xref: /openbmc/linux/drivers/gpu/drm/msm/adreno/a6xx_gmu.c (revision 6e332c99)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */
3 
4 #include <linux/clk.h>
5 #include <linux/interconnect.h>
6 #include <linux/pm_domain.h>
7 #include <linux/pm_opp.h>
8 #include <soc/qcom/cmd-db.h>
9 #include <drm/drm_gem.h>
10 
11 #include "a6xx_gpu.h"
12 #include "a6xx_gmu.xml.h"
13 #include "msm_gem.h"
14 #include "msm_gpu_trace.h"
15 #include "msm_mmu.h"
16 
17 static void a6xx_gmu_fault(struct a6xx_gmu *gmu)
18 {
19 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
20 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
21 	struct msm_gpu *gpu = &adreno_gpu->base;
22 
23 	/* FIXME: add a banner here */
24 	gmu->hung = true;
25 
26 	/* Turn off the hangcheck timer while we are resetting */
27 	del_timer(&gpu->hangcheck_timer);
28 
29 	/* Queue the GPU handler because we need to treat this as a recovery */
30 	kthread_queue_work(gpu->worker, &gpu->recover_work);
31 }
32 
33 static irqreturn_t a6xx_gmu_irq(int irq, void *data)
34 {
35 	struct a6xx_gmu *gmu = data;
36 	u32 status;
37 
38 	status = gmu_read(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_STATUS);
39 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_CLR, status);
40 
41 	if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_WDOG_BITE) {
42 		dev_err_ratelimited(gmu->dev, "GMU watchdog expired\n");
43 
44 		a6xx_gmu_fault(gmu);
45 	}
46 
47 	if (status &  A6XX_GMU_AO_HOST_INTERRUPT_STATUS_HOST_AHB_BUS_ERROR)
48 		dev_err_ratelimited(gmu->dev, "GMU AHB bus error\n");
49 
50 	if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_FENCE_ERR)
51 		dev_err_ratelimited(gmu->dev, "GMU fence error: 0x%x\n",
52 			gmu_read(gmu, REG_A6XX_GMU_AHB_FENCE_STATUS));
53 
54 	return IRQ_HANDLED;
55 }
56 
57 static irqreturn_t a6xx_hfi_irq(int irq, void *data)
58 {
59 	struct a6xx_gmu *gmu = data;
60 	u32 status;
61 
62 	status = gmu_read(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO);
63 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, status);
64 
65 	if (status & A6XX_GMU_GMU2HOST_INTR_INFO_CM3_FAULT) {
66 		dev_err_ratelimited(gmu->dev, "GMU firmware fault\n");
67 
68 		a6xx_gmu_fault(gmu);
69 	}
70 
71 	return IRQ_HANDLED;
72 }
73 
74 bool a6xx_gmu_sptprac_is_on(struct a6xx_gmu *gmu)
75 {
76 	u32 val;
77 
78 	/* This can be called from gpu state code so make sure GMU is valid */
79 	if (!gmu->initialized)
80 		return false;
81 
82 	val = gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS);
83 
84 	return !(val &
85 		(A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_SPTPRAC_GDSC_POWER_OFF |
86 		A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_SP_CLOCK_OFF));
87 }
88 
89 /* Check to see if the GX rail is still powered */
90 bool a6xx_gmu_gx_is_on(struct a6xx_gmu *gmu)
91 {
92 	u32 val;
93 
94 	/* This can be called from gpu state code so make sure GMU is valid */
95 	if (!gmu->initialized)
96 		return false;
97 
98 	val = gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS);
99 
100 	return !(val &
101 		(A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_GX_HM_GDSC_POWER_OFF |
102 		A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_GX_HM_CLK_OFF));
103 }
104 
105 void a6xx_gmu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp,
106 		       bool suspended)
107 {
108 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
109 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
110 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
111 	u32 perf_index;
112 	unsigned long gpu_freq;
113 	int ret = 0;
114 
115 	gpu_freq = dev_pm_opp_get_freq(opp);
116 
117 	if (gpu_freq == gmu->freq)
118 		return;
119 
120 	for (perf_index = 0; perf_index < gmu->nr_gpu_freqs - 1; perf_index++)
121 		if (gpu_freq == gmu->gpu_freqs[perf_index])
122 			break;
123 
124 	gmu->current_perf_index = perf_index;
125 	gmu->freq = gmu->gpu_freqs[perf_index];
126 
127 	trace_msm_gmu_freq_change(gmu->freq, perf_index);
128 
129 	/*
130 	 * This can get called from devfreq while the hardware is idle. Don't
131 	 * bring up the power if it isn't already active. All we're doing here
132 	 * is updating the frequency so that when we come back online we're at
133 	 * the right rate.
134 	 */
135 	if (suspended)
136 		return;
137 
138 	if (!gmu->legacy) {
139 		a6xx_hfi_set_freq(gmu, perf_index);
140 		dev_pm_opp_set_opp(&gpu->pdev->dev, opp);
141 		return;
142 	}
143 
144 	gmu_write(gmu, REG_A6XX_GMU_DCVS_ACK_OPTION, 0);
145 
146 	gmu_write(gmu, REG_A6XX_GMU_DCVS_PERF_SETTING,
147 			((3 & 0xf) << 28) | perf_index);
148 
149 	/*
150 	 * Send an invalid index as a vote for the bus bandwidth and let the
151 	 * firmware decide on the right vote
152 	 */
153 	gmu_write(gmu, REG_A6XX_GMU_DCVS_BW_SETTING, 0xff);
154 
155 	/* Set and clear the OOB for DCVS to trigger the GMU */
156 	a6xx_gmu_set_oob(gmu, GMU_OOB_DCVS_SET);
157 	a6xx_gmu_clear_oob(gmu, GMU_OOB_DCVS_SET);
158 
159 	ret = gmu_read(gmu, REG_A6XX_GMU_DCVS_RETURN);
160 	if (ret)
161 		dev_err(gmu->dev, "GMU set GPU frequency error: %d\n", ret);
162 
163 	dev_pm_opp_set_opp(&gpu->pdev->dev, opp);
164 }
165 
166 unsigned long a6xx_gmu_get_freq(struct msm_gpu *gpu)
167 {
168 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
169 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
170 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
171 
172 	return  gmu->freq;
173 }
174 
175 static bool a6xx_gmu_check_idle_level(struct a6xx_gmu *gmu)
176 {
177 	u32 val;
178 	int local = gmu->idle_level;
179 
180 	/* SPTP and IFPC both report as IFPC */
181 	if (gmu->idle_level == GMU_IDLE_STATE_SPTP)
182 		local = GMU_IDLE_STATE_IFPC;
183 
184 	val = gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE);
185 
186 	if (val == local) {
187 		if (gmu->idle_level != GMU_IDLE_STATE_IFPC ||
188 			!a6xx_gmu_gx_is_on(gmu))
189 			return true;
190 	}
191 
192 	return false;
193 }
194 
195 /* Wait for the GMU to get to its most idle state */
196 int a6xx_gmu_wait_for_idle(struct a6xx_gmu *gmu)
197 {
198 	return spin_until(a6xx_gmu_check_idle_level(gmu));
199 }
200 
201 static int a6xx_gmu_start(struct a6xx_gmu *gmu)
202 {
203 	int ret;
204 	u32 val;
205 	u32 mask, reset_val;
206 
207 	val = gmu_read(gmu, REG_A6XX_GMU_CM3_DTCM_START + 0xff8);
208 	if (val <= 0x20010004) {
209 		mask = 0xffffffff;
210 		reset_val = 0xbabeface;
211 	} else {
