 1807 } 1808 dpu_enc = to_dpu_encoder_virt(drm_enc); 1809 1810 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc)); 1811 1812 /* prepare for next kickoff, may include waiting on previous kickoff */ 1813 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff"); 1814 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1815 phys = dpu_enc->phys_encs[i]; 1816 if (phys) { 1817 if (phys->ops.prepare_for_kickoff) 1818 phys->ops.prepare_for_kickoff(phys); 1819 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET) 1820 needs_hw_reset = true; 1821 } 1822 } 1823 DPU_ATRACE_END("enc_prepare_for_kickoff"); 1824 1825 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF); 1826 1827 /* if any phys needs reset, reset all phys, in-order */ 1828 if (needs_hw_reset) { 1829 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc)); 1830 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1831 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]); 1832 } 1833 } 1834 } 1835 1836 void dpu_encoder_kickoff(struct drm_encoder *drm_enc, bool async) 1837 { 1838 struct dpu_encoder_virt *dpu_enc; 1839 struct dpu_encoder_phys *phys; 1840 ktime_t wakeup_time; 1841 unsigned int i; 1842 1843 if (!drm_enc) { 1844 DPU_ERROR("invalid encoder\n"); 1845 return; 1846 } 1847 DPU_ATRACE_BEGIN("encoder_kickoff"); 1848 dpu_enc = to_dpu_encoder_virt(drm_enc); 1849 1850 trace_dpu_enc_kickoff(DRMID(drm_enc)); 1851 1852 /* 1853 * Asynchronous frames don't handle FRAME_DONE events. As such, they 1854 * shouldn't enable the frame_done watchdog since it will always time 1855 * out. 1856 */ 1857 if (!async) { 1858 unsigned long timeout_ms; 1859 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 / 1860 drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode); 1861 1862 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms); 1863 mod_timer(&dpu_enc->frame_done_timer, 1864 jiffies + msecs_to_jiffies(timeout_ms)); 1865 } 1866 1867 /* All phys encs are ready to go, trigger the kickoff */ 1868 _dpu_encoder_kickoff_phys(dpu_enc, async); 1869 1870 /* allow phys encs to handle any post-kickoff business */ 1871 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1872 phys = dpu_enc->phys_encs[i]; 1873 if (phys && phys->ops.handle_post_kickoff) 1874 phys->ops.handle_post_kickoff(phys); 1875 } 1876 1877 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI && 1878 !_dpu_encoder_wakeup_time(drm_enc, &wakeup_time)) { 1879 trace_dpu_enc_early_kickoff(DRMID(drm_enc), 1880 ktime_to_ms(wakeup_time)); 1881 mod_timer(&dpu_enc->vsync_event_timer, 1882 nsecs_to_jiffies(ktime_to_ns(wakeup_time))); 1883 } 1884 1885 DPU_ATRACE_END("encoder_kickoff"); 1886 } 1887 1888 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc) 1889 { 1890 struct dpu_encoder_virt *dpu_enc; 1891 struct dpu_encoder_phys *phys; 1892 int i; 1893 1894 if (!drm_enc) { 1895 DPU_ERROR("invalid encoder\n"); 1896 return; 1897 } 1898 dpu_enc = to_dpu_encoder_virt(drm_enc); 1899 1900 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1901 phys = dpu_enc->phys_encs[i]; 1902 if (phys && phys->ops.prepare_commit) 1903 phys->ops.prepare_commit(phys); 1904 } 1905 } 1906 1907 #ifdef CONFIG_DEBUG_FS 1908 static int _dpu_encoder_status_show(struct seq_file *s, void *data) 1909 { 1910 struct dpu_encoder_virt *dpu_enc = s->private; 1911 int i; 1912 1913 mutex_lock(&dpu_enc->enc_lock); 1914 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 1915 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 1916 1917 if (!phys) 1918 continue; 1919 1920 seq_printf(s, "intf:%d vsync:%8d underrun:%8d ", 1921 phys->intf_idx - INTF_0, 1922 atomic_read(&phys->vsync_cnt), 1923 atomic_read(&phys->underrun_cnt)); 1924 1925 switch (phys->intf_mode) { 1926 case INTF_MODE_VIDEO: 1927 seq_puts(s, "mode: video\n"); 1928 break; 1929 case INTF_MODE_CMD: 1930 seq_puts(s, "mode: command\n"); 1931 break; 1932 default: 1933 seq_puts(s, "mode: ???