xref: /openbmc/linux/drivers/gpu/drm/msm/adreno/a6xx_gmu.c (revision 4b565ca5)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2018 The Linux Foundation. All rights reserved. */
3 
4 #include <linux/clk.h>
5 #include <linux/iopoll.h>
6 #include <linux/pm_opp.h>
7 #include <soc/qcom/cmd-db.h>
8 
9 #include "a6xx_gpu.h"
10 #include "a6xx_gmu.xml.h"
11 
12 static irqreturn_t a6xx_gmu_irq(int irq, void *data)
13 {
14 	struct a6xx_gmu *gmu = data;
15 	u32 status;
16 
17 	status = gmu_read(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_STATUS);
18 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_CLR, status);
19 
20 	if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_WDOG_BITE) {
21 		dev_err_ratelimited(gmu->dev, "GMU watchdog expired\n");
22 
23 		/* Temporary until we can recover safely */
24 		BUG();
25 	}
26 
27 	if (status &  A6XX_GMU_AO_HOST_INTERRUPT_STATUS_HOST_AHB_BUS_ERROR)
28 		dev_err_ratelimited(gmu->dev, "GMU AHB bus error\n");
29 
30 	if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_FENCE_ERR)
31 		dev_err_ratelimited(gmu->dev, "GMU fence error: 0x%x\n",
32 			gmu_read(gmu, REG_A6XX_GMU_AHB_FENCE_STATUS));
33 
34 	return IRQ_HANDLED;
35 }
36 
37 static irqreturn_t a6xx_hfi_irq(int irq, void *data)
38 {
39 	struct a6xx_gmu *gmu = data;
40 	u32 status;
41 
42 	status = gmu_read(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO);
43 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, status);
44 
45 	if (status & A6XX_GMU_GMU2HOST_INTR_INFO_MSGQ)
46 		tasklet_schedule(&gmu->hfi_tasklet);
47 
48 	if (status & A6XX_GMU_GMU2HOST_INTR_INFO_CM3_FAULT) {
49 		dev_err_ratelimited(gmu->dev, "GMU firmware fault\n");
50 
51 		/* Temporary until we can recover safely */
52 		BUG();
53 	}
54 
55 	return IRQ_HANDLED;
56 }
57 
58 /* Check to see if the GX rail is still powered */
59 static bool a6xx_gmu_gx_is_on(struct a6xx_gmu *gmu)
60 {
61 	u32 val = gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS);
62 
63 	return !(val &
64 		(A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_GX_HM_GDSC_POWER_OFF |
65 		A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_GX_HM_CLK_OFF));
66 }
67 
68 static int a6xx_gmu_set_freq(struct a6xx_gmu *gmu, int index)
69 {
70 	gmu_write(gmu, REG_A6XX_GMU_DCVS_ACK_OPTION, 0);
71 
72 	gmu_write(gmu, REG_A6XX_GMU_DCVS_PERF_SETTING,
73 		((index << 24) & 0xff) | (3 & 0xf));
74 
75 	/*
76 	 * Send an invalid index as a vote for the bus bandwidth and let the
77 	 * firmware decide on the right vote
78 	 */
79 	gmu_write(gmu, REG_A6XX_GMU_DCVS_BW_SETTING, 0xff);
80 
81 	/* Set and clear the OOB for DCVS to trigger the GMU */
82 	a6xx_gmu_set_oob(gmu, GMU_OOB_DCVS_SET);
83 	a6xx_gmu_clear_oob(gmu, GMU_OOB_DCVS_SET);
84 
85 	return gmu_read(gmu, REG_A6XX_GMU_DCVS_RETURN);
86 }
87 
88 static bool a6xx_gmu_check_idle_level(struct a6xx_gmu *gmu)
89 {
90 	u32 val;
91 	int local = gmu->idle_level;
92 
93 	/* SPTP and IFPC both report as IFPC */
94 	if (gmu->idle_level == GMU_IDLE_STATE_SPTP)
95 		local = GMU_IDLE_STATE_IFPC;
96 
97 	val = gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE);
98 
99 	if (val == local) {
100 		if (gmu->idle_level != GMU_IDLE_STATE_IFPC ||
101 			!a6xx_gmu_gx_is_on(gmu))
102 			return true;
103 	}
104 
105 	return false;
106 }
107 
108 /* Wait for the GMU to get to its most idle state */
