xref: /openbmc/linux/drivers/gpu/drm/msm/adreno/a6xx_gmu.c (revision b601f731)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2018 The Linux Foundation. All rights reserved. */
3 
4 #include <linux/clk.h>
5 #include <linux/pm_opp.h>
6 #include <soc/qcom/cmd-db.h>
7 
8 #include "a6xx_gpu.h"
9 #include "a6xx_gmu.xml.h"
10 
11 static irqreturn_t a6xx_gmu_irq(int irq, void *data)
12 {
13 	struct a6xx_gmu *gmu = data;
14 	u32 status;
15 
16 	status = gmu_read(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_STATUS);
17 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_CLR, status);
18 
19 	if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_WDOG_BITE) {
20 		dev_err_ratelimited(gmu->dev, "GMU watchdog expired\n");
21 
22 		/* Temporary until we can recover safely */
23 		BUG();
24 	}
25 
26 	if (status &  A6XX_GMU_AO_HOST_INTERRUPT_STATUS_HOST_AHB_BUS_ERROR)
27 		dev_err_ratelimited(gmu->dev, "GMU AHB bus error\n");
28 
29 	if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_FENCE_ERR)
30 		dev_err_ratelimited(gmu->dev, "GMU fence error: 0x%x\n",
31 			gmu_read(gmu, REG_A6XX_GMU_AHB_FENCE_STATUS));
32 
33 	return IRQ_HANDLED;
34 }
35 
36 static irqreturn_t a6xx_hfi_irq(int irq, void *data)
37 {
38 	struct a6xx_gmu *gmu = data;
39 	u32 status;
40 
41 	status = gmu_read(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO);
42 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, status);
43 
44 	if (status & A6XX_GMU_GMU2HOST_INTR_INFO_CM3_FAULT) {
45 		dev_err_ratelimited(gmu->dev, "GMU firmware fault\n");
46 
47 		/* Temporary until we can recover safely */
48 		BUG();
49 	}
50 
51 	return IRQ_HANDLED;
52 }
53 
54 /* Check to see if the GX rail is still powered */
55 static bool a6xx_gmu_gx_is_on(struct a6xx_gmu *gmu)
56 {
57 	u32 val = gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS);
58 
59 	return !(val &
60 		(A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_GX_HM_GDSC_POWER_OFF |
61 		A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_GX_HM_CLK_OFF));
62 }
63 
64 static void __a6xx_gmu_set_freq(struct a6xx_gmu *gmu, int index)
65 {
66 	int ret;
67 
68 	gmu_write(gmu, REG_A6XX_GMU_DCVS_ACK_OPTION, 0);
69 
70 	gmu_write(gmu, REG_A6XX_GMU_DCVS_PERF_SETTING,
71 		((3 & 0xf) << 28) | index);
72 
73 	/*
74 	 * Send an invalid index as a vote for the bus bandwidth and let the
75 	 * firmware decide on the right vote
76 	 */
77 	gmu_write(gmu, REG_A6XX_GMU_DCVS_BW_SETTING, 0xff);
78 
79 	/* Set and clear the OOB for DCVS to trigger the GMU */
80 	a6xx_gmu_set_oob(gmu, GMU_OOB_DCVS_SET);
81 	a6xx_gmu_clear_oob(gmu, GMU_OOB_DCVS_SET);
82 
83 	ret = gmu_read(gmu, REG_A6XX_GMU_DCVS_RETURN);
84 	if (ret)
85 		dev_err(gmu->dev, "GMU set GPU frequency error: %d\n", ret);
86 
87 	gmu->freq = gmu->gpu_freqs[index];
88 }
89 
90 void a6xx_gmu_set_freq(struct msm_gpu *gpu, unsigned long freq)
91 {
92 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
93 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
94 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
95 	u32 perf_index = 0;
96 
97 	if (freq == gmu->freq)
98 		return;
99 
100 	for (perf_index = 0; perf_index < gmu->nr_gpu_freqs - 1; perf_index++)
101 		if (freq == gmu->gpu_freqs[perf_index])
102 			break;
103 
104 	__a6xx_gmu_set_freq(gmu, perf_index);
105 }
106 
107 unsigned long a6xx_gmu_get_freq(struct msm_gpu *gpu)
108 {
109 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
110 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
111 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
112 
113 	return  gmu->freq;
114 }
115 
116 static bool a6xx_gmu_check_idle_level(struct a6xx_gmu *gmu)
117 {
118 	u32 val;
119 	int local = gmu->idle_level;
120 
121 	/* SPTP and IFPC both report as IFPC */
122 	if (gmu->idle_level == GMU_IDLE_STATE_SPTP)
123 		local = GMU_IDLE_STATE_IFPC;
124 
125 	val = gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE);
126 
127 	if (val == local) {
128 		if (gmu->idle_level != GMU_IDLE_STATE_IFPC ||
129 			!a6xx_gmu_gx_is_on(gmu))
130 			return true;
131 	}
132 
133 	return false;
134 }
135 
136 /* Wait for the GMU to get to its most idle state */
137 int a6xx_gmu_wait_for_idle(struct a6xx_gpu *a6xx_gpu)
138 {
139 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
140 
141 	return spin_until(a6xx_gmu_check_idle_level(gmu));
142 }
143 
144 static int a6xx_gmu_start(struct a6xx_gmu *gmu)
145 {
146 	int ret;
147 	u32 val;
148 
149 	gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 1);
150 	gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 0);
151 
152 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_CM3_FW_INIT_RESULT, val,