\n"); 1934 break; 1935 } 1936 } 1937 mutex_unlock(&dpu_enc->enc_lock); 1938 1939 return 0; 1940 } 1941 1942 static int _dpu_encoder_debugfs_status_open(struct inode *inode, 1943 struct file *file) 1944 { 1945 return single_open(file, _dpu_encoder_status_show, inode->i_private); 1946 } 1947 1948 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 1949 { 1950 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc); 1951 struct msm_drm_private *priv; 1952 struct dpu_kms *dpu_kms; 1953 int i; 1954 1955 static const struct file_operations debugfs_status_fops = { 1956 .open = _dpu_encoder_debugfs_status_open, 1957 .read = seq_read, 1958 .llseek = seq_lseek, 1959 .release = single_release, 1960 }; 1961 1962 char name[DPU_NAME_SIZE]; 1963 1964 if (!drm_enc->dev || !drm_enc->dev->dev_private) { 1965 DPU_ERROR("invalid encoder or kms\n"); 1966 return -EINVAL; 1967 } 1968 1969 priv = drm_enc->dev->dev_private; 1970 dpu_kms = to_dpu_kms(priv->kms); 1971 1972 snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id); 1973 1974 /* create overall sub-directory for the encoder */ 1975 dpu_enc->debugfs_root = debugfs_create_dir(name, 1976 drm_enc->dev->primary->debugfs_root); 1977 if (!dpu_enc->debugfs_root) 1978 return -ENOMEM; 1979 1980 /* don't error check these */ 1981 debugfs_create_file("status", 0600, 1982 dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops); 1983 1984 for (i = 0; i < dpu_enc->num_phys_encs; i++) 1985 if (dpu_enc->phys_encs[i] && 1986 dpu_enc->phys_encs[i]->ops.late_register) 1987 dpu_enc->phys_encs[i]->ops.late_register( 1988 dpu_enc->phys_encs[i], 1989 dpu_enc->debugfs_root); 1990 1991 return 0; 1992 } 1993 #else 1994 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc) 1995 { 1996 return 0; 1997 } 1998 #endif 1999 2000 static int dpu_encoder_late_register(struct drm_encoder *encoder) 2001 { 2002 return _dpu_encoder_init_debugfs(encoder); 2003 } 2004 2005 static void dpu_encoder_early_unregister(struct drm_encoder *encoder) 2006 { 2007 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder); 2008 2009 debugfs_remove_recursive(dpu_enc->debugfs_root); 2010 } 2011 2012 static int dpu_encoder_virt_add_phys_encs( 2013 u32 display_caps, 2014 struct dpu_encoder_virt *dpu_enc, 2015 struct dpu_enc_phys_init_params *params) 2016 { 2017 struct dpu_encoder_phys *enc = NULL; 2018 2019 DPU_DEBUG_ENC(dpu_enc, "\n"); 2020 2021 /* 2022 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types 2023 * in this function, check up-front. 2024 */ 2025 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >= 2026 ARRAY_SIZE(dpu_enc->phys_encs)) { 2027 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n", 2028 dpu_enc->num_phys_encs); 2029 return -EINVAL; 2030 } 2031 2032 if (display_caps & MSM_DISPLAY_CAP_VID_MODE) { 2033 enc = dpu_encoder_phys_vid_init(params); 2034 2035 if (IS_ERR_OR_NULL(enc)) { 2036 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n", 2037 PTR_ERR(enc)); 2038 return enc == 0 ? -EINVAL : PTR_ERR(enc); 2039 } 2040 2041 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 2042 ++dpu_enc->num_phys_encs; 2043 } 2044 2045 if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) { 2046 enc = dpu_encoder_phys_cmd_init(params); 2047 2048 if (IS_ERR_OR_NULL(enc)) { 2049 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n", 2050 PTR_ERR(enc)); 2051 return enc == 0 ? -EINVAL : PTR_ERR(enc); 2052 } 2053 2054 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc; 2055 ++dpu_enc->num_phys_encs; 2056 } 2057 2058 if (params->split_role == ENC_ROLE_SLAVE) 2059 dpu_enc->cur_slave = enc; 2060 else 2061 dpu_enc->cur_master = enc; 2062 2063 return 0; 2064 } 2065 2066 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = { 2067 .handle_vblank_virt = dpu_encoder_vblank_callback, 2068 .handle_underrun_virt = dpu_encoder_underrun_callback, 2069 .handle_frame_done = dpu_encoder_frame_done_callback, 2070 }; 2071 2072 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc, 2073 struct dpu_kms *dpu_kms, 2074 struct msm_display_info *disp_info) 2075 { 2076 int ret = 0; 2077 int i = 0; 2078 enum