212 		mask = 0x1ff;
213 		reset_val = 0x100;
214 	}
215 
216 	gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 1);
217 
218 	/* Set the log wptr index
219 	 * note: downstream saves the value in poweroff and restores it here
220 	 */
221 	gmu_write(gmu, REG_A6XX_GPU_GMU_CX_GMU_PWR_COL_CP_RESP, 0);
222 
223 	gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 0);
224 
225 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_CM3_FW_INIT_RESULT, val,
226 		(val & mask) == reset_val, 100, 10000);
227 
228 	if (ret)
229 		DRM_DEV_ERROR(gmu->dev, "GMU firmware initialization timed out\n");
230 
231 	return ret;
232 }
233 
234 static int a6xx_gmu_hfi_start(struct a6xx_gmu *gmu)
235 {
236 	u32 val;
237 	int ret;
238 
239 	gmu_write(gmu, REG_A6XX_GMU_HFI_CTRL_INIT, 1);
240 
241 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_HFI_CTRL_STATUS, val,
242 		val & 1, 100, 10000);
243 	if (ret)
244 		DRM_DEV_ERROR(gmu->dev, "Unable to start the HFI queues\n");
245 
246 	return ret;
247 }
248 
249 struct a6xx_gmu_oob_bits {
250 	int set, ack, set_new, ack_new, clear, clear_new;
251 	const char *name;
252 };
253 
254 /* These are the interrupt / ack bits for each OOB request that are set
255  * in a6xx_gmu_set_oob and a6xx_clear_oob
256  */
257 static const struct a6xx_gmu_oob_bits a6xx_gmu_oob_bits[] = {
258 	[GMU_OOB_GPU_SET] = {
259 		.name = "GPU_SET",
260 		.set = 16,
261 		.ack = 24,
262 		.set_new = 30,
263 		.ack_new = 31,
264 		.clear = 24,
265 		.clear_new = 31,
266 	},
267 
268 	[GMU_OOB_PERFCOUNTER_SET] = {
269 		.name = "PERFCOUNTER",
270 		.set = 17,
271 		.ack = 25,
272 		.set_new = 28,
273 		.ack_new = 30,
274 		.clear = 25,
275 		.clear_new = 29,
276 	},
277 
278 	[GMU_OOB_BOOT_SLUMBER] = {
279 		.name = "BOOT_SLUMBER",
280 		.set = 22,
281 		.ack = 30,
282 		.clear = 30,
283 	},
284 
285 	[GMU_OOB_DCVS_SET] = {
286 		.name = "GPU_DCVS",
287 		.set = 23,
288 		.ack = 31,
289 		.clear = 31,
290 	},
291 };
292 
293 /* Trigger a OOB (out of band) request to the GMU */
294 int a6xx_gmu_set_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state)
295 {
296 	int ret;
297 	u32 val;
298 	int request, ack;
299 
300 	WARN_ON_ONCE(!mutex_is_locked(&gmu->lock));
301 
302 	if (state >= ARRAY_SIZE(a6xx_gmu_oob_bits))
303 		return -EINVAL;
304 
305 	if (gmu->legacy) {
306 		request = a6xx_gmu_oob_bits[state].set;
307 		ack = a6xx_gmu_oob_bits[state].ack;
308 	} else {
309 		request = a6xx_gmu_oob_bits[state].set_new;
310 		ack = a6xx_gmu_oob_bits[state].ack_new;
311 		if (!request || !ack) {
312 			DRM_DEV_ERROR(gmu->dev,
313 				      "Invalid non-legacy GMU request %s\n",
314 				      a6xx_gmu_oob_bits[state].name);
315 			return -EINVAL;
316 		}
317 	}
318 
319 	/* Trigger the equested OOB operation */
320 	gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 1 << request);
321 
322 	/* Wait for the acknowledge interrupt */
323 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO, val,
324 		val & (1 << ack), 100, 10000);
325 
326 	if (ret)
327 		DRM_DEV_ERROR(gmu->dev,
328 			"Timeout waiting for GMU OOB set %s: 0x%x\n",
329 				a6xx_gmu_oob_bits[state].name,
330 				gmu_read(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO));
331 
332 	/* Clear the acknowledge interrupt */
333 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, 1 << ack);
334 
335 	return ret;
336 }
337 
338 /* Clear a pending OOB state in the GMU */
339 void a6xx_gmu_clear_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state)
340 {
341 	int bit;
342 
343 	WARN_ON_ONCE(!mutex_is_locked(&gmu->lock));
344 
345 	if (state >= ARRAY_SIZE(a6xx_gmu_oob_bits))
346 		return;
347 
348 	if (gmu->legacy)
349 		bit = a6xx_gmu_oob_bits[state].clear;
350 	else
351 		bit = a6xx_gmu_oob_bits[state].clear_new;
352 
353 	gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 1 << bit);
354 }
355 
356 /* Enable CPU control of SPTP power power collapse */
357 int a6xx_sptprac_enable(struct a6xx_gmu *gmu)
358 {
359 	int ret;
360 	u32 val;
361 
362 	if (!gmu->legacy)
363 		return 0;
364 
365 	gmu_write(gmu, REG_A6XX_GMU_GX_SPTPRAC_POWER_CONTROL, 0x778000);
366 
367 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, val,
368 		(val & 0x38) == 0x28, 1, 100);
369 
370 	if (ret) {
371 		DRM_DEV_ERROR(gmu->dev, "Unable to power on SPTPRAC: 0x%x\n",
372 			gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS));
373 	}
374 
375 	return 0;
376 }
377 
378 /* Disable CPU control of SPTP power power collapse */
379 void a6xx_sptprac_disable(struct a6xx_gmu *gmu)
380 {
381 	u32 val;
382 	int ret;
383 
384 	if (!gmu->legacy)
385 		return;
386 
387 	/* Make sure retention is on */
388 	gmu_rmw(gmu, REG_A6XX_GPU_CC_GX_GDSCR, 0, (1 << 11));
389 
390 	gmu_write(gmu, REG_A6XX_GMU_GX_SPTPRAC_POWER_CONTROL, 0x778001);
391 
392 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, val,
393 		(val & 0x04), 100, 10000);
394 
395 	if (ret)
396 		DRM_DEV_ERROR(gmu->dev, "failed to power off SPTPRAC: 0x%x\n",
397 			gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS));
398 }
399 
400 /* Let the GMU know we are starting a boot sequence */
401 static int a6xx_gmu_gfx_rail_on(struct a6xx_gmu *gmu)
402 {
403 	u32 vote;
404 
405 	/* Let the GMU know we are getting ready for boot */
406 	gmu_write(gmu, REG_A6XX_GMU_BOOT_SLUMBER_OPTION, 0);
407 
408 	/* Choose the "default" power level as the highest available */
409 	vote = gmu->gx_arc_votes[gmu->nr_gpu_freqs - 1];
410 
411 	gmu_write(gmu, REG_A6XX_GMU_GX_VOTE_IDX, vote & 0xff);
412 	gmu_write(gmu, REG_A6XX_GMU_MX_VOTE_IDX, (vote >> 8) & 0xff);
413 
414 	/* Let the GMU know the boot sequence has started */
415 	return a6xx_gmu_set_oob(gmu, GMU_OOB_BOOT_SLUMBER);
416 }
417 
418 /* Let the GMU know that we are about to go into slumber */
419 static int a6xx_gmu_notify_slumber(struct a6xx_gmu *gmu)
420 {
421 	int ret;
422 
423 	/* Disable the power counter so the GMU isn't busy */
424 	gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 0);
425 
426 	/* Disable SPTP_PC if the CPU is responsible for it */
427 	if (gmu->idle_level < GMU_IDLE_STATE_SPTP)
428 		a6xx_sptprac_disable(gmu);
429 
430 	if (!gmu->legacy) {
431 		ret = a6xx_hfi_send_prep_slumber(gmu);
432 		goto out;
433 	}
434 
435 	/* Tell the GMU to get ready to slumber */
436 	gmu_write(gmu, REG_A6XX_GMU_BOOT_SLUMBER_OPTION, 1);
437 
438 	ret = a6xx_gmu_set_oob(gmu, GMU_OOB_BOOT_SLUMBER);
