xref: /openbmc/linux/drivers/gpu/drm/msm/adreno/a6xx_gmu.c (revision bf8981a2aa082d9d64771b47c8a1c9c388d8cd40)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2018 The Linux Foundation. All rights reserved. */
3 
4 #include <linux/clk.h>
5 #include <linux/interconnect.h>
6 #include <linux/pm_opp.h>
7 #include <soc/qcom/cmd-db.h>
8 
9 #include "a6xx_gpu.h"
10 #include "a6xx_gmu.xml.h"
11 
12 static irqreturn_t a6xx_gmu_irq(int irq, void *data)
13 {
14 	struct a6xx_gmu *gmu = data;
15 	u32 status;
16 
17 	status = gmu_read(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_STATUS);
18 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_CLR, status);
19 
20 	if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_WDOG_BITE) {
21 		dev_err_ratelimited(gmu->dev, "GMU watchdog expired\n");
22 
23 		/* Temporary until we can recover safely */
24 		BUG();
25 	}
26 
27 	if (status &  A6XX_GMU_AO_HOST_INTERRUPT_STATUS_HOST_AHB_BUS_ERROR)
28 		dev_err_ratelimited(gmu->dev, "GMU AHB bus error\n");
29 
30 	if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_FENCE_ERR)
31 		dev_err_ratelimited(gmu->dev, "GMU fence error: 0x%x\n",
32 			gmu_read(gmu, REG_A6XX_GMU_AHB_FENCE_STATUS));
33 
34 	return IRQ_HANDLED;
35 }
36 
37 static irqreturn_t a6xx_hfi_irq(int irq, void *data)
38 {
39 	struct a6xx_gmu *gmu = data;
40 	u32 status;
41 
42 	status = gmu_read(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO);
43 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, status);
44 
45 	if (status & A6XX_GMU_GMU2HOST_INTR_INFO_CM3_FAULT) {
46 		dev_err_ratelimited(gmu->dev, "GMU firmware fault\n");
47 
48 		/* Temporary until we can recover safely */
49 		BUG();
50 	}
51 
52 	return IRQ_HANDLED;
53 }
54 
55 bool a6xx_gmu_sptprac_is_on(struct a6xx_gmu *gmu)
56 {
57 	u32 val;
58 
59 	/* This can be called from gpu state code so make sure GMU is valid */
60 	if (IS_ERR_OR_NULL(gmu->mmio))
61 		return false;
62 
63 	val = gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS);
64 
65 	return !(val &
66 		(A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_SPTPRAC_GDSC_POWER_OFF |
67 		A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_SP_CLOCK_OFF));
68 }
69 
70 /* Check to see if the GX rail is still powered */
71 bool a6xx_gmu_gx_is_on(struct a6xx_gmu *gmu)
72 {
73 	u32 val;
74 
75 	/* This can be called from gpu state code so make sure GMU is valid */
76 	if (IS_ERR_OR_NULL(gmu->mmio))
77 		return false;
78 
79 	val = gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS);
80 
81 	return !(val &
82 		(A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_GX_HM_GDSC_POWER_OFF |
83 		A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_GX_HM_CLK_OFF));
84 }
85 
86 static void __a6xx_gmu_set_freq(struct a6xx_gmu *gmu, int index)
87 {
88 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
89 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
90 	struct msm_gpu *gpu = &adreno_gpu->base;
91 	int ret;
92 
93 	gmu_write(gmu, REG_A6XX_GMU_DCVS_ACK_OPTION, 0);
94 
95 	gmu_write(gmu, REG_A6XX_GMU_DCVS_PERF_SETTING,
96 		((3 & 0xf) << 28) | index);
97 
98 	/*
99 	 * Send an invalid index as a vote for the bus bandwidth and let the
100 	 * firmware decide on the right vote
101 	 */
102 	gmu_write(gmu, REG_A6XX_GMU_DCVS_BW_SETTING, 0xff);
103 
104 	/* Set and clear the OOB for DCVS to trigger the GMU */
105 	a6xx_gmu_set_oob(gmu, GMU_OOB_DCVS_SET);
106 	a6xx_gmu_clear_oob(gmu, GMU_OOB_DCVS_SET);
107 
108 	ret = gmu_read(gmu, REG_A6XX_GMU_DCVS_RETURN);
109 	if (ret)
110 		dev_err(gmu->dev, "GMU set GPU frequency error: %d\n", ret);
111 
112 	gmu->freq = gmu->gpu_freqs[index];
113 
114 	/*
115 	 * Eventually we will want to scale the path vote with the frequency but
116 	 * for now leave it at max so that the performance is nominal.
