xref: /openbmc/linux/drivers/gpu/drm/msm/adreno/a6xx_gmu.c (revision bbdd33769d319d1e7bb8fec09124a49b3573a2d3)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */
3 
4 #include <linux/clk.h>
5 #include <linux/interconnect.h>
6 #include <linux/pm_domain.h>
7 #include <linux/pm_opp.h>
8 #include <soc/qcom/cmd-db.h>
9 #include <drm/drm_gem.h>
10 
11 #include "a6xx_gpu.h"
12 #include "a6xx_gmu.xml.h"
13 #include "msm_gem.h"
14 #include "msm_gpu_trace.h"
15 #include "msm_mmu.h"
16 
17 static void a6xx_gmu_fault(struct a6xx_gmu *gmu)
18 {
19 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
20 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
21 	struct msm_gpu *gpu = &adreno_gpu->base;
22 
23 	/* FIXME: add a banner here */
24 	gmu->hung = true;
25 
26 	/* Turn off the hangcheck timer while we are resetting */
27 	del_timer(&gpu->hangcheck_timer);
28 
29 	/* Queue the GPU handler because we need to treat this as a recovery */
30 	kthread_queue_work(gpu->worker, &gpu->recover_work);
31 }
32 
33 static irqreturn_t a6xx_gmu_irq(int irq, void *data)
34 {
35 	struct a6xx_gmu *gmu = data;
36 	u32 status;
37 
38 	status = gmu_read(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_STATUS);
39 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_CLR, status);
40 
41 	if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_WDOG_BITE) {
42 		dev_err_ratelimited(gmu->dev, "GMU watchdog expired\n");
43 
44 		a6xx_gmu_fault(gmu);
45 	}
46 
47 	if (status &  A6XX_GMU_AO_HOST_INTERRUPT_STATUS_HOST_AHB_BUS_ERROR)
48 		dev_err_ratelimited(gmu->dev, "GMU AHB bus error\n");
49 
50 	if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_FENCE_ERR)
51 		dev_err_ratelimited(gmu->dev, "GMU fence error: 0x%x\n",
52 			gmu_read(gmu, REG_A6XX_GMU_AHB_FENCE_STATUS));
53 
54 	return IRQ_HANDLED;
55 }
56 
57 static irqreturn_t a6xx_hfi_irq(int irq, void *data)
58 {
59 	struct a6xx_gmu *gmu = data;
60 	u32 status;
61 
62 	status = gmu_read(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO);
63 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, status);
64 
65 	if (status & A6XX_GMU_GMU2HOST_INTR_INFO_CM3_FAULT) {
66 		dev_err_ratelimited(gmu->dev, "GMU firmware fault\n");
67 
68 		a6xx_gmu_fault(gmu);
69 	}
70 
71 	return IRQ_HANDLED;
72 }
73 
74 bool a6xx_gmu_sptprac_is_on(struct a6xx_gmu *gmu)
75 {
76 	u32 val;
77 
78 	/* This can be called from gpu state code so make sure GMU is valid */
79 	if (!gmu->initialized)
80 		return false;
81 
82 	val = gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS);
83 
84 	return !(val &
85 		(A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_SPTPRAC_GDSC_POWER_OFF |
86 		A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_SP_CLOCK_OFF));
87 }
88 
89 /* Check to see if the GX rail is still powered */
90 bool a6xx_gmu_gx_is_on(struct a6xx_gmu *gmu)
91 {
92 	u32 val;
93 
94 	/* This can be called from gpu state code so make sure GMU is valid */
95 	if (!gmu->initialized)
96 		return false;
97 
98 	val = gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS);
99 
100 	return !(val &
101 		(A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_GX_HM_GDSC_POWER_OFF |
102 		A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_GX_HM_CLK_OFF));
103 }
104 
105 void a6xx_gmu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp,
106 		       bool suspended)
107 {
108 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
109 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
110 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
111 	u32 perf_index;
112 	unsigned long gpu_freq;
113 	int ret = 0;
114 
115 	gpu_freq = dev_pm_opp_get_freq(opp);
116 
117 	if (gpu_freq == gmu->freq)
118 		return;
119 
120 	for (perf_index = 0; perf_index < gmu->nr_gpu_freqs - 1; perf_index++)
121 		if (gpu_freq == gmu->gpu_freqs[perf_index])
122 			break;
123 
124 	gmu->current_perf_index = perf_index;
125 	gmu->freq = gmu->gpu_freqs[perf_index];
126 
127 	trace_msm_gmu_freq_change(gmu->freq, perf_index);
128 
129 	/*
130 	 * This can get called from devfreq while the hardware is idle. Don't
131 	 * bring up the power if it isn't already active. All we're doing here
132 	 * is updating the frequency so that when we come back online we're at
133 	 * the right rate.
134 	 */
135 	if (suspended)
136 		return;
137 
138 	if (!gmu->legacy) {
139 		a6xx_hfi_set_freq(gmu, perf_index);
140 		dev_pm_opp_set_opp(&gpu->pdev->dev, opp);
141 		return;
142 	}
143 
144 	gmu_write(gmu, REG_A6XX_GMU_DCVS_ACK_OPTION, 0);
145 
146 	gmu_write(gmu, REG_A6XX_GMU_DCVS_PERF_SETTING,
147 			((3 & 0xf) << 28) | perf_index);
148 
149 	/*
150 	 * Send an invalid index as a vote for the bus bandwidth and let the
151 	 * firmware decide on the right vote
152 	 */
153 	gmu_write(gmu, REG_A6XX_GMU_DCVS_BW_SETTING, 0xff);
154 
155 	/* Set and clear the OOB for DCVS to trigger the GMU */
156 	a6xx_gmu_set_oob(gmu, GMU_OOB_DCVS_SET);
157 	a6xx_gmu_clear_oob(gmu, GMU_OOB_DCVS_SET);
158 
159 	ret = gmu_read(gmu, REG_A6XX_GMU_DCVS_RETURN);
160 	if (ret)
161 		dev_err(gmu->dev, "GMU set GPU frequency error: %d\n", ret);
162 
163 	dev_pm_opp_set_opp(&gpu->pdev->dev, opp);
164 }
165 
166 unsigned long a6xx_gmu_get_freq(struct msm_gpu *gpu)
167 {
168 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
169 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
170 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
171 
172 	return  gmu->freq;
173 }
174 
175 static bool a6xx_gmu_check_idle_level(struct a6xx_gmu *gmu)
176 {
177 	u32 val;
178 	int local = gmu->idle_level;
179 
180 	/* SPTP and IFPC both report as IFPC */
181 	if (gmu->idle_level == GMU_IDLE_STATE_SPTP)
182 		local = GMU_IDLE_STATE_IFPC;
183 
184 	val = gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE);
185 
186 	if (val == local) {
187 		if (gmu->idle_level != GMU_IDLE_STATE_IFPC ||
188 			!a6xx_gmu_gx_is_on(gmu))
189 			return true;
190 	}
191 
192 	return false;
193 }
194 
195 /* Wait for the GMU to get to its most idle state */
196 int a6xx_gmu_wait_for_idle(struct a6xx_gmu *gmu)
197 {
198 	return spin_until(a6xx_gmu_check_idle_level(gmu));
199 }
200 
201 static int a6xx_gmu_start(struct a6xx_gmu *gmu)
202 {
203 	int ret;
204 	u32 val;
205 	u32 mask, reset_val;
206 
207 	val = gmu_read(gmu, REG_A6XX_GMU_CM3_DTCM_START + 0xff8);
208 	if (val <= 0x20010004) {
209 		mask = 0xffffffff;
210 		reset_val = 0xbabeface;
211 	} else {
212 		mask = 0x1ff;
213 		reset_val = 0x100;
214 	}
215 
216 	gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 1);
217 
218 	/* Set the log wptr index
219 	 * note: downstream saves the value in poweroff and restores it here
220 	 */