153 		val == 0xbabeface, 100, 10000);
154 
155 	if (ret)
156 		dev_err(gmu->dev, "GMU firmware initialization timed out\n");
157 
158 	return ret;
159 }
160 
161 static int a6xx_gmu_hfi_start(struct a6xx_gmu *gmu)
162 {
163 	u32 val;
164 	int ret;
165 
166 	gmu_write(gmu, REG_A6XX_GMU_HFI_CTRL_INIT, 1);
167 
168 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_HFI_CTRL_STATUS, val,
169 		val & 1, 100, 10000);
170 	if (ret)
171 		dev_err(gmu->dev, "Unable to start the HFI queues\n");
172 
173 	return ret;
174 }
175 
176 /* Trigger a OOB (out of band) request to the GMU */
177 int a6xx_gmu_set_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state)
178 {
179 	int ret;
180 	u32 val;
181 	int request, ack;
182 	const char *name;
183 
184 	switch (state) {
185 	case GMU_OOB_GPU_SET:
186 		request = GMU_OOB_GPU_SET_REQUEST;
187 		ack = GMU_OOB_GPU_SET_ACK;
188 		name = "GPU_SET";
189 		break;
190 	case GMU_OOB_BOOT_SLUMBER:
191 		request = GMU_OOB_BOOT_SLUMBER_REQUEST;
192 		ack = GMU_OOB_BOOT_SLUMBER_ACK;
193 		name = "BOOT_SLUMBER";
194 		break;
195 	case GMU_OOB_DCVS_SET:
196 		request = GMU_OOB_DCVS_REQUEST;
197 		ack = GMU_OOB_DCVS_ACK;
198 		name = "GPU_DCVS";
199 		break;
200 	default:
201 		return -EINVAL;
202 	}
203 
204 	/* Trigger the equested OOB operation */
205 	gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 1 << request);
206 
207 	/* Wait for the acknowledge interrupt */
208 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO, val,
209 		val & (1 << ack), 100, 10000);
210 
211 	if (ret)
212 		dev_err(gmu->dev,
213 			"Timeout waiting for GMU OOB set %s: 0x%x\n",
214 				name,
215 				gmu_read(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO));
216 
217 	/* Clear the acknowledge interrupt */
218 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, 1 << ack);
219 
220 	return ret;
221 }
222 
223 /* Clear a pending OOB state in the GMU */
224 void a6xx_gmu_clear_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state)
225 {
226 	switch (state) {
227 	case GMU_OOB_GPU_SET:
228 		gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET,
229 			1 << GMU_OOB_GPU_SET_CLEAR);
230 		break;
231 	case GMU_OOB_BOOT_SLUMBER:
232 		gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET,
233 			1 << GMU_OOB_BOOT_SLUMBER_CLEAR);
234 		break;
235 	case GMU_OOB_DCVS_SET:
236 		gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET,
237 			1 << GMU_OOB_DCVS_CLEAR);
238 		break;
239 	}
240 }
241 
242 /* Enable CPU control of SPTP power power collapse */
243 static int a6xx_sptprac_enable(struct a6xx_gmu *gmu)
244 {
245 	int ret;
246 	u32 val;
247 
248 	gmu_write(gmu, REG_A6XX_GMU_GX_SPTPRAC_POWER_CONTROL, 0x778000);
249 
250 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, val,
251 		(val & 0x38) == 0x28, 1, 100);
252 
253 	if (ret) {
254 		dev_err(gmu->dev, "Unable to power on SPTPRAC: 0x%x\n",
255 			gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS));
256 	}
257 
258 	return 0;
259 }
260 
261 /* Disable CPU control of SPTP power power collapse */
262 static void a6xx_sptprac_disable(struct a6xx_gmu *gmu)
263 {
264 	u32 val;
265 	int ret;
266 
267 	/* Make sure retention is on */
268 	gmu_rmw(gmu, REG_A6XX_GPU_CC_GX_GDSCR, 0, (1 << 11));
269 
270 	gmu_write(gmu, REG_A6XX_GMU_GX_SPTPRAC_POWER_CONTROL, 0x778001);
271 
272 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, val,
273 		(val & 0x04), 100, 10000);
274 
275 	if (ret)
276 		dev_err(gmu->dev, "failed to power off SPTPRAC: 0x%x\n",
277 			gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS));
278 }
279 
280 /* Let the GMU know we are starting a boot sequence */
281 static int a6xx_gmu_gfx_rail_on(struct a6xx_gmu *gmu)
282 {
283 	u32 vote;
284 
285 	/* Let the GMU know we are getting ready for boot */
286 	gmu_write(gmu, REG_A6XX_GMU_BOOT_SLUMBER_OPTION, 0);
287 
288 	/* Choose the "default" power level as the highest available */
289 	vote = gmu->gx_arc_votes[gmu->nr_gpu_freqs - 1];
290 
291 	gmu_write(gmu, REG_A6XX_GMU_GX_VOTE_IDX, vote & 0xff);
292 	gmu_write(gmu, REG_A6XX_GMU_MX_VOTE_IDX, (vote >> 8) & 0xff);
293 
294 	/* Let the GMU know the boot sequence has started */
295 	return a6xx_gmu_set_oob(gmu, GMU_OOB_BOOT_SLUMBER);
296 }
297 
298 /* Let the GMU know that we are about to go into slumber */
299 static int a6xx_gmu_notify_slumber(struct a6xx_gmu *gmu)
300 {
301 	int ret;
302 
303 	/* Disable the power counter so the GMU isn't busy */
304 	gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 0);
305 
306 	/* Disable SPTP_PC if the CPU is responsible for it */
307 	if (gmu->idle_level < GMU_IDLE_STATE_SPTP)
308 		a6xx_sptprac_disable(gmu);
309 
310 	/* Tell the GMU to get ready to slumber */