439 	a6xx_gmu_clear_oob(gmu, GMU_OOB_BOOT_SLUMBER);
440 
441 	if (!ret) {
442 		/* Check to see if the GMU really did slumber */
443 		if (gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE)
444 			!= 0x0f) {
445 			DRM_DEV_ERROR(gmu->dev, "The GMU did not go into slumber\n");
446 			ret = -ETIMEDOUT;
447 		}
448 	}
449 
450 out:
451 	/* Put fence into allow mode */
452 	gmu_write(gmu, REG_A6XX_GMU_AO_AHB_FENCE_CTRL, 0);
453 	return ret;
454 }
455 
456 static int a6xx_rpmh_start(struct a6xx_gmu *gmu)
457 {
458 	int ret;
459 	u32 val;
460 
461 	gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 1 << 1);
462 	/* Wait for the register to finish posting */
463 	wmb();
464 
465 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_RSCC_CONTROL_ACK, val,
466 		val & (1 << 1), 100, 10000);
467 	if (ret) {
468 		DRM_DEV_ERROR(gmu->dev, "Unable to power on the GPU RSC\n");
469 		return ret;
470 	}
471 
472 	ret = gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_SEQ_BUSY_DRV0, val,
473 		!val, 100, 10000);
474 
475 	if (ret) {
476 		DRM_DEV_ERROR(gmu->dev, "GPU RSC sequence stuck while waking up the GPU\n");
477 		return ret;
478 	}
479 
480 	gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 0);
481 
482 	/* Set up CX GMU counter 0 to count busy ticks */
483 	gmu_write(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_MASK, 0xff000000);
484 	gmu_rmw(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_SELECT_0, 0xff, 0x20);
485 
486 	/* Enable the power counter */
487 	gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 1);
488 	return 0;
489 }
490 
491 static void a6xx_rpmh_stop(struct a6xx_gmu *gmu)
492 {
493 	int ret;
494 	u32 val;
495 
496 	gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 1);
497 
498 	ret = gmu_poll_timeout_rscc(gmu, REG_A6XX_GPU_RSCC_RSC_STATUS0_DRV0,
499 		val, val & (1 << 16), 100, 10000);
500 	if (ret)
501 		DRM_DEV_ERROR(gmu->dev, "Unable to power off the GPU RSC\n");
502 
503 	gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 0);
504 }
505 
506 static inline void pdc_write(void __iomem *ptr, u32 offset, u32 value)
507 {
508 	msm_writel(value, ptr + (offset << 2));
509 }
510 
511 static void __iomem *a6xx_gmu_get_mmio(struct platform_device *pdev,
512 		const char *name);
513 
514 static void a6xx_gmu_rpmh_init(struct a6xx_gmu *gmu)
515 {
516 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
517 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
518 	struct platform_device *pdev = to_platform_device(gmu->dev);
519 	void __iomem *pdcptr = a6xx_gmu_get_mmio(pdev, "gmu_pdc");
520 	void __iomem *seqptr = NULL;
521 	uint32_t pdc_address_offset;
522 	bool pdc_in_aop = false;
523 
524 	if (IS_ERR(pdcptr))
525 		goto err;
526 
527 	if (adreno_is_a650(adreno_gpu) || adreno_is_a660_family(adreno_gpu))
528 		pdc_in_aop = true;
529 	else if (adreno_is_a618(adreno_gpu) || adreno_is_a640_family(adreno_gpu))
530 		pdc_address_offset = 0x30090;
531 	else if (adreno_is_a619(adreno_gpu))
532 		pdc_address_offset = 0x300a0;
533 	else
534 		pdc_address_offset = 0x30080;
535 
536 	if (!pdc_in_aop) {
537 		seqptr = a6xx_gmu_get_mmio(pdev, "gmu_pdc_seq");
538 		if (IS_ERR(seqptr))
539 			goto err;
540 	}
541 
542 	/* Disable SDE clock gating */
543 	gmu_write_rscc(gmu, REG_A6XX_GPU_RSCC_RSC_STATUS0_DRV0, BIT(24));
544 
545 	/* Setup RSC PDC handshake for sleep and wakeup */
546 	gmu_write_rscc(gmu, REG_A6XX_RSCC_PDC_SLAVE_ID_DRV0, 1);
547 	gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA, 0);
548 	gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR, 0);
549 	gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA + 2, 0);
550 	gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR + 2, 0);
551 	gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA + 4, 0x80000000);
552 	gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR + 4, 0);
553 	gmu_write_rscc(gmu, REG_A6XX_RSCC_OVERRIDE_START_ADDR, 0);
554 	gmu_write_rscc(gmu, REG_A6XX_RSCC_PDC_SEQ_START_ADDR, 0x4520);
555 	gmu_write_rscc(gmu, REG_A6XX_RSCC_PDC_MATCH_VALUE_LO, 0x4510);
556 	gmu_write_rscc(gmu, REG_A6XX_RSCC_PDC_MATCH_VALUE_HI, 0x4514);
557 
558 	/* Load RSC sequencer uCode for sleep and wakeup */
559 	if (adreno_is_a650_family(adreno_gpu)) {
560 		gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0, 0xeaaae5a0);
561 		gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 1, 0xe1a1ebab);
562 		gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 2, 0xa2e0a581);
563 		gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 3, 0xecac82e2);
564 		gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 4, 0x0020edad);
565 	} else {
566 		gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0, 0xa7a506a0);
567 		gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 1, 0xa1e6a6e7);
568 		gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 2, 0xa2e081e1);
569 		gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 3, 0xe9a982e2);
570 		gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 4, 0x0020e8a8);
571 	}
572 
573 	if (pdc_in_aop)
574 		goto setup_pdc;
575 
576 	/* Load PDC sequencer uCode for power up and power down sequence */
577 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0, 0xfebea1e1);
578 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 1, 0xa5a4a3a2);
579 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 2, 0x8382a6e0);
580 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 3, 0xbce3e284);
581 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 4, 0x002081fc);
582 
583 	/* Set TCS commands used by PDC sequence for low power modes */
584 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD_ENABLE_BANK, 7);
585 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD_WAIT_FOR_CMPL_BANK, 0);
586 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CONTROL, 0);
587 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID, 0x10108);
588 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR, 0x30010);
589 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA, 1);
590 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID + 4, 0x10108);
591 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR + 4, 0x30000);
592 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA + 4, 0x0);
593 
594 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID + 8, 0x10108);
595 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR + 8, pdc_address_offset);