109 int a6xx_gmu_wait_for_idle(struct a6xx_gpu *a6xx_gpu)
110 {
111 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
112 
113 	return spin_until(a6xx_gmu_check_idle_level(gmu));
114 }
115 
116 static int a6xx_gmu_start(struct a6xx_gmu *gmu)
117 {
118 	int ret;
119 	u32 val;
120 
121 	gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 1);
122 	gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 0);
123 
124 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_CM3_FW_INIT_RESULT, val,
125 		val == 0xbabeface, 100, 10000);
126 
127 	if (ret)
128 		dev_err(gmu->dev, "GMU firmware initalization timed out\n");
129 
130 	return ret;
131 }
132 
133 static int a6xx_gmu_hfi_start(struct a6xx_gmu *gmu)
134 {
135 	u32 val;
136 	int ret;
137 
138 	gmu_rmw(gmu, REG_A6XX_GMU_GMU2HOST_INTR_MASK,
139 		A6XX_GMU_GMU2HOST_INTR_INFO_MSGQ, 0);
140 
141 	gmu_write(gmu, REG_A6XX_GMU_HFI_CTRL_INIT, 1);
142 
143 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_HFI_CTRL_STATUS, val,
144 		val & 1, 100, 10000);
145 	if (ret)
146 		dev_err(gmu->dev, "Unable to start the HFI queues\n");
147 
148 	return ret;
149 }
150 
151 /* Trigger a OOB (out of band) request to the GMU */
152 int a6xx_gmu_set_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state)
153 {
154 	int ret;
155 	u32 val;
156 	int request, ack;
157 	const char *name;
158 
159 	switch (state) {
160 	case GMU_OOB_GPU_SET:
161 		request = GMU_OOB_GPU_SET_REQUEST;
162 		ack = GMU_OOB_GPU_SET_ACK;
163 		name = "GPU_SET";
164 		break;
165 	case GMU_OOB_BOOT_SLUMBER:
166 		request = GMU_OOB_BOOT_SLUMBER_REQUEST;
167 		ack = GMU_OOB_BOOT_SLUMBER_ACK;
168 		name = "BOOT_SLUMBER";
169 		break;
170 	case GMU_OOB_DCVS_SET:
171 		request = GMU_OOB_DCVS_REQUEST;
172 		ack = GMU_OOB_DCVS_ACK;
173 		name = "GPU_DCVS";
174 		break;
175 	default:
176 		return -EINVAL;
177 	}
178 
179 	/* Trigger the equested OOB operation */
180 	gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 1 << request);
181 
182 	/* Wait for the acknowledge interrupt */
183 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO, val,
184 		val & (1 << ack), 100, 10000);
185 
186 	if (ret)
187 		dev_err(gmu->dev,
188 			"Timeout waiting for GMU OOB set %s: 0x%x\n",
189 				name,
190 				gmu_read(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO));
191 
192 	/* Clear the acknowledge interrupt */
193 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, 1 << ack);
194 
195 	return ret;
196 }
197 
198 /* Clear a pending OOB state in the GMU */
199 void a6xx_gmu_clear_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state)
200 {
201 	switch (state) {
202 	case GMU_OOB_GPU_SET:
203 		gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET,
204 			1 << GMU_OOB_GPU_SET_CLEAR);
205 		break;
206 	case GMU_OOB_BOOT_SLUMBER:
207 		gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET,
208 			1 << GMU_OOB_BOOT_SLUMBER_CLEAR);
209 		break;
210 	case GMU_OOB_DCVS_SET:
211 		gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET,
212 			1 << GMU_OOB_DCVS_CLEAR);
213 		break;
214 	}
215 }
216 
217 /* Enable CPU control of SPTP power power collapse */
218 static int a6xx_sptprac_enable(struct a6xx_gmu *gmu)
219 {
220 	int ret;
221 	u32 val;
222 
223 	gmu_write(gmu, REG_A6XX_GMU_GX_SPTPRAC_POWER_CONTROL, 0x778000);
224 
225 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, val,