311 	gmu_write(gmu, REG_A6XX_GMU_BOOT_SLUMBER_OPTION, 1);
312 
313 	ret = a6xx_gmu_set_oob(gmu, GMU_OOB_BOOT_SLUMBER);
314 	a6xx_gmu_clear_oob(gmu, GMU_OOB_BOOT_SLUMBER);
315 
316 	if (!ret) {
317 		/* Check to see if the GMU really did slumber */
318 		if (gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE)
319 			!= 0x0f) {
320 			dev_err(gmu->dev, "The GMU did not go into slumber\n");
321 			ret = -ETIMEDOUT;
322 		}
323 	}
324 
325 	/* Put fence into allow mode */
326 	gmu_write(gmu, REG_A6XX_GMU_AO_AHB_FENCE_CTRL, 0);
327 	return ret;
328 }
329 
330 static int a6xx_rpmh_start(struct a6xx_gmu *gmu)
331 {
332 	int ret;
333 	u32 val;
334 
335 	gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 1 << 1);
336 	/* Wait for the register to finish posting */
337 	wmb();
338 
339 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_RSCC_CONTROL_ACK, val,
340 		val & (1 << 1), 100, 10000);
341 	if (ret) {
342 		dev_err(gmu->dev, "Unable to power on the GPU RSC\n");
343 		return ret;
344 	}
345 
346 	ret = gmu_poll_timeout(gmu, REG_A6XX_RSCC_SEQ_BUSY_DRV0, val,
347 		!val, 100, 10000);
348 
349 	if (!ret) {
350 		gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 0);
351 
352 		/* Re-enable the power counter */
353 		gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 1);
354 		return 0;
355 	}
356 
357 	dev_err(gmu->dev, "GPU RSC sequence stuck while waking up the GPU\n");
358 	return ret;
359 }
360 
361 static void a6xx_rpmh_stop(struct a6xx_gmu *gmu)
362 {
363 	int ret;
364 	u32 val;
365 
366 	gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 1);
367 
368 	ret = gmu_poll_timeout(gmu, REG_A6XX_GPU_RSCC_RSC_STATUS0_DRV0,
369 		val, val & (1 << 16), 100, 10000);
370 	if (ret)
371 		dev_err(gmu->dev, "Unable to power off the GPU RSC\n");
372 
373 	gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 0);
374 }
375 
376 static inline void pdc_write(void __iomem *ptr, u32 offset, u32 value)
377 {
378 	return msm_writel(value, ptr + (offset << 2));
379 }
380 
381 static void __iomem *a6xx_gmu_get_mmio(struct platform_device *pdev,
382 		const char *name);
383 
384 static void a6xx_gmu_rpmh_init(struct a6xx_gmu *gmu)
385 {
386 	struct platform_device *pdev = to_platform_device(gmu->dev);
387 	void __iomem *pdcptr = a6xx_gmu_get_mmio(pdev, "gmu_pdc");
388 	void __iomem *seqptr = a6xx_gmu_get_mmio(pdev, "gmu_pdc_seq");
389 
390 	if (!pdcptr || !seqptr)
391 		goto err;
392 
393 	/* Disable SDE clock gating */
394 	gmu_write(gmu, REG_A6XX_GPU_RSCC_RSC_STATUS0_DRV0, BIT(24));
395 
396 	/* Setup RSC PDC handshake for sleep and wakeup */
397 	gmu_write(gmu, REG_A6XX_RSCC_PDC_SLAVE_ID_DRV0, 1);
398 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA, 0);
399 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR, 0);
400 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA + 2, 0);
401 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR + 2, 0);
402 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA + 4, 0x80000000);
403 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR + 4, 0);
404 	gmu_write(gmu, REG_A6XX_RSCC_OVERRIDE_START_ADDR, 0);
405 	gmu_write(gmu, REG_A6XX_RSCC_PDC_SEQ_START_ADDR, 0x4520);
406 	gmu_write(gmu, REG_A6XX_RSCC_PDC_MATCH_VALUE_LO, 0x4510);
407 	gmu_write(gmu, REG_A6XX_RSCC_PDC_MATCH_VALUE_HI, 0x4514);
408 
409 	/* Load RSC sequencer uCode for sleep and wakeup */
410 	gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0, 0xa7a506a0);
411 	gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 1, 0xa1e6a6e7);
412 	gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 2, 0xa2e081e1);
413 	gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 3, 0xe9a982e2);
414 	gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 4, 0x0020e8a8);
415 
416 	/* Load PDC sequencer uCode for power up and power down sequence */
417 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0, 0xfebea1e1);
418 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 1, 0xa5a4a3a2);
419 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 2, 0x8382a6e0);
420 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 3, 0xbce3e284);
421 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 4, 0x002081fc);
422 
423 	/* Set TCS commands used by PDC sequence for low power modes */
424 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD_ENABLE_BANK, 7);
425 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD_WAIT_FOR_CMPL_BANK, 0);
426 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CONTROL, 0);
427 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID, 0x10108);
428 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR, 0x30010);