117 	 */
118 	icc_set_bw(gpu->icc_path, 0, MBps_to_icc(7216));
119 }
120 
121 void a6xx_gmu_set_freq(struct msm_gpu *gpu, unsigned long freq)
122 {
123 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
124 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
125 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
126 	u32 perf_index = 0;
127 
128 	if (freq == gmu->freq)
129 		return;
130 
131 	for (perf_index = 0; perf_index < gmu->nr_gpu_freqs - 1; perf_index++)
132 		if (freq == gmu->gpu_freqs[perf_index])
133 			break;
134 
135 	__a6xx_gmu_set_freq(gmu, perf_index);
136 }
137 
138 unsigned long a6xx_gmu_get_freq(struct msm_gpu *gpu)
139 {
140 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
141 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
142 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
143 
144 	return  gmu->freq;
145 }
146 
147 static bool a6xx_gmu_check_idle_level(struct a6xx_gmu *gmu)
148 {
149 	u32 val;
150 	int local = gmu->idle_level;
151 
152 	/* SPTP and IFPC both report as IFPC */
153 	if (gmu->idle_level == GMU_IDLE_STATE_SPTP)
154 		local = GMU_IDLE_STATE_IFPC;
155 
156 	val = gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE);
157 
158 	if (val == local) {
159 		if (gmu->idle_level != GMU_IDLE_STATE_IFPC ||
160 			!a6xx_gmu_gx_is_on(gmu))
161 			return true;
162 	}
163 
164 	return false;
165 }
166 
167 /* Wait for the GMU to get to its most idle state */
168 int a6xx_gmu_wait_for_idle(struct a6xx_gpu *a6xx_gpu)
169 {
170 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
171 
172 	return spin_until(a6xx_gmu_check_idle_level(gmu));
173 }
174 
175 static int a6xx_gmu_start(struct a6xx_gmu *gmu)
176 {
177 	int ret;
178 	u32 val;
179 
180 	gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 1);
181 	gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 0);
182 
183 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_CM3_FW_INIT_RESULT, val,
184 		val == 0xbabeface, 100, 10000);
185 
186 	if (ret)
187 		DRM_DEV_ERROR(gmu->dev, "GMU firmware initialization timed out\n");
188 
189 	return ret;
190 }
191 
192 static int a6xx_gmu_hfi_start(struct a6xx_gmu *gmu)
193 {
194 	u32 val;
195 	int ret;
196 
197 	gmu_write(gmu, REG_A6XX_GMU_HFI_CTRL_INIT, 1);
198 
199 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_HFI_CTRL_STATUS, val,
200 		val & 1, 100, 10000);
201 	if (ret)
202 		DRM_DEV_ERROR(gmu->dev, "Unable to start the HFI queues\n");
203 
204 	return ret;
205 }
206 
207 /* Trigger a OOB (out of band) request to the GMU */
208 int a6xx_gmu_set_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state)
209 {
210 	int ret;
211 	u32 val;
212 	int request, ack;
213 	const char *name;
214 
215 	switch (state) {
216 	case GMU_OOB_GPU_SET:
217 		request = GMU_OOB_GPU_SET_REQUEST;
218 		ack = GMU_OOB_GPU_SET_ACK;
219 		name = "GPU_SET";
220 		break;
221 	case GMU_OOB_BOOT_SLUMBER:
222 		request = GMU_OOB_BOOT_SLUMBER_REQUEST;
223 		ack = GMU_OOB_BOOT_SLUMBER_ACK;
224 		name = "BOOT_SLUMBER";
225 		break;
226 	case GMU_OOB_DCVS_SET:
227 		request = GMU_OOB_DCVS_REQUEST;
228 		ack = GMU_OOB_DCVS_ACK;
229 		name = "GPU_DCVS";
230 		break;
231 	default:
232 		return -EINVAL;
233 	}
234 
235 	/* Trigger the equested OOB operation */
236 	gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 1 << request);
237 
238 	/* Wait for the acknowledge interrupt */
239 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO, val,
240 		val & (1 << ack), 100, 10000);
241 
242 	if (ret)
243 		DRM_DEV_ERROR(gmu->dev,
244 			"Timeout waiting for GMU OOB set %s: 0x%x\n",
245 				name,
246 				gmu_read(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO));
247 
248 	/* Clear the acknowledge interrupt */
249 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, 1 << ack);
250 
251 	return ret;
252 }
253 
254 /* Clear a pending OOB state in the GMU */
255 void a6xx_gmu_clear_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state)
256 {
257 	switch (state) {
258 	case GMU_OOB_GPU_SET:
259 		gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET,
260 			1 << GMU_OOB_GPU_SET_CLEAR);
261 		break;
262 	case GMU_OOB_BOOT_SLUMBER:
263 		gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET,
264 			1 << GMU_OOB_BOOT_SLUMBER_CLEAR);
265 		break;
266 	case GMU_OOB_DCVS_SET:
267 		gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET,
268 			1 << GMU_OOB_DCVS_CLEAR);
269 		break;
270 	}
271 }
272 
273 /* Enable CPU control of SPTP power power collapse */
274 static int a6xx_sptprac_enable(struct a6xx_gmu *gmu)
275 {
276 	int ret;
277 	u32 val;
278 
279 	gmu_write(gmu, REG_A6XX_GMU_GX_SPTPRAC_POWER_CONTROL, 0x778000);
280 
281 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, val,
282 		(val & 0x38) == 0x28, 1, 100);
283 
284 	if (ret) {
285 		DRM_DEV_ERROR(gmu->dev, "Unable to power on SPTPRAC: 0x%x\n",
286 			gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS));
287 	}
288 
289 	return 0;
290 }
291 
292 /* Disable CPU control of SPTP power power collapse */
293 static void a6xx_sptprac_disable(struct a6xx_gmu *gmu)
294 {
295 	u32 val;
296 	int ret;
297 
298 	/* Make sure retention is on */
299 	gmu_rmw(gmu, REG_A6XX_GPU_CC_GX_GDSCR, 0, (1 << 11));
300 
301 	gmu_write(gmu, REG_A6XX_GMU_GX_SPTPRAC_POWER_CONTROL, 0x778001);
302 