226 		(val & 0x38) == 0x28, 1, 100);
227 
228 	if (ret) {
229 		dev_err(gmu->dev, "Unable to power on SPTPRAC: 0x%x\n",
230 			gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS));
231 	}
232 
233 	return 0;
234 }
235 
236 /* Disable CPU control of SPTP power power collapse */
237 static void a6xx_sptprac_disable(struct a6xx_gmu *gmu)
238 {
239 	u32 val;
240 	int ret;
241 
242 	/* Make sure retention is on */
243 	gmu_rmw(gmu, REG_A6XX_GPU_CC_GX_GDSCR, 0, (1 << 11));
244 
245 	gmu_write(gmu, REG_A6XX_GMU_GX_SPTPRAC_POWER_CONTROL, 0x778001);
246 
247 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, val,
248 		(val & 0x04), 100, 10000);
249 
250 	if (ret)
251 		dev_err(gmu->dev, "failed to power off SPTPRAC: 0x%x\n",
252 			gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS));
253 }
254 
255 /* Let the GMU know we are starting a boot sequence */
256 static int a6xx_gmu_gfx_rail_on(struct a6xx_gmu *gmu)
257 {
258 	u32 vote;
259 
260 	/* Let the GMU know we are getting ready for boot */
261 	gmu_write(gmu, REG_A6XX_GMU_BOOT_SLUMBER_OPTION, 0);
262 
263 	/* Choose the "default" power level as the highest available */
264 	vote = gmu->gx_arc_votes[gmu->nr_gpu_freqs - 1];
265 
266 	gmu_write(gmu, REG_A6XX_GMU_GX_VOTE_IDX, vote & 0xff);
267 	gmu_write(gmu, REG_A6XX_GMU_MX_VOTE_IDX, (vote >> 8) & 0xff);
268 
269 	/* Let the GMU know the boot sequence has started */
270 	return a6xx_gmu_set_oob(gmu, GMU_OOB_BOOT_SLUMBER);
271 }
272 
273 /* Let the GMU know that we are about to go into slumber */
274 static int a6xx_gmu_notify_slumber(struct a6xx_gmu *gmu)
275 {
276 	int ret;
277 
278 	/* Disable the power counter so the GMU isn't busy */
279 	gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 0);
280 
281 	/* Disable SPTP_PC if the CPU is responsible for it */
282 	if (gmu->idle_level < GMU_IDLE_STATE_SPTP)
283 		a6xx_sptprac_disable(gmu);
284 
285 	/* Tell the GMU to get ready to slumber */
286 	gmu_write(gmu, REG_A6XX_GMU_BOOT_SLUMBER_OPTION, 1);
287 
288 	ret = a6xx_gmu_set_oob(gmu, GMU_OOB_BOOT_SLUMBER);
289 	a6xx_gmu_clear_oob(gmu, GMU_OOB_BOOT_SLUMBER);
290 
291 	if (!ret) {
292 		/* Check to see if the GMU really did slumber */
293 		if (gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE)
294 			!= 0x0f) {
295 			dev_err(gmu->dev, "The GMU did not go into slumber\n");
296 			ret = -ETIMEDOUT;
297 		}
298 	}
299 
300 	/* Put fence into allow mode */
301 	gmu_write(gmu, REG_A6XX_GMU_AO_AHB_FENCE_CTRL, 0);
302 	return ret;
303 }
304 
305 static int a6xx_rpmh_start(struct a6xx_gmu *gmu)
306 {
307 	int ret;
308 	u32 val;
309 
310 	gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 1 << 1);
311 	/* Wait for the register to finish posting */
312 	wmb();
313 
314 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_RSCC_CONTROL_ACK, val,
315 		val & (1 << 1), 100, 10000);
316 	if (ret) {
317 		dev_err(gmu->dev, "Unable to power on the GPU RSC\n");
318 		return ret;
319 	}
320 
321 	ret = gmu_poll_timeout(gmu, REG_A6XX_RSCC_SEQ_BUSY_DRV0, val,
322 		!val, 100, 10000);
323 
324 	if (!ret) {
325 		gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 0);
326 
327 		/* Re-enable the power counter */
328 		gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 1);
329 		return 0;
330 	}
331 
332 	dev_err(gmu->dev, "GPU RSC sequence stuck while waking up the GPU\n");
