1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */ 3 4 #include <linux/clk.h> 5 #include <linux/interconnect.h> 6 #include <linux/pm_domain.h> 7 #include <linux/pm_opp.h> 8 #include <soc/qcom/cmd-db.h> 9 #include <drm/drm_gem.h> 10 11 #include "a6xx_gpu.h" 12 #include "a6xx_gmu.xml.h" 13 #include "msm_gem.h" 14 #include "msm_gpu_trace.h" 15 #include "msm_mmu.h" 16 17 static void a6xx_gmu_fault(struct a6xx_gmu *gmu) 18 { 19 struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu); 20 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 21 struct msm_gpu *gpu = &adreno_gpu->base; 22 23 /* FIXME: add a banner here */ 24 gmu->hung = true; 25 26 /* Turn off the hangcheck timer while we are resetting */ 27 del_timer(&gpu->hangcheck_timer); 28 29 /* Queue the GPU handler because we need to treat this as a recovery */ 30 kthread_queue_work(gpu->worker, &gpu->recover_work); 31 } 32 33 static irqreturn_t a6xx_gmu_irq(int irq, void *data) 34 { 35 struct a6xx_gmu *gmu = data; 36 u32 status; 37 38 status = gmu_read(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_STATUS); 39 gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_CLR, status); 40 41 if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_WDOG_BITE) { 42 dev_err_ratelimited(gmu->dev, "GMU watchdog expired\n"); 43 44 a6xx_gmu_fault(gmu); 45 } 46 47 if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_HOST_AHB_BUS_ERROR) 48 dev_err_ratelimited(gmu->dev, "GMU AHB bus error\n"); 49 50 if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_FENCE_ERR) 51 dev_err_ratelimited(gmu->dev, "GMU fence error: 0x%x\n", 52 gmu_read(gmu, REG_A6XX_GMU_AHB_FENCE_STATUS)); 53 54 return IRQ_HANDLED; 55 } 56 57 static irqreturn_t a6xx_hfi_irq(int irq, void *data) 58 { 59 struct a6xx_gmu *gmu = data; 60 u32 status; 61 62 status = gmu_read(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO); 63 gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, status); 64 65 if (status & A6XX_GMU_GMU2HOST_INTR_INFO_CM3_FAULT) { 66 dev_err_ratelimited(gmu->dev, "GMU firmware fault\n"); 67 68 a6xx_gmu_fault(gmu); 69 } 70 71 return IRQ_HANDLED; 72 } 73 74 bool a6xx_gmu_sptprac_is_on(struct a6xx_gmu *gmu) 75 { 76 u32 val; 77 78 /* This can be called from gpu state code so make sure GMU is valid */ 79 if (!gmu->initialized) 80 return false; 81 82 val = gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS); 83 84 return !(val & 85 (A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_SPTPRAC_GDSC_POWER_OFF | 86 A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_SP_CLOCK_OFF)); 87 } 88 89 /* Check to see if the GX rail is still powered */ 90 bool a6xx_gmu_gx_is_on(struct a6xx_gmu *gmu) 91 { 92 u32 val; 93 94 /* This can be called from gpu state code so make sure GMU is valid */ 95 if (!gmu->initialized) 96 return false; 97 98 val = gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS); 99 100 return !(val & 101 (A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_GX_HM_GDSC_POWER_OFF | 102 A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_GX_HM_CLK_OFF)); 103 } 104 105 void a6xx_gmu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp) 106 { 107 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 108 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 109 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 110 u32 perf_index; 111 unsigned long gpu_freq; 112 int ret = 0; 113 114 gpu_freq = dev_pm_opp_get_freq(opp); 115 116 if (gpu_freq == gmu->freq) 117 return; 118 119 for (perf_index = 0; perf_index < gmu->nr_gpu_freqs - 1; perf_index++) 120 if (gpu_freq == gmu->gpu_freqs[perf_index]) 121 break; 122 123 gmu->current_perf_index = perf_index; 124 gmu->freq = gmu->gpu_freqs[perf_index]; 125 126 trace_msm_gmu_freq_change(gmu->freq, perf_index); 127 128 /* 129 * This can get called from devfreq while the hardware is idle. Don't 130 * bring up the power if it isn't already active 131 */ 132 if (pm_runtime_get_if_in_use(gmu->dev) == 0) 133 return; 134 135 if (!gmu->legacy) { 136 a6xx_hfi_set_freq(gmu, perf_index); 137 dev_pm_opp_set_bw(&gpu->pdev->dev, opp); 138 pm_runtime_put(gmu->dev); 139 return; 140 } 141 142 gmu_write(gmu, REG_A6XX_GMU_DCVS_ACK_OPTION, 0); 143 144 gmu_write(gmu, REG_A6XX_GMU_DCVS_PERF_SETTING, 145 ((3 & 0xf) << 28) | perf_index); 146 147 /* 148 * Send an invalid index as a vote for the bus bandwidth and let the 149 * firmware decide on the right vote 150 */ 151 gmu_write(gmu, REG_A6XX_GMU_DCVS_BW_SETTING, 0xff); 152 153 /* Set and clear the OOB for DCVS to trigger the GMU */ 154 a6xx_gmu_set_oob(gmu, GMU_OOB_DCVS_SET); 155 a6xx_gmu_clear_oob(gmu, GMU_OOB_DCVS_SET); 156 157 ret = gmu_read(gmu, REG_A6XX_GMU_DCVS_RETURN); 158 if (ret) 159 dev_err(gmu->dev, "GMU set GPU frequency error: %d\n", ret); 160 161 dev_pm_opp_set_bw(&gpu->pdev->dev, opp); 162 pm_runtime_put(gmu->dev); 163 } 164 165 unsigned long a6xx_gmu_get_freq(struct msm_gpu *gpu) 166 { 167 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 168 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 169 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 170 171 return gmu->freq; 172 } 173 174 static bool a6xx_gmu_check_idle_level(struct a6xx_gmu *gmu) 175 { 176 u32 val; 177 int local = gmu->idle_level; 178 179 /* SPTP and IFPC both report as IFPC */ 180 if (gmu->idle_level == GMU_IDLE_STATE_SPTP) 181 local = GMU_IDLE_STATE_IFPC; 182 183 val = gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE); 184 185 if (val == local) { 186 if (gmu->idle_level != GMU_IDLE_STATE_IFPC || 187 !a6xx_gmu_gx_is_on(gmu)) 188 return true; 189 } 190 191 return false; 192 } 193 194 /* Wait for the GMU to get to its most idle state */ 195 int a6xx_gmu_wait_for_idle(struct a6xx_gmu *gmu) 196 { 197 return spin_until(a6xx_gmu_check_idle_level(gmu)); 198 } 199 200 static int a6xx_gmu_start(struct a6xx_gmu *gmu) 201 { 202 int ret; 203 u32 val; 