303 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, val,
304 		(val & 0x04), 100, 10000);
305 
306 	if (ret)
307 		DRM_DEV_ERROR(gmu->dev, "failed to power off SPTPRAC: 0x%x\n",
308 			gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS));
309 }
310 
311 /* Let the GMU know we are starting a boot sequence */
312 static int a6xx_gmu_gfx_rail_on(struct a6xx_gmu *gmu)
313 {
314 	u32 vote;
315 
316 	/* Let the GMU know we are getting ready for boot */
317 	gmu_write(gmu, REG_A6XX_GMU_BOOT_SLUMBER_OPTION, 0);
318 
319 	/* Choose the "default" power level as the highest available */
320 	vote = gmu->gx_arc_votes[gmu->nr_gpu_freqs - 1];
321 
322 	gmu_write(gmu, REG_A6XX_GMU_GX_VOTE_IDX, vote & 0xff);
323 	gmu_write(gmu, REG_A6XX_GMU_MX_VOTE_IDX, (vote >> 8) & 0xff);
324 
325 	/* Let the GMU know the boot sequence has started */
326 	return a6xx_gmu_set_oob(gmu, GMU_OOB_BOOT_SLUMBER);
327 }
328 
329 /* Let the GMU know that we are about to go into slumber */
330 static int a6xx_gmu_notify_slumber(struct a6xx_gmu *gmu)
331 {
332 	int ret;
333 
334 	/* Disable the power counter so the GMU isn't busy */
335 	gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 0);
336 
337 	/* Disable SPTP_PC if the CPU is responsible for it */
338 	if (gmu->idle_level < GMU_IDLE_STATE_SPTP)
339 		a6xx_sptprac_disable(gmu);
340 
341 	/* Tell the GMU to get ready to slumber */
342 	gmu_write(gmu, REG_A6XX_GMU_BOOT_SLUMBER_OPTION, 1);
343 
344 	ret = a6xx_gmu_set_oob(gmu, GMU_OOB_BOOT_SLUMBER);
345 	a6xx_gmu_clear_oob(gmu, GMU_OOB_BOOT_SLUMBER);
346 
347 	if (!ret) {
348 		/* Check to see if the GMU really did slumber */
349 		if (gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE)
350 			!= 0x0f) {
351 			DRM_DEV_ERROR(gmu->dev, "The GMU did not go into slumber\n");
352 			ret = -ETIMEDOUT;
353 		}
354 	}
355 
356 	/* Put fence into allow mode */
357 	gmu_write(gmu, REG_A6XX_GMU_AO_AHB_FENCE_CTRL, 0);
358 	return ret;
359 }
360 
361 static int a6xx_rpmh_start(struct a6xx_gmu *gmu)
362 {
363 	int ret;
364 	u32 val;
365 
366 	gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 1 << 1);
367 	/* Wait for the register to finish posting */
368 	wmb();
369 
370 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_RSCC_CONTROL_ACK, val,
371 		val & (1 << 1), 100, 10000);
372 	if (ret) {
373 		DRM_DEV_ERROR(gmu->dev, "Unable to power on the GPU RSC\n");
374 		return ret;
375 	}
376 
377 	ret = gmu_poll_timeout(gmu, REG_A6XX_RSCC_SEQ_BUSY_DRV0, val,
378 		!val, 100, 10000);
379 
380 	if (ret) {
381 		DRM_DEV_ERROR(gmu->dev, "GPU RSC sequence stuck while waking up the GPU\n");
382 		return ret;
383 	}
384 
385 	gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 0);
386 
387 	/* Set up CX GMU counter 0 to count busy ticks */
388 	gmu_write(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_MASK, 0xff000000);
389 	gmu_rmw(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_SELECT_0, 0xff, 0x20);
390 
391 	/* Enable the power counter */
392 	gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 1);
393 	return 0;
394 }
395 
396 static void a6xx_rpmh_stop(struct a6xx_gmu *gmu)
397 {
398 	int ret;
399 	u32 val;
400 
401 	gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 1);
402 
403 	ret = gmu_poll_timeout(gmu, REG_A6XX_GPU_RSCC_RSC_STATUS0_DRV0,
404 		val, val & (1 << 16), 100, 10000);
405 	if (ret)
406 		DRM_DEV_ERROR(gmu->dev, "Unable to power off the GPU RSC\n");
407 
408 	gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 0);
409 }
410 
411 static inline void pdc_write(void __iomem *ptr, u32 offset, u32 value)
412 {
413 	return msm_writel(value, ptr + (offset << 2));
414 }
415 
416 static void __iomem *a6xx_gmu_get_mmio(struct platform_device *pdev,
417 		const char *name);
418 
419 static void a6xx_gmu_rpmh_init(struct a6xx_gmu *gmu)
420 {
421 	struct platform_device *pdev = to_platform_device(gmu->dev);
422 	void __iomem *pdcptr = a6xx_gmu_get_mmio(pdev, "gmu_pdc");
423 	void __iomem *seqptr = a6xx_gmu_get_mmio(pdev, "gmu_pdc_seq");
424 
425 	if (!pdcptr || !seqptr)
426 		goto err;
427 
428 	/* Disable SDE clock gating */
429 	gmu_write(gmu, REG_A6XX_GPU_RSCC_RSC_STATUS0_DRV0, BIT(24));
430 
431 	/* Setup RSC PDC handshake for sleep and wakeup */
432 	gmu_write(gmu, REG_A6XX_RSCC_PDC_SLAVE_ID_DRV0, 1);
433 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA, 0);
434 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR, 0);
435 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA + 2, 0);
436 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR + 2, 0);
437 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA + 4, 0x80000000);
438 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR + 4, 0);
439 	gmu_write(gmu, REG_A6XX_RSCC_OVERRIDE_START_ADDR, 0);
440 	gmu_write(gmu, REG_A6XX_RSCC_PDC_SEQ_START_ADDR, 0x4520);
441 	gmu_write(gmu, REG_A6XX_RSCC_PDC_MATCH_VALUE_LO, 0x4510);
442 	gmu_write(gmu, REG_A6XX_RSCC_PDC_MATCH_VALUE_HI, 0x4514);
443 
444 	/* Load RSC sequencer uCode for sleep and wakeup */
445 	gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0, 0xa7a506a0);
446 	gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 1, 0xa1e6a6e7);
447 	gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 2, 0xa2e081e1);
448 	gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 3, 0xe9a982e2);