333 	return ret;
334 }
335 
336 static void a6xx_rpmh_stop(struct a6xx_gmu *gmu)
337 {
338 	int ret;
339 	u32 val;
340 
341 	gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 1);
342 
343 	ret = gmu_poll_timeout(gmu, REG_A6XX_GPU_RSCC_RSC_STATUS0_DRV0,
344 		val, val & (1 << 16), 100, 10000);
345 	if (ret)
346 		dev_err(gmu->dev, "Unable to power off the GPU RSC\n");
347 
348 	gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 0);
349 }
350 
351 static void a6xx_gmu_rpmh_init(struct a6xx_gmu *gmu)
352 {
353 	/* Disable SDE clock gating */
354 	gmu_write(gmu, REG_A6XX_GPU_RSCC_RSC_STATUS0_DRV0, BIT(24));
355 
356 	/* Setup RSC PDC handshake for sleep and wakeup */
357 	gmu_write(gmu, REG_A6XX_RSCC_PDC_SLAVE_ID_DRV0, 1);
358 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA, 0);
359 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR, 0);
360 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA + 2, 0);
361 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR + 2, 0);
362 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA + 4, 0x80000000);
363 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR + 4, 0);
364 	gmu_write(gmu, REG_A6XX_RSCC_OVERRIDE_START_ADDR, 0);
365 	gmu_write(gmu, REG_A6XX_RSCC_PDC_SEQ_START_ADDR, 0x4520);
366 	gmu_write(gmu, REG_A6XX_RSCC_PDC_MATCH_VALUE_LO, 0x4510);
367 	gmu_write(gmu, REG_A6XX_RSCC_PDC_MATCH_VALUE_HI, 0x4514);
368 
369 	/* Load RSC sequencer uCode for sleep and wakeup */
370 	gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0, 0xa7a506a0);
371 	gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 1, 0xa1e6a6e7);
372 	gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 2, 0xa2e081e1);
373 	gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 3, 0xe9a982e2);
374 	gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 4, 0x0020e8a8);
375 
376 	/* Load PDC sequencer uCode for power up and power down sequence */
377 	pdc_write(gmu, REG_A6XX_PDC_GPU_SEQ_MEM_0, 0xfebea1e1);
378 	pdc_write(gmu, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 1, 0xa5a4a3a2);
379 	pdc_write(gmu, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 2, 0x8382a6e0);
380 	pdc_write(gmu, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 3, 0xbce3e284);
381 	pdc_write(gmu, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 4, 0x002081fc);
382 
383 	/* Set TCS commands used by PDC sequence for low power modes */
384 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS1_CMD_ENABLE_BANK, 7);
385 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS1_CMD_WAIT_FOR_CMPL_BANK, 0);
386 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS1_CONTROL, 0);
387 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID, 0x10108);
388 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR, 0x30010);
389 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA, 1);
390 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID + 4, 0x10108);
391 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR + 4, 0x30000);
392 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA + 4, 0x0);
393 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID + 8, 0x10108);
394 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR + 8, 0x30080);
395 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA + 8, 0x0);