221 	gmu_write(gmu, REG_A6XX_GPU_GMU_CX_GMU_PWR_COL_CP_RESP, 0);
222 
223 	gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 0);
224 
225 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_CM3_FW_INIT_RESULT, val,
226 		(val & mask) == reset_val, 100, 10000);
227 
228 	if (ret)
229 		DRM_DEV_ERROR(gmu->dev, "GMU firmware initialization timed out\n");
230 
231 	return ret;
232 }
233 
234 static int a6xx_gmu_hfi_start(struct a6xx_gmu *gmu)
235 {
236 	u32 val;
237 	int ret;
238 
239 	gmu_write(gmu, REG_A6XX_GMU_HFI_CTRL_INIT, 1);
240 
241 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_HFI_CTRL_STATUS, val,
242 		val & 1, 100, 10000);
243 	if (ret)
244 		DRM_DEV_ERROR(gmu->dev, "Unable to start the HFI queues\n");
245 
246 	return ret;
247 }
248 
249 struct a6xx_gmu_oob_bits {
250 	int set, ack, set_new, ack_new, clear, clear_new;
251 	const char *name;
252 };
253 
254 /* These are the interrupt / ack bits for each OOB request that are set
255  * in a6xx_gmu_set_oob and a6xx_clear_oob
256  */
257 static const struct a6xx_gmu_oob_bits a6xx_gmu_oob_bits[] = {
258 	[GMU_OOB_GPU_SET] = {
259 		.name = "GPU_SET",
260 		.set = 16,
261 		.ack = 24,
262 		.set_new = 30,
263 		.ack_new = 31,
264 		.clear = 24,
265 		.clear_new = 31,
266 	},
267 
268 	[GMU_OOB_PERFCOUNTER_SET] = {
269 		.name = "PERFCOUNTER",
270 		.set = 17,
271 		.ack = 25,
272 		.set_new = 28,
273 		.ack_new = 30,
274 		.clear = 25,
275 		.clear_new = 29,
276 	},
277 
278 	[GMU_OOB_BOOT_SLUMBER] = {
279 		.name = "BOOT_SLUMBER",
280 		.set = 22,
281 		.ack = 30,
282 		.clear = 30,
283 	},
284 
285 	[GMU_OOB_DCVS_SET] = {
286 		.name = "GPU_DCVS",
287 		.set = 23,
288 		.ack = 31,
289 		.clear = 31,
290 	},
291 };
292 
293 /* Trigger a OOB (out of band) request to the GMU */
294 int a6xx_gmu_set_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state)
295 {
296 	int ret;
297 	u32 val;
298 	int request, ack;
299 
300 	WARN_ON_ONCE(!mutex_is_locked(&gmu->lock));
301 
302 	if (state >= ARRAY_SIZE(a6xx_gmu_oob_bits))
303 		return -EINVAL;
304 
305 	if (gmu->legacy) {
306 		request = a6xx_gmu_oob_bits[state].set;
307 		ack = a6xx_gmu_oob_bits[state].ack;
308 	} else {
309 		request = a6xx_gmu_oob_bits[state].set_new;
310 		ack = a6xx_gmu_oob_bits[state].ack_new;
311 		if (!request || !ack) {
312 			DRM_DEV_ERROR(gmu->dev,
313 				      "Invalid non-legacy GMU request %s\n",
314 				      a6xx_gmu_oob_bits[state].name);
315 			return -EINVAL;
316 		}
317 	}
318 
319 	/* Trigger the equested OOB operation */
320 	gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 1 << request);
321 
322 	/* Wait for the acknowledge interrupt */
323 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO, val,
324 		val & (1 << ack), 100, 10000);
325 
326 	if (ret)
327 		DRM_DEV_ERROR(gmu->dev,
328 			"Timeout waiting for GMU OOB set %s: 0x%x\n",
329 				a6xx_gmu_oob_bits[state].name,
330 				gmu_read(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO));
331 
332 	/* Clear the acknowledge interrupt */
333 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, 1 << ack);
334 
335 	return ret;
336 }
337 
338 /* Clear a pending OOB state in the GMU */
339 void a6xx_gmu_clear_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state)
340 {
341 	int bit;
342 
343 	WARN_ON_ONCE(!mutex_is_locked(&gmu->lock));
344 
345 	if (state >= ARRAY_SIZE(a6xx_gmu_oob_bits))
346 		return;
347 
348 	if (gmu->legacy)
349 		bit = a6xx_gmu_oob_bits[state].clear;
350 	else
351 		bit = a6xx_gmu_oob_bits[state].clear_new;
352 
353 	gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 1 << bit);
354 }
355 
356 /* Enable CPU control of SPTP power power collapse */
357 static int a6xx_sptprac_enable(struct a6xx_gmu *gmu)
358 {
359 	int ret;
360 	u32 val;
361 
362 	if (!gmu->legacy)
363 		return 0;
364 
365 	gmu_write(gmu, REG_A6XX_GMU_GX_SPTPRAC_POWER_CONTROL, 0x778000);
366 
367 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, val,
368 		(val & 0x38) == 0x28, 1, 100);
369 
370 	if (ret) {
371 		DRM_DEV_ERROR(gmu->dev, "Unable to power on SPTPRAC: 0x%x\n",
372 			gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS));
373 	}
374 
375 	return 0;
376 }
377 
378 /* Disable CPU control of SPTP power power collapse */
379 static void a6xx_sptprac_disable(struct a6xx_gmu *gmu)
380 {
381 	u32 val;
382 	int ret;
383 
384 	if (!gmu->legacy)
385 		return;
386 
387 	/* Make sure retention is on */
388 	gmu_rmw(gmu, REG_A6XX_GPU_CC_GX_GDSCR, 0, (1 << 11));
389 
390 	gmu_write(gmu, REG_A6XX_GMU_GX_SPTPRAC_POWER_CONTROL, 0x778001);
391 
392 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, val,
393 		(val & 0x04), 100, 10000);
394 
395 	if (ret)
396 		DRM_DEV_ERROR(gmu->dev, "failed to power off SPTPRAC: 0x%x\n",
397 			gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS));
398 }
399 
400 /* Let the GMU know we are starting a boot sequence */
401 static int a6xx_gmu_gfx_rail_on(struct a6xx_gmu *gmu)
402 {
403 	u32 vote;
404 
405 	/* Let the GMU know we are getting ready for boot */
406 	gmu_write(gmu, REG_A6XX_GMU_BOOT_SLUMBER_OPTION, 0);
407 
408 	/* Choose the "default" power level as the highest available */
409 	vote = gmu->gx_arc_votes[gmu->nr_gpu_freqs - 1];
410 
411 	gmu_write(gmu, REG_A6XX_GMU_GX_VOTE_IDX, vote & 0xff);
412 	gmu_write(gmu, REG_A6XX_GMU_MX_VOTE_IDX, (vote >> 8) & 0xff);
413 
414 	/* Let the GMU know the boot sequence has started */
415 	return a6xx_gmu_set_oob(gmu, GMU_OOB_BOOT_SLUMBER);
416 }
417 
418 /* Let the GMU know that we are about to go into slumber */
419 static int a6xx_gmu_notify_slumber(struct a6xx_gmu *gmu)
420 {
421 	int ret;
422 
423 	/* Disable the power counter so the GMU isn't busy */
424 	gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 0);
425 
426 	/* Disable SPTP_PC if the CPU is responsible for it */
427 	if (gmu->idle_level < GMU_IDLE_STATE_SPTP)
428 		a6xx_sptprac_disable(gmu);
429 
430 	if (!gmu->legacy) {
431 		ret = a6xx_hfi_send_prep_slumber(gmu);
432 		goto out;
433 	}
434 
435 	/* Tell the GMU to get ready to slumber */
436 	gmu_write(gmu, REG_A6XX_GMU_BOOT_SLUMBER_OPTION, 1);
437 
438 	ret = a6xx_gmu_set_oob(gmu, GMU_OOB_BOOT_SLUMBER);
439 	a6xx_gmu_clear_oob(gmu, GMU_OOB_BOOT_SLUMBER);
440 
441 	if (!ret) {
442 		/* Check to see if the GMU really did slumber */
443 		if (gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE)
444 			!= 0x0f) {
445 			DRM_DEV_ERROR(gmu->dev, "The GMU did not go into slumber\n");
446 			ret = -ETIMEDOUT;
447 		}
448 	}
449 
450 out:
451 	/* Put fence into allow mode */
452 	gmu_write(gmu, REG_A6XX_GMU_AO_AHB_FENCE_CTRL, 0);
453 	return ret;
454 }
455 
456 static int a6xx_rpmh_start(struct a6xx_gmu *gmu)
457 {