449 	gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 4, 0x0020e8a8);
450 
451 	/* Load PDC sequencer uCode for power up and power down sequence */
452 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0, 0xfebea1e1);
453 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 1, 0xa5a4a3a2);
454 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 2, 0x8382a6e0);
455 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 3, 0xbce3e284);
456 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 4, 0x002081fc);
457 
458 	/* Set TCS commands used by PDC sequence for low power modes */
459 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD_ENABLE_BANK, 7);
460 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD_WAIT_FOR_CMPL_BANK, 0);
461 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CONTROL, 0);
462 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID, 0x10108);
463 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR, 0x30010);
464 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA, 1);
465 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID + 4, 0x10108);
466 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR + 4, 0x30000);
467 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA + 4, 0x0);
468 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID + 8, 0x10108);
469 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR + 8, 0x30080);
470 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA + 8, 0x0);
471 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD_ENABLE_BANK, 7);
472 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD_WAIT_FOR_CMPL_BANK, 0);
473 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CONTROL, 0);
474 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID, 0x10108);
475 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR, 0x30010);
476 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA, 2);
477 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID + 4, 0x10108);
478 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR + 4, 0x30000);
479 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 4, 0x3);
480 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID + 8, 0x10108);
481 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR + 8, 0x30080);
482 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 8, 0x3);
483 
484 	/* Setup GPU PDC */
485 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_SEQ_START_ADDR, 0);
486 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_ENABLE_PDC, 0x80000001);
487 
488 	/* ensure no writes happen before the uCode is fully written */
489 	wmb();
490 
491 err:
492 	devm_iounmap(gmu->dev, pdcptr);
493 	devm_iounmap(gmu->dev, seqptr);
494 }
495 
496 /*
497  * The lowest 16 bits of this value are the number of XO clock cycles for main
498  * hysteresis which is set at 0x1680 cycles (300 us).  The higher 16 bits are
499  * for the shorter hysteresis that happens after main - this is 0xa (.5 us)
500  */
501 
502 #define GMU_PWR_COL_HYST 0x000a1680
503 
504 /* Set up the idle state for the GMU */
505 static void a6xx_gmu_power_config(struct a6xx_gmu *gmu)
506 {
507 	/* Disable GMU WB/RB buffer */
508 	gmu_write(gmu, REG_A6XX_GMU_SYS_BUS_CONFIG, 0x1);
509 
510 	gmu_write(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0x9c40400);
511 
512 	switch (gmu->idle_level) {
513 	case GMU_IDLE_STATE_IFPC:
514 		gmu_write(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_HYST,
515 			GMU_PWR_COL_HYST);
516 		gmu_rmw(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0,
517 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_IFPC_ENABLE |
518 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_HM_POWER_COLLAPSE_ENABLE);
519 		/* Fall through */
520 	case GMU_IDLE_STATE_SPTP:
521 		gmu_write(gmu, REG_A6XX_GMU_PWR_COL_SPTPRAC_HYST,
522 			GMU_PWR_COL_HYST);
523 		gmu_rmw(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0,
524 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_IFPC_ENABLE |
525 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_SPTPRAC_POWER_CONTROL_ENABLE);
526 	}
527 
528 	/* Enable RPMh GPU client */
529 	gmu_rmw(gmu, REG_A6XX_GMU_RPMH_CTRL, 0,
530 		A6XX_GMU_RPMH_CTRL_RPMH_INTERFACE_ENABLE |
531 		A6XX_GMU_RPMH_CTRL_LLC_VOTE_ENABLE |
532 		A6XX_GMU_RPMH_CTRL_DDR_VOTE_ENABLE |
533 		A6XX_GMU_RPMH_CTRL_MX_VOTE_ENABLE |
534 		A6XX_GMU_RPMH_CTRL_CX_VOTE_ENABLE |
535 		A6XX_GMU_RPMH_CTRL_GFX_VOTE_ENABLE);
536 }
537 
538 static int a6xx_gmu_fw_start(struct a6xx_gmu *gmu, unsigned int state)
539 {
540 	static bool rpmh_init;
541 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
542 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
543 	int i, ret;
544 	u32 chipid;
545 	u32 *image;
546 
547 	if (state == GMU_WARM_BOOT) {
548 		ret = a6xx_rpmh_start(gmu);
549 		if (ret)
550 			return ret;
551 	} else {
552 		if (WARN(!adreno_gpu->fw[ADRENO_FW_GMU],
553 			"GMU firmware is not loaded\n"))
554 			return -ENOENT;
555 
556 		/* Sanity check the size of the firmware that was loaded */
557 		if (adreno_gpu->fw[ADRENO_FW_GMU]->size > 0x8000) {
558 			DRM_DEV_ERROR(gmu->dev,
559 				"GMU firmware is bigger than the available region\n");
560 			return -EINVAL;
561 		}
562 
563 		/* Turn on register retention */
564 		gmu_write(gmu, REG_A6XX_GMU_GENERAL_7, 1);