596 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA + 8, 0x0);
597 
598 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD_ENABLE_BANK, 7);
599 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD_WAIT_FOR_CMPL_BANK, 0);
600 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CONTROL, 0);
601 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID, 0x10108);
602 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR, 0x30010);
603 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA, 2);
604 
605 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID + 4, 0x10108);
606 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR + 4, 0x30000);
607 	if (adreno_is_a618(adreno_gpu) || adreno_is_a619(adreno_gpu) ||
608 			adreno_is_a650_family(adreno_gpu))
609 		pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 4, 0x2);
610 	else
611 		pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 4, 0x3);
612 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID + 8, 0x10108);
613 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR + 8, pdc_address_offset);
614 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 8, 0x3);
615 
616 	/* Setup GPU PDC */
617 setup_pdc:
618 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_SEQ_START_ADDR, 0);
619 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_ENABLE_PDC, 0x80000001);
620 
621 	/* ensure no writes happen before the uCode is fully written */
622 	wmb();
623 
624 	a6xx_rpmh_stop(gmu);
625 
626 err:
627 	if (!IS_ERR_OR_NULL(pdcptr))
628 		iounmap(pdcptr);
629 	if (!IS_ERR_OR_NULL(seqptr))
630 		iounmap(seqptr);
631 }
632 
633 /*
634  * The lowest 16 bits of this value are the number of XO clock cycles for main
635  * hysteresis which is set at 0x1680 cycles (300 us).  The higher 16 bits are
636  * for the shorter hysteresis that happens after main - this is 0xa (.5 us)
637  */
638 
639 #define GMU_PWR_COL_HYST 0x000a1680
640 
641 /* Set up the idle state for the GMU */
642 static void a6xx_gmu_power_config(struct a6xx_gmu *gmu)
643 {
644 	/* Disable GMU WB/RB buffer */
645 	gmu_write(gmu, REG_A6XX_GMU_SYS_BUS_CONFIG, 0x1);
646 	gmu_write(gmu, REG_A6XX_GMU_ICACHE_CONFIG, 0x1);
647 	gmu_write(gmu, REG_A6XX_GMU_DCACHE_CONFIG, 0x1);
648 
649 	gmu_write(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0x9c40400);
650 
651 	switch (gmu->idle_level) {
652 	case GMU_IDLE_STATE_IFPC:
653 		gmu_write(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_HYST,
654 			GMU_PWR_COL_HYST);
655 		gmu_rmw(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0,
656 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_IFPC_ENABLE |
657 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_HM_POWER_COLLAPSE_ENABLE);
658 		fallthrough;
659 	case GMU_IDLE_STATE_SPTP:
660 		gmu_write(gmu, REG_A6XX_GMU_PWR_COL_SPTPRAC_HYST,
661 			GMU_PWR_COL_HYST);
662 		gmu_rmw(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0,
663 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_IFPC_ENABLE |
664 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_SPTPRAC_POWER_CONTROL_ENABLE);
665 	}
666 
667 	/* Enable RPMh GPU client */
668 	gmu_rmw(gmu, REG_A6XX_GMU_RPMH_CTRL, 0,
669 		A6XX_GMU_RPMH_CTRL_RPMH_INTERFACE_ENABLE |
670 		A6XX_GMU_RPMH_CTRL_LLC_VOTE_ENABLE |
671 		A6XX_GMU_RPMH_CTRL_DDR_VOTE_ENABLE |
672 		A6XX_GMU_RPMH_CTRL_MX_VOTE_ENABLE |
673 		A6XX_GMU_RPMH_CTRL_CX_VOTE_ENABLE |
674 		A6XX_GMU_RPMH_CTRL_GFX_VOTE_ENABLE);
675 }
676 
677 struct block_header {
678 	u32 addr;
679 	u32 size;
680 	u32 type;
681 	u32 value;
682 	u32 data[];
683 };
684 
685 /* this should be a general kernel helper */
686 static int in_range(u32 addr, u32 start, u32 size)
687 {
688 	return addr >= start && addr < start + size;
689 }
690 
691 static bool fw_block_mem(struct a6xx_gmu_bo *bo, const struct block_header *blk)
692 {
693 	if (!in_range(blk->addr, bo->iova, bo->size))
694 		return false;
695 
696 	memcpy(bo->virt + blk->addr - bo->iova, blk->data, blk->size);
697 	return true;
698 }
699 
700 static int a6xx_gmu_fw_load(struct a6xx_gmu *gmu)
701 {
702 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
703 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
704 	const struct firmware *fw_image = adreno_gpu->fw[ADRENO_FW_GMU];
705 	const struct block_header *blk;
706 	u32 reg_offset;
707 
708 	u32 itcm_base = 0x00000000;
709 	u32 dtcm_base = 0x00040000;
710 
711 	if (adreno_is_a650_family(adreno_gpu))
712 		dtcm_base = 0x10004000;
713 
714 	if (gmu->legacy) {
715 		/* Sanity check the size of the firmware that was loaded */
716 		if (fw_image->size > 0x8000) {
717 			DRM_DEV_ERROR(gmu->dev,
718 				"GMU firmware is bigger than the available region\n");
719 			return -EINVAL;
720 		}
721 
722 		gmu_write_bulk(gmu, REG_A6XX_GMU_CM3_ITCM_START,
723 			       (u32*) fw_image->data, fw_image->size);
724 		return 0;
725 	}
726 
727 
728 	for (blk = (const struct block_header *) fw_image->data;
729 	     (const u8*) blk < fw_image->data + fw_image->size;
730 	     blk = (const struct block_header *) &blk->data[blk->size >> 2]) {
731 		if (blk->size == 0)
732 			continue;
733 
734 		if (in_range(blk->addr, itcm_base, SZ_16K)) {
735 			reg_offset = (blk->addr - itcm_base) >> 2;
736 			gmu_write_bulk(gmu,
737 				REG_A6XX_GMU_CM3_ITCM_START + reg_offset,
738 				blk->data, blk->size);
739 		} else if (in_range(blk->addr, dtcm_base, SZ_16K)) {
740 			reg_offset = (blk->addr - dtcm_base) >> 2;
741 			gmu_write_bulk(gmu,
742 				REG_A6XX_GMU_CM3_DTCM_START + reg_offset,
743 				blk->data, blk->size);
744 		} else if (!fw_block_mem(&gmu->icache, blk) &&
745 			   !fw_block_mem(&gmu->dcache, blk) &&
746 			   !fw_block_mem(&gmu->dummy, blk)) {
747 			DRM_DEV_ERROR(gmu->dev,
748 				"failed to match fw block (addr=%.8x size=%d data[0]=%.8x)\n",
749 				blk->addr, blk->size, blk->data[0]);
750 		}
751 	}
752 
753 	return 0;
754 }
755 
756 static int a6xx_gmu_fw_start(struct a6xx_gmu *gmu, unsigned int state)
757 {
758 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
759 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
760 	int ret;
761 	u32 chipid;
762 
763 	if (adreno_is_a650_family(adreno_gpu)) {
764 		gmu_write(gmu, REG_A6XX_GPU_GMU_CX_GMU_CX_FALNEXT_INTF, 1);
765 		gmu_write(gmu, REG_A6XX_GPU_GMU_CX_GMU_CX_FAL_INTF, 1);
766 	}
767 
768 	if (state == GMU_WARM_BOOT) {
769 		ret = a6xx_rpmh_start(gmu);