204 u32 mask, reset_val; 205 206 val = gmu_read(gmu, REG_A6XX_GMU_CM3_DTCM_START + 0xff8); 207 if (val <= 0x20010004) { 208 mask = 0xffffffff; 209 reset_val = 0xbabeface; 210 } else { 211 mask = 0x1ff; 212 reset_val = 0x100; 213 } 214 215 gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 1); 216 217 /* Set the log wptr index 218 * note: downstream saves the value in poweroff and restores it here 219 */ 220 gmu_write(gmu, REG_A6XX_GPU_GMU_CX_GMU_PWR_COL_CP_RESP, 0); 221 222 gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 0); 223 224 ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_CM3_FW_INIT_RESULT, val, 225 (val & mask) == reset_val, 100, 10000); 226 227 if (ret) 228 DRM_DEV_ERROR(gmu->dev, "GMU firmware initialization timed out\n"); 229 230 return ret; 231 } 232 233 static int a6xx_gmu_hfi_start(struct a6xx_gmu *gmu) 234 { 235 u32 val; 236 int ret; 237 238 gmu_write(gmu, REG_A6XX_GMU_HFI_CTRL_INIT, 1); 239 240 ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_HFI_CTRL_STATUS, val, 241 val & 1, 100, 10000); 242 if (ret) 243 DRM_DEV_ERROR(gmu->dev, "Unable to start the HFI queues\n"); 244 245 return ret; 246 } 247 248 /* Trigger a OOB (out of band) request to the GMU */ 249 int a6xx_gmu_set_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state) 250 { 251 int ret; 252 u32 val; 253 int request, ack; 254 const char *name; 255 256 switch (state) { 257 case GMU_OOB_GPU_SET: 258 if (gmu->legacy) { 259 request = GMU_OOB_GPU_SET_REQUEST; 260 ack = GMU_OOB_GPU_SET_ACK; 261 } else { 262 request = GMU_OOB_GPU_SET_REQUEST_NEW; 263 ack = GMU_OOB_GPU_SET_ACK_NEW; 264 } 265 name = "GPU_SET"; 266 break; 267 case GMU_OOB_BOOT_SLUMBER: 268 request = GMU_OOB_BOOT_SLUMBER_REQUEST; 269 ack = GMU_OOB_BOOT_SLUMBER_ACK; 270 name = "BOOT_SLUMBER"; 271 break; 272 case GMU_OOB_DCVS_SET: 273 request = GMU_OOB_DCVS_REQUEST; 274 ack = GMU_OOB_DCVS_ACK; 275 name = "GPU_DCVS"; 276 break; 277 default: 278 return -EINVAL; 279 } 280 281 /* Trigger the equested OOB operation */ 282 gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 1 << request); 283 284 /* Wait for the acknowledge interrupt */ 285 ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO, val, 286 val & (1 << ack), 100, 10000); 287 288 if (ret) 289 DRM_DEV_ERROR(gmu->dev, 290 "Timeout waiting for GMU OOB set %s: 0x%x\n", 291 name, 292 gmu_read(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO)); 293 294 /* Clear the acknowledge interrupt */ 295 gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, 1 << ack); 296 297 return ret; 298 } 299 300 /* Clear a pending OOB state in the GMU */ 301 void a6xx_gmu_clear_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state) 302 { 303 if (!gmu->legacy) { 304 WARN_ON(state != GMU_OOB_GPU_SET); 305 gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 306 1 << GMU_OOB_GPU_SET_CLEAR_NEW); 307 return; 308 } 309 310 switch (state) { 311 case GMU_OOB_GPU_SET: 312 gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 313 1 << GMU_OOB_GPU_SET_CLEAR); 314 break; 315 case GMU_OOB_BOOT_SLUMBER: 316 gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 317 1 << GMU_OOB_BOOT_SLUMBER_CLEAR); 318 break; 319 case GMU_OOB_DCVS_SET: 320 gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 321 1 << GMU_OOB_DCVS_CLEAR); 322 break; 323 } 324 } 325 326 /* Enable CPU control of SPTP power power collapse */ 327 static int a6xx_sptprac_enable(struct a6xx_gmu *gmu) 328 { 329 int ret; 330 u32 val; 331 332 if (!gmu->legacy) 333 return 0; 334 335 gmu_write(gmu, REG_A6XX_GMU_GX_SPTPRAC_POWER_CONTROL, 0x778000); 336 337 ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, val, 338 (val & 0x38) == 0x28, 1, 100); 339 340 if (ret) { 341 DRM_DEV_ERROR(gmu->dev, "Unable to power on SPTPRAC: 0x%x\n", 342 gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS)); 343 } 344 345 return 0; 346 } 347 348 /* Disable CPU control of SPTP power power collapse */ 349 static void a6xx_sptprac_disable(struct a6xx_gmu *gmu) 350 { 351 u32 val; 352 int ret; 353 354 if (!gmu->legacy) 355 return; 356 357 /* Make sure retention is on */ 358 gmu_rmw(gmu, REG_A6XX_GPU_CC_GX_GDSCR, 0, (1 << 11)); 359 360 gmu_write(gmu, REG_A6XX_GMU_GX_SPTPRAC_POWER_CONTROL, 0x778001); 361 362 ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, val, 363 (val & 0x04), 100, 10000); 364 365 if (ret) 366 DRM_DEV_ERROR(gmu->dev, "failed to power off SPTPRAC: 0x%x\n", 367 gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS)); 368 } 369 370 /* Let the GMU know we are starting a boot sequence */ 371 static int a6xx_gmu_gfx_rail_on(struct a6xx_gmu *gmu) 372 { 373 u32 vote; 374 375 /* Let the GMU know we are getting ready for boot */ 376 gmu_write(gmu, REG_A6XX_GMU_BOOT_SLUMBER_OPTION, 0); 377 378 /* Choose the "default" power level as the highest available */ 379 vote = gmu->gx_arc_votes[gmu->nr_gpu_freqs - 1]; 380 381 gmu_write(gmu, REG_A6XX_GMU_GX_VOTE_IDX, vote & 0xff); 382 gmu_write(gmu, REG_A6XX_GMU_MX_VOTE_IDX, (vote >> 8) & 0xff); 383 384 /* Let the GMU know the boot sequence has started */ 385 return a6xx_gmu_set_oob(gmu, GMU_OOB_BOOT_SLUMBER); 386 } 387 388 /* Let the GMU know that we are about to go into slumber */ 389 static int a6xx_gmu_notify_slumber(struct a6xx_gmu *gmu) 390 { 391 int ret; 392 393 /* Disable the power counter so the GMU isn't busy */ 394 gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 0); 395 396 /* Disable SPTP_PC if the CPU is responsible for it */ 397 if (gmu->idle_level < GMU_IDLE_STATE_SPTP) 398 a6xx_sptprac_disable(gmu); 399 400 if (!gmu->legacy) { 401 ret = a6xx_hfi_send_prep_slumber(gmu); 402 goto out; 403 } 404 405 /* Tell the GMU to get ready to slumber */ 406 gmu_write(gmu, REG_A6XX_GMU_BOOT_SLUMBER_OPTION, 1); 407 408 ret = a6xx_gmu_set_oob(gmu, GMU_OOB_BOOT_SLUMBER); 409 a6xx_gmu_clear_oob(gmu, GMU_OOB_BOOT_SLUMBER); 410 411 if (!ret) { 412 /* Check to see if the