565 
566 		/* We only need to load the RPMh microcode once */
567 		if (!rpmh_init) {
568 			a6xx_gmu_rpmh_init(gmu);
569 			rpmh_init = true;
570 		} else if (state != GMU_RESET) {
571 			ret = a6xx_rpmh_start(gmu);
572 			if (ret)
573 				return ret;
574 		}
575 
576 		image = (u32 *) adreno_gpu->fw[ADRENO_FW_GMU]->data;
577 
578 		for (i = 0; i < adreno_gpu->fw[ADRENO_FW_GMU]->size >> 2; i++)
579 			gmu_write(gmu, REG_A6XX_GMU_CM3_ITCM_START + i,
580 				image[i]);
581 	}
582 
583 	gmu_write(gmu, REG_A6XX_GMU_CM3_FW_INIT_RESULT, 0);
584 	gmu_write(gmu, REG_A6XX_GMU_CM3_BOOT_CONFIG, 0x02);
585 
586 	/* Write the iova of the HFI table */
587 	gmu_write(gmu, REG_A6XX_GMU_HFI_QTBL_ADDR, gmu->hfi->iova);
588 	gmu_write(gmu, REG_A6XX_GMU_HFI_QTBL_INFO, 1);
589 
590 	gmu_write(gmu, REG_A6XX_GMU_AHB_FENCE_RANGE_0,
591 		(1 << 31) | (0xa << 18) | (0xa0));
592 
593 	chipid = adreno_gpu->rev.core << 24;
594 	chipid |= adreno_gpu->rev.major << 16;
595 	chipid |= adreno_gpu->rev.minor << 12;
596 	chipid |= adreno_gpu->rev.patchid << 8;
597 
598 	gmu_write(gmu, REG_A6XX_GMU_HFI_SFR_ADDR, chipid);
599 
600 	/* Set up the lowest idle level on the GMU */
601 	a6xx_gmu_power_config(gmu);
602 
603 	ret = a6xx_gmu_start(gmu);
604 	if (ret)
605 		return ret;
606 
607 	ret = a6xx_gmu_gfx_rail_on(gmu);
608 	if (ret)
609 		return ret;
610 
611 	/* Enable SPTP_PC if the CPU is responsible for it */
612 	if (gmu->idle_level < GMU_IDLE_STATE_SPTP) {
613 		ret = a6xx_sptprac_enable(gmu);
614 		if (ret)
615 			return ret;
616 	}
617 
618 	ret = a6xx_gmu_hfi_start(gmu);
619 	if (ret)
620 		return ret;
621 
622 	/* FIXME: Do we need this wmb() here? */
623 	wmb();
624 
625 	return 0;
626 }
627 
628 #define A6XX_HFI_IRQ_MASK \
629 	(A6XX_GMU_GMU2HOST_INTR_INFO_CM3_FAULT)
630 
631 #define A6XX_GMU_IRQ_MASK \
632 	(A6XX_GMU_AO_HOST_INTERRUPT_STATUS_WDOG_BITE | \
633 	 A6XX_GMU_AO_HOST_INTERRUPT_STATUS_HOST_AHB_BUS_ERROR | \
634 	 A6XX_GMU_AO_HOST_INTERRUPT_STATUS_FENCE_ERR)
635 
636 static void a6xx_gmu_irq_enable(struct a6xx_gmu *gmu)
637 {
638 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_CLR, ~0);
639 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, ~0);
640 
641 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_MASK,
642 		~A6XX_GMU_IRQ_MASK);
643 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_MASK,
644 		~A6XX_HFI_IRQ_MASK);
645 
646 	enable_irq(gmu->gmu_irq);
647 	enable_irq(gmu->hfi_irq);
648 }
649 
650 static void a6xx_gmu_irq_disable(struct a6xx_gmu *gmu)
651 {
652 	disable_irq(gmu->gmu_irq);
653 	disable_irq(gmu->hfi_irq);
654 
655 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_MASK, ~0);
656 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_MASK, ~0);
657 }
658 
659 int a6xx_gmu_reset(struct a6xx_gpu *a6xx_gpu)
660 {
661 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
662 	int ret;
663 	u32 val;
664 
665 	/* Flush all the queues */
666 	a6xx_hfi_stop(gmu);
667 
668 	/* Stop the interrupts */
669 	a6xx_gmu_irq_disable(gmu);
670 
671 	/* Force off SPTP in case the GMU is managing it */
672 	a6xx_sptprac_disable(gmu);
673 
674 	/* Make sure there are no outstanding RPMh votes */
675 	gmu_poll_timeout(gmu, REG_A6XX_RSCC_TCS0_DRV0_STATUS, val,
676 		(val & 1), 100, 10000);
677 	gmu_poll_timeout(gmu, REG_A6XX_RSCC_TCS1_DRV0_STATUS, val,
678 		(val & 1), 100, 10000);
679 	gmu_poll_timeout(gmu, REG_A6XX_RSCC_TCS2_DRV0_STATUS, val,
680 		(val & 1), 100, 10000);
681 	gmu_poll_timeout(gmu, REG_A6XX_RSCC_TCS3_DRV0_STATUS, val,
682 		(val & 1), 100, 1000);
683 
684 	/* Force off the GX GSDC */
685 	regulator_force_disable(gmu->gx);
686 
687 	/* Disable the resources */
688 	clk_bulk_disable_unprepare(gmu->nr_clocks, gmu->clocks);
689 	pm_runtime_put_sync(gmu->dev);
690 
691 	/* Re-enable the resources */
692 	pm_runtime_get_sync(gmu->dev);
693 
694 	/* Use a known rate to bring up the GMU */
695 	clk_set_rate(gmu->core_clk, 200000000);
696 	ret = clk_bulk_prepare_enable(gmu->nr_clocks, gmu->clocks);
697 	if (ret)
698 		goto out;
699 
700 	a6xx_gmu_irq_enable(gmu);
701 
702 	ret = a6xx_gmu_fw_start(gmu, GMU_RESET);
703 	if (!ret)
704 		ret = a6xx_hfi_start(gmu, GMU_COLD_BOOT);
705 
706 	/* Set the GPU back to the highest power frequency */
707 	__a6xx_gmu_set_freq(gmu, gmu->nr_gpu_freqs - 1);
708 
709 out:
710 	if (ret)
711 		a6xx_gmu_clear_oob(gmu, GMU_OOB_BOOT_SLUMBER);
712 
713 	return ret;
714 }
715 
716 int a6xx_gmu_resume(struct a6xx_gpu *a6xx_gpu)
717 {
718 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
719 	struct msm_gpu *gpu = &adreno_gpu->base;
720 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
721 	int status, ret;
722 
723 	if (WARN(!gmu->mmio, "The GMU is not set up yet\n"))
724 		return 0;
725 
726 	/* Turn on the resources */
727 	pm_runtime_get_sync(gmu->dev);
728 
729 	/* Use a known rate to bring up the GMU */
730 	clk_set_rate(gmu->core_clk, 200000000);
731 	ret = clk_bulk_prepare_enable(gmu->nr_clocks, gmu->clocks);
732 	if (ret)
733 		goto out;
734 
735 	/* Set the bus quota to a reasonable value for boot */
736 	icc_set_bw(gpu->icc_path, 0, MBps_to_icc(3072));
737 
738 	a6xx_gmu_irq_enable(gmu);
739 
740 	/* Check to see if we are doing a cold or warm boot */
741 	status = gmu_read(gmu, REG_A6XX_GMU_GENERAL_7) == 1 ?