770 		if (ret)
771 			return ret;
772 	} else {
773 		if (WARN(!adreno_gpu->fw[ADRENO_FW_GMU],
774 			"GMU firmware is not loaded\n"))
775 			return -ENOENT;
776 
777 		/* Turn on register retention */
778 		gmu_write(gmu, REG_A6XX_GMU_GENERAL_7, 1);
779 
780 		ret = a6xx_rpmh_start(gmu);
781 		if (ret)
782 			return ret;
783 
784 		ret = a6xx_gmu_fw_load(gmu);
785 		if (ret)
786 			return ret;
787 	}
788 
789 	gmu_write(gmu, REG_A6XX_GMU_CM3_FW_INIT_RESULT, 0);
790 	gmu_write(gmu, REG_A6XX_GMU_CM3_BOOT_CONFIG, 0x02);
791 
792 	/* Write the iova of the HFI table */
793 	gmu_write(gmu, REG_A6XX_GMU_HFI_QTBL_ADDR, gmu->hfi.iova);
794 	gmu_write(gmu, REG_A6XX_GMU_HFI_QTBL_INFO, 1);
795 
796 	gmu_write(gmu, REG_A6XX_GMU_AHB_FENCE_RANGE_0,
797 		(1 << 31) | (0xa << 18) | (0xa0));
798 
799 	chipid = adreno_gpu->rev.core << 24;
800 	chipid |= adreno_gpu->rev.major << 16;
801 	chipid |= adreno_gpu->rev.minor << 12;
802 	chipid |= adreno_gpu->rev.patchid << 8;
803 
804 	gmu_write(gmu, REG_A6XX_GMU_HFI_SFR_ADDR, chipid);
805 
806 	gmu_write(gmu, REG_A6XX_GPU_GMU_CX_GMU_PWR_COL_CP_MSG,
807 		  gmu->log.iova | (gmu->log.size / SZ_4K - 1));
808 
809 	/* Set up the lowest idle level on the GMU */
810 	a6xx_gmu_power_config(gmu);
811 
812 	ret = a6xx_gmu_start(gmu);
813 	if (ret)
814 		return ret;
815 
816 	if (gmu->legacy) {
817 		ret = a6xx_gmu_gfx_rail_on(gmu);
818 		if (ret)
819 			return ret;
820 	}
821 
822 	/* Enable SPTP_PC if the CPU is responsible for it */
823 	if (gmu->idle_level < GMU_IDLE_STATE_SPTP) {
824 		ret = a6xx_sptprac_enable(gmu);
825 		if (ret)
826 			return ret;
827 	}
828 
829 	ret = a6xx_gmu_hfi_start(gmu);
830 	if (ret)
831 		return ret;
832 
833 	/* FIXME: Do we need this wmb() here? */
834 	wmb();
835 
836 	return 0;
837 }
838 
839 #define A6XX_HFI_IRQ_MASK \
840 	(A6XX_GMU_GMU2HOST_INTR_INFO_CM3_FAULT)
841 
842 #define A6XX_GMU_IRQ_MASK \
843 	(A6XX_GMU_AO_HOST_INTERRUPT_STATUS_WDOG_BITE | \
844 	 A6XX_GMU_AO_HOST_INTERRUPT_STATUS_HOST_AHB_BUS_ERROR | \
845 	 A6XX_GMU_AO_HOST_INTERRUPT_STATUS_FENCE_ERR)
846 
847 static void a6xx_gmu_irq_disable(struct a6xx_gmu *gmu)
848 {
849 	disable_irq(gmu->gmu_irq);
850 	disable_irq(gmu->hfi_irq);
851 
852 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_MASK, ~0);
853 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_MASK, ~0);
854 }
855 
856 static void a6xx_gmu_rpmh_off(struct a6xx_gmu *gmu)
857 {
858 	u32 val;
859 
860 	/* Make sure there are no outstanding RPMh votes */
861 	gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_TCS0_DRV0_STATUS, val,
862 		(val & 1), 100, 10000);
863 	gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_TCS1_DRV0_STATUS, val,
864 		(val & 1), 100, 10000);
865 	gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_TCS2_DRV0_STATUS, val,
866 		(val & 1), 100, 10000);
867 	gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_TCS3_DRV0_STATUS, val,
868 		(val & 1), 100, 1000);
869 }
870 
871 /* Force the GMU off in case it isn't responsive */
872 static void a6xx_gmu_force_off(struct a6xx_gmu *gmu)
873 {
874 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
875 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
876 	struct msm_gpu *gpu = &adreno_gpu->base;
877 
878 	/*
879 	 * Turn off keep alive that might have been enabled by the hang
880 	 * interrupt
881 	 */
882 	gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0);
883 
884 	/* Flush all the queues */
885 	a6xx_hfi_stop(gmu);
886 
887 	/* Stop the interrupts */
888 	a6xx_gmu_irq_disable(gmu);
889 
890 	/* Force off SPTP in case the GMU is managing it */
891 	a6xx_sptprac_disable(gmu);
892 
893 	/* Make sure there are no outstanding RPMh votes */
894 	a6xx_gmu_rpmh_off(gmu);
895 
896 	/* Halt the gmu cm3 core */
897 	gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 1);
898 
899 	a6xx_bus_clear_pending_transactions(adreno_gpu, true);
900 
901 	/* Reset GPU core blocks */
902 	gpu_write(gpu, REG_A6XX_RBBM_SW_RESET_CMD, 1);
903 	udelay(100);
904 }
905 
906 static void a6xx_gmu_set_initial_freq(struct msm_gpu *gpu, struct a6xx_gmu *gmu)
907 {
908 	struct dev_pm_opp *gpu_opp;
909 	unsigned long gpu_freq = gmu->gpu_freqs[gmu->current_perf_index];
910 
911 	gpu_opp = dev_pm_opp_find_freq_exact(&gpu->pdev->dev, gpu_freq, true);
912 	if (IS_ERR(gpu_opp))
913 		return;
914 
915 	gmu->freq = 0; /* so a6xx_gmu_set_freq() doesn't exit early */
916 	a6xx_gmu_set_freq(gpu, gpu_opp, false);
917 	dev_pm_opp_put(gpu_opp);
918 }
919 
920 static void a6xx_gmu_set_initial_bw(struct msm_gpu *gpu, struct a6xx_gmu *gmu)
921 {
922 	struct dev_pm_opp *gpu_opp;
923 	unsigned long gpu_freq = gmu->gpu_freqs[gmu->current_perf_index];
924 
925 	gpu_opp = dev_pm_opp_find_freq_exact(&gpu->pdev->dev, gpu_freq, true);
926 	if (IS_ERR(gpu_opp))
927 		return;
928 
929 	dev_pm_opp_set_opp(&gpu->pdev->dev, gpu_opp);
930 	dev_pm_opp_put(gpu_opp);
931 }
932 
933 int a6xx_gmu_resume(struct a6xx_gpu *a6xx_gpu)
934 {
935 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
936 	struct msm_gpu *gpu = &adreno_gpu->base;
937 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
938 	int status, ret;
939 
940 	if (WARN(!gmu->initialized, "The GMU is not set up yet\n"))
941 		return -EINVAL;
942 
943 	gmu->hung = false;
944 
945 	/* Turn on the resources */
946 	pm_runtime_get_sync(gmu->dev);
947 
948 	/*
949 	 * "enable" the GX power domain which won't actually do anything but it
950 	 * will make sure that the refcounting is correct in case we need to
951 	 * bring down the GX after a GMU failure
952 	 */
953 	if (!IS_ERR_OR_NULL(gmu->gxpd))
954 		pm_runtime_get_sync(gmu->gxpd);
955 
956 	/* Use a known rate to bring up the GMU */
957 	clk_set_rate(gmu->core_clk, 200000000);
958 	clk_set_rate(gmu->hub_clk, 150000000);
959 	ret = clk_bulk_prepare_enable(gmu->nr_clocks, gmu->clocks);
960 	if (ret) {
961 		pm_runtime_put(gmu->gxpd);
962 		pm_runtime_put(gmu->dev);
963 		return ret;
964 	}
965 
966 	/* Set the bus quota to a reasonable value for boot */
967 	a6xx_gmu_set_initial_bw(gpu, gmu);
968 
969 	/* Enable the GMU interrupt */
970 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_CLR, ~0);
971 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_MASK, ~A6XX_GMU_IRQ_MASK);
972 	enable_irq(gmu->gmu_irq);
973 
974 	/* Check to see if we are doing a cold or warm boot */
975 	status = gmu_read(gmu, REG_A6XX_GMU_GENERAL_7) == 1 ?