396 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS3_CMD_ENABLE_BANK, 7);
397 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS3_CMD_WAIT_FOR_CMPL_BANK, 0);
398 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS3_CONTROL, 0);
399 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID, 0x10108);
400 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR, 0x30010);
401 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA, 2);
402 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID + 4, 0x10108);
403 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR + 4, 0x30000);
404 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 4, 0x3);
405 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID + 8, 0x10108);
406 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR + 8, 0x30080);
407 	pdc_write(gmu, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 8, 0x3);
408 
409 	/* Setup GPU PDC */
410 	pdc_write(gmu, REG_A6XX_PDC_GPU_SEQ_START_ADDR, 0);
411 	pdc_write(gmu, REG_A6XX_PDC_GPU_ENABLE_PDC, 0x80000001);
412 
413 	/* ensure no writes happen before the uCode is fully written */
414 	wmb();
415 }
416 
417 /*
418  * The lowest 16 bits of this value are the number of XO clock cycles for main
419  * hysteresis which is set at 0x1680 cycles (300 us).  The higher 16 bits are
420  * for the shorter hysteresis that happens after main - this is 0xa (.5 us)
421  */
422 
423 #define GMU_PWR_COL_HYST 0x000a1680
424 
425 /* Set up the idle state for the GMU */
426 static void a6xx_gmu_power_config(struct a6xx_gmu *gmu)
427 {
428 	/* Disable GMU WB/RB buffer */
429 	gmu_write(gmu, REG_A6XX_GMU_SYS_BUS_CONFIG, 0x1);
430 
431 	gmu_write(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0x9c40400);
432 
433 	switch (gmu->idle_level) {
434 	case GMU_IDLE_STATE_IFPC:
435 		gmu_write(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_HYST,
436 			GMU_PWR_COL_HYST);
437 		gmu_rmw(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0,
438 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_IFPC_ENABLE |
439 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_HM_POWER_COLLAPSE_ENABLE);
440 		/* Fall through */
441 	case GMU_IDLE_STATE_SPTP:
442 		gmu_write(gmu, REG_A6XX_GMU_PWR_COL_SPTPRAC_HYST,
443 			GMU_PWR_COL_HYST);
444 		gmu_rmw(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0,
445 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_IFPC_ENABLE |
446 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_SPTPRAC_POWER_CONTROL_ENABLE);
447 	}
448 
449 	/* Enable RPMh GPU client */
450 	gmu_rmw(gmu, REG_A6XX_GMU_RPMH_CTRL, 0,
451 		A6XX_GMU_RPMH_CTRL_RPMH_INTERFACE_ENABLE |
452 		A6XX_GMU_RPMH_CTRL_LLC_VOTE_ENABLE |
453 		A6XX_GMU_RPMH_CTRL_DDR_VOTE_ENABLE |
454 		A6XX_GMU_RPMH_CTRL_MX_VOTE_ENABLE |
455 		A6XX_GMU_RPMH_CTRL_CX_VOTE_ENABLE |
456 		A6XX_GMU_RPMH_CTRL_GFX_VOTE_ENABLE);
457 }
458 
459 static int a6xx_gmu_fw_start(struct a6xx_gmu *gmu, unsigned int state)
460 {
461 	static bool rpmh_init;
462 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
463 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
464 	int i, ret;
465 	u32 chipid;
466 	u32 *image;
467 
468 	if (state == GMU_WARM_BOOT) {
469 		ret = a6xx_rpmh_start(gmu);
470 		if (ret)
471 			return ret;
472 	} else {
473 		if (WARN(!adreno_gpu->fw[ADRENO_FW_GMU],
474 			"GMU firmware is not loaded\n"))