742 		GMU_WARM_BOOT : GMU_COLD_BOOT;
743 
744 	ret = a6xx_gmu_fw_start(gmu, status);
745 	if (ret)
746 		goto out;
747 
748 	ret = a6xx_hfi_start(gmu, status);
749 
750 	/* Set the GPU to the highest power frequency */
751 	__a6xx_gmu_set_freq(gmu, gmu->nr_gpu_freqs - 1);
752 
753 out:
754 	/* Make sure to turn off the boot OOB request on error */
755 	if (ret)
756 		a6xx_gmu_clear_oob(gmu, GMU_OOB_BOOT_SLUMBER);
757 
758 	return ret;
759 }
760 
761 bool a6xx_gmu_isidle(struct a6xx_gmu *gmu)
762 {
763 	u32 reg;
764 
765 	if (!gmu->mmio)
766 		return true;
767 
768 	reg = gmu_read(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS);
769 
770 	if (reg &  A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS_GPUBUSYIGNAHB)
771 		return false;
772 
773 	return true;
774 }
775 
776 int a6xx_gmu_stop(struct a6xx_gpu *a6xx_gpu)
777 {
778 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
779 	struct msm_gpu *gpu = &adreno_gpu->base;
780 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
781 	u32 val;
782 
783 	/*
784 	 * The GMU may still be in slumber unless the GPU started so check and
785 	 * skip putting it back into slumber if so
786 	 */
787 	val = gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE);
788 
789 	if (val != 0xf) {
790 		int ret = a6xx_gmu_wait_for_idle(a6xx_gpu);
791 
792 		/* Temporary until we can recover safely */
793 		BUG_ON(ret);
794 
795 		/* tell the GMU we want to slumber */
796 		a6xx_gmu_notify_slumber(gmu);
797 
798 		ret = gmu_poll_timeout(gmu,
799 			REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS, val,
800 			!(val & A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS_GPUBUSYIGNAHB),
801 			100, 10000);
802 
803 		/*
804 		 * Let the user know we failed to slumber but don't worry too
805 		 * much because we are powering down anyway
806 		 */
807 
808 		if (ret)
809 			DRM_DEV_ERROR(gmu->dev,
810 				"Unable to slumber GMU: status = 0%x/0%x\n",
811 				gmu_read(gmu,
812 					REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS),
813 				gmu_read(gmu,
814 					REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS2));
815 	}
816 
817 	/* Turn off HFI */
818 	a6xx_hfi_stop(gmu);
819 
820 	/* Stop the interrupts and mask the hardware */
821 	a6xx_gmu_irq_disable(gmu);
822 
823 	/* Tell RPMh to power off the GPU */
824 	a6xx_rpmh_stop(gmu);
825 
826 	/* Remove the bus vote */
827 	icc_set_bw(gpu->icc_path, 0, 0);
828 
829 	clk_bulk_disable_unprepare(gmu->nr_clocks, gmu->clocks);
830 
831 	pm_runtime_put_sync(gmu->dev);
832 
833 	return 0;
834 }
835 
836 static void a6xx_gmu_memory_free(struct a6xx_gmu *gmu, struct a6xx_gmu_bo *bo)
837 {
838 	int count, i;
839 	u64 iova;
840 
841 	if (IS_ERR_OR_NULL(bo))
842 		return;
843 
844 	count = bo->size >> PAGE_SHIFT;
845 	iova = bo->iova;
846 
847 	for (i = 0; i < count; i++, iova += PAGE_SIZE) {
848 		iommu_unmap(gmu->domain, iova, PAGE_SIZE);
849 		__free_pages(bo->pages[i], 0);
850 	}
851 
852 	kfree(bo->pages);
853 	kfree(bo);
854 }
855 
856 static struct a6xx_gmu_bo *a6xx_gmu_memory_alloc(struct a6xx_gmu *gmu,
857 		size_t size)
858 {
859 	struct a6xx_gmu_bo *bo;
860 	int ret, count, i;
861 
862 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
863 	if (!bo)
864 		return ERR_PTR(-ENOMEM);
865 
866 	bo->size = PAGE_ALIGN(size);
867 
868 	count = bo->size >> PAGE_SHIFT;
869 
870 	bo->pages = kcalloc(count, sizeof(struct page *), GFP_KERNEL);
871 	if (!bo->pages) {
872 		kfree(bo);
873 		return ERR_PTR(-ENOMEM);
874 	}
875 
876 	for (i = 0; i < count; i++) {
877 		bo->pages[i] = alloc_page(GFP_KERNEL);
878 		if (!bo->pages[i])
879 			goto err;
880 	}
881 
882 	bo->iova = gmu->uncached_iova_base;
883 
884 	for (i = 0; i < count; i++) {
885 		ret = iommu_map(gmu->domain,
886 			bo->iova + (PAGE_SIZE * i),
887 			page_to_phys(bo->pages[i]), PAGE_SIZE,
888 			IOMMU_READ | IOMMU_WRITE);
889 
890 		if (ret) {
891 			DRM_DEV_ERROR(gmu->dev, "Unable to map GMU buffer object\n");
892 
893 			for (i = i - 1 ; i >= 0; i--)
894 				iommu_unmap(gmu->domain,
895 					bo->iova + (PAGE_SIZE * i),
896 					PAGE_SIZE);
897 
898 			goto err;
899 		}
900 	}
901 
902 	bo->virt = vmap(bo->pages, count, VM_IOREMAP,
903 		pgprot_writecombine(PAGE_KERNEL));
904 	if (!bo->virt)
905 		goto err;
906 
907 	/* Align future IOVA addresses on 1MB boundaries */
908 	gmu->uncached_iova_base += ALIGN(size, SZ_1M);
909 
910 	return bo;
911 
912 err:
913 	for (i = 0; i < count; i++) {
914 		if (bo->pages[i])
915 			__free_pages(bo->pages[i], 0);
916 	}
917 
918 	kfree(bo->pages);
919 	kfree(bo);
920 
921 	return ERR_PTR(-ENOMEM);
922 }
923 
924 static int a6xx_gmu_memory_probe(struct a6xx_gmu *gmu)
925 {
926 	int ret;
927 
928 	/*
929 	 * The GMU address space is hardcoded to treat the range