429 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA, 1);
430 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID + 4, 0x10108);
431 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR + 4, 0x30000);
432 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA + 4, 0x0);
433 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID + 8, 0x10108);
434 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR + 8, 0x30080);
435 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA + 8, 0x0);
436 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD_ENABLE_BANK, 7);
437 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD_WAIT_FOR_CMPL_BANK, 0);
438 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CONTROL, 0);
439 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID, 0x10108);
440 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR, 0x30010);
441 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA, 2);
442 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID + 4, 0x10108);
443 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR + 4, 0x30000);
444 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 4, 0x3);
445 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID + 8, 0x10108);
446 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR + 8, 0x30080);
447 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 8, 0x3);
448 
449 	/* Setup GPU PDC */
450 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_SEQ_START_ADDR, 0);
451 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_ENABLE_PDC, 0x80000001);
452 
453 	/* ensure no writes happen before the uCode is fully written */
454 	wmb();
455 
456 err:
457 	devm_iounmap(gmu->dev, pdcptr);
458 	devm_iounmap(gmu->dev, seqptr);
459 }
460 
461 /*
462  * The lowest 16 bits of this value are the number of XO clock cycles for main
463  * hysteresis which is set at 0x1680 cycles (300 us).  The higher 16 bits are
464  * for the shorter hysteresis that happens after main - this is 0xa (.5 us)
465  */
466 
467 #define GMU_PWR_COL_HYST 0x000a1680
468 
469 /* Set up the idle state for the GMU */
470 static void a6xx_gmu_power_config(struct a6xx_gmu *gmu)
471 {
472 	/* Disable GMU WB/RB buffer */
473 	gmu_write(gmu, REG_A6XX_GMU_SYS_BUS_CONFIG, 0x1);
474 
475 	gmu_write(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0x9c40400);
476 
477 	switch (gmu->idle_level) {
478 	case GMU_IDLE_STATE_IFPC:
479 		gmu_write(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_HYST,
480 			GMU_PWR_COL_HYST);
481 		gmu_rmw(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0,
482 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_IFPC_ENABLE |
483 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_HM_POWER_COLLAPSE_ENABLE);
484 		/* Fall through */
485 	case GMU_IDLE_STATE_SPTP:
486 		gmu_write(gmu, REG_A6XX_GMU_PWR_COL_SPTPRAC_HYST,
487 			GMU_PWR_COL_HYST);
488 		gmu_rmw(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0,
489 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_IFPC_ENABLE |
490 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_SPTPRAC_POWER_CONTROL_ENABLE);
491 	}
492 
493 	/* Enable RPMh GPU client */
494 	gmu_rmw(gmu, REG_A6XX_GMU_RPMH_CTRL, 0,
495 		A6XX_GMU_RPMH_CTRL_RPMH_INTERFACE_ENABLE |
496 		A6XX_GMU_RPMH_CTRL_LLC_VOTE_ENABLE |
497 		A6XX_GMU_RPMH_CTRL_DDR_VOTE_ENABLE |
498 		A6XX_GMU_RPMH_CTRL_MX_VOTE_ENABLE |
499 		A6XX_GMU_RPMH_CTRL_CX_VOTE_ENABLE |
500 		A6XX_GMU_RPMH_CTRL_GFX_VOTE_ENABLE);
501 }
502 
503 static int a6xx_gmu_fw_start(struct a6xx_gmu *gmu, unsigned int state)
504 {
505 	static bool rpmh_init;
506 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
507 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
508 	int i, ret;
509 	u32 chipid;
510 	u32 *image;
511 
512 	if (state == GMU_WARM_BOOT) {
513 		ret = a6xx_rpmh_start(gmu);
514 		if (ret)
515 			return ret;
516 	} else {
517 		if (WARN(!adreno_gpu->fw[ADRENO_FW_GMU],
518 			"GMU firmware is not loaded\n"))
519 			return -ENOENT;
520 
521 		/* Sanity check the size of the firmware that was loaded */
522 		if (adreno_gpu->fw[ADRENO_FW_GMU]->size > 0x8000) {
523 			dev_err(gmu->dev,
524 				"GMU firmware is bigger than the available region\n");
525 			return -EINVAL;
526 		}
527 
528 		/* Turn on register retention */
529 		gmu_write(gmu, REG_A6XX_GMU_GENERAL_7, 1);
530 
531 		/* We only need to load the RPMh microcode once */
532 		if (!rpmh_init) {
533 			a6xx_gmu_rpmh_init(gmu);
534 			rpmh_init = true;
535 		} else if (state != GMU_RESET) {
536 			ret = a6xx_rpmh_start(gmu);
537 			if (ret)
538 				return ret;
539 		}
540 
541 		image = (u32 *) adreno_gpu->fw[ADRENO_FW_GMU]->data;
542 
543 		for (i = 0; i < adreno_gpu->fw[ADRENO_FW_GMU]->size >> 2; i++)