976 		GMU_WARM_BOOT : GMU_COLD_BOOT;
977 
978 	/*
979 	 * Warm boot path does not work on newer GPUs
980 	 * Presumably this is because icache/dcache regions must be restored
981 	 */
982 	if (!gmu->legacy)
983 		status = GMU_COLD_BOOT;
984 
985 	ret = a6xx_gmu_fw_start(gmu, status);
986 	if (ret)
987 		goto out;
988 
989 	ret = a6xx_hfi_start(gmu, status);
990 	if (ret)
991 		goto out;
992 
993 	/*
994 	 * Turn on the GMU firmware fault interrupt after we know the boot
995 	 * sequence is successful
996 	 */
997 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, ~0);
998 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_MASK, ~A6XX_HFI_IRQ_MASK);
999 	enable_irq(gmu->hfi_irq);
1000 
1001 	/* Set the GPU to the current freq */
1002 	a6xx_gmu_set_initial_freq(gpu, gmu);
1003 
1004 out:
1005 	/* On failure, shut down the GMU to leave it in a good state */
1006 	if (ret) {
1007 		disable_irq(gmu->gmu_irq);
1008 		a6xx_rpmh_stop(gmu);
1009 		pm_runtime_put(gmu->gxpd);
1010 		pm_runtime_put(gmu->dev);
1011 	}
1012 
1013 	return ret;
1014 }
1015 
1016 bool a6xx_gmu_isidle(struct a6xx_gmu *gmu)
1017 {
1018 	u32 reg;
1019 
1020 	if (!gmu->initialized)
1021 		return true;
1022 
1023 	reg = gmu_read(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS);
1024 
1025 	if (reg &  A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS_GPUBUSYIGNAHB)
1026 		return false;
1027 
1028 	return true;
1029 }
1030 
1031 /* Gracefully try to shut down the GMU and by extension the GPU */
1032 static void a6xx_gmu_shutdown(struct a6xx_gmu *gmu)
1033 {
1034 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
1035 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1036 	u32 val;
1037 
1038 	/*
1039 	 * The GMU may still be in slumber unless the GPU started so check and
1040 	 * skip putting it back into slumber if so
1041 	 */
1042 	val = gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE);
1043 
1044 	if (val != 0xf) {
1045 		int ret = a6xx_gmu_wait_for_idle(gmu);
1046 
1047 		/* If the GMU isn't responding assume it is hung */
1048 		if (ret) {
1049 			a6xx_gmu_force_off(gmu);
1050 			return;
1051 		}
1052 
1053 		a6xx_bus_clear_pending_transactions(adreno_gpu, a6xx_gpu->hung);
1054 
1055 		/* tell the GMU we want to slumber */
1056 		ret = a6xx_gmu_notify_slumber(gmu);
1057 		if (ret) {
1058 			a6xx_gmu_force_off(gmu);
1059 			return;
1060 		}
1061 
1062 		ret = gmu_poll_timeout(gmu,
1063 			REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS, val,
1064 			!(val & A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS_GPUBUSYIGNAHB),
1065 			100, 10000);
1066 
1067 		/*
1068 		 * Let the user know we failed to slumber but don't worry too
1069 		 * much because we are powering down anyway
1070 		 */
1071 
1072 		if (ret)
1073 			DRM_DEV_ERROR(gmu->dev,
1074 				"Unable to slumber GMU: status = 0%x/0%x\n",
1075 				gmu_read(gmu,
1076 					REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS),
1077 				gmu_read(gmu,
1078 					REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS2));
1079 	}
1080 
1081 	/* Turn off HFI */
1082 	a6xx_hfi_stop(gmu);
1083 
1084 	/* Stop the interrupts and mask the hardware */
1085 	a6xx_gmu_irq_disable(gmu);
1086 
1087 	/* Tell RPMh to power off the GPU */
1088 	a6xx_rpmh_stop(gmu);
1089 }
1090 
1091 
1092 int a6xx_gmu_stop(struct a6xx_gpu *a6xx_gpu)
1093 {
1094 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
1095 	struct msm_gpu *gpu = &a6xx_gpu->base.base;
1096 
1097 	if (!pm_runtime_active(gmu->dev))
1098 		return 0;
1099 
1100 	/*
1101 	 * Force the GMU off if we detected a hang, otherwise try to shut it
1102 	 * down gracefully
1103 	 */
1104 	if (gmu->hung)
1105 		a6xx_gmu_force_off(gmu);
1106 	else
1107 		a6xx_gmu_shutdown(gmu);
1108 
1109 	/* Remove the bus vote */
1110 	dev_pm_opp_set_opp(&gpu->pdev->dev, NULL);
1111 
1112 	/*
1113 	 * Make sure the GX domain is off before turning off the GMU (CX)
1114 	 * domain. Usually the GMU does this but only if the shutdown sequence
1115 	 * was successful
1116 	 */
1117 	if (!IS_ERR_OR_NULL(gmu->gxpd))
1118 		pm_runtime_put_sync(gmu->gxpd);
1119 
1120 	clk_bulk_disable_unprepare(gmu->nr_clocks, gmu->clocks);
1121 
1122 	pm_runtime_put_sync(gmu->dev);
1123 
1124 	return 0;
1125 }
1126 
1127 static void a6xx_gmu_memory_free(struct a6xx_gmu *gmu)
1128 {
1129 	msm_gem_kernel_put(gmu->hfi.obj, gmu->aspace);
1130 	msm_gem_kernel_put(gmu->debug.obj, gmu->aspace);
1131 	msm_gem_kernel_put(gmu->icache.obj, gmu->aspace);
1132 	msm_gem_kernel_put(gmu->dcache.obj, gmu->aspace);
1133 	msm_gem_kernel_put(gmu->dummy.obj, gmu->aspace);
1134 	msm_gem_kernel_put(gmu->log.obj, gmu->aspace);
1135 
1136 	gmu->aspace->mmu->funcs->detach(gmu->aspace->mmu);
1137 	msm_gem_address_space_put(gmu->aspace);
1138 }
1139 
1140 static int a6xx_gmu_memory_alloc(struct a6xx_gmu *gmu, struct a6xx_gmu_bo *bo,
1141 		size_t size, u64 iova, const char *name)
1142 {
1143 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
1144 	struct drm_device *dev = a6xx_gpu->base.base.dev;
1145 	uint32_t flags = MSM_BO_WC;
1146 	u64 range_start, range_end;
1147 	int ret;
1148 
1149 	size = PAGE_ALIGN(size);
1150 	if (!iova) {
1151 		/* no fixed address - use GMU's uncached range */
1152 		range_start = 0x60000000 + PAGE_SIZE; /* skip dummy page */
1153 		range_end = 0x80000000;
1154 	} else {
1155 		/* range for fixed address */
1156 		range_start = iova;
1157 		range_end = iova + size;
1158 		/* use IOMMU_PRIV for icache/dcache */
1159 		flags |= MSM_BO_MAP_PRIV;
1160 	}
1161 
1162 	bo->obj = msm_gem_new(dev, size, flags);
1163 	if (IS_ERR(bo->obj))
1164 		return PTR_ERR(bo->obj);
1165 
1166 	ret = msm_gem_get_and_pin_iova_range(bo->obj, gmu->aspace, &bo->iova,
1167 					     range_start, range_end);
1168 	if (ret) {
1169 		drm_gem_object_put(bo->obj);
1170 		return ret;
1171 	}
1172 
1173 	bo->virt = msm_gem_get_vaddr(bo->obj);
1174 	bo->size = size;
1175 
1176 	msm_gem_object_set_name(bo->obj, name);
1177 
1178 	return 0;
1179 }
1180 
1181 static int a6xx_gmu_memory_probe(struct a6xx_gmu *gmu)
1182 {
1183 	struct msm_mmu *mmu;
1184 
1185 	mmu = msm_iommu_new(gmu->dev, 0);
1186 	if (!mmu)
1187 		return -ENODEV;
1188 	if (IS_ERR(mmu))
1189 		return PTR_ERR(mmu);
1190 
1191 	gmu->aspace = msm_gem_address_space_create(mmu, "gmu", 0x0, 0x80000000);
1192 	if (IS_ERR(gmu->aspace))
1193 		return PTR_ERR(gmu->aspace);
1194 
1195 	return 0;
1196 }
1197 
1198 /* Return the 'arc-level' for the given frequency */
1199 static unsigned int a6xx_gmu_get_arc_level(struct device *dev,
1200 					   unsigned long freq)
1201 {
1202 	struct dev_pm_opp *opp;
1203 	unsigned int val;
1204 
1205 	if (!freq)
1206 		return 0;
1207 
1208 	opp = dev_pm_opp_find_freq_exact(dev, freq, true);
1209 	if (IS_ERR(opp))
1210 		return 0;
1211 
1212 	val = dev_pm_opp_get_level(opp);
1213 
1214 	dev_pm_opp_put(opp);
1215 
1216 	return val;
1217 }
1218 
1219 static int a6xx_gmu_rpmh_arc_votes_init(struct device *dev, u32 *votes,
1220 		unsigned long *freqs, int freqs_count, const char *id)
1221 {
1222 	int i, j;
1223 	const u16 *pri, *sec;
1224 	size_t pri_count, sec_count;
1225 
1226 	pri = cmd_db_read_aux_data(id, &pri_count);
1227 	if (IS_ERR(pri))
1228 		return PTR_ERR(pri);
1229 	/*
1230 	 * The data comes back as an array of unsigned shorts so adjust the
1231 	 * count accordingly
1232 	 */
1233 	pri_count >>= 1;
1234 	if (!pri_count)
1235 		return -EINVAL;
1236 
1237 	sec = cmd_db_read_aux_data("mx.lvl", &sec_count);
1238 	if (IS_ERR(sec))
1239 		return PTR_ERR(sec);
1240 
1241 	sec_count >>= 1;
1242 	if (!sec_count)
1243 		return -EINVAL;
1244 
1245 	/* Construct a vote for each frequency */
1246 	for (i = 0; i < freqs_count; i++) {
1247 		u8 pindex = 0, sindex = 0;