458 	int ret;
459 	u32 val;
460 
461 	gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 1 << 1);
462 	/* Wait for the register to finish posting */
463 	wmb();
464 
465 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_RSCC_CONTROL_ACK, val,
466 		val & (1 << 1), 100, 10000);
467 	if (ret) {
468 		DRM_DEV_ERROR(gmu->dev, "Unable to power on the GPU RSC\n");
469 		return ret;
470 	}
471 
472 	ret = gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_SEQ_BUSY_DRV0, val,
473 		!val, 100, 10000);
474 
475 	if (ret) {
476 		DRM_DEV_ERROR(gmu->dev, "GPU RSC sequence stuck while waking up the GPU\n");
477 		return ret;
478 	}
479 
480 	gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 0);
481 
482 	/* Set up CX GMU counter 0 to count busy ticks */
483 	gmu_write(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_MASK, 0xff000000);
484 	gmu_rmw(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_SELECT_0, 0xff, 0x20);
485 
486 	/* Enable the power counter */
487 	gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 1);
488 	return 0;
489 }
490 
491 static void a6xx_rpmh_stop(struct a6xx_gmu *gmu)
492 {
493 	int ret;
494 	u32 val;
495 
496 	gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 1);
497 
498 	ret = gmu_poll_timeout_rscc(gmu, REG_A6XX_GPU_RSCC_RSC_STATUS0_DRV0,
499 		val, val & (1 << 16), 100, 10000);
500 	if (ret)
501 		DRM_DEV_ERROR(gmu->dev, "Unable to power off the GPU RSC\n");
502 
503 	gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 0);
504 }
505 
506 static inline void pdc_write(void __iomem *ptr, u32 offset, u32 value)
507 {
508 	msm_writel(value, ptr + (offset << 2));
509 }
510 
511 static void __iomem *a6xx_gmu_get_mmio(struct platform_device *pdev,
512 		const char *name);
513 
514 static void a6xx_gmu_rpmh_init(struct a6xx_gmu *gmu)
515 {
516 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
517 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
518 	struct platform_device *pdev = to_platform_device(gmu->dev);
519 	void __iomem *pdcptr = a6xx_gmu_get_mmio(pdev, "gmu_pdc");
520 	void __iomem *seqptr = NULL;
521 	uint32_t pdc_address_offset;
522 	bool pdc_in_aop = false;
523 
524 	if (IS_ERR(pdcptr))
525 		goto err;
526 
527 	if (adreno_is_a650(adreno_gpu) || adreno_is_a660_family(adreno_gpu))
528 		pdc_in_aop = true;
529 	else if (adreno_is_a618(adreno_gpu) || adreno_is_a640_family(adreno_gpu))
530 		pdc_address_offset = 0x30090;
531 	else if (adreno_is_a619(adreno_gpu))
532 		pdc_address_offset = 0x300a0;
533 	else
534 		pdc_address_offset = 0x30080;
535 
536 	if (!pdc_in_aop) {
537 		seqptr = a6xx_gmu_get_mmio(pdev, "gmu_pdc_seq");
538 		if (IS_ERR(seqptr))
539 			goto err;
540 	}
541 
542 	/* Disable SDE clock gating */
543 	gmu_write_rscc(gmu, REG_A6XX_GPU_RSCC_RSC_STATUS0_DRV0, BIT(24));
544 
545 	/* Setup RSC PDC handshake for sleep and wakeup */
546 	gmu_write_rscc(gmu, REG_A6XX_RSCC_PDC_SLAVE_ID_DRV0, 1);
547 	gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA, 0);
548 	gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR, 0);
549 	gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA + 2, 0);
550 	gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR + 2, 0);
551 	gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA + 4, 0x80000000);
552 	gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR + 4, 0);
553 	gmu_write_rscc(gmu, REG_A6XX_RSCC_OVERRIDE_START_ADDR, 0);
554 	gmu_write_rscc(gmu, REG_A6XX_RSCC_PDC_SEQ_START_ADDR, 0x4520);
555 	gmu_write_rscc(gmu, REG_A6XX_RSCC_PDC_MATCH_VALUE_LO, 0x4510);
556 	gmu_write_rscc(gmu, REG_A6XX_RSCC_PDC_MATCH_VALUE_HI, 0x4514);
557 
558 	/* Load RSC sequencer uCode for sleep and wakeup */
559 	if (adreno_is_a650_family(adreno_gpu)) {
560 		gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0, 0xeaaae5a0);
561 		gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 1, 0xe1a1ebab);
562 		gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 2, 0xa2e0a581);
563 		gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 3, 0xecac82e2);
564 		gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 4, 0x0020edad);
565 	} else {
566 		gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0, 0xa7a506a0);
567 		gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 1, 0xa1e6a6e7);
568 		gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 2, 0xa2e081e1);
569 		gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 3, 0xe9a982e2);
570 		gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 4, 0x0020e8a8);
571 	}
572 
573 	if (pdc_in_aop)
574 		goto setup_pdc;
575 
576 	/* Load PDC sequencer uCode for power up and power down sequence */
577 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0, 0xfebea1e1);
578 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 1, 0xa5a4a3a2);
579 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 2, 0x8382a6e0);
580 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 3, 0xbce3e284);
581 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 4, 0x002081fc);
582 
583 	/* Set TCS commands used by PDC sequence for low power modes */
584 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD_ENABLE_BANK, 7);
585 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD_WAIT_FOR_CMPL_BANK, 0);
586 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CONTROL, 0);
587 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID, 0x10108);
588 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR, 0x30010);
589 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA, 1);
590 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID + 4, 0x10108);
591 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR + 4, 0x30000);
592 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA + 4, 0x0);
593 
594 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID + 8, 0x10108);
595 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR + 8, pdc_address_offset);
596 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA + 8, 0x0);
597 
598 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD_ENABLE_BANK, 7);
599 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD_WAIT_FOR_CMPL_BANK, 0);
600 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CONTROL, 0);
601 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID, 0x10108);
602 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR, 0x30010);
603 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA, 2);
604 
605 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID + 4, 0x10108);
606 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR + 4, 0x30000);
607 	if (adreno_is_a618(adreno_gpu) || adreno_is_a619(adreno_gpu) ||
608 			adreno_is_a650_family(adreno_gpu))