544 			gmu_write(gmu, REG_A6XX_GMU_CM3_ITCM_START + i,
545 				image[i]);
546 	}
547 
548 	gmu_write(gmu, REG_A6XX_GMU_CM3_FW_INIT_RESULT, 0);
549 	gmu_write(gmu, REG_A6XX_GMU_CM3_BOOT_CONFIG, 0x02);
550 
551 	/* Write the iova of the HFI table */
552 	gmu_write(gmu, REG_A6XX_GMU_HFI_QTBL_ADDR, gmu->hfi->iova);
553 	gmu_write(gmu, REG_A6XX_GMU_HFI_QTBL_INFO, 1);
554 
555 	gmu_write(gmu, REG_A6XX_GMU_AHB_FENCE_RANGE_0,
556 		(1 << 31) | (0xa << 18) | (0xa0));
557 
558 	chipid = adreno_gpu->rev.core << 24;
559 	chipid |= adreno_gpu->rev.major << 16;
560 	chipid |= adreno_gpu->rev.minor << 12;
561 	chipid |= adreno_gpu->rev.patchid << 8;
562 
563 	gmu_write(gmu, REG_A6XX_GMU_HFI_SFR_ADDR, chipid);
564 
565 	/* Set up the lowest idle level on the GMU */
566 	a6xx_gmu_power_config(gmu);
567 
568 	ret = a6xx_gmu_start(gmu);
569 	if (ret)
570 		return ret;
571 
572 	ret = a6xx_gmu_gfx_rail_on(gmu);
573 	if (ret)
574 		return ret;
575 
576 	/* Enable SPTP_PC if the CPU is responsible for it */
577 	if (gmu->idle_level < GMU_IDLE_STATE_SPTP) {
578 		ret = a6xx_sptprac_enable(gmu);
579 		if (ret)
580 			return ret;
581 	}
582 
583 	ret = a6xx_gmu_hfi_start(gmu);
584 	if (ret)
585 		return ret;
586 
587 	/* FIXME: Do we need this wmb() here? */
588 	wmb();
589 
590 	return 0;
591 }
592 
593 #define A6XX_HFI_IRQ_MASK \
594 	(A6XX_GMU_GMU2HOST_INTR_INFO_CM3_FAULT)
595 
596 #define A6XX_GMU_IRQ_MASK \
597 	(A6XX_GMU_AO_HOST_INTERRUPT_STATUS_WDOG_BITE | \
598 	 A6XX_GMU_AO_HOST_INTERRUPT_STATUS_HOST_AHB_BUS_ERROR | \
599 	 A6XX_GMU_AO_HOST_INTERRUPT_STATUS_FENCE_ERR)
600 
601 static void a6xx_gmu_irq_enable(struct a6xx_gmu *gmu)
602 {
603 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_CLR, ~0);
604 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, ~0);
605 
606 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_MASK,
607 		~A6XX_GMU_IRQ_MASK);
608 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_MASK,
609 		~A6XX_HFI_IRQ_MASK);
610 
611 	enable_irq(gmu->gmu_irq);
612 	enable_irq(gmu->hfi_irq);
613 }
614 
615 static void a6xx_gmu_irq_disable(struct a6xx_gmu *gmu)
616 {
617 	disable_irq(gmu->gmu_irq);
618 	disable_irq(gmu->hfi_irq);
619 
620 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_MASK, ~0);
621 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_MASK, ~0);
622 }
623 
624 int a6xx_gmu_reset(struct a6xx_gpu *a6xx_gpu)
625 {
626 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
627 	int ret;
628 	u32 val;
629 
630 	/* Flush all the queues */
631 	a6xx_hfi_stop(gmu);
632 
633 	/* Stop the interrupts */
634 	a6xx_gmu_irq_disable(gmu);
635 
636 	/* Force off SPTP in case the GMU is managing it */
637 	a6xx_sptprac_disable(gmu);
638 
639 	/* Make sure there are no outstanding RPMh votes */
640 	gmu_poll_timeout(gmu, REG_A6XX_RSCC_TCS0_DRV0_STATUS, val,
641 		(val & 1), 100, 10000);
642 	gmu_poll_timeout(gmu, REG_A6XX_RSCC_TCS1_DRV0_STATUS, val,
643 		(val & 1), 100, 10000);
644 	gmu_poll_timeout(gmu, REG_A6XX_RSCC_TCS2_DRV0_STATUS, val,
645 		(val & 1), 100, 10000);
646 	gmu_poll_timeout(gmu, REG_A6XX_RSCC_TCS3_DRV0_STATUS, val,
647 		(val & 1), 100, 1000);
648 
649 	/* Force off the GX GSDC */
650 	regulator_force_disable(gmu->gx);
651 
652 	/* Disable the resources */
653 	clk_bulk_disable_unprepare(gmu->nr_clocks, gmu->clocks);
654 	pm_runtime_put_sync(gmu->dev);
655 
656 	/* Re-enable the resources */
657 	pm_runtime_get_sync(gmu->dev);
658 
659 	/* Use a known rate to bring up the GMU */
660 	clk_set_rate(gmu->core_clk, 200000000);
661 	ret = clk_bulk_prepare_enable(gmu->nr_clocks, gmu->clocks);
662 	if (ret)
663 		goto out;
664 
665 	a6xx_gmu_irq_enable(gmu);
666 
667 	ret = a6xx_gmu_fw_start(gmu, GMU_RESET);
668 	if (!ret)
669 		ret = a6xx_hfi_start(gmu, GMU_COLD_BOOT);
670 
671 	/* Set the GPU back to the highest power frequency */
672 	__a6xx_gmu_set_freq(gmu, gmu->nr_gpu_freqs - 1);
673 
674 out:
675 	if (ret)
676 		a6xx_gmu_clear_oob(gmu, GMU_OOB_BOOT_SLUMBER);
677 
678 	return ret;
679 }
680 
681 int a6xx_gmu_resume(struct a6xx_gpu *a6xx_gpu)
682 {
683 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
684 	int status, ret;
685 
686 	if (WARN(!gmu->mmio, "The GMU is not set up yet\n"))
687 		return 0;
688 
689 	/* Turn on the resources */
690 	pm_runtime_get_sync(gmu->dev);
691 
692 	/* Use a known rate to bring up the GMU */
693 	clk_set_rate(gmu->core_clk, 200000000);
694 	ret = clk_bulk_prepare_enable(gmu->nr_clocks, gmu->clocks);
695 	if (ret)
696 		goto out;
697 
698 	a6xx_gmu_irq_enable(gmu);
699 
700 	/* Check to see if we are doing a cold or warm boot */
701 	status = gmu_read(gmu, REG_A6XX_GMU_GENERAL_7) == 1 ?