930 	 * 0x60000000 - 0x80000000 as un-cached memory. All buffers shared
931 	 * between the GMU and the CPU will live in this space
932 	 */
933 	gmu->uncached_iova_base = 0x60000000;
934 
935 
936 	gmu->domain = iommu_domain_alloc(&platform_bus_type);
937 	if (!gmu->domain)
938 		return -ENODEV;
939 
940 	ret = iommu_attach_device(gmu->domain, gmu->dev);
941 
942 	if (ret) {
943 		iommu_domain_free(gmu->domain);
944 		gmu->domain = NULL;
945 	}
946 
947 	return ret;
948 }
949 
950 /* Return the 'arc-level' for the given frequency */
951 static u32 a6xx_gmu_get_arc_level(struct device *dev, unsigned long freq)
952 {
953 	struct dev_pm_opp *opp;
954 	struct device_node *np;
955 	u32 val = 0;
956 
957 	if (!freq)
958 		return 0;
959 
960 	opp  = dev_pm_opp_find_freq_exact(dev, freq, true);
961 	if (IS_ERR(opp))
962 		return 0;
963 
964 	np = dev_pm_opp_get_of_node(opp);
965 
966 	if (np) {
967 		of_property_read_u32(np, "opp-level", &val);
968 		of_node_put(np);
969 	}
970 
971 	dev_pm_opp_put(opp);
972 
973 	return val;
974 }
975 
976 static int a6xx_gmu_rpmh_arc_votes_init(struct device *dev, u32 *votes,
977 		unsigned long *freqs, int freqs_count, const char *id)
978 {
979 	int i, j;
980 	const u16 *pri, *sec;
981 	size_t pri_count, sec_count;
982 
983 	pri = cmd_db_read_aux_data(id, &pri_count);
984 	if (IS_ERR(pri))
985 		return PTR_ERR(pri);
986 	/*
987 	 * The data comes back as an array of unsigned shorts so adjust the
988 	 * count accordingly
989 	 */
990 	pri_count >>= 1;
991 	if (!pri_count)
992 		return -EINVAL;
993 
994 	sec = cmd_db_read_aux_data("mx.lvl", &sec_count);
995 	if (IS_ERR(sec))
996 		return PTR_ERR(sec);
997 
998 	sec_count >>= 1;
999 	if (!sec_count)
1000 		return -EINVAL;
1001 
1002 	/* Construct a vote for each frequency */
1003 	for (i = 0; i < freqs_count; i++) {
1004 		u8 pindex = 0, sindex = 0;
1005 		u32 level = a6xx_gmu_get_arc_level(dev, freqs[i]);
1006 
1007 		/* Get the primary index that matches the arc level */
1008 		for (j = 0; j < pri_count; j++) {
1009 			if (pri[j] >= level) {
1010 				pindex = j;
1011 				break;
1012 			}
1013 		}
1014 
1015 		if (j == pri_count) {
1016 			DRM_DEV_ERROR(dev,
1017 				"Level %u not found in in the RPMh list\n",
1018 					level);
1019 			DRM_DEV_ERROR(dev, "Available levels:\n");
1020 			for (j = 0; j < pri_count; j++)
1021 				DRM_DEV_ERROR(dev, "  %u\n", pri[j]);
1022 
1023 			return -EINVAL;
1024 		}
1025 
1026 		/*
1027 		 * Look for a level in in the secondary list that matches. If
1028 		 * nothing fits, use the maximum non zero vote
1029 		 */
1030 
1031 		for (j = 0; j < sec_count; j++) {
1032 			if (sec[j] >= level) {
1033 				sindex = j;
1034 				break;
1035 			} else if (sec[j]) {
1036 				sindex = j;
1037 			}
1038 		}
1039 
1040 		/* Construct the vote */
1041 		votes[i] = ((pri[pindex] & 0xffff) << 16) |
1042 			(sindex << 8) | pindex;
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 /*
1049  * The GMU votes with the RPMh for itself and on behalf of the GPU but we need
1050  * to construct the list of votes on the CPU and send it over. Query the RPMh
1051  * voltage levels and build the votes
1052  */
1053 
1054 static int a6xx_gmu_rpmh_votes_init(struct a6xx_gmu *gmu)
1055 {
1056 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
1057 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1058 	struct msm_gpu *gpu = &adreno_gpu->base;
1059 	int ret;
1060 
1061 	/* Build the GX votes */
1062 	ret = a6xx_gmu_rpmh_arc_votes_init(&gpu->pdev->dev, gmu->gx_arc_votes,
1063 		gmu->gpu_freqs, gmu->nr_gpu_freqs, "gfx.lvl");
1064 
1065 	/* Build the CX votes */
1066 	ret |= a6xx_gmu_rpmh_arc_votes_init(gmu->dev, gmu->cx_arc_votes,
1067 		gmu->gmu_freqs, gmu->nr_gmu_freqs, "cx.lvl");
1068 
1069 	return ret;
1070 }
1071 
1072 static int a6xx_gmu_build_freq_table(struct device *dev, unsigned long *freqs,
1073 		u32 size)
1074 {
1075 	int count = dev_pm_opp_get_opp_count(dev);
1076 	struct dev_pm_opp *opp;
1077 	int i, index = 0;
1078 	unsigned long freq = 1;
1079 
1080 	/*
1081 	 * The OPP table doesn't contain the "off" frequency level so we need to
1082 	 * add 1 to the table size to account for it
1083 	 */
1084 
1085 	if (WARN(count + 1 > size,
1086 		"The GMU frequency table is being truncated\n"))
1087 		count = size - 1;
1088 
1089 	/* Set the "off" frequency */
1090 	freqs[index++] = 0;
1091 
1092 	for (i = 0; i < count; i++) {
1093 		opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1094 		if (IS_ERR(opp))
1095 			break;
1096 
1097 		dev_pm_opp_put(opp);
1098 		freqs[index++] = freq++;
1099 	}
1100 
1101 	return index;
1102 }
1103 
1104 static int a6xx_gmu_pwrlevels_probe(struct a6xx_gmu *gmu)
1105 {
1106 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