dpu_intf_type intf_type; 2079 struct dpu_enc_phys_init_params phys_params; 2080 2081 if (!dpu_enc || !dpu_kms) { 2082 DPU_ERROR("invalid arg(s), enc %d kms %d\n", 2083 dpu_enc != 0, dpu_kms != 0); 2084 return -EINVAL; 2085 } 2086 2087 dpu_enc->cur_master = NULL; 2088 2089 memset(&phys_params, 0, sizeof(phys_params)); 2090 phys_params.dpu_kms = dpu_kms; 2091 phys_params.parent = &dpu_enc->base; 2092 phys_params.parent_ops = &dpu_encoder_parent_ops; 2093 phys_params.enc_spinlock = &dpu_enc->enc_spinlock; 2094 2095 DPU_DEBUG("\n"); 2096 2097 switch (disp_info->intf_type) { 2098 case DRM_MODE_ENCODER_DSI: 2099 intf_type = INTF_DSI; 2100 break; 2101 default: 2102 DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n"); 2103 return -EINVAL; 2104 } 2105 2106 WARN_ON(disp_info->num_of_h_tiles < 1); 2107 2108 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles); 2109 2110 if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) || 2111 (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE)) 2112 dpu_enc->idle_pc_supported = 2113 dpu_kms->catalog->caps->has_idle_pc; 2114 2115 mutex_lock(&dpu_enc->enc_lock); 2116 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) { 2117 /* 2118 * Left-most tile is at index 0, content is controller id 2119 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right 2120 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right 2121 */ 2122 u32 controller_id = disp_info->h_tile_instance[i]; 2123 2124 if (disp_info->num_of_h_tiles > 1) { 2125 if (i == 0) 2126 phys_params.split_role = ENC_ROLE_MASTER; 2127 else 2128 phys_params.split_role = ENC_ROLE_SLAVE; 2129 } else { 2130 phys_params.split_role = ENC_ROLE_SOLO; 2131 } 2132 2133 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n", 2134 i, controller_id, phys_params.split_role); 2135 2136 phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog, 2137 intf_type, 2138 controller_id); 2139 if (phys_params.intf_idx == INTF_MAX) { 2140 DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n", 2141 intf_type, controller_id); 2142 ret = -EINVAL; 2143 } 2144 2145 if (!ret) { 2146 ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities, 2147 dpu_enc, 2148 &phys_params); 2149 if (ret) 2150 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n"); 2151 } 2152 } 2153 2154 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2155 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2156 2157 if (phys) { 2158 atomic_set(&phys->vsync_cnt, 0); 2159 atomic_set(&phys->underrun_cnt, 0); 2160 } 2161 } 2162 mutex_unlock(&dpu_enc->enc_lock); 2163 2164 return ret; 2165 } 2166 2167 static void dpu_encoder_frame_done_timeout(struct timer_list *t) 2168 { 2169 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t, 2170 frame_done_timer); 2171 struct drm_encoder *drm_enc = &dpu_enc->base; 2172 struct msm_drm_private *priv; 2173 u32 event; 2174 2175 if (!drm_enc->dev || !drm_enc->dev->dev_private) { 2176 DPU_ERROR("invalid parameters\n"); 2177 return; 2178 } 2179 priv = drm_enc->dev->dev_private; 2180 2181 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) { 2182 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n", 2183 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]); 2184 return; 2185 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) { 2186 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc)); 2187 return; 2188 } 2189 2190 DPU_ERROR_ENC(dpu_enc, "frame done timeout\n"); 2191 2192 event = DPU_ENCODER_FRAME_EVENT_ERROR; 2193 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event); 2194 dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event); 2195 } 2196 2197 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = { 2198 .mode_set = dpu_encoder_virt_mode_set, 2199 .disable = dpu_encoder_virt_disable, 2200 .enable = dpu_kms_encoder_enable, 2201 .atomic_check = dpu_encoder_virt_atomic_check, 2202 2203 /* This is called by dpu_kms_encoder_enable */ 2204 .commit = dpu_encoder_virt_enable, 2205 }; 2206 2207 static const struct