609 		pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 4, 0x2);
610 	else
611 		pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 4, 0x3);
612 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID + 8, 0x10108);
613 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR + 8, pdc_address_offset);
614 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 8, 0x3);
615 
616 	/* Setup GPU PDC */
617 setup_pdc:
618 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_SEQ_START_ADDR, 0);
619 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_ENABLE_PDC, 0x80000001);
620 
621 	/* ensure no writes happen before the uCode is fully written */
622 	wmb();
623 
624 err:
625 	if (!IS_ERR_OR_NULL(pdcptr))
626 		iounmap(pdcptr);
627 	if (!IS_ERR_OR_NULL(seqptr))
628 		iounmap(seqptr);
629 }
630 
631 /*
632  * The lowest 16 bits of this value are the number of XO clock cycles for main
633  * hysteresis which is set at 0x1680 cycles (300 us).  The higher 16 bits are
634  * for the shorter hysteresis that happens after main - this is 0xa (.5 us)
635  */
636 
637 #define GMU_PWR_COL_HYST 0x000a1680
638 
639 /* Set up the idle state for the GMU */
640 static void a6xx_gmu_power_config(struct a6xx_gmu *gmu)
641 {
642 	/* Disable GMU WB/RB buffer */
643 	gmu_write(gmu, REG_A6XX_GMU_SYS_BUS_CONFIG, 0x1);
644 	gmu_write(gmu, REG_A6XX_GMU_ICACHE_CONFIG, 0x1);
645 	gmu_write(gmu, REG_A6XX_GMU_DCACHE_CONFIG, 0x1);
646 
647 	gmu_write(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0x9c40400);
648 
649 	switch (gmu->idle_level) {
650 	case GMU_IDLE_STATE_IFPC:
651 		gmu_write(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_HYST,
652 			GMU_PWR_COL_HYST);
653 		gmu_rmw(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0,
654 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_IFPC_ENABLE |
655 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_HM_POWER_COLLAPSE_ENABLE);
656 		fallthrough;
657 	case GMU_IDLE_STATE_SPTP:
658 		gmu_write(gmu, REG_A6XX_GMU_PWR_COL_SPTPRAC_HYST,
659 			GMU_PWR_COL_HYST);
660 		gmu_rmw(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0,
661 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_IFPC_ENABLE |
662 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_SPTPRAC_POWER_CONTROL_ENABLE);
663 	}
664 
665 	/* Enable RPMh GPU client */
666 	gmu_rmw(gmu, REG_A6XX_GMU_RPMH_CTRL, 0,
667 		A6XX_GMU_RPMH_CTRL_RPMH_INTERFACE_ENABLE |
668 		A6XX_GMU_RPMH_CTRL_LLC_VOTE_ENABLE |
669 		A6XX_GMU_RPMH_CTRL_DDR_VOTE_ENABLE |
670 		A6XX_GMU_RPMH_CTRL_MX_VOTE_ENABLE |
671 		A6XX_GMU_RPMH_CTRL_CX_VOTE_ENABLE |
672 		A6XX_GMU_RPMH_CTRL_GFX_VOTE_ENABLE);
673 }
674 
675 struct block_header {
676 	u32 addr;
677 	u32 size;
678 	u32 type;
679 	u32 value;
680 	u32 data[];
681 };
682 
683 /* this should be a general kernel helper */
684 static int in_range(u32 addr, u32 start, u32 size)
685 {
686 	return addr >= start && addr < start + size;
687 }
688 
689 static bool fw_block_mem(struct a6xx_gmu_bo *bo, const struct block_header *blk)
690 {
691 	if (!in_range(blk->addr, bo->iova, bo->size))
692 		return false;
693 
694 	memcpy(bo->virt + blk->addr - bo->iova, blk->data, blk->size);
695 	return true;
696 }
697 
698 static int a6xx_gmu_fw_load(struct a6xx_gmu *gmu)
699 {
700 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
701 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
702 	const struct firmware *fw_image = adreno_gpu->fw[ADRENO_FW_GMU];
703 	const struct block_header *blk;
704 	u32 reg_offset;
705 
706 	u32 itcm_base = 0x00000000;
707 	u32 dtcm_base = 0x00040000;
708 
709 	if (adreno_is_a650_family(adreno_gpu))
710 		dtcm_base = 0x10004000;
711 
712 	if (gmu->legacy) {
713 		/* Sanity check the size of the firmware that was loaded */
714 		if (fw_image->size > 0x8000) {
715 			DRM_DEV_ERROR(gmu->dev,
716 				"GMU firmware is bigger than the available region\n");
717 			return -EINVAL;
718 		}
719 
720 		gmu_write_bulk(gmu, REG_A6XX_GMU_CM3_ITCM_START,
721 			       (u32*) fw_image->data, fw_image->size);
722 		return 0;
723 	}
724 
725 
726 	for (blk = (const struct block_header *) fw_image->data;
727 	     (const u8*) blk < fw_image->data + fw_image->size;
728 	     blk = (const struct block_header *) &blk->data[blk->size >> 2]) {
729 		if (blk->size == 0)
730 			continue;
731 
732 		if (in_range(blk->addr, itcm_base, SZ_16K)) {
733 			reg_offset = (blk->addr - itcm_base) >> 2;
734 			gmu_write_bulk(gmu,
735 				REG_A6XX_GMU_CM3_ITCM_START + reg_offset,
736 				blk->data, blk->size);
737 		} else if (in_range(blk->addr, dtcm_base, SZ_16K)) {
738 			reg_offset = (blk->addr - dtcm_base) >> 2;
739 			gmu_write_bulk(gmu,
740 				REG_A6XX_GMU_CM3_DTCM_START + reg_offset,
741 				blk->data, blk->size);
742 		} else if (!fw_block_mem(&gmu->icache, blk) &&
743 			   !fw_block_mem(&gmu->dcache, blk) &&
744 			   !fw_block_mem(&gmu->dummy, blk)) {
745 			DRM_DEV_ERROR(gmu->dev,
746 				"failed to match fw block (addr=%.8x size=%d data[0]=%.8x)\n",
747 				blk->addr, blk->size, blk->data[0]);
748 		}
749 	}
750 
751 	return 0;
752 }
753 
754 static int a6xx_gmu_fw_start(struct a6xx_gmu *gmu, unsigned int state)
755 {
756 	static bool rpmh_init;
757 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
758 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
759 	int ret;
760 	u32 chipid;
761 
762 	if (adreno_is_a650_family(adreno_gpu)) {
763 		gmu_write(gmu, REG_A6XX_GPU_GMU_CX_GMU_CX_FALNEXT_INTF, 1);
764 		gmu_write(gmu, REG_A6XX_GPU_GMU_CX_GMU_CX_FAL_INTF, 1);
765 	}
766 
767 	if (state == GMU_WARM_BOOT) {
768 		ret = a6xx_rpmh_start(gmu);
769 		if (ret)
770 			return ret;
771 	} else {
772 		if (WARN(!adreno_gpu->fw[ADRENO_FW_GMU],
773 			"GMU firmware is not loaded\n"))
774 			return -ENOENT;
775 
776 		/* Turn on register retention */
777 		gmu_write(gmu, REG_A6XX_GMU_GENERAL_7, 1);
778 
779 		/* We only need to load the RPMh microcode once */
780 		if (!rpmh_init) {
781 			a6xx_gmu_rpmh_init(gmu);
782 			rpmh_init = true;
783 		} else {
784 			ret = a6xx_rpmh_start(gmu);
785 			if (ret)
786 				return ret;
787 		}
788 
789 		ret = a6xx_gmu_fw_load(gmu);
790 		if (ret)
791 			return ret;
792 	}
793 
794 	gmu_write(gmu, REG_A6XX_GMU_CM3_FW_INIT_RESULT, 0);
795 	gmu_write(gmu, REG_A6XX_GMU_CM3_BOOT_CONFIG, 0x02);
796 
797 	/* Write the iova of the HFI table */
798 	gmu_write(gmu, REG_A6XX_GMU_HFI_QTBL_ADDR, gmu->hfi.iova);
799 	gmu_write(gmu, REG_A6XX_GMU_HFI_QTBL_INFO, 1);
800 
801 	gmu_write(gmu, REG_A6XX_GMU_AHB_FENCE_RANGE_0,
802 		(1 << 31) | (0xa << 18) | (0xa0));
803 
804 	chipid = adreno_gpu->rev.core << 24;
805 	chipid |= adreno_gpu->rev.major << 16;
806 	chipid |= adreno_gpu->rev.minor << 12;