1107 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1108 	struct msm_gpu *gpu = &adreno_gpu->base;
1109 
1110 	int ret = 0;
1111 
1112 	/*
1113 	 * The GMU handles its own frequency switching so build a list of
1114 	 * available frequencies to send during initialization
1115 	 */
1116 	ret = dev_pm_opp_of_add_table(gmu->dev);
1117 	if (ret) {
1118 		DRM_DEV_ERROR(gmu->dev, "Unable to set the OPP table for the GMU\n");
1119 		return ret;
1120 	}
1121 
1122 	gmu->nr_gmu_freqs = a6xx_gmu_build_freq_table(gmu->dev,
1123 		gmu->gmu_freqs, ARRAY_SIZE(gmu->gmu_freqs));
1124 
1125 	/*
1126 	 * The GMU also handles GPU frequency switching so build a list
1127 	 * from the GPU OPP table
1128 	 */
1129 	gmu->nr_gpu_freqs = a6xx_gmu_build_freq_table(&gpu->pdev->dev,
1130 		gmu->gpu_freqs, ARRAY_SIZE(gmu->gpu_freqs));
1131 
1132 	/* Build the list of RPMh votes that we'll send to the GMU */
1133 	return a6xx_gmu_rpmh_votes_init(gmu);
1134 }
1135 
1136 static int a6xx_gmu_clocks_probe(struct a6xx_gmu *gmu)
1137 {
1138 	int ret = msm_clk_bulk_get(gmu->dev, &gmu->clocks);
1139 
1140 	if (ret < 1)
1141 		return ret;
1142 
1143 	gmu->nr_clocks = ret;
1144 
1145 	gmu->core_clk = msm_clk_bulk_get_clock(gmu->clocks,
1146 		gmu->nr_clocks, "gmu");
1147 
1148 	return 0;
1149 }
1150 
1151 static void __iomem *a6xx_gmu_get_mmio(struct platform_device *pdev,
1152 		const char *name)
1153 {
1154 	void __iomem *ret;
1155 	struct resource *res = platform_get_resource_byname(pdev,
1156 			IORESOURCE_MEM, name);
1157 
1158 	if (!res) {
1159 		DRM_DEV_ERROR(&pdev->dev, "Unable to find the %s registers\n", name);
1160 		return ERR_PTR(-EINVAL);
1161 	}
1162 
1163 	ret = devm_ioremap(&pdev->dev, res->start, resource_size(res));
1164 	if (!ret) {
1165 		DRM_DEV_ERROR(&pdev->dev, "Unable to map the %s registers\n", name);
1166 		return ERR_PTR(-EINVAL);
1167 	}
1168 
1169 	return ret;
1170 }
1171 
1172 static int a6xx_gmu_get_irq(struct a6xx_gmu *gmu, struct platform_device *pdev,
1173 		const char *name, irq_handler_t handler)
1174 {
1175 	int irq, ret;
1176 
1177 	irq = platform_get_irq_byname(pdev, name);
1178 
1179 	ret = devm_request_irq(&pdev->dev, irq, handler, IRQF_TRIGGER_HIGH,
1180 		name, gmu);
1181 	if (ret) {
1182 		DRM_DEV_ERROR(&pdev->dev, "Unable to get interrupt %s\n", name);
1183 		return ret;
1184 	}
1185 
1186 	disable_irq(irq);
1187 
1188 	return irq;
1189 }
1190 
1191 void a6xx_gmu_remove(struct a6xx_gpu *a6xx_gpu)
1192 {
1193 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
1194 
1195 	if (IS_ERR_OR_NULL(gmu->mmio))
1196 		return;
1197 
1198 	pm_runtime_disable(gmu->dev);
1199 	a6xx_gmu_stop(a6xx_gpu);
1200 
1201 	a6xx_gmu_irq_disable(gmu);
1202 	a6xx_gmu_memory_free(gmu, gmu->hfi);
1203 
1204 	iommu_detach_device(gmu->domain, gmu->dev);
1205 
1206 	iommu_domain_free(gmu->domain);
1207 }
1208 
1209 int a6xx_gmu_probe(struct a6xx_gpu *a6xx_gpu, struct device_node *node)
1210 {
1211 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
1212 	struct platform_device *pdev = of_find_device_by_node(node);
1213 	int ret;
1214 
1215 	if (!pdev)
1216 		return -ENODEV;
1217 
1218 	gmu->dev = &pdev->dev;
1219 
1220 	of_dma_configure(gmu->dev, node, true);
1221 
1222 	/* Fow now, don't do anything fancy until we get our feet under us */
1223 	gmu->idle_level = GMU_IDLE_STATE_ACTIVE;
1224 
1225 	pm_runtime_enable(gmu->dev);
1226 	gmu->gx = devm_regulator_get(gmu->dev, "vdd");
1227 
1228 	/* Get the list of clocks */
1229 	ret = a6xx_gmu_clocks_probe(gmu);
1230 	if (ret)
1231 		return ret;
1232 
1233 	/* Set up the IOMMU context bank */
1234 	ret = a6xx_gmu_memory_probe(gmu);
1235 	if (ret)
1236 		return ret;
1237 
1238 	/* Allocate memory for for the HFI queues */
1239 	gmu->hfi = a6xx_gmu_memory_alloc(gmu, SZ_16K);
1240 	if (IS_ERR(gmu->hfi))
1241 		goto err;
1242 
1243 	/* Allocate memory for the GMU debug region */
1244 	gmu->debug = a6xx_gmu_memory_alloc(gmu, SZ_16K);
1245 	if (IS_ERR(gmu->debug))
1246 		goto err;
1247 
1248 	/* Map the GMU registers */
1249 	gmu->mmio = a6xx_gmu_get_mmio(pdev, "gmu");
1250 	if (IS_ERR(gmu->mmio))
1251 		goto err;
1252 
1253 	/* Get the HFI and GMU interrupts */
1254 	gmu->hfi_irq = a6xx_gmu_get_irq(gmu, pdev, "hfi", a6xx_hfi_irq);
1255 	gmu->gmu_irq = a6xx_gmu_get_irq(gmu, pdev, "gmu", a6xx_gmu_irq);
1256 
1257 	if (gmu->hfi_irq < 0 || gmu->gmu_irq < 0)
1258 		goto err;
1259 
1260 	/* Get the power levels for the GMU and GPU */
1261 	a6xx_gmu_pwrlevels_probe(gmu);
1262 
1263 	/* Set up the HFI queues */
1264 	a6xx_hfi_init(gmu);
1265 
1266 	return 0;
1267 err:
1268 	a6xx_gmu_memory_free(gmu, gmu->hfi);
1269 
1270 	if (gmu->domain) {
1271 		iommu_detach_device(gmu->domain, gmu->dev);
1272 
1273 		iommu_domain_free(gmu->domain);
1274 	}
1275 
1276 	return -ENODEV;
1277 }
1278