GMU really did slumber */ 413 if (gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE) 414 != 0x0f) { 415 DRM_DEV_ERROR(gmu->dev, "The GMU did not go into slumber\n"); 416 ret = -ETIMEDOUT; 417 } 418 } 419 420 out: 421 /* Put fence into allow mode */ 422 gmu_write(gmu, REG_A6XX_GMU_AO_AHB_FENCE_CTRL, 0); 423 return ret; 424 } 425 426 static int a6xx_rpmh_start(struct a6xx_gmu *gmu) 427 { 428 int ret; 429 u32 val; 430 431 gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 1 << 1); 432 /* Wait for the register to finish posting */ 433 wmb(); 434 435 ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_RSCC_CONTROL_ACK, val, 436 val & (1 << 1), 100, 10000); 437 if (ret) { 438 DRM_DEV_ERROR(gmu->dev, "Unable to power on the GPU RSC\n"); 439 return ret; 440 } 441 442 ret = gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_SEQ_BUSY_DRV0, val, 443 !val, 100, 10000); 444 445 if (ret) { 446 DRM_DEV_ERROR(gmu->dev, "GPU RSC sequence stuck while waking up the GPU\n"); 447 return ret; 448 } 449 450 gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 0); 451 452 /* Set up CX GMU counter 0 to count busy ticks */ 453 gmu_write(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_MASK, 0xff000000); 454 gmu_rmw(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_SELECT_0, 0xff, 0x20); 455 456 /* Enable the power counter */ 457 gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 1); 458 return 0; 459 } 460 461 static void a6xx_rpmh_stop(struct a6xx_gmu *gmu) 462 { 463 int ret; 464 u32 val; 465 466 gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 1); 467 468 ret = gmu_poll_timeout_rscc(gmu, REG_A6XX_GPU_RSCC_RSC_STATUS0_DRV0, 469 val, val & (1 << 16), 100, 10000); 470 if (ret) 471 DRM_DEV_ERROR(gmu->dev, "Unable to power off the GPU RSC\n"); 472 473 gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 0); 474 } 475 476 static inline void pdc_write(void __iomem *ptr, u32 offset, u32 value) 477 { 478 return msm_writel(value, ptr + (offset << 2)); 479 } 480 481 static void __iomem *a6xx_gmu_get_mmio(struct platform_device *pdev, 482 const char *name); 483 484 static void a6xx_gmu_rpmh_init(struct a6xx_gmu *gmu) 485 { 486 struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu); 487 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 488 struct platform_device *pdev = to_platform_device(gmu->dev); 489 void __iomem *pdcptr = a6xx_gmu_get_mmio(pdev, "gmu_pdc"); 490 void __iomem *seqptr = a6xx_gmu_get_mmio(pdev, "gmu_pdc_seq"); 491 uint32_t pdc_address_offset; 492 493 if (!pdcptr || !seqptr) 494 goto err; 495 496 if (adreno_is_a618(adreno_gpu) || adreno_is_a640(adreno_gpu)) 497 pdc_address_offset = 0x30090; 498 else if (adreno_is_a650(adreno_gpu)) 499 pdc_address_offset = 0x300a0; 500 else 501 pdc_address_offset = 0x30080; 502 503 /* Disable SDE clock gating */ 504 gmu_write_rscc(gmu, REG_A6XX_GPU_RSCC_RSC_STATUS0_DRV0, BIT(24)); 505 506 /* Setup RSC PDC handshake for sleep and wakeup */ 507 gmu_write_rscc(gmu, REG_A6XX_RSCC_PDC_SLAVE_ID_DRV0, 1); 508 gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA, 0); 509 gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR, 0); 510 gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA + 2, 0); 511 gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR + 2, 0); 512 gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA + 4, 0x80000000); 513 gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR + 4, 0); 514 gmu_write_rscc(gmu, REG_A6XX_RSCC_OVERRIDE_START_ADDR, 0); 515 gmu_write_rscc(gmu, REG_A6XX_RSCC_PDC_SEQ_START_ADDR, 0x4520); 516 gmu_write_rscc(gmu, REG_A6XX_RSCC_PDC_MATCH_VALUE_LO, 0x4510); 517 gmu_write_rscc(gmu, REG_A6XX_RSCC_PDC_MATCH_VALUE_HI, 0x4514); 518 519 /* Load RSC sequencer uCode for sleep and wakeup */ 520 if (adreno_is_a650(adreno_gpu)) { 521 gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0, 0xeaaae5a0); 522 gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 1, 0xe1a1ebab); 523 gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 2, 0xa2e0a581); 524 gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 3, 0xecac82e2); 525 gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 4, 0x0020edad); 526 } else { 527 gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0, 0xa7a506a0); 528 gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 1, 0xa1e6a6e7); 529 gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 2, 0xa2e081e1); 530 gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 3, 0xe9a982e2); 531 gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 4, 0x0020e8a8); 532 } 533 534 /* Load PDC sequencer uCode for power up and power down sequence */ 535 pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0, 0xfebea1e1); 536 pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 1, 0xa5a4a3a2); 537 pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 2, 0x8382a6e0); 538 pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 3, 0xbce3e284); 539 pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 4, 0x002081fc); 540 541 /* Set TCS commands used by PDC sequence for low power modes */ 542 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD_ENABLE_BANK, 7); 543 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD_WAIT_FOR_CMPL_BANK, 0); 544 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CONTROL, 0); 545 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID, 0x10108); 546 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR, 0x30010); 547 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA, 1); 548 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID + 4, 0x10108); 549 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR + 4, 0x30000); 550 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA + 4, 0x0); 551 552 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID + 8, 0x10108); 553 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR + 8, pdc_address_offset); 554 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA + 8, 0x0); 555 556 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD_ENABLE_BANK, 7); 557 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD_WAIT_FOR_CMPL_BANK, 0); 558 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CONTROL, 0); 559 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID, 0x10108); 560 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR, 0x30010); 561 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA, 2); 562 563 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID + 4, 0x10108); 564 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR + 4, 0x30000); 565 if (adreno_is_a618(adreno_gpu) || adreno_is_a650(adreno_gpu)) 566 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 4, 0x2); 567 else 568 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 4, 0x3); 569 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID + 8, 0x10108); 570 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR + 8, pdc_address_offset); 571 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 8, 0x3); 572 573 /* Setup GPU PDC */ 574 pdc_write(pdcptr, REG_A6XX_PDC_GPU_SEQ_START_ADDR, 0); 575 pdc_write(pdcptr, REG_A6XX_PDC_GPU_ENABLE_PDC, 0x80000001); 576 577 /* ensure no writes happen before the uCode is fully written */ 578 wmb(); 579 580 err: 581 if (!IS_ERR_OR_NULL(pdcptr)) 582 iounmap(pdcptr); 583 if (!IS_ERR_OR_NULL(seqptr)) 584 iounmap(seqptr); 585 } 586 587 /* 588 * The lowest 16 bits of this value are the number of XO clock cycles for main 589 * hysteresis which is set at 0x1680 cycles (300 us). The higher 16 bits are 590 * for the shorter hysteresis that happens after main - this is 0xa (.5 us) 591 */ 592 593 #define GMU_PWR_COL_HYST 0x000a1680 594 595 /* Set up the idle state for the GMU */ 596 static void a6xx_gmu_power_config(struct a6xx_gmu *gmu) 597 { 598 /* Disable GMU WB/RB buffer */ 599 gmu_write(gmu, REG_A6XX_GMU_SYS_BUS_CONFIG, 0x1); 600 gmu_write(gmu, REG_A6XX_GMU_ICACHE_CONFIG, 0x1); 601 gmu_write(gmu, REG_A6XX_GMU_DCACHE_CONFIG, 0x1); 602 603 gmu_write(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0x9c40400); 604 605 switch (gmu->idle_level) { 606 case GMU_IDLE_STATE_IFPC: 607 gmu_write(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_HYST, 608 GMU_PWR_COL_HYST); 609 gmu_rmw(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0, 610 A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_IFPC_ENABLE | 611 A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_HM_POWER_COLLAPSE_ENABLE); 612 fallthrough; 613 case GMU_IDLE_STATE_SPTP: 614 gmu_write(gmu, REG_A6XX_GMU_PWR_COL_SPTPRAC_HYST, 615 GMU_PWR_COL_HYST); 616 gmu_rmw(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0, 617 A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_IFPC_ENABLE | 618 A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_SPTPRAC_POWER_CONTROL_ENABLE); 619 } 620 621 /* Enable RPMh GPU client */ 622 gmu_rmw(gmu, REG_A6XX_GMU_RPMH_CTRL, 0, 623 A6XX_GMU_RPMH_CTRL_RPMH_INTERFACE_ENABLE | 624 A6XX_GMU_RPMH_CTRL_LLC_VOTE_ENABLE | 625 A6XX_GMU_RPMH_CTRL_DDR_VOTE_ENABLE | 626 A6XX_GMU_RPMH_CTRL_MX_VOTE_ENABLE | 627 A6XX_GMU_RPMH_CTRL_CX_VOTE_ENABLE | 628 A6XX_GMU_RPMH_CTRL_GFX_VOTE_ENABLE); 629 } 630 631 struct block_header { 632 u32 addr; 633 u32 size; 634 u32 type; 635 u32 value; 636 u32 data[]; 637 }; 638 639 /* this should be a general kernel helper */ 640 static int in_range(u32 addr, u32 start, u32 size) 641 { 642 return addr >= start && addr < start + size; 643 } 644 645 static bool fw_block_mem(struct a6xx_gmu_bo *bo, const struct block_header *blk) 646 { 647 if (!in_range(blk->addr, bo->iova, bo->size)) 648 return false; 649 650 memcpy(bo->virt + blk->addr - bo->iova, blk->data, blk->size); 651 return true; 652 } 653 654 static int a6xx_gmu_fw_load(struct a6xx_gmu *gmu) 655 { 656 struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu); 657 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 658 const struct firmware *fw_image = adreno_gpu->fw[ADRENO_FW_GMU]; 659 const struct block_header *blk; 660 u32 reg_offset; 661 662 u32 itcm_base = 0x00000000; 663 u32 dtcm_base = 0x00040000; 664 665 if (adreno_is_a650(adreno_gpu)) 666 dtcm_base = 0x10004000; 667 668 if (gmu->legacy) { 669 /* Sanity check the size of the firmware that was loaded */ 670 if (fw_image->size > 0x8000) { 671 DRM_DEV_ERROR(gmu->dev, 672 "GMU firmware is bigger than the available region\n"); 673 return -EINVAL; 674 } 675 676 gmu_write_bulk(gmu, REG_A6XX_GMU_CM3_ITCM_START, 677 (u32*) fw_image->data, fw_image->size); 678 return 0; 679 } 680 681 682 for (blk = (const struct block_header *) fw_image->data; 683 (const u8*) blk < fw_image->data + fw_image->size; 684 blk = (const struct block_header *) &blk->data[blk->size >> 2]) { 685 if (blk->size == 0) 686 continue; 687 688 if (in_range(blk->addr, itcm_base, SZ_16K)) { 689 reg_offset = (blk->addr - itcm_base) >> 2; 690 gmu_write_bulk(gmu, 691 REG_A6XX_GMU_CM3_ITCM_START + reg_offset, 692 blk->data, blk->size); 693 } else if (in_range(blk->addr, dtcm_base, SZ_16K)) { 694 reg_offset = (blk->addr - dtcm_base) >> 2; 695 gmu_write_bulk(gmu, 696 REG_A6XX_GMU_CM3_DTCM_START + reg_offset, 697 blk->data, blk->size); 698 } else if (!fw_block_mem(&gmu->icache, blk) && 699 !fw_block_mem(&gmu->dcache, blk) && 700 !fw_block_mem(&gmu->dummy, blk)) { 701 DRM_DEV_ERROR(gmu->dev, 702 "failed to match fw block (addr=%.8x size=%d data[0]=%.8x)\n", 703 blk->addr, blk->size, blk->data[0]); 704 } 705 } 706 707 return 0; 708 } 709 710 static int a6xx_gmu_fw_start(struct a6xx_gmu *gmu, unsigned int state) 711 { 712 static bool rpmh_init; 713 struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu); 714 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 715 int ret; 716 u32 chipid; 717 718 if (adreno_is_a650(adreno_gpu)) 719 