1248 		unsigned int level = a6xx_gmu_get_arc_level(dev, freqs[i]);
1249 
1250 		/* Get the primary index that matches the arc level */
1251 		for (j = 0; j < pri_count; j++) {
1252 			if (pri[j] >= level) {
1253 				pindex = j;
1254 				break;
1255 			}
1256 		}
1257 
1258 		if (j == pri_count) {
1259 			DRM_DEV_ERROR(dev,
1260 				      "Level %u not found in the RPMh list\n",
1261 				      level);
1262 			DRM_DEV_ERROR(dev, "Available levels:\n");
1263 			for (j = 0; j < pri_count; j++)
1264 				DRM_DEV_ERROR(dev, "  %u\n", pri[j]);
1265 
1266 			return -EINVAL;
1267 		}
1268 
1269 		/*
1270 		 * Look for a level in in the secondary list that matches. If
1271 		 * nothing fits, use the maximum non zero vote
1272 		 */
1273 
1274 		for (j = 0; j < sec_count; j++) {
1275 			if (sec[j] >= level) {
1276 				sindex = j;
1277 				break;
1278 			} else if (sec[j]) {
1279 				sindex = j;
1280 			}
1281 		}
1282 
1283 		/* Construct the vote */
1284 		votes[i] = ((pri[pindex] & 0xffff) << 16) |
1285 			(sindex << 8) | pindex;
1286 	}
1287 
1288 	return 0;
1289 }
1290 
1291 /*
1292  * The GMU votes with the RPMh for itself and on behalf of the GPU but we need
1293  * to construct the list of votes on the CPU and send it over. Query the RPMh
1294  * voltage levels and build the votes
1295  */
1296 
1297 static int a6xx_gmu_rpmh_votes_init(struct a6xx_gmu *gmu)
1298 {
1299 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
1300 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1301 	struct msm_gpu *gpu = &adreno_gpu->base;
1302 	int ret;
1303 
1304 	/* Build the GX votes */
1305 	ret = a6xx_gmu_rpmh_arc_votes_init(&gpu->pdev->dev, gmu->gx_arc_votes,
1306 		gmu->gpu_freqs, gmu->nr_gpu_freqs, "gfx.lvl");
1307 
1308 	/* Build the CX votes */
1309 	ret |= a6xx_gmu_rpmh_arc_votes_init(gmu->dev, gmu->cx_arc_votes,
1310 		gmu->gmu_freqs, gmu->nr_gmu_freqs, "cx.lvl");
1311 
1312 	return ret;
1313 }
1314 
1315 static int a6xx_gmu_build_freq_table(struct device *dev, unsigned long *freqs,
1316 		u32 size)
1317 {
1318 	int count = dev_pm_opp_get_opp_count(dev);
1319 	struct dev_pm_opp *opp;
1320 	int i, index = 0;
1321 	unsigned long freq = 1;
1322 
1323 	/*
1324 	 * The OPP table doesn't contain the "off" frequency level so we need to
1325 	 * add 1 to the table size to account for it
1326 	 */
1327 
1328 	if (WARN(count + 1 > size,
1329 		"The GMU frequency table is being truncated\n"))
1330 		count = size - 1;
1331 
1332 	/* Set the "off" frequency */
1333 	freqs[index++] = 0;
1334 
1335 	for (i = 0; i < count; i++) {
1336 		opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1337 		if (IS_ERR(opp))
1338 			break;
1339 
1340 		dev_pm_opp_put(opp);
1341 		freqs[index++] = freq++;
1342 	}
1343 
1344 	return index;
1345 }
1346 
1347 static int a6xx_gmu_pwrlevels_probe(struct a6xx_gmu *gmu)
1348 {
1349 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
1350 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1351 	struct msm_gpu *gpu = &adreno_gpu->base;
1352 
1353 	int ret = 0;
1354 
1355 	/*
1356 	 * The GMU handles its own frequency switching so build a list of
1357 	 * available frequencies to send during initialization
1358 	 */
1359 	ret = devm_pm_opp_of_add_table(gmu->dev);
1360 	if (ret) {
1361 		DRM_DEV_ERROR(gmu->dev, "Unable to set the OPP table for the GMU\n");
1362 		return ret;
1363 	}
1364 
1365 	gmu->nr_gmu_freqs = a6xx_gmu_build_freq_table(gmu->dev,
1366 		gmu->gmu_freqs, ARRAY_SIZE(gmu->gmu_freqs));
1367 
1368 	/*
1369 	 * The GMU also handles GPU frequency switching so build a list
1370 	 * from the GPU OPP table
1371 	 */
1372 	gmu->nr_gpu_freqs = a6xx_gmu_build_freq_table(&gpu->pdev->dev,
1373 		gmu->gpu_freqs, ARRAY_SIZE(gmu->gpu_freqs));
1374 
1375 	gmu->current_perf_index = gmu->nr_gpu_freqs - 1;
1376 
1377 	/* Build the list of RPMh votes that we'll send to the GMU */
1378 	return a6xx_gmu_rpmh_votes_init(gmu);
1379 }
1380 
1381 static int a6xx_gmu_clocks_probe(struct a6xx_gmu *gmu)
1382 {
1383 	int ret = devm_clk_bulk_get_all(gmu->dev, &gmu->clocks);
1384 
1385 	if (ret < 1)
1386 		return ret;
1387 
1388 	gmu->nr_clocks = ret;
1389 
1390 	gmu->core_clk = msm_clk_bulk_get_clock(gmu->clocks,
1391 		gmu->nr_clocks, "gmu");
1392 
1393 	gmu->hub_clk = msm_clk_bulk_get_clock(gmu->clocks,
1394 		gmu->nr_clocks, "hub");
1395 
1396 	return 0;
1397 }
1398 
1399 static void __iomem *a6xx_gmu_get_mmio(struct platform_device *pdev,
1400 		const char *name)
1401 {
1402 	void __iomem *ret;
1403 	struct resource *res = platform_get_resource_byname(pdev,
1404 			IORESOURCE_MEM, name);
1405 
1406 	if (!res) {
1407 		DRM_DEV_ERROR(&pdev->dev, "Unable to find the %s registers\n", name);
1408 		return ERR_PTR(-EINVAL);
1409 	}
1410 
1411 	ret = ioremap(res->start, resource_size(res));
1412 	if (!ret) {
1413 		DRM_DEV_ERROR(&pdev->dev, "Unable to map the %s registers\n", name);
1414 		return ERR_PTR(-EINVAL);
1415 	}
1416 
1417 	return ret;
1418 }
1419 
1420 static int a6xx_gmu_get_irq(struct a6xx_gmu *gmu, struct platform_device *pdev,
1421 		const char *name, irq_handler_t handler)
1422 {
1423 	int irq, ret;
1424 
1425 	irq = platform_get_irq_byname(pdev, name);
1426 
1427 	ret = request_irq(irq, handler, IRQF_TRIGGER_HIGH, name, gmu);
1428 	if (ret) {
1429 		DRM_DEV_ERROR(&pdev->dev, "Unable to get interrupt %s %d\n",
1430 			      name, ret);
1431 		return ret;
1432 	}
1433 
1434 	disable_irq(irq);
1435 
1436 	return irq;
1437 }
1438 
1439 void a6xx_gmu_remove(struct a6xx_gpu *a6xx_gpu)
1440 {
1441 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
1442 	struct platform_device *pdev = to_platform_device(gmu->dev);
1443 
1444 	if (!gmu->initialized)
1445 		return;
1446 
1447 	pm_runtime_force_suspend(gmu->dev);
1448 
1449 	/*
1450 	 * Since cxpd is a virt device, the devlink with gmu-dev will be removed
1451 	 * automatically when we do detach
1452 	 */
1453 	dev_pm_domain_detach(gmu->cxpd, false);
1454 
1455 	if (!IS_ERR_OR_NULL(gmu->gxpd)) {
1456 		pm_runtime_disable(gmu->gxpd);
1457 		dev_pm_domain_detach(gmu->gxpd, false);
1458 	}
1459 
1460 	iounmap(gmu->mmio);
1461 	if (platform_get_resource_byname(pdev, IORESOURCE_MEM, "rscc"))
1462 		iounmap(gmu->rscc);
1463 	gmu->mmio = NULL;
1464 	gmu->rscc = NULL;
1465 
1466 	a6xx_gmu_memory_free(gmu);
1467 
1468 	free_irq(gmu->gmu_irq, gmu);
1469 	free_irq(gmu->hfi_irq, gmu);
1470 
1471 	/* Drop reference taken in of_find_device_by_node */
1472 	put_device(gmu->dev);
1473 
1474 	gmu->initialized = false;
1475 }
1476 
1477 static int cxpd_notifier_cb(struct notifier_block *nb,
1478 			unsigned long action, void *data)
1479 {
1480 	struct a6xx_gmu *gmu = container_of(nb, struct a6xx_gmu, pd_nb);
1481 
1482 	if (action == GENPD_NOTIFY_OFF)
1483 		complete_all(&gmu->pd_gate);
1484 
1485 	return 0;
1486 }
1487 
1488 int a6xx_gmu_init(struct a6xx_gpu *a6xx_gpu, struct device_node *node)
1489 {
1490 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1491 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
1492 	struct platform_device *pdev = of_find_device_by_node(node);
1493 	int ret;
1494 
1495 	if (!pdev)
1496 		return -ENODEV;
1497 
1498 	gmu->dev = &pdev->dev;
1499 
1500 	of_dma_configure(gmu->dev, node, true);
1501 
1502 	/* Fow now, don't do anything fancy until we get our feet under us */
1503 	gmu->idle_level = GMU_IDLE_STATE_ACTIVE;
1504 
1505 	pm_runtime_enable(gmu->dev);
1506 
1507 	/* Get the list of clocks */
1508 	ret = a6xx_gmu_clocks_probe(gmu);
1509 	if (ret)
1510 		goto err_put_device;
1511 
1512 	ret = a6xx_gmu_memory_probe(gmu);
1513 	if (ret)
1514 		goto err_put_device;
1515 
1516 
1517 	/* A660 now requires handling "prealloc requests" in GMU firmware
1518 	 * For now just hardcode allocations based on the known firmware.