807 	chipid |= adreno_gpu->rev.patchid << 8;
808 
809 	gmu_write(gmu, REG_A6XX_GMU_HFI_SFR_ADDR, chipid);
810 
811 	gmu_write(gmu, REG_A6XX_GPU_GMU_CX_GMU_PWR_COL_CP_MSG,
812 		  gmu->log.iova | (gmu->log.size / SZ_4K - 1));
813 
814 	/* Set up the lowest idle level on the GMU */
815 	a6xx_gmu_power_config(gmu);
816 
817 	ret = a6xx_gmu_start(gmu);
818 	if (ret)
819 		return ret;
820 
821 	if (gmu->legacy) {
822 		ret = a6xx_gmu_gfx_rail_on(gmu);
823 		if (ret)
824 			return ret;
825 	}
826 
827 	/* Enable SPTP_PC if the CPU is responsible for it */
828 	if (gmu->idle_level < GMU_IDLE_STATE_SPTP) {
829 		ret = a6xx_sptprac_enable(gmu);
830 		if (ret)
831 			return ret;
832 	}
833 
834 	ret = a6xx_gmu_hfi_start(gmu);
835 	if (ret)
836 		return ret;
837 
838 	/* FIXME: Do we need this wmb() here? */
839 	wmb();
840 
841 	return 0;
842 }
843 
844 #define A6XX_HFI_IRQ_MASK \
845 	(A6XX_GMU_GMU2HOST_INTR_INFO_CM3_FAULT)
846 
847 #define A6XX_GMU_IRQ_MASK \
848 	(A6XX_GMU_AO_HOST_INTERRUPT_STATUS_WDOG_BITE | \
849 	 A6XX_GMU_AO_HOST_INTERRUPT_STATUS_HOST_AHB_BUS_ERROR | \
850 	 A6XX_GMU_AO_HOST_INTERRUPT_STATUS_FENCE_ERR)
851 
852 static void a6xx_gmu_irq_disable(struct a6xx_gmu *gmu)
853 {
854 	disable_irq(gmu->gmu_irq);
855 	disable_irq(gmu->hfi_irq);
856 
857 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_MASK, ~0);
858 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_MASK, ~0);
859 }
860 
861 static void a6xx_gmu_rpmh_off(struct a6xx_gmu *gmu)
862 {
863 	u32 val;
864 
865 	/* Make sure there are no outstanding RPMh votes */
866 	gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_TCS0_DRV0_STATUS, val,
867 		(val & 1), 100, 10000);
868 	gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_TCS1_DRV0_STATUS, val,
869 		(val & 1), 100, 10000);
870 	gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_TCS2_DRV0_STATUS, val,
871 		(val & 1), 100, 10000);
872 	gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_TCS3_DRV0_STATUS, val,
873 		(val & 1), 100, 1000);
874 }
875 
876 #define GBIF_CLIENT_HALT_MASK             BIT(0)
877 #define GBIF_ARB_HALT_MASK                BIT(1)
878 
879 static void a6xx_bus_clear_pending_transactions(struct adreno_gpu *adreno_gpu,
880 		bool gx_off)
881 {
882 	struct msm_gpu *gpu = &adreno_gpu->base;
883 
884 	if (!a6xx_has_gbif(adreno_gpu)) {
885 		gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, 0xf);
886 		spin_until((gpu_read(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL1) &
887 								0xf) == 0xf);
888 		gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, 0);
889 
890 		return;
891 	}
892 
893 	if (gx_off) {
894 		/* Halt the gx side of GBIF */
895 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_HALT, 1);
896 		spin_until(gpu_read(gpu, REG_A6XX_RBBM_GBIF_HALT_ACK) & 1);
897 	}
898 
899 	/* Halt new client requests on GBIF */
900 	gpu_write(gpu, REG_A6XX_GBIF_HALT, GBIF_CLIENT_HALT_MASK);
901 	spin_until((gpu_read(gpu, REG_A6XX_GBIF_HALT_ACK) &
902 			(GBIF_CLIENT_HALT_MASK)) == GBIF_CLIENT_HALT_MASK);
903 
904 	/* Halt all AXI requests on GBIF */
905 	gpu_write(gpu, REG_A6XX_GBIF_HALT, GBIF_ARB_HALT_MASK);
906 	spin_until((gpu_read(gpu,  REG_A6XX_GBIF_HALT_ACK) &
907 			(GBIF_ARB_HALT_MASK)) == GBIF_ARB_HALT_MASK);
908 
909 	/* The GBIF halt needs to be explicitly cleared */
910 	gpu_write(gpu, REG_A6XX_GBIF_HALT, 0x0);
911 }
912 
913 /* Force the GMU off in case it isn't responsive */
914 static void a6xx_gmu_force_off(struct a6xx_gmu *gmu)
915 {
916 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
917 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
918 	struct msm_gpu *gpu = &adreno_gpu->base;
919 
920 	/* Flush all the queues */
921 	a6xx_hfi_stop(gmu);
922 
923 	/* Stop the interrupts */
924 	a6xx_gmu_irq_disable(gmu);
925 
926 	/* Force off SPTP in case the GMU is managing it */
927 	a6xx_sptprac_disable(gmu);
928 
929 	/* Make sure there are no outstanding RPMh votes */
930 	a6xx_gmu_rpmh_off(gmu);
931 
932 	/* Halt the gmu cm3 core */
933 	gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 1);
934 
935 	a6xx_bus_clear_pending_transactions(adreno_gpu, true);
936 
937 	/* Reset GPU core blocks */
938 	gpu_write(gpu, REG_A6XX_RBBM_SW_RESET_CMD, 1);
939 	udelay(100);
940 }
941 
942 static void a6xx_gmu_set_initial_freq(struct msm_gpu *gpu, struct a6xx_gmu *gmu)
943 {
944 	struct dev_pm_opp *gpu_opp;
945 	unsigned long gpu_freq = gmu->gpu_freqs[gmu->current_perf_index];
946 
947 	gpu_opp = dev_pm_opp_find_freq_exact(&gpu->pdev->dev, gpu_freq, true);
948 	if (IS_ERR(gpu_opp))
949 		return;
950 
951 	gmu->freq = 0; /* so a6xx_gmu_set_freq() doesn't exit early */
952 	a6xx_gmu_set_freq(gpu, gpu_opp, false);
953 	dev_pm_opp_put(gpu_opp);
954 }
955 
956 static void a6xx_gmu_set_initial_bw(struct msm_gpu *gpu, struct a6xx_gmu *gmu)
957 {
958 	struct dev_pm_opp *gpu_opp;
959 	unsigned long gpu_freq = gmu->gpu_freqs[gmu->current_perf_index];
960 
961 	gpu_opp = dev_pm_opp_find_freq_exact(&gpu->pdev->dev, gpu_freq, true);
962 	if (IS_ERR(gpu_opp))
963 		return;
964 
965 	dev_pm_opp_set_opp(&gpu->pdev->dev, gpu_opp);
966 	dev_pm_opp_put(gpu_opp);
967 }
968 
969 int a6xx_gmu_resume(struct a6xx_gpu *a6xx_gpu)
970 {
971 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
972 	struct msm_gpu *gpu = &adreno_gpu->base;
973 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
974 	int status, ret;
975 
976 	if (WARN(!gmu->initialized, "The GMU is not set up yet\n"))
977 		return 0;
978 
979 	gmu->hung = false;
980 
981 	/* Turn on the resources */
982 	pm_runtime_get_sync(gmu->dev);
983 
984 	/*
985 	 * "enable" the GX power domain which won't actually do anything but it
986 	 * will make sure that the refcounting is correct in case we need to
987 	 * bring down the GX after a GMU failure
988 	 */
989 	if (!IS_ERR_OR_NULL(gmu->gxpd))
990 		pm_runtime_get_sync(gmu->gxpd);
991 
992 	/* Use a known rate to bring up the GMU */
993 	clk_set_rate(gmu->core_clk, 200000000);
994 	clk_set_rate(gmu->hub_clk, 150000000);
995 	ret = clk_bulk_prepare_enable(gmu->nr_clocks, gmu->clocks);
996 	if (ret) {
997 		pm_runtime_put(gmu->gxpd);
998 		pm_runtime_put(gmu->dev);
999 		return ret;
1000 	}
1001 
1002 	/* Set the bus quota to a reasonable value for boot */
1003 	a6xx_gmu_set_initial_bw(gpu, gmu);
1004 
1005 	/* Enable the GMU interrupt */
1006 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_CLR, ~0);
1007 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_MASK, ~A6XX_GMU_IRQ_MASK);
1008 	enable_irq(gmu->gmu_irq);
1009 
1010 	/* Check to see if we are doing a cold or warm boot */
1011 	status = gmu_read(gmu, REG_A6XX_GMU_GENERAL_7) == 1 ?