gmu_write(gmu, REG_A6XX_GPU_GMU_CX_GMU_CX_FAL_INTF, 1); 720 721 if (state == GMU_WARM_BOOT) { 722 ret = a6xx_rpmh_start(gmu); 723 if (ret) 724 return ret; 725 } else { 726 if (WARN(!adreno_gpu->fw[ADRENO_FW_GMU], 727 "GMU firmware is not loaded\n")) 728 return -ENOENT; 729 730 /* Turn on register retention */ 731 gmu_write(gmu, REG_A6XX_GMU_GENERAL_7, 1); 732 733 /* We only need to load the RPMh microcode once */ 734 if (!rpmh_init) { 735 a6xx_gmu_rpmh_init(gmu); 736 rpmh_init = true; 737 } else { 738 ret = a6xx_rpmh_start(gmu); 739 if (ret) 740 return ret; 741 } 742 743 ret = a6xx_gmu_fw_load(gmu); 744 if (ret) 745 return ret; 746 } 747 748 gmu_write(gmu, REG_A6XX_GMU_CM3_FW_INIT_RESULT, 0); 749 gmu_write(gmu, REG_A6XX_GMU_CM3_BOOT_CONFIG, 0x02); 750 751 /* Write the iova of the HFI table */ 752 gmu_write(gmu, REG_A6XX_GMU_HFI_QTBL_ADDR, gmu->hfi.iova); 753 gmu_write(gmu, REG_A6XX_GMU_HFI_QTBL_INFO, 1); 754 755 gmu_write(gmu, REG_A6XX_GMU_AHB_FENCE_RANGE_0, 756 (1 << 31) | (0xa << 18) | (0xa0)); 757 758 chipid = adreno_gpu->rev.core << 24; 759 chipid |= adreno_gpu->rev.major << 16; 760 chipid |= adreno_gpu->rev.minor << 12; 761 chipid |= adreno_gpu->rev.patchid << 8; 762 763 gmu_write(gmu, REG_A6XX_GMU_HFI_SFR_ADDR, chipid); 764 765 gmu_write(gmu, REG_A6XX_GPU_GMU_CX_GMU_PWR_COL_CP_MSG, 766 gmu->log.iova | (gmu->log.size / SZ_4K - 1)); 767 768 /* Set up the lowest idle level on the GMU */ 769 a6xx_gmu_power_config(gmu); 770 771 ret = a6xx_gmu_start(gmu); 772 if (ret) 773 return ret; 774 775 if (gmu->legacy) { 776 ret = a6xx_gmu_gfx_rail_on(gmu); 777 if (ret) 778 return ret; 779 } 780 781 /* Enable SPTP_PC if the CPU is responsible for it */ 782 if (gmu->idle_level < GMU_IDLE_STATE_SPTP) { 783 ret = a6xx_sptprac_enable(gmu); 784 if (ret) 785 return ret; 786 } 787 788 ret = a6xx_gmu_hfi_start(gmu); 789 if (ret) 790 return ret; 791 792 /* FIXME: Do we need this wmb() here? */ 793 wmb(); 794 795 return 0; 796 } 797 798 #define A6XX_HFI_IRQ_MASK \ 799 (A6XX_GMU_GMU2HOST_INTR_INFO_CM3_FAULT) 800 801 #define A6XX_GMU_IRQ_MASK \ 802 (A6XX_GMU_AO_HOST_INTERRUPT_STATUS_WDOG_BITE | \ 803 A6XX_GMU_AO_HOST_INTERRUPT_STATUS_HOST_AHB_BUS_ERROR | \ 804 A6XX_GMU_AO_HOST_INTERRUPT_STATUS_FENCE_ERR) 805 806 static void a6xx_gmu_irq_disable(struct a6xx_gmu *gmu) 807 { 808 disable_irq(gmu->gmu_irq); 809 disable_irq(gmu->hfi_irq); 810 811 gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_MASK, ~0); 812 gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_MASK, ~0); 813 } 814 815 static void a6xx_gmu_rpmh_off(struct a6xx_gmu *gmu) 816 { 817 u32 val; 818 819 /* Make sure there are no outstanding RPMh votes */ 820 gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_TCS0_DRV0_STATUS, val, 821 (val & 1), 100, 10000); 822 gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_TCS1_DRV0_STATUS, val, 823 (val & 1), 100, 10000); 824 gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_TCS2_DRV0_STATUS, val, 825 (val & 1), 100, 10000); 826 gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_TCS3_DRV0_STATUS, val, 827 (val & 1), 100, 1000); 828 } 829 830 /* Force the GMU off in case it isn't responsive */ 831 static void a6xx_gmu_force_off(struct a6xx_gmu *gmu) 832 { 833 /* Flush all the queues */ 834 a6xx_hfi_stop(gmu); 835 836 /* Stop the interrupts */ 837 a6xx_gmu_irq_disable(gmu); 838 839 /* Force off SPTP in case the GMU is managing it */ 840 a6xx_sptprac_disable(gmu); 841 842 /* Make sure there are no outstanding RPMh votes */ 843 a6xx_gmu_rpmh_off(gmu); 844 } 845 846 static void a6xx_gmu_set_initial_freq(struct msm_gpu *gpu, struct a6xx_gmu *gmu) 847 { 848 struct dev_pm_opp *gpu_opp; 849 unsigned long gpu_freq = gmu->gpu_freqs[gmu->current_perf_index]; 850 851 gpu_opp = dev_pm_opp_find_freq_exact(&gpu->pdev->dev, gpu_freq, true); 852 if (IS_ERR_OR_NULL(gpu_opp)) 853 return; 854 855 gmu->freq = 0; /* so a6xx_gmu_set_freq() doesn't exit early */ 856 a6xx_gmu_set_freq(gpu, gpu_opp); 857 dev_pm_opp_put(gpu_opp); 858 } 859 860 static void a6xx_gmu_set_initial_bw(struct msm_gpu *gpu, struct a6xx_gmu *gmu) 861 { 862 struct dev_pm_opp *gpu_opp; 863 unsigned long gpu_freq = gmu->gpu_freqs[gmu->current_perf_index]; 864 865 gpu_opp = dev_pm_opp_find_freq_exact(&gpu->pdev->dev, gpu_freq, true); 866 if (IS_ERR_OR_NULL(gpu_opp)) 867 return; 868 869 dev_pm_opp_set_bw(&gpu->pdev->dev, gpu_opp); 870 dev_pm_opp_put(gpu_opp); 871 } 872 873 int a6xx_gmu_resume(struct a6xx_gpu *a6xx_gpu) 874 { 875 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 876 struct msm_gpu *gpu = &adreno_gpu->base; 877 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 878 int status, ret; 879 880 if (WARN(!gmu->initialized, "The GMU is not set up yet\n")) 881 return 0; 882 883 gmu->hung = false; 884 885 /* Turn on the resources */ 886 pm_runtime_get_sync(gmu->dev); 887 888 /* 889 * "enable" the GX power domain which won't actually do anything but it 890 * will make sure that the refcounting is correct in case we need to 891 * bring down the GX after a GMU failure 892 */ 893 if (!IS_ERR_OR_NULL(gmu->gxpd)) 894 pm_runtime_get_sync(gmu->gxpd); 895 896 /* Use a known rate to bring up the GMU */ 897 clk_set_rate(gmu->core_clk, 200000000); 898 ret = clk_bulk_prepare_enable(gmu->nr_clocks, gmu->clocks); 899 if (ret) { 900 pm_runtime_put(gmu->gxpd); 901 pm_runtime_put(gmu->dev); 902 return ret; 903 } 904 905 /* Set the bus quota to a reasonable value for boot */ 906 a6xx_gmu_set_initial_bw(gpu, gmu); 907 908 /* Enable the GMU interrupt */ 909 gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_CLR, ~0); 910 gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_MASK, ~A6XX_GMU_IRQ_MASK); 911 enable_irq(gmu->gmu_irq); 912 913 /* Check to see if we are doing a cold or warm boot */ 914 status = gmu_read(gmu, REG_A6XX_GMU_GENERAL_7) == 1 ? 