drm_encoder_funcs dpu_encoder_funcs = { 2208 .destroy = dpu_encoder_destroy, 2209 .late_register = dpu_encoder_late_register, 2210 .early_unregister = dpu_encoder_early_unregister, 2211 }; 2212 2213 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc, 2214 struct msm_display_info *disp_info) 2215 { 2216 struct msm_drm_private *priv = dev->dev_private; 2217 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 2218 struct drm_encoder *drm_enc = NULL; 2219 struct dpu_encoder_virt *dpu_enc = NULL; 2220 int ret = 0; 2221 2222 dpu_enc = to_dpu_encoder_virt(enc); 2223 2224 mutex_init(&dpu_enc->enc_lock); 2225 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info); 2226 if (ret) 2227 goto fail; 2228 2229 spin_lock_init(&dpu_enc->enc_spinlock); 2230 2231 atomic_set(&dpu_enc->frame_done_timeout_ms, 0); 2232 timer_setup(&dpu_enc->frame_done_timer, 2233 dpu_encoder_frame_done_timeout, 0); 2234 2235 if (disp_info->intf_type == DRM_MODE_ENCODER_DSI) 2236 timer_setup(&dpu_enc->vsync_event_timer, 2237 dpu_encoder_vsync_event_handler, 2238 0); 2239 2240 2241 mutex_init(&dpu_enc->rc_lock); 2242 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work, 2243 dpu_encoder_off_work); 2244 dpu_enc->idle_timeout = IDLE_TIMEOUT; 2245 2246 kthread_init_work(&dpu_enc->vsync_event_work, 2247 dpu_encoder_vsync_event_work_handler); 2248 2249 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info)); 2250 2251 DPU_DEBUG_ENC(dpu_enc, "created\n"); 2252 2253 return ret; 2254 2255 fail: 2256 DPU_ERROR("failed to create encoder\n"); 2257 if (drm_enc) 2258 dpu_encoder_destroy(drm_enc); 2259 2260 return ret; 2261 2262 2263 } 2264 2265 struct drm_encoder *dpu_encoder_init(struct drm_device *dev, 2266 int drm_enc_mode) 2267 { 2268 struct dpu_encoder_virt *dpu_enc = NULL; 2269 int rc = 0; 2270 2271 dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL); 2272 if (!dpu_enc) 2273 return ERR_PTR(ENOMEM); 2274 2275 rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs, 2276 drm_enc_mode, NULL); 2277 if (rc) { 2278 devm_kfree(dev->dev, dpu_enc); 2279 return ERR_PTR(rc); 2280 } 2281 2282 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs); 2283 2284 dpu_enc->enabled = false; 2285 2286 return &dpu_enc->base; 2287 } 2288 2289 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc, 2290 enum msm_event_wait event) 2291 { 2292 int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL; 2293 struct dpu_encoder_virt *dpu_enc = NULL; 2294 int i, ret = 0; 2295 2296 if (!drm_enc) { 2297 DPU_ERROR("invalid encoder\n"); 2298 return -EINVAL; 2299 } 2300 dpu_enc = to_dpu_encoder_virt(drm_enc); 2301 DPU_DEBUG_ENC(dpu_enc, "\n"); 2302 2303 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2304 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2305 if (!phys) 2306 continue; 2307 2308 switch (event) { 2309 case MSM_ENC_COMMIT_DONE: 2310 fn_wait = phys->ops.wait_for_commit_done; 2311 break; 2312 case MSM_ENC_TX_COMPLETE: 2313 fn_wait = phys->ops.wait_for_tx_complete; 2314 break; 2315 case MSM_ENC_VBLANK: 2316 fn_wait = phys->ops.wait_for_vblank; 2317 break; 2318 default: 2319 DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n", 2320 event); 2321 return -EINVAL; 2322 }; 2323 2324 if (fn_wait) { 2325 DPU_ATRACE_BEGIN("wait_for_completion_event"); 2326 ret = fn_wait(phys); 2327 DPU_ATRACE_END("wait_for_completion_event"); 2328 if (ret) 2329 return ret; 2330 } 2331 } 2332 2333 return ret; 2334 } 2335 2336 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder) 2337 { 2338 struct dpu_encoder_virt *dpu_enc = NULL; 2339 int i; 2340 2341 if (!encoder) { 2342 DPU_ERROR("invalid encoder\n"); 2343 return INTF_MODE_NONE; 2344 } 2345 dpu_enc = to_dpu_encoder_virt(encoder); 2346 2347 if (dpu_enc->cur_master) 2348 return dpu_enc->cur_master->intf_mode; 2349 2350 for (i = 0; i < dpu_enc->num_phys_encs; i++) { 2351 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i]; 2352 2353 if (phys) 2354 return phys->intf_mode; 2355 } 2356 2357 return INTF_MODE_NONE; 2358 } 2359