1012 		GMU_WARM_BOOT : GMU_COLD_BOOT;
1013 
1014 	/*
1015 	 * Warm boot path does not work on newer GPUs
1016 	 * Presumably this is because icache/dcache regions must be restored
1017 	 */
1018 	if (!gmu->legacy)
1019 		status = GMU_COLD_BOOT;
1020 
1021 	ret = a6xx_gmu_fw_start(gmu, status);
1022 	if (ret)
1023 		goto out;
1024 
1025 	ret = a6xx_hfi_start(gmu, status);
1026 	if (ret)
1027 		goto out;
1028 
1029 	/*
1030 	 * Turn on the GMU firmware fault interrupt after we know the boot
1031 	 * sequence is successful
1032 	 */
1033 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, ~0);
1034 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_MASK, ~A6XX_HFI_IRQ_MASK);
1035 	enable_irq(gmu->hfi_irq);
1036 
1037 	/* Set the GPU to the current freq */
1038 	a6xx_gmu_set_initial_freq(gpu, gmu);
1039 
1040 out:
1041 	/* On failure, shut down the GMU to leave it in a good state */
1042 	if (ret) {
1043 		disable_irq(gmu->gmu_irq);
1044 		a6xx_rpmh_stop(gmu);
1045 		pm_runtime_put(gmu->gxpd);
1046 		pm_runtime_put(gmu->dev);
1047 	}
1048 
1049 	return ret;
1050 }
1051 
1052 bool a6xx_gmu_isidle(struct a6xx_gmu *gmu)
1053 {
1054 	u32 reg;
1055 
1056 	if (!gmu->initialized)
1057 		return true;
1058 
1059 	reg = gmu_read(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS);
1060 
1061 	if (reg &  A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS_GPUBUSYIGNAHB)
1062 		return false;
1063 
1064 	return true;
1065 }
1066 
1067 /* Gracefully try to shut down the GMU and by extension the GPU */
1068 static void a6xx_gmu_shutdown(struct a6xx_gmu *gmu)
1069 {
1070 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
1071 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1072 	u32 val;
1073 
1074 	/*
1075 	 * The GMU may still be in slumber unless the GPU started so check and
1076 	 * skip putting it back into slumber if so
1077 	 */
1078 	val = gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE);
1079 
1080 	if (val != 0xf) {
1081 		int ret = a6xx_gmu_wait_for_idle(gmu);
1082 
1083 		/* If the GMU isn't responding assume it is hung */
1084 		if (ret) {
1085 			a6xx_gmu_force_off(gmu);
1086 			return;
1087 		}
1088 
1089 		a6xx_bus_clear_pending_transactions(adreno_gpu, a6xx_gpu->hung);
1090 
1091 		/* tell the GMU we want to slumber */
1092 		ret = a6xx_gmu_notify_slumber(gmu);
1093 		if (ret) {
1094 			a6xx_gmu_force_off(gmu);
1095 			return;
1096 		}
1097 
1098 		ret = gmu_poll_timeout(gmu,
1099 			REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS, val,
1100 			!(val & A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS_GPUBUSYIGNAHB),
1101 			100, 10000);
1102 
1103 		/*
1104 		 * Let the user know we failed to slumber but don't worry too
1105 		 * much because we are powering down anyway
1106 		 */
1107 
1108 		if (ret)
1109 			DRM_DEV_ERROR(gmu->dev,
1110 				"Unable to slumber GMU: status = 0%x/0%x\n",
1111 				gmu_read(gmu,
1112 					REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS),
1113 				gmu_read(gmu,
1114 					REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS2));
1115 	}
1116 
1117 	/* Turn off HFI */
1118 	a6xx_hfi_stop(gmu);
1119 
1120 	/* Stop the interrupts and mask the hardware */
1121 	a6xx_gmu_irq_disable(gmu);
1122 
1123 	/* Tell RPMh to power off the GPU */
1124 	a6xx_rpmh_stop(gmu);
1125 }
1126 
1127 
1128 int a6xx_gmu_stop(struct a6xx_gpu *a6xx_gpu)
1129 {
1130 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
1131 	struct msm_gpu *gpu = &a6xx_gpu->base.base;
1132 
1133 	if (!pm_runtime_active(gmu->dev))
1134 		return 0;
1135 
1136 	/*
1137 	 * Force the GMU off if we detected a hang, otherwise try to shut it
1138 	 * down gracefully
1139 	 */
1140 	if (gmu->hung)
1141 		a6xx_gmu_force_off(gmu);
1142 	else
1143 		a6xx_gmu_shutdown(gmu);
1144 
1145 	/* Remove the bus vote */
1146 	dev_pm_opp_set_opp(&gpu->pdev->dev, NULL);
1147 
1148 	/*
1149 	 * Make sure the GX domain is off before turning off the GMU (CX)
1150 	 * domain. Usually the GMU does this but only if the shutdown sequence
1151 	 * was successful
1152 	 */
1153 	if (!IS_ERR_OR_NULL(gmu->gxpd))
1154 		pm_runtime_put_sync(gmu->gxpd);
1155 
1156 	clk_bulk_disable_unprepare(gmu->nr_clocks, gmu->clocks);
1157 
1158 	pm_runtime_put_sync(gmu->dev);
1159 
1160 	return 0;
1161 }
1162 
1163 static void a6xx_gmu_memory_free(struct a6xx_gmu *gmu)
1164 {
1165 	msm_gem_kernel_put(gmu->hfi.obj, gmu->aspace);
1166 	msm_gem_kernel_put(gmu->debug.obj, gmu->aspace);
1167 	msm_gem_kernel_put(gmu->icache.obj, gmu->aspace);
1168 	msm_gem_kernel_put(gmu->dcache.obj, gmu->aspace);
1169 	msm_gem_kernel_put(gmu->dummy.obj, gmu->aspace);
1170 	msm_gem_kernel_put(gmu->log.obj, gmu->aspace);
1171 
1172 	gmu->aspace->mmu->funcs->detach(gmu->aspace->mmu);
1173 	msm_gem_address_space_put(gmu->aspace);
1174 }
1175 
1176 static int a6xx_gmu_memory_alloc(struct a6xx_gmu *gmu, struct a6xx_gmu_bo *bo,
1177 		size_t size, u64 iova, const char *name)
1178 {
1179 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
1180 	struct drm_device *dev = a6xx_gpu->base.base.dev;
1181 	uint32_t flags = MSM_BO_WC;
1182 	u64 range_start, range_end;
1183 	int ret;
1184 
1185 	size = PAGE_ALIGN(size);
1186 	if (!iova) {
1187 		/* no fixed address - use GMU's uncached range */
1188 		range_start = 0x60000000 + PAGE_SIZE; /* skip dummy page */
1189 		range_end = 0x80000000;
1190 	} else {
1191 		/* range for fixed address */
1192 		range_start = iova;
1193 		range_end = iova + size;
1194 		/* use IOMMU_PRIV for icache/dcache */
1195 		flags |= MSM_BO_MAP_PRIV;
1196 	}
1197 
1198 	bo->obj = msm_gem_new(dev, size, flags);
1199 	if (IS_ERR(bo->obj))
1200 		return PTR_ERR(bo->obj);
1201 
1202 	ret = msm_gem_get_and_pin_iova_range(bo->obj, gmu->aspace, &bo->iova,
1203 					     range_start, range_end);
1204 	if (ret) {
1205 		drm_gem_object_put(bo->obj);
1206 		return ret;
1207 	}
1208 
1209 	bo->virt = msm_gem_get_vaddr(bo->obj);
1210 	bo->size = size;
1211 
1212 	msm_gem_object_set_name(bo->obj, name);
1213 
1214 	return 0;
1215 }
1216 
1217 static int a6xx_gmu_memory_probe(struct a6xx_gmu *gmu)
1218 {
1219 	struct msm_mmu *mmu;
1220 
1221 	mmu = msm_iommu_new(gmu->dev, 0);
1222 	if (!mmu)
1223 		return -ENODEV;
1224 	if (IS_ERR(mmu))
1225 		return PTR_ERR(mmu);
1226 