915 GMU_WARM_BOOT : GMU_COLD_BOOT; 916 917 /* 918 * Warm boot path does not work on newer GPUs 919 * Presumably this is because icache/dcache regions must be restored 920 */ 921 if (!gmu->legacy) 922 status = GMU_COLD_BOOT; 923 924 ret = a6xx_gmu_fw_start(gmu, status); 925 if (ret) 926 goto out; 927 928 ret = a6xx_hfi_start(gmu, status); 929 if (ret) 930 goto out; 931 932 /* 933 * Turn on the GMU firmware fault interrupt after we know the boot 934 * sequence is successful 935 */ 936 gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, ~0); 937 gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_MASK, ~A6XX_HFI_IRQ_MASK); 938 enable_irq(gmu->hfi_irq); 939 940 /* Set the GPU to the current freq */ 941 a6xx_gmu_set_initial_freq(gpu, gmu); 942 943 out: 944 /* On failure, shut down the GMU to leave it in a good state */ 945 if (ret) { 946 disable_irq(gmu->gmu_irq); 947 a6xx_rpmh_stop(gmu); 948 pm_runtime_put(gmu->gxpd); 949 pm_runtime_put(gmu->dev); 950 } 951 952 return ret; 953 } 954 955 bool a6xx_gmu_isidle(struct a6xx_gmu *gmu) 956 { 957 u32 reg; 958 959 if (!gmu->initialized) 960 return true; 961 962 reg = gmu_read(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS); 963 964 if (reg & A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS_GPUBUSYIGNAHB) 965 return false; 966 967 return true; 968 } 969 970 #define GBIF_CLIENT_HALT_MASK BIT(0) 971 #define GBIF_ARB_HALT_MASK BIT(1) 972 973 static void a6xx_bus_clear_pending_transactions(struct adreno_gpu *adreno_gpu) 974 { 975 struct msm_gpu *gpu = &adreno_gpu->base; 976 977 if (!a6xx_has_gbif(adreno_gpu)) { 978 gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, 0xf); 979 spin_until((gpu_read(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL1) & 980 0xf) == 0xf); 981 gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, 0); 982 983 return; 984 } 985 986 /* Halt new client requests on GBIF */ 987 gpu_write(gpu, REG_A6XX_GBIF_HALT, GBIF_CLIENT_HALT_MASK); 988 spin_until((gpu_read(gpu, REG_A6XX_GBIF_HALT_ACK) & 989 (GBIF_CLIENT_HALT_MASK)) == GBIF_CLIENT_HALT_MASK); 990 991 /* Halt all AXI requests on GBIF */ 992 gpu_write(gpu, REG_A6XX_GBIF_HALT, GBIF_ARB_HALT_MASK); 993 spin_until((gpu_read(gpu, REG_A6XX_GBIF_HALT_ACK) & 994 (GBIF_ARB_HALT_MASK)) == GBIF_ARB_HALT_MASK); 995 996 /* The GBIF halt needs to be explicitly cleared */ 997 gpu_write(gpu, REG_A6XX_GBIF_HALT, 0x0); 998 } 999 1000 /* Gracefully try to shut down the GMU and by extension the GPU */ 1001 static void a6xx_gmu_shutdown(struct a6xx_gmu *gmu) 1002 { 1003 struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu); 1004 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 1005 u32 val; 1006 1007 /* 1008 * The GMU may still be in slumber unless the GPU started so check and 1009 * skip putting it back into slumber if so 1010 */ 1011 val = gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE); 1012 1013 if (val != 0xf) { 1014 int ret = a6xx_gmu_wait_for_idle(gmu); 1015 1016 /* If the GMU isn't responding assume it is hung */ 1017 if (ret) { 1018 a6xx_gmu_force_off(gmu); 1019 return; 1020 } 1021 1022 a6xx_bus_clear_pending_transactions(adreno_gpu); 1023 1024 /* tell the GMU we want to slumber */ 1025 a6xx_gmu_notify_slumber(gmu); 1026 1027 ret = gmu_poll_timeout(gmu, 1028 REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS, val, 1029 !(val & A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS_GPUBUSYIGNAHB), 1030 100, 10000); 1031 1032 /* 1033 * Let the user know we failed to slumber but don't worry too 1034 * much because we are powering down anyway 1035 */ 1036 1037 if (ret) 1038 DRM_DEV_ERROR(gmu->dev, 1039 "Unable to slumber GMU: status = 0%x/0%x\n", 1040 gmu_read(gmu, 1041 REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS), 1042 gmu_read(gmu, 1043 REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS2)); 1044 } 1045 1046 /* Turn off HFI */ 1047 a6xx_hfi_stop(gmu); 1048 1049 /* Stop the interrupts and mask the hardware */ 1050 a6xx_gmu_irq_disable(gmu); 1051 1052 /* Tell RPMh to power off the GPU */ 1053 a6xx_rpmh_stop(gmu); 1054 } 1055 1056 1057 int a6xx_gmu_stop(struct a6xx_gpu *a6xx_gpu) 1058 { 1059 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 1060 struct msm_gpu *gpu = &a6xx_gpu->base.base; 1061 1062 if (!pm_runtime_active(gmu->dev)) 1063 return 0; 1064 1065 /* 1066 * Force the GMU off if we detected a hang, otherwise try to shut it 1067 * down gracefully 1068 */ 1069 if (gmu->hung) 1070 a6xx_gmu_force_off(gmu); 1071 else 1072 a6xx_gmu_shutdown(gmu); 1073 1074 /* Remove the bus vote */ 1075 dev_pm_opp_set_bw(&gpu->pdev->dev, NULL); 1076 1077 /* 1078 * Make sure the GX domain is off before turning off the GMU (CX) 1079 * domain. Usually the GMU does this but only if the shutdown sequence 1080 * was successful 1081 */ 1082 if (!IS_ERR_OR_NULL(gmu->gxpd)) 1083 pm_runtime_put_sync(gmu->gxpd); 1084 1085 clk_bulk_disable_unprepare(gmu->nr_clocks, gmu->clocks); 1086 1087 pm_runtime_put_sync(gmu->dev); 1088 1089 return 0; 1090 } 1091 1092 static void a6xx_gmu_memory_free(struct a6xx_gmu *gmu) 1093 { 1094 msm_gem_kernel_put(gmu->hfi.obj, gmu->aspace, false); 1095 msm_gem_kernel_put(gmu->debug.obj, gmu->aspace, false); 1096 msm_gem_kernel_put(gmu->icache.obj, gmu->aspace, false); 1097 msm_gem_kernel_put(gmu->dcache.obj, gmu->aspace, false); 1098 msm_gem_kernel_put(gmu->dummy.obj, gmu->aspace, false); 1099 msm_gem_kernel_put(gmu->log.obj, gmu->aspace, false); 1100 1101 gmu->aspace->mmu->funcs->detach(gmu->aspace->mmu); 1102 msm_gem_address_space_put(gmu->aspace); 1103 } 1104 1105 static int a6xx_gmu_memory_alloc(struct a6xx_gmu *gmu, struct a6xx_gmu_bo *bo, 1106 size_t size, u64 iova) 1107 { 1108 struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu); 1109 struct drm_device *dev = a6xx_gpu->base.base.dev; 1110 uint32_t flags = MSM_BO_WC; 1111 u64 range_start, range_end; 1112 int ret; 1113 1114 size = PAGE_ALIGN(size); 1115 if (!iova) { 1116 /* no fixed address - use GMU's