702 		GMU_WARM_BOOT : GMU_COLD_BOOT;
703 
704 	ret = a6xx_gmu_fw_start(gmu, status);
705 	if (ret)
706 		goto out;
707 
708 	ret = a6xx_hfi_start(gmu, status);
709 
710 	/* Set the GPU to the highest power frequency */
711 	__a6xx_gmu_set_freq(gmu, gmu->nr_gpu_freqs - 1);
712 
713 out:
714 	/* Make sure to turn off the boot OOB request on error */
715 	if (ret)
716 		a6xx_gmu_clear_oob(gmu, GMU_OOB_BOOT_SLUMBER);
717 
718 	return ret;
719 }
720 
721 bool a6xx_gmu_isidle(struct a6xx_gmu *gmu)
722 {
723 	u32 reg;
724 
725 	if (!gmu->mmio)
726 		return true;
727 
728 	reg = gmu_read(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS);
729 
730 	if (reg &  A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS_GPUBUSYIGNAHB)
731 		return false;
732 
733 	return true;
734 }
735 
736 int a6xx_gmu_stop(struct a6xx_gpu *a6xx_gpu)
737 {
738 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
739 	u32 val;
740 
741 	/*
742 	 * The GMU may still be in slumber unless the GPU started so check and
743 	 * skip putting it back into slumber if so
744 	 */
745 	val = gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE);
746 
747 	if (val != 0xf) {
748 		int ret = a6xx_gmu_wait_for_idle(a6xx_gpu);
749 
750 		/* Temporary until we can recover safely */
751 		BUG_ON(ret);
752 
753 		/* tell the GMU we want to slumber */
754 		a6xx_gmu_notify_slumber(gmu);
755 
756 		ret = gmu_poll_timeout(gmu,
757 			REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS, val,
758 			!(val & A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS_GPUBUSYIGNAHB),
759 			100, 10000);
760 
761 		/*
762 		 * Let the user know we failed to slumber but don't worry too
763 		 * much because we are powering down anyway
764 		 */
765 
766 		if (ret)
767 			dev_err(gmu->dev,
768 				"Unable to slumber GMU: status = 0%x/0%x\n",
769 				gmu_read(gmu,
770 					REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS),
771 				gmu_read(gmu,
772 					REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS2));
773 	}
774 
775 	/* Turn off HFI */
776 	a6xx_hfi_stop(gmu);
777 
778 	/* Stop the interrupts and mask the hardware */
779 	a6xx_gmu_irq_disable(gmu);
780 
781 	/* Tell RPMh to power off the GPU */
782 	a6xx_rpmh_stop(gmu);
783 
784 	clk_bulk_disable_unprepare(gmu->nr_clocks, gmu->clocks);
785 
786 	pm_runtime_put_sync(gmu->dev);
787 
788 	return 0;
789 }
790 
791 static void a6xx_gmu_memory_free(struct a6xx_gmu *gmu, struct a6xx_gmu_bo *bo)
792 {
793 	int count, i;
794 	u64 iova;
795 
796 	if (IS_ERR_OR_NULL(bo))
797 		return;
798 
799 	count = bo->size >> PAGE_SHIFT;
800 	iova = bo->iova;
801 
802 	for (i = 0; i < count; i++, iova += PAGE_SIZE) {
803 		iommu_unmap(gmu->domain, iova, PAGE_SIZE);
804 		__free_pages(bo->pages[i], 0);
805 	}
806 
807 	kfree(bo->pages);
808 	kfree(bo);
809 }
810 
811 static struct a6xx_gmu_bo *a6xx_gmu_memory_alloc(struct a6xx_gmu *gmu,
812 		size_t size)
813 {
814 	struct a6xx_gmu_bo *bo;
815 	int ret, count, i;
816 
817 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
818 	if (!bo)
819 		return ERR_PTR(-ENOMEM);
820 
821 	bo->size = PAGE_ALIGN(size);
822 
823 	count = bo->size >> PAGE_SHIFT;
824 
825 	bo->pages = kcalloc(count, sizeof(struct page *), GFP_KERNEL);
826 	if (!bo->pages) {
827 		kfree(bo);
828 		return ERR_PTR(-ENOMEM);
829 	}
830 
831 	for (i = 0; i < count; i++) {
832 		bo->pages[i] = alloc_page(GFP_KERNEL);
833 		if (!bo->pages[i])
834 			goto err;
835 	}
836 
837 	bo->iova = gmu->uncached_iova_base;
838 
839 	for (i = 0; i < count; i++) {
840 		ret = iommu_map(gmu->domain,
841 			bo->iova + (PAGE_SIZE * i),
842 			page_to_phys(bo->pages[i]), PAGE_SIZE,
843 			IOMMU_READ | IOMMU_WRITE);
844 
845 		if (ret) {
846 			dev_err(gmu->dev, "Unable to map GMU buffer object\n");
847 
848 			for (i = i - 1 ; i >= 0; i--)
849 				iommu_unmap(gmu->domain,
850 					bo->iova + (PAGE_SIZE * i),
851 					PAGE_SIZE);
852 
853 			goto err;
854 		}
855 	}
856 
857 	bo->virt = vmap(bo->pages, count, VM_IOREMAP,
858 		pgprot_writecombine(PAGE_KERNEL));
859 	if (!bo->virt)
860 		goto err;
861 
862 	/* Align future IOVA addresses on 1MB boundaries */
863 	gmu->uncached_iova_base += ALIGN(size, SZ_1M);
864 
865 	return bo;
866 
867 err:
868 	for (i = 0; i < count; i++) {
869 		if (bo->pages[i])
870 			__free_pages(bo->pages[i], 0);
871 	}
872 
873 	kfree(bo->pages);
874 	kfree(bo);
875 
876 	return ERR_PTR(-ENOMEM);
877 }
878 
879 static int a6xx_gmu_memory_probe(struct a6xx_gmu *gmu)
880 {
881 	int ret;
882 
883 	/*
884 	 * The GMU address space is hardcoded to treat the range
885 	 * 0x60000000 - 0x80000000 as un-cached memory. All buffers shared
886 	 * between the GMU and the CPU will live in this space