1227 	gmu->aspace = msm_gem_address_space_create(mmu, "gmu", 0x0, 0x80000000);
1228 	if (IS_ERR(gmu->aspace))
1229 		return PTR_ERR(gmu->aspace);
1230 
1231 	return 0;
1232 }
1233 
1234 /* Return the 'arc-level' for the given frequency */
1235 static unsigned int a6xx_gmu_get_arc_level(struct device *dev,
1236 					   unsigned long freq)
1237 {
1238 	struct dev_pm_opp *opp;
1239 	unsigned int val;
1240 
1241 	if (!freq)
1242 		return 0;
1243 
1244 	opp = dev_pm_opp_find_freq_exact(dev, freq, true);
1245 	if (IS_ERR(opp))
1246 		return 0;
1247 
1248 	val = dev_pm_opp_get_level(opp);
1249 
1250 	dev_pm_opp_put(opp);
1251 
1252 	return val;
1253 }
1254 
1255 static int a6xx_gmu_rpmh_arc_votes_init(struct device *dev, u32 *votes,
1256 		unsigned long *freqs, int freqs_count, const char *id)
1257 {
1258 	int i, j;
1259 	const u16 *pri, *sec;
1260 	size_t pri_count, sec_count;
1261 
1262 	pri = cmd_db_read_aux_data(id, &pri_count);
1263 	if (IS_ERR(pri))
1264 		return PTR_ERR(pri);
1265 	/*
1266 	 * The data comes back as an array of unsigned shorts so adjust the
1267 	 * count accordingly
1268 	 */
1269 	pri_count >>= 1;
1270 	if (!pri_count)
1271 		return -EINVAL;
1272 
1273 	sec = cmd_db_read_aux_data("mx.lvl", &sec_count);
1274 	if (IS_ERR(sec))
1275 		return PTR_ERR(sec);
1276 
1277 	sec_count >>= 1;
1278 	if (!sec_count)
1279 		return -EINVAL;
1280 
1281 	/* Construct a vote for each frequency */
1282 	for (i = 0; i < freqs_count; i++) {
1283 		u8 pindex = 0, sindex = 0;
1284 		unsigned int level = a6xx_gmu_get_arc_level(dev, freqs[i]);
1285 
1286 		/* Get the primary index that matches the arc level */
1287 		for (j = 0; j < pri_count; j++) {
1288 			if (pri[j] >= level) {
1289 				pindex = j;
1290 				break;
1291 			}
1292 		}
1293 
1294 		if (j == pri_count) {
1295 			DRM_DEV_ERROR(dev,
1296 				      "Level %u not found in the RPMh list\n",
1297 				      level);
1298 			DRM_DEV_ERROR(dev, "Available levels:\n");
1299 			for (j = 0; j < pri_count; j++)
1300 				DRM_DEV_ERROR(dev, "  %u\n", pri[j]);
1301 
1302 			return -EINVAL;
1303 		}
1304 
1305 		/*
1306 		 * Look for a level in in the secondary list that matches. If
1307 		 * nothing fits, use the maximum non zero vote
1308 		 */
1309 
1310 		for (j = 0; j < sec_count; j++) {
1311 			if (sec[j] >= level) {
1312 				sindex = j;
1313 				break;
1314 			} else if (sec[j]) {
1315 				sindex = j;
1316 			}
1317 		}
1318 
1319 		/* Construct the vote */
1320 		votes[i] = ((pri[pindex] & 0xffff) << 16) |
1321 			(sindex << 8) | pindex;
1322 	}
1323 
1324 	return 0;
1325 }
1326 
1327 /*
1328  * The GMU votes with the RPMh for itself and on behalf of the GPU but we need
1329  * to construct the list of votes on the CPU and send it over. Query the RPMh
1330  * voltage levels and build the votes
1331  */
1332 
1333 static int a6xx_gmu_rpmh_votes_init(struct a6xx_gmu *gmu)
1334 {
1335 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
1336 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1337 	struct msm_gpu *gpu = &adreno_gpu->base;
1338 	int ret;
1339 
1340 	/* Build the GX votes */
1341 	ret = a6xx_gmu_rpmh_arc_votes_init(&gpu->pdev->dev, gmu->gx_arc_votes,
1342 		gmu->gpu_freqs, gmu->nr_gpu_freqs, "gfx.lvl");
1343 
1344 	/* Build the CX votes */
1345 	ret |= a6xx_gmu_rpmh_arc_votes_init(gmu->dev, gmu->cx_arc_votes,
1346 		gmu->gmu_freqs, gmu->nr_gmu_freqs, "cx.lvl");
1347 
1348 	return ret;
1349 }
1350 
1351 static int a6xx_gmu_build_freq_table(struct device *dev, unsigned long *freqs,
1352 		u32 size)
1353 {
1354 	int count = dev_pm_opp_get_opp_count(dev);
1355 	struct dev_pm_opp *opp;
1356 	int i, index = 0;
1357 	unsigned long freq = 1;
1358 
1359 	/*
1360 	 * The OPP table doesn't contain the "off" frequency level so we need to
1361 	 * add 1 to the table size to account for it
1362 	 */
1363 
1364 	if (WARN(count + 1 > size,
1365 		"The GMU frequency table is being truncated\n"))
1366 		count = size - 1;
1367 
1368 	/* Set the "off" frequency */
1369 	freqs[index++] = 0;
1370 
1371 	for (i = 0; i < count; i++) {
1372 		opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1373 		if (IS_ERR(opp))
1374 			break;
1375 
1376 		dev_pm_opp_put(opp);
1377 		freqs[index++] = freq++;
1378 	}
1379 
1380 	return index;
1381 }
1382 
1383 static int a6xx_gmu_pwrlevels_probe(struct a6xx_gmu *gmu)
1384 {
1385 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
1386 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1387 	struct msm_gpu *gpu = &adreno_gpu->base;
1388 
1389 	int ret = 0;
1390 
1391 	/*
1392 	 * The GMU handles its own frequency switching so build a list of
1393 	 * available frequencies to send during initialization
1394 	 */
1395 	ret = devm_pm_opp_of_add_table(gmu->dev);
1396 	if (ret) {
1397 		DRM_DEV_ERROR(gmu->dev, "Unable to set the OPP table for the GMU\n");
1398 		return ret;
1399 	}
1400 
1401 	gmu->nr_gmu_freqs = a6xx_gmu_build_freq_table(gmu->dev,
1402 		gmu->gmu_freqs, ARRAY_SIZE(gmu->gmu_freqs));
1403 
1404 	/*
1405 	 * The GMU also handles GPU frequency switching so build a list
1406 	 * from the GPU OPP table
1407 	 */
1408 	gmu->nr_gpu_freqs = a6xx_gmu_build_freq_table(&gpu->pdev->dev,
1409 		gmu->gpu_freqs, ARRAY_SIZE(gmu->gpu_freqs));
1410 
1411 	gmu->current_perf_index = gmu->nr_gpu_freqs - 1;
1412 
1413 	/* Build the list of RPMh votes that we'll send to the GMU */
1414 	return a6xx_gmu_rpmh_votes_init(gmu);
1415 }
1416 
1417 static int a6xx_gmu_clocks_probe(struct a6xx_gmu *gmu)
1418 {
1419 	int ret = devm_clk_bulk_get_all(gmu->dev, &gmu->clocks);
1420 
1421 	if (ret < 1)
1422 		return ret;
1423 
1424 	gmu->nr_clocks = ret;
1425 
1426 	gmu->core_clk = msm_clk_bulk_get_clock(gmu->clocks,
1427 		gmu->nr_clocks, "gmu");
1428 
1429 	gmu->hub_clk = msm_clk_bulk_get_clock(gmu->clocks,
1430 		gmu->nr_clocks, "hub");
1431 
1432 	return 0;
1433 }
1434 
1435 static void __iomem *a6xx_gmu_get_mmio(struct platform_device *pdev,
1436 		const char *name)
1437 {
1438 	void __iomem *ret;
1439 	struct resource *res = platform_get_resource_byname(pdev,
1440 			IORESOURCE_MEM, name);
1441 
1442 	if (!res) {
1443 		DRM_DEV_ERROR(&pdev->dev, "Unable to find the %s registers\n", name);
1444 		return ERR_PTR(-EINVAL);
1445 	}
1446 
1447 	ret = ioremap(res->start, resource_size(res));
1448 	if (!ret) {