uncached range */ 1117 range_start = 0x60000000 + PAGE_SIZE; /* skip dummy page */ 1118 range_end = 0x80000000; 1119 } else { 1120 /* range for fixed address */ 1121 range_start = iova; 1122 range_end = iova + size; 1123 /* use IOMMU_PRIV for icache/dcache */ 1124 flags |= MSM_BO_MAP_PRIV; 1125 } 1126 1127 bo->obj = msm_gem_new(dev, size, flags); 1128 if (IS_ERR(bo->obj)) 1129 return PTR_ERR(bo->obj); 1130 1131 ret = msm_gem_get_and_pin_iova_range(bo->obj, gmu->aspace, &bo->iova, 1132 range_start >> PAGE_SHIFT, range_end >> PAGE_SHIFT); 1133 if (ret) { 1134 drm_gem_object_put(bo->obj); 1135 return ret; 1136 } 1137 1138 bo->virt = msm_gem_get_vaddr(bo->obj); 1139 bo->size = size; 1140 1141 return 0; 1142 } 1143 1144 static int a6xx_gmu_memory_probe(struct a6xx_gmu *gmu) 1145 { 1146 struct iommu_domain *domain; 1147 struct msm_mmu *mmu; 1148 1149 domain = iommu_domain_alloc(&platform_bus_type); 1150 if (!domain) 1151 return -ENODEV; 1152 1153 mmu = msm_iommu_new(gmu->dev, domain); 1154 gmu->aspace = msm_gem_address_space_create(mmu, "gmu", 0x0, 0x80000000); 1155 if (IS_ERR(gmu->aspace)) { 1156 iommu_domain_free(domain); 1157 return PTR_ERR(gmu->aspace); 1158 } 1159 1160 return 0; 1161 } 1162 1163 /* Return the 'arc-level' for the given frequency */ 1164 static unsigned int a6xx_gmu_get_arc_level(struct device *dev, 1165 unsigned long freq) 1166 { 1167 struct dev_pm_opp *opp; 1168 unsigned int val; 1169 1170 if (!freq) 1171 return 0; 1172 1173 opp = dev_pm_opp_find_freq_exact(dev, freq, true); 1174 if (IS_ERR(opp)) 1175 return 0; 1176 1177 val = dev_pm_opp_get_level(opp); 1178 1179 dev_pm_opp_put(opp); 1180 1181 return val; 1182 } 1183 1184 static int a6xx_gmu_rpmh_arc_votes_init(struct device *dev, u32 *votes, 1185 unsigned long *freqs, int freqs_count, const char *id) 1186 { 1187 int i, j; 1188 const u16 *pri, *sec; 1189 size_t pri_count, sec_count; 1190 1191 pri = cmd_db_read_aux_data(id, &pri_count); 1192 if (IS_ERR(pri)) 1193 return PTR_ERR(pri); 1194 /* 1195 * The data comes back as an array of unsigned shorts so adjust the 1196 * count accordingly 1197 */ 1198 pri_count >>= 1; 1199 if (!pri_count) 1200 return -EINVAL; 1201 1202 sec = cmd_db_read_aux_data("mx.lvl", &sec_count); 1203 if (IS_ERR(sec)) 1204 return PTR_ERR(sec); 1205 1206 sec_count >>= 1; 1207 if (!sec_count) 1208 return -EINVAL; 1209 1210 /* Construct a vote for each frequency */ 1211 for (i = 0; i < freqs_count; i++) { 1212 u8 pindex = 0, sindex = 0; 1213 unsigned int level = a6xx_gmu_get_arc_level(dev, freqs[i]); 1214 1215 /* Get the primary index that matches the arc level */ 1216 for (j = 0; j < pri_count; j++) { 1217 if (pri[j] >= level) { 1218 pindex = j; 1219 break; 1220 } 1221 } 1222 1223 if (j == pri_count) { 1224 DRM_DEV_ERROR(dev, 1225 "Level %u not found in the RPMh list\n", 1226 level); 1227 DRM_DEV_ERROR(dev, "Available levels:\n"); 1228 for (j = 0; j < pri_count; j++) 1229 DRM_DEV_ERROR(dev, " %u\n", pri[j]); 1230 1231 return -EINVAL; 1232 } 1233 1234 /* 1235 * Look for a level in in the secondary list that matches. If 1236 * nothing fits, use the maximum non zero vote 1237 */ 1238 1239 for (j = 0; j < sec_count; j++) { 1240 if (sec[j] >= level) { 1241 sindex = j; 1242 break; 1243 } else if (sec[j]) { 1244 sindex = j; 1245 } 1246 } 1247 1248 /* Construct the vote */ 1249 votes[i] = ((pri[pindex] & 0xffff) << 16) | 1250 (sindex << 8) | pindex; 1251 } 1252 1253 return 0; 1254 } 1255 1256 /* 1257 * The GMU votes with the RPMh for itself and on behalf of the GPU but we need 1258 * to construct the list of votes on the CPU and send it over. Query the RPMh 1259 * voltage levels and build the votes 1260 */ 1261 1262 static int a6xx_gmu_rpmh_votes_init(struct a6xx_gmu *gmu) 1263 { 1264 struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu); 1265 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 1266 struct msm_gpu *gpu = &adreno_gpu->base; 1267 int ret; 1268 1269 /* Build the GX votes */ 1270 ret = a6xx_gmu_rpmh_arc_votes_init(&gpu->pdev->dev, gmu->gx_arc_votes, 1271 gmu->gpu_freqs, gmu->nr_gpu_freqs, "gfx.lvl"); 1272 1273 /* Build the CX votes */ 1274 ret |= a6xx_gmu_rpmh_arc_votes_init(gmu->dev, gmu->cx_arc_votes, 1275 gmu->gmu_freqs, gmu->nr_gmu_freqs, "cx.lvl"); 1276 1277 return ret; 1278 } 1279 1280 static int a6xx_gmu_build_freq_table(struct device *dev, unsigned long *freqs, 1281 u32 size) 1282 { 1283 int count = dev_pm_opp_get_opp_count(dev); 1284 struct dev_pm_opp *opp; 1285 int i, index = 0; 1286 unsigned long freq = 1; 1287 1288 /* 1289 * The OPP table doesn't contain the "off" frequency level so we need to 1290 * add 1 to the table size to account for it 1291 */ 1292 1293 if (WARN(count + 1 > size, 1294 "The GMU frequency table is being truncated\n")) 1295 count = size - 1; 1296 1297 /* Set the "off" frequency */ 1298 freqs[index++] = 0; 1299 1300 for (i = 0; i < count; i++) { 1301 opp = dev_pm_opp_find_freq_ceil(dev, &freq); 1302 if (IS_ERR(opp)) 1303 break; 1304 1305 dev_pm_opp_put(opp); 1306 freqs[index++] = freq++; 1307 } 1308 1309 return index; 1310 } 1311 1312 static int a6xx_gmu_pwrlevels_probe(struct a6xx_gmu *gmu) 1313 { 1314 struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu); 1315 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 1316 struct msm_gpu *gpu = &adreno_gpu->base; 1317 1318 int ret = 0; 1319 1320 /* 1321 * The GMU handles its own frequency switching so build a list of 1322 * available frequencies to send during initialization 1323 */ 1324 ret = dev_pm_opp_of_add_table(gmu->dev); 1325 if (ret) { 1326 DRM_DEV_ERROR(gmu->dev, "Unable to set the OPP table for the GMU\n"); 1327 return ret; 1328 } 1329 1330 gmu->nr_gmu_freqs = a6xx_gmu_build_freq_table(gmu->dev, 1331 gmu->gmu_freqs, ARRAY_SIZE(gmu->gmu_freqs)); 1332 1333 /* 1334 * The GMU also handles GPU frequency switching so build a list 1335 * from the GPU OPP table 1336 */ 