887 	 */
888 	gmu->uncached_iova_base = 0x60000000;
889 
890 
891 	gmu->domain = iommu_domain_alloc(&platform_bus_type);
892 	if (!gmu->domain)
893 		return -ENODEV;
894 
895 	ret = iommu_attach_device(gmu->domain, gmu->dev);
896 
897 	if (ret) {
898 		iommu_domain_free(gmu->domain);
899 		gmu->domain = NULL;
900 	}
901 
902 	return ret;
903 }
904 
905 /* Return the 'arc-level' for the given frequency */
906 static u32 a6xx_gmu_get_arc_level(struct device *dev, unsigned long freq)
907 {
908 	struct dev_pm_opp *opp;
909 	struct device_node *np;
910 	u32 val = 0;
911 
912 	if (!freq)
913 		return 0;
914 
915 	opp  = dev_pm_opp_find_freq_exact(dev, freq, true);
916 	if (IS_ERR(opp))
917 		return 0;
918 
919 	np = dev_pm_opp_get_of_node(opp);
920 
921 	if (np) {
922 		of_property_read_u32(np, "qcom,level", &val);
923 		of_node_put(np);
924 	}
925 
926 	dev_pm_opp_put(opp);
927 
928 	return val;
929 }
930 
931 static int a6xx_gmu_rpmh_arc_votes_init(struct device *dev, u32 *votes,
932 		unsigned long *freqs, int freqs_count, const char *id)
933 {
934 	int i, j;
935 	const u16 *pri, *sec;
936 	size_t pri_count, sec_count;
937 
938 	pri = cmd_db_read_aux_data(id, &pri_count);
939 	if (IS_ERR(pri))
940 		return PTR_ERR(pri);
941 	/*
942 	 * The data comes back as an array of unsigned shorts so adjust the
943 	 * count accordingly
944 	 */
945 	pri_count >>= 1;
946 	if (!pri_count)
947 		return -EINVAL;
948 
949 	sec = cmd_db_read_aux_data("mx.lvl", &sec_count);
950 	if (IS_ERR(sec))
951 		return PTR_ERR(sec);
952 
953 	sec_count >>= 1;
954 	if (!sec_count)
955 		return -EINVAL;
956 
957 	/* Construct a vote for each frequency */
958 	for (i = 0; i < freqs_count; i++) {
959 		u8 pindex = 0, sindex = 0;
960 		u32 level = a6xx_gmu_get_arc_level(dev, freqs[i]);
961 
962 		/* Get the primary index that matches the arc level */
963 		for (j = 0; j < pri_count; j++) {
964 			if (pri[j] >= level) {
965 				pindex = j;
966 				break;
967 			}
968 		}
969 
970 		if (j == pri_count) {
971 			dev_err(dev,
972 				"Level %u not found in in the RPMh list\n",
973 					level);
974 			dev_err(dev, "Available levels:\n");
975 			for (j = 0; j < pri_count; j++)
976 				dev_err(dev, "  %u\n", pri[j]);
977 
978 			return -EINVAL;
979 		}
980 
981 		/*
982 		 * Look for a level in in the secondary list that matches. If
983 		 * nothing fits, use the maximum non zero vote
984 		 */
985 
986 		for (j = 0; j < sec_count; j++) {
987 			if (sec[j] >= level) {
988 				sindex = j;
989 				break;
990 			} else if (sec[j]) {
991 				sindex = j;
992 			}
993 		}
994 
995 		/* Construct the vote */
996 		votes[i] = ((pri[pindex] & 0xffff) << 16) |
997 			(sindex << 8) | pindex;
998 	}
999 
1000 	return 0;
1001 }
1002 
1003 /*
1004  * The GMU votes with the RPMh for itself and on behalf of the GPU but we need
1005  * to construct the list of votes on the CPU and send it over. Query the RPMh
1006  * voltage levels and build the votes
1007  */
1008 
1009 static int a6xx_gmu_rpmh_votes_init(struct a6xx_gmu *gmu)
1010 {
1011 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
1012 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1013 	struct msm_gpu *gpu = &adreno_gpu->base;
1014 	int ret;
1015 
1016 	/* Build the GX votes */
1017 	ret = a6xx_gmu_rpmh_arc_votes_init(&gpu->pdev->dev, gmu->gx_arc_votes,
1018 		gmu->gpu_freqs, gmu->nr_gpu_freqs, "gfx.lvl");
1019 
1020 	/* Build the CX votes */
1021 	ret |= a6xx_gmu_rpmh_arc_votes_init(gmu->dev, gmu->cx_arc_votes,
1022 		gmu->gmu_freqs, gmu->nr_gmu_freqs, "cx.lvl");
1023 
1024 	return ret;
1025 }
1026 
1027 static int a6xx_gmu_build_freq_table(struct device *dev, unsigned long *freqs,
1028 		u32 size)
1029 {
1030 	int count = dev_pm_opp_get_opp_count(dev);
1031 	struct dev_pm_opp *opp;
1032 	int i, index = 0;
1033 	unsigned long freq = 1;
1034 
1035 	/*
1036 	 * The OPP table doesn't contain the "off" frequency level so we need to
1037 	 * add 1 to the table size to account for it
1038 	 */
1039 
1040 	if (WARN(count + 1 > size,
1041 		"The GMU frequency table is being truncated\n"))
1042 		count = size - 1;
1043 
1044 	/* Set the "off" frequency */
1045 	freqs[index++] = 0;
1046 
1047 	for (i = 0; i < count; i++) {
1048 		opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1049 		if (IS_ERR(opp))
1050 			break;
1051 
1052 		dev_pm_opp_put(opp);
1053 		freqs[index++] = freq++;
1054 	}
1055 
1056 	return index;
1057 }
1058 
1059 static int a6xx_gmu_pwrlevels_probe(struct a6xx_gmu *gmu)
1060 {
1061 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
1062 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1063 	struct msm_gpu *gpu = &adreno_gpu->base;