1449 		DRM_DEV_ERROR(&pdev->dev, "Unable to map the %s registers\n", name);
1450 		return ERR_PTR(-EINVAL);
1451 	}
1452 
1453 	return ret;
1454 }
1455 
1456 static int a6xx_gmu_get_irq(struct a6xx_gmu *gmu, struct platform_device *pdev,
1457 		const char *name, irq_handler_t handler)
1458 {
1459 	int irq, ret;
1460 
1461 	irq = platform_get_irq_byname(pdev, name);
1462 
1463 	ret = request_irq(irq, handler, IRQF_TRIGGER_HIGH, name, gmu);
1464 	if (ret) {
1465 		DRM_DEV_ERROR(&pdev->dev, "Unable to get interrupt %s %d\n",
1466 			      name, ret);
1467 		return ret;
1468 	}
1469 
1470 	disable_irq(irq);
1471 
1472 	return irq;
1473 }
1474 
1475 void a6xx_gmu_remove(struct a6xx_gpu *a6xx_gpu)
1476 {
1477 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
1478 	struct platform_device *pdev = to_platform_device(gmu->dev);
1479 
1480 	if (!gmu->initialized)
1481 		return;
1482 
1483 	pm_runtime_force_suspend(gmu->dev);
1484 
1485 	if (!IS_ERR_OR_NULL(gmu->gxpd)) {
1486 		pm_runtime_disable(gmu->gxpd);
1487 		dev_pm_domain_detach(gmu->gxpd, false);
1488 	}
1489 
1490 	iounmap(gmu->mmio);
1491 	if (platform_get_resource_byname(pdev, IORESOURCE_MEM, "rscc"))
1492 		iounmap(gmu->rscc);
1493 	gmu->mmio = NULL;
1494 	gmu->rscc = NULL;
1495 
1496 	a6xx_gmu_memory_free(gmu);
1497 
1498 	free_irq(gmu->gmu_irq, gmu);
1499 	free_irq(gmu->hfi_irq, gmu);
1500 
1501 	/* Drop reference taken in of_find_device_by_node */
1502 	put_device(gmu->dev);
1503 
1504 	gmu->initialized = false;
1505 }
1506 
1507 int a6xx_gmu_init(struct a6xx_gpu *a6xx_gpu, struct device_node *node)
1508 {
1509 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1510 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
1511 	struct platform_device *pdev = of_find_device_by_node(node);
1512 	int ret;
1513 
1514 	if (!pdev)
1515 		return -ENODEV;
1516 
1517 	mutex_init(&gmu->lock);
1518 
1519 	gmu->dev = &pdev->dev;
1520 
1521 	of_dma_configure(gmu->dev, node, true);
1522 
1523 	/* Fow now, don't do anything fancy until we get our feet under us */
1524 	gmu->idle_level = GMU_IDLE_STATE_ACTIVE;
1525 
1526 	pm_runtime_enable(gmu->dev);
1527 
1528 	/* Get the list of clocks */
1529 	ret = a6xx_gmu_clocks_probe(gmu);
1530 	if (ret)
1531 		goto err_put_device;
1532 
1533 	ret = a6xx_gmu_memory_probe(gmu);
1534 	if (ret)
1535 		goto err_put_device;
1536 
1537 
1538 	/* A660 now requires handling "prealloc requests" in GMU firmware
1539 	 * For now just hardcode allocations based on the known firmware.
1540 	 * note: there is no indication that these correspond to "dummy" or
1541 	 * "debug" regions, but this "guess" allows reusing these BOs which
1542 	 * are otherwise unused by a660.
1543 	 */
1544 	gmu->dummy.size = SZ_4K;
1545 	if (adreno_is_a660_family(adreno_gpu)) {
1546 		ret = a6xx_gmu_memory_alloc(gmu, &gmu->debug, SZ_4K * 7,
1547 					    0x60400000, "debug");
1548 		if (ret)
1549 			goto err_memory;
1550 
1551 		gmu->dummy.size = SZ_8K;
1552 	}
1553 
1554 	/* Allocate memory for the GMU dummy page */
1555 	ret = a6xx_gmu_memory_alloc(gmu, &gmu->dummy, gmu->dummy.size,
1556 				    0x60000000, "dummy");
1557 	if (ret)
1558 		goto err_memory;
1559 
1560 	/* Note that a650 family also includes a660 family: */
1561 	if (adreno_is_a650_family(adreno_gpu)) {
1562 		ret = a6xx_gmu_memory_alloc(gmu, &gmu->icache,
1563 			SZ_16M - SZ_16K, 0x04000, "icache");
1564 		if (ret)
1565 			goto err_memory;
1566 	/*
1567 	 * NOTE: when porting legacy ("pre-650-family") GPUs you may be tempted to add a condition
1568 	 * to allocate icache/dcache here, as per downstream code flow, but it may not actually be
1569 	 * necessary. If you omit this step and you don't get random pagefaults, you are likely
1570 	 * good to go without this!
1571 	 */
1572 	} else if (adreno_is_a640_family(adreno_gpu)) {
1573 		ret = a6xx_gmu_memory_alloc(gmu, &gmu->icache,
1574 			SZ_256K - SZ_16K, 0x04000, "icache");
1575 		if (ret)
1576 			goto err_memory;
1577 
1578 		ret = a6xx_gmu_memory_alloc(gmu, &gmu->dcache,
1579 			SZ_256K - SZ_16K, 0x44000, "dcache");
1580 		if (ret)
1581 			goto err_memory;
1582 	} else if (adreno_is_a630(adreno_gpu) || adreno_is_a615_family(adreno_gpu)) {
1583 		/* HFI v1, has sptprac */
1584 		gmu->legacy = true;
1585 
1586 		/* Allocate memory for the GMU debug region */
1587 		ret = a6xx_gmu_memory_alloc(gmu, &gmu->debug, SZ_16K, 0, "debug");
1588 		if (ret)
1589 			goto err_memory;
1590 	}
1591 
1592 	/* Allocate memory for for the HFI queues */
1593 	ret = a6xx_gmu_memory_alloc(gmu, &gmu->hfi, SZ_16K, 0, "hfi");
1594 	if (ret)
1595 		goto err_memory;
1596 
1597 	/* Allocate memory for the GMU log region */
1598 	ret = a6xx_gmu_memory_alloc(gmu, &gmu->log, SZ_4K, 0, "log");
1599 	if (ret)
1600 		goto err_memory;
1601 
1602 	/* Map the GMU registers */
1603 	gmu->mmio = a6xx_gmu_get_mmio(pdev, "gmu");
1604 	if (IS_ERR(gmu->mmio)) {
1605 		ret = PTR_ERR(gmu->mmio);
1606 		goto err_memory;
1607 	}
1608 
1609 	if (adreno_is_a650_family(adreno_gpu)) {
1610 		gmu->rscc = a6xx_gmu_get_mmio(pdev, "rscc");
1611 		if (IS_ERR(gmu->rscc))
1612 			goto err_mmio;
1613 	} else {
1614 		gmu->rscc = gmu->mmio + 0x23000;
1615 	}
1616 
1617 	/* Get the HFI and GMU interrupts */
1618 	gmu->hfi_irq = a6xx_gmu_get_irq(gmu, pdev, "hfi", a6xx_hfi_irq);
1619 	gmu->gmu_irq = a6xx_gmu_get_irq(gmu, pdev, "gmu", a6xx_gmu_irq);
1620 
1621 	if (gmu->hfi_irq < 0 || gmu->gmu_irq < 0)
1622 		goto err_mmio;
1623 
1624 	/*
1625 	 * Get a link to the GX power domain to reset the GPU in case of GMU
1626 	 * crash
1627 	 */
1628 	gmu->gxpd = dev_pm_domain_attach_by_name(gmu->dev, "gx");
1629 
1630 	/* Get the power levels for the GMU and GPU */
1631 	a6xx_gmu_pwrlevels_probe(gmu);
1632 
1633 	/* Set up the HFI queues */
1634 	a6xx_hfi_init(gmu);
1635 
1636 	gmu->initialized = true;
1637 
1638 	return 0;
1639 
1640 err_mmio:
1641 	iounmap(gmu->mmio);
1642 	if (platform_get_resource_byname(pdev, IORESOURCE_MEM, "rscc"))
1643 		iounmap(gmu->rscc);
1644 	free_irq(gmu->gmu_irq, gmu);
1645 	free_irq(gmu->hfi_irq, gmu);
1646 
1647 	ret = -ENODEV;
1648 
1649 err_memory:
1650 	a6xx_gmu_memory_free(gmu);
1651 err_put_device:
1652 	/* Drop reference taken in of_find_device_by_node */
1653 	put_device(gmu->dev);
1654 
1655 	return ret;
1656 }
1657