1337 gmu->nr_gpu_freqs = a6xx_gmu_build_freq_table(&gpu->pdev->dev, 1338 gmu->gpu_freqs, ARRAY_SIZE(gmu->gpu_freqs)); 1339 1340 gmu->current_perf_index = gmu->nr_gpu_freqs - 1; 1341 1342 /* Build the list of RPMh votes that we'll send to the GMU */ 1343 return a6xx_gmu_rpmh_votes_init(gmu); 1344 } 1345 1346 static int a6xx_gmu_clocks_probe(struct a6xx_gmu *gmu) 1347 { 1348 int ret = devm_clk_bulk_get_all(gmu->dev, &gmu->clocks); 1349 1350 if (ret < 1) 1351 return ret; 1352 1353 gmu->nr_clocks = ret; 1354 1355 gmu->core_clk = msm_clk_bulk_get_clock(gmu->clocks, 1356 gmu->nr_clocks, "gmu"); 1357 1358 return 0; 1359 } 1360 1361 static void __iomem *a6xx_gmu_get_mmio(struct platform_device *pdev, 1362 const char *name) 1363 { 1364 void __iomem *ret; 1365 struct resource *res = platform_get_resource_byname(pdev, 1366 IORESOURCE_MEM, name); 1367 1368 if (!res) { 1369 DRM_DEV_ERROR(&pdev->dev, "Unable to find the %s registers\n", name); 1370 return ERR_PTR(-EINVAL); 1371 } 1372 1373 ret = ioremap(res->start, resource_size(res)); 1374 if (!ret) { 1375 DRM_DEV_ERROR(&pdev->dev, "Unable to map the %s registers\n", name); 1376 return ERR_PTR(-EINVAL); 1377 } 1378 1379 return ret; 1380 } 1381 1382 static int a6xx_gmu_get_irq(struct a6xx_gmu *gmu, struct platform_device *pdev, 1383 const char *name, irq_handler_t handler) 1384 { 1385 int irq, ret; 1386 1387 irq = platform_get_irq_byname(pdev, name); 1388 1389 ret = request_irq(irq, handler, IRQF_TRIGGER_HIGH, name, gmu); 1390 if (ret) { 1391 DRM_DEV_ERROR(&pdev->dev, "Unable to get interrupt %s %d\n", 1392 name, ret); 1393 return ret; 1394 } 1395 1396 disable_irq(irq); 1397 1398 return irq; 1399 } 1400 1401 void a6xx_gmu_remove(struct a6xx_gpu *a6xx_gpu) 1402 { 1403 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 1404 struct platform_device *pdev = to_platform_device(gmu->dev); 1405 1406 if (!gmu->initialized) 1407 return; 1408 1409 pm_runtime_force_suspend(gmu->dev); 1410 1411 if (!IS_ERR_OR_NULL(gmu->gxpd)) { 1412 pm_runtime_disable(gmu->gxpd); 1413 dev_pm_domain_detach(gmu->gxpd, false); 1414 } 1415 1416 iounmap(gmu->mmio); 1417 if (platform_get_resource_byname(pdev, IORESOURCE_MEM, "rscc")) 1418 iounmap(gmu->rscc); 1419 gmu->mmio = NULL; 1420 gmu->rscc = NULL; 1421 1422 a6xx_gmu_memory_free(gmu); 1423 1424 free_irq(gmu->gmu_irq, gmu); 1425 free_irq(gmu->hfi_irq, gmu); 1426 1427 /* Drop reference taken in of_find_device_by_node */ 1428 put_device(gmu->dev); 1429 1430 gmu->initialized = false; 1431 } 1432 1433 int a6xx_gmu_init(struct a6xx_gpu *a6xx_gpu, struct device_node *node) 1434 { 1435 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 1436 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 1437 struct platform_device *pdev = of_find_device_by_node(node); 1438 int ret; 1439 1440 if (!pdev) 1441 return -ENODEV; 1442 1443 gmu->dev = &pdev->dev; 1444 1445 of_dma_configure(gmu->dev, node, true); 1446 1447 /* Fow now, don't do anything fancy until we get our feet under us */ 1448 gmu->idle_level = GMU_IDLE_STATE_ACTIVE; 1449 1450 pm_runtime_enable(gmu->dev); 1451 1452 /* Get the list of clocks */ 1453 ret = a6xx_gmu_clocks_probe(gmu); 1454 if (ret) 1455 goto err_put_device; 1456 1457 ret = a6xx_gmu_memory_probe(gmu); 1458 if (ret) 1459 goto err_put_device; 1460 1461 /* Allocate memory for the GMU dummy page */ 1462 ret = a6xx_gmu_memory_alloc(gmu, &gmu->dummy, SZ_4K, 0x60000000); 1463 if (ret) 1464 goto err_memory; 1465 1466 if (adreno_is_a650(adreno_gpu)) { 1467 ret = a6xx_gmu_memory_alloc(gmu, &gmu->icache, 1468 SZ_16M - SZ_16K, 0x04000); 1469 if (ret) 1470 goto err_memory; 1471 } else if (adreno_is_a640(adreno_gpu)) { 1472 ret = a6xx_gmu_memory_alloc(gmu, &gmu->icache, 1473 SZ_256K - SZ_16K, 0x04000); 1474 if (ret) 1475 goto err_memory; 1476 1477 ret = a6xx_gmu_memory_alloc(gmu, &gmu->dcache, 1478 SZ_256K - SZ_16K, 0x44000); 1479 if (ret) 1480 goto err_memory; 1481 } else { 1482 /* HFI v1, has sptprac */ 1483 gmu->legacy = true; 1484 1485 /* Allocate memory for the GMU debug region */ 1486 ret = a6xx_gmu_memory_alloc(gmu, &gmu->debug, SZ_16K, 0); 1487 if (ret) 1488 goto err_memory; 1489 } 1490 1491 /* Allocate memory for for the HFI queues */ 1492 ret = a6xx_gmu_memory_alloc(gmu, &gmu->hfi, SZ_16K, 0); 1493 if (ret) 1494 goto err_memory; 1495 1496 /* Allocate memory for the GMU log region */ 1497 ret = a6xx_gmu_memory_alloc(gmu, &gmu->log, SZ_4K, 0); 1498 if (ret) 1499 goto err_memory; 1500 1501 /* Map the GMU registers */ 1502 gmu->mmio = a6xx_gmu_get_mmio(pdev, "gmu"); 1503 if (IS_ERR(gmu->mmio)) { 1504 ret = PTR_ERR(gmu->mmio); 1505 goto err_memory; 1506 } 1507 1508 if (adreno_is_a650(adreno_gpu)) { 1509 gmu->rscc = a6xx_gmu_get_mmio(pdev, "rscc"); 1510 if (IS_ERR(gmu->rscc)) 1511 goto err_mmio; 1512 } else { 1513 gmu->rscc = gmu->mmio + 0x23000; 1514 } 1515 1516 /* Get the HFI and GMU interrupts */ 1517 gmu->hfi_irq = a6xx_gmu_get_irq(gmu, pdev, "hfi", a6xx_hfi_irq); 1518 gmu->gmu_irq = a6xx_gmu_get_irq(gmu, pdev, "gmu", a6xx_gmu_irq); 1519 1520 if (gmu->hfi_irq < 0 || gmu->gmu_irq < 0) 1521 goto err_mmio; 1522 1523 /* 1524 * Get a link to the GX power domain to reset the GPU in case of GMU 1525 * crash 1526 */ 1527 gmu->gxpd = dev_pm_domain_attach_by_name(gmu->dev, "gx"); 1528 1529 /* Get the power levels for the GMU and GPU */ 1530 a6xx_gmu_pwrlevels_probe(gmu); 1531 1532 /* Set up the HFI queues */ 1533 a6xx_hfi_init(gmu); 1534 1535 gmu->initialized = true; 1536 1537 return 0; 1538 1539 err_mmio: 1540 iounmap(gmu->mmio); 1541 if (platform_get_resource_byname(pdev, IORESOURCE_MEM, "rscc")) 1542 iounmap(gmu->rscc); 1543 free_irq(gmu->gmu_irq, gmu); 1544 free_irq(gmu->hfi_irq, gmu); 1545 1546 ret = -ENODEV; 1547 1548 err_memory: 1549 a6xx_gmu_memory_free(gmu); 1550 err_put_device: 1551 /* Drop reference taken in of_find_device_by_node */ 1552 put_device(gmu->dev); 1553 1554 return ret; 1555 } 1556