1064 
1065 	int ret = 0;
1066 
1067 	/*
1068 	 * The GMU handles its own frequency switching so build a list of
1069 	 * available frequencies to send during initialization
1070 	 */
1071 	ret = dev_pm_opp_of_add_table(gmu->dev);
1072 	if (ret) {
1073 		dev_err(gmu->dev, "Unable to set the OPP table for the GMU\n");
1074 		return ret;
1075 	}
1076 
1077 	gmu->nr_gmu_freqs = a6xx_gmu_build_freq_table(gmu->dev,
1078 		gmu->gmu_freqs, ARRAY_SIZE(gmu->gmu_freqs));
1079 
1080 	/*
1081 	 * The GMU also handles GPU frequency switching so build a list
1082 	 * from the GPU OPP table
1083 	 */
1084 	gmu->nr_gpu_freqs = a6xx_gmu_build_freq_table(&gpu->pdev->dev,
1085 		gmu->gpu_freqs, ARRAY_SIZE(gmu->gpu_freqs));
1086 
1087 	/* Build the list of RPMh votes that we'll send to the GMU */
1088 	return a6xx_gmu_rpmh_votes_init(gmu);
1089 }
1090 
1091 static int a6xx_gmu_clocks_probe(struct a6xx_gmu *gmu)
1092 {
1093 	int ret = msm_clk_bulk_get(gmu->dev, &gmu->clocks);
1094 
1095 	if (ret < 1)
1096 		return ret;
1097 
1098 	gmu->nr_clocks = ret;
1099 
1100 	gmu->core_clk = msm_clk_bulk_get_clock(gmu->clocks,
1101 		gmu->nr_clocks, "gmu");
1102 
1103 	return 0;
1104 }
1105 
1106 static void __iomem *a6xx_gmu_get_mmio(struct platform_device *pdev,
1107 		const char *name)
1108 {
1109 	void __iomem *ret;
1110 	struct resource *res = platform_get_resource_byname(pdev,
1111 			IORESOURCE_MEM, name);
1112 
1113 	if (!res) {
1114 		dev_err(&pdev->dev, "Unable to find the %s registers\n", name);
1115 		return ERR_PTR(-EINVAL);
1116 	}
1117 
1118 	ret = devm_ioremap(&pdev->dev, res->start, resource_size(res));
1119 	if (!ret) {
1120 		dev_err(&pdev->dev, "Unable to map the %s registers\n", name);
1121 		return ERR_PTR(-EINVAL);
1122 	}
1123 
1124 	return ret;
1125 }
1126 
1127 static int a6xx_gmu_get_irq(struct a6xx_gmu *gmu, struct platform_device *pdev,
1128 		const char *name, irq_handler_t handler)
1129 {
1130 	int irq, ret;
1131 
1132 	irq = platform_get_irq_byname(pdev, name);
1133 
1134 	ret = devm_request_irq(&pdev->dev, irq, handler, IRQF_TRIGGER_HIGH,
1135 		name, gmu);
1136 	if (ret) {
1137 		dev_err(&pdev->dev, "Unable to get interrupt %s\n", name);
1138 		return ret;
1139 	}
1140 
1141 	disable_irq(irq);
1142 
1143 	return irq;
1144 }
1145 
1146 void a6xx_gmu_remove(struct a6xx_gpu *a6xx_gpu)
1147 {
1148 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
1149 
1150 	if (IS_ERR_OR_NULL(gmu->mmio))
1151 		return;
1152 
1153 	pm_runtime_disable(gmu->dev);
1154 	a6xx_gmu_stop(a6xx_gpu);
1155 
1156 	a6xx_gmu_irq_disable(gmu);
1157 	a6xx_gmu_memory_free(gmu, gmu->hfi);
1158 
1159 	iommu_detach_device(gmu->domain, gmu->dev);
1160 
1161 	iommu_domain_free(gmu->domain);
1162 }
1163 
1164 int a6xx_gmu_probe(struct a6xx_gpu *a6xx_gpu, struct device_node *node)
1165 {
1166 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
1167 	struct platform_device *pdev = of_find_device_by_node(node);
1168 	int ret;
1169 
1170 	if (!pdev)
1171 		return -ENODEV;
1172 
1173 	gmu->dev = &pdev->dev;
1174 
1175 	of_dma_configure(gmu->dev, node, true);
1176 
1177 	/* Fow now, don't do anything fancy until we get our feet under us */
1178 	gmu->idle_level = GMU_IDLE_STATE_ACTIVE;
1179 
1180 	pm_runtime_enable(gmu->dev);
1181 	gmu->gx = devm_regulator_get(gmu->dev, "vdd");
1182 
1183 	/* Get the list of clocks */
1184 	ret = a6xx_gmu_clocks_probe(gmu);
1185 	if (ret)
1186 		return ret;
1187 
1188 	/* Set up the IOMMU context bank */
1189 	ret = a6xx_gmu_memory_probe(gmu);
1190 	if (ret)
1191 		return ret;
1192 
1193 	/* Allocate memory for for the HFI queues */
1194 	gmu->hfi = a6xx_gmu_memory_alloc(gmu, SZ_16K);
1195 	if (IS_ERR(gmu->hfi))
1196 		goto err;
1197 
1198 	/* Allocate memory for the GMU debug region */
1199 	gmu->debug = a6xx_gmu_memory_alloc(gmu, SZ_16K);
1200 	if (IS_ERR(gmu->debug))
1201 		goto err;
1202 
1203 	/* Map the GMU registers */
1204 	gmu->mmio = a6xx_gmu_get_mmio(pdev, "gmu");
1205 	if (IS_ERR(gmu->mmio))
1206 		goto err;
1207 
1208 	/* Get the HFI and GMU interrupts */
1209 	gmu->hfi_irq = a6xx_gmu_get_irq(gmu, pdev, "hfi", a6xx_hfi_irq);
1210 	gmu->gmu_irq = a6xx_gmu_get_irq(gmu, pdev, "gmu", a6xx_gmu_irq);
1211 
1212 	if (gmu->hfi_irq < 0 || gmu->gmu_irq < 0)
1213 		goto err;
1214 
1215 	/* Get the power levels for the GMU and GPU */
1216 	a6xx_gmu_pwrlevels_probe(gmu);
1217 
1218 	/* Set up the HFI queues */
1219 	a6xx_hfi_init(gmu);
1220 
1221 	return 0;
1222 err:
1223 	a6xx_gmu_memory_free(gmu, gmu->hfi);
1224 
1225 	if (gmu->domain) {
1226 		iommu_detach_device(gmu->domain, gmu->dev);
1227 
1228 		iommu_domain_free(gmu->domain);
1229 	}
1230 
1231 	return -ENODEV;
1232 }
1233