1519 	 * note: there is no indication that these correspond to "dummy" or
1520 	 * "debug" regions, but this "guess" allows reusing these BOs which
1521 	 * are otherwise unused by a660.
1522 	 */
1523 	gmu->dummy.size = SZ_4K;
1524 	if (adreno_is_a660_family(adreno_gpu)) {
1525 		ret = a6xx_gmu_memory_alloc(gmu, &gmu->debug, SZ_4K * 7,
1526 					    0x60400000, "debug");
1527 		if (ret)
1528 			goto err_memory;
1529 
1530 		gmu->dummy.size = SZ_8K;
1531 	}
1532 
1533 	/* Allocate memory for the GMU dummy page */
1534 	ret = a6xx_gmu_memory_alloc(gmu, &gmu->dummy, gmu->dummy.size,
1535 				    0x60000000, "dummy");
1536 	if (ret)
1537 		goto err_memory;
1538 
1539 	/* Note that a650 family also includes a660 family: */
1540 	if (adreno_is_a650_family(adreno_gpu)) {
1541 		ret = a6xx_gmu_memory_alloc(gmu, &gmu->icache,
1542 			SZ_16M - SZ_16K, 0x04000, "icache");
1543 		if (ret)
1544 			goto err_memory;
1545 	/*
1546 	 * NOTE: when porting legacy ("pre-650-family") GPUs you may be tempted to add a condition
1547 	 * to allocate icache/dcache here, as per downstream code flow, but it may not actually be
1548 	 * necessary. If you omit this step and you don't get random pagefaults, you are likely
1549 	 * good to go without this!
1550 	 */
1551 	} else if (adreno_is_a640_family(adreno_gpu)) {
1552 		ret = a6xx_gmu_memory_alloc(gmu, &gmu->icache,
1553 			SZ_256K - SZ_16K, 0x04000, "icache");
1554 		if (ret)
1555 			goto err_memory;
1556 
1557 		ret = a6xx_gmu_memory_alloc(gmu, &gmu->dcache,
1558 			SZ_256K - SZ_16K, 0x44000, "dcache");
1559 		if (ret)
1560 			goto err_memory;
1561 	} else if (adreno_is_a630(adreno_gpu) || adreno_is_a615_family(adreno_gpu)) {
1562 		/* HFI v1, has sptprac */
1563 		gmu->legacy = true;
1564 
1565 		/* Allocate memory for the GMU debug region */
1566 		ret = a6xx_gmu_memory_alloc(gmu, &gmu->debug, SZ_16K, 0, "debug");
1567 		if (ret)
1568 			goto err_memory;
1569 	}
1570 
1571 	/* Allocate memory for for the HFI queues */
1572 	ret = a6xx_gmu_memory_alloc(gmu, &gmu->hfi, SZ_16K, 0, "hfi");
1573 	if (ret)
1574 		goto err_memory;
1575 
1576 	/* Allocate memory for the GMU log region */
1577 	ret = a6xx_gmu_memory_alloc(gmu, &gmu->log, SZ_4K, 0, "log");
1578 	if (ret)
1579 		goto err_memory;
1580 
1581 	/* Map the GMU registers */
1582 	gmu->mmio = a6xx_gmu_get_mmio(pdev, "gmu");
1583 	if (IS_ERR(gmu->mmio)) {
1584 		ret = PTR_ERR(gmu->mmio);
1585 		goto err_memory;
1586 	}
1587 
1588 	if (adreno_is_a650_family(adreno_gpu)) {
1589 		gmu->rscc = a6xx_gmu_get_mmio(pdev, "rscc");
1590 		if (IS_ERR(gmu->rscc)) {
1591 			ret = -ENODEV;
1592 			goto err_mmio;
1593 		}
1594 	} else {
1595 		gmu->rscc = gmu->mmio + 0x23000;
1596 	}
1597 
1598 	/* Get the HFI and GMU interrupts */
1599 	gmu->hfi_irq = a6xx_gmu_get_irq(gmu, pdev, "hfi", a6xx_hfi_irq);
1600 	gmu->gmu_irq = a6xx_gmu_get_irq(gmu, pdev, "gmu", a6xx_gmu_irq);
1601 
1602 	if (gmu->hfi_irq < 0 || gmu->gmu_irq < 0) {
1603 		ret = -ENODEV;
1604 		goto err_mmio;
1605 	}
1606 
1607 	gmu->cxpd = dev_pm_domain_attach_by_name(gmu->dev, "cx");
1608 	if (IS_ERR(gmu->cxpd)) {
1609 		ret = PTR_ERR(gmu->cxpd);
1610 		goto err_mmio;
1611 	}
1612 
1613 	if (!device_link_add(gmu->dev, gmu->cxpd,
1614 					DL_FLAG_PM_RUNTIME)) {
1615 		ret = -ENODEV;
1616 		goto detach_cxpd;
1617 	}
1618 
1619 	init_completion(&gmu->pd_gate);
1620 	complete_all(&gmu->pd_gate);
1621 	gmu->pd_nb.notifier_call = cxpd_notifier_cb;
1622 
1623 	/*
1624 	 * Get a link to the GX power domain to reset the GPU in case of GMU
1625 	 * crash
1626 	 */
1627 	gmu->gxpd = dev_pm_domain_attach_by_name(gmu->dev, "gx");
1628 
1629 	/* Get the power levels for the GMU and GPU */
1630 	a6xx_gmu_pwrlevels_probe(gmu);
1631 
1632 	/* Set up the HFI queues */
1633 	a6xx_hfi_init(gmu);
1634 
1635 	/* Initialize RPMh */
1636 	a6xx_gmu_rpmh_init(gmu);
1637 
1638 	gmu->initialized = true;
1639 
1640 	return 0;
1641 
1642 detach_cxpd:
1643 	dev_pm_domain_detach(gmu->cxpd, false);
1644 
1645 err_mmio:
1646 	iounmap(gmu->mmio);
1647 	if (platform_get_resource_byname(pdev, IORESOURCE_MEM, "rscc"))
1648 		iounmap(gmu->rscc);
1649 	free_irq(gmu->gmu_irq, gmu);
1650 	free_irq(gmu->hfi_irq, gmu);
1651 
1652 err_memory:
1653 	a6xx_gmu_memory_free(gmu);
1654 err_put_device:
1655 	/* Drop reference taken in of_find_device_by_node */
1656 	put_device(gmu->dev);
1657 
1658 	return ret;
1659 }
1660