475 			return -ENOENT;
476 
477 		/* Sanity check the size of the firmware that was loaded */
478 		if (adreno_gpu->fw[ADRENO_FW_GMU]->size > 0x8000) {
479 			dev_err(gmu->dev,
480 				"GMU firmware is bigger than the available region\n");
481 			return -EINVAL;
482 		}
483 
484 		/* Turn on register retention */
485 		gmu_write(gmu, REG_A6XX_GMU_GENERAL_7, 1);
486 
487 		/* We only need to load the RPMh microcode once */
488 		if (!rpmh_init) {
489 			a6xx_gmu_rpmh_init(gmu);
490 			rpmh_init = true;
491 		} else if (state != GMU_RESET) {
492 			ret = a6xx_rpmh_start(gmu);
493 			if (ret)
494 				return ret;
495 		}
496 
497 		image = (u32 *) adreno_gpu->fw[ADRENO_FW_GMU]->data;
498 
499 		for (i = 0; i < adreno_gpu->fw[ADRENO_FW_GMU]->size >> 2; i++)
500 			gmu_write(gmu, REG_A6XX_GMU_CM3_ITCM_START + i,
501 				image[i]);
502 	}
503 
504 	gmu_write(gmu, REG_A6XX_GMU_CM3_FW_INIT_RESULT, 0);
505 	gmu_write(gmu, REG_A6XX_GMU_CM3_BOOT_CONFIG, 0x02);
506 
507 	/* Write the iova of the HFI table */
508 	gmu_write(gmu, REG_A6XX_GMU_HFI_QTBL_ADDR, gmu->hfi->iova);
509 	gmu_write(gmu, REG_A6XX_GMU_HFI_QTBL_INFO, 1);
510 
511 	gmu_write(gmu, REG_A6XX_GMU_AHB_FENCE_RANGE_0,
512 		(1 << 31) | (0xa << 18) | (0xa0));
513 
514 	chipid = adreno_gpu->rev.core << 24;
515 	chipid |= adreno_gpu->rev.major << 16;
516 	chipid |= adreno_gpu->rev.minor << 12;
517 	chipid |= adreno_gpu->rev.patchid << 8;
518 
519 	gmu_write(gmu, REG_A6XX_GMU_HFI_SFR_ADDR, chipid);
520 
521 	/* Set up the lowest idle level on the GMU */
522 	a6xx_gmu_power_config(gmu);
523 
524 	ret = a6xx_gmu_start(gmu);
525 	if (ret)
526 		return ret;
527 
528 	ret = a6xx_gmu_gfx_rail_on(gmu);
529 	if (ret)
530 		return ret;
531 
532 	/* Enable SPTP_PC if the CPU is responsible for it */
533 	if (gmu->idle_level < GMU_IDLE_STATE_SPTP) {
534 		ret = a6xx_sptprac_enable(gmu);
535 		if (ret)
536 			return ret;
537 	}
538 
539 	ret = a6xx_gmu_hfi_start(gmu);
540 	if (ret)
541 		return ret;
542 
543 	/* FIXME: Do we need this wmb() here? */
544 	wmb();
545 
546 	return 0;
547 }
548 
549 #define A6XX_HFI_IRQ_MASK \
550 	(A6XX_GMU_GMU2HOST_INTR_INFO_MSGQ | \
551 	 A6XX_GMU_GMU2HOST_INTR_INFO_CM3_FAULT)
552 
553 #define A6XX_GMU_IRQ_MASK \
554 	(A6XX_GMU_AO_HOST_INTERRUPT_STATUS_WDOG_BITE | \
555 	 A6XX_GMU_AO_HOST_INTERRUPT_STATUS_HOST_AHB_BUS_ERROR | \
556 	 A6XX_GMU_AO_HOST_INTERRUPT_STATUS_FENCE_ERR)
557 
558 static void a6xx_gmu_irq_enable(struct a6xx_gmu *gmu)
559 {
560 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_CLR, ~0);
561 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, ~0);
562 
563 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_MASK,
564 		~A6XX_GMU_IRQ_MASK);
565 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_MASK,
566 		~A6XX_HFI_IRQ_MASK);
567 
568 	enable_irq(gmu->gmu_irq);
569 	enable_irq(gmu->hfi_irq);
570 }
571 
572 static void a6xx_gmu_irq_disable(struct a6xx_gmu *gmu)
573 {
574 	disable_irq(gmu->gmu_irq);
575 	disable_irq(gmu->hfi_irq);
576 
577 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_MASK, ~0);
578 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_MASK, ~0);
579 }
580 
581 int a6xx_gmu_reset(struct a6xx_gpu *a6xx_gpu)
582 {
583 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
584 	int ret;
585 	u32 val;
586 
587 	/* Flush all the queues */
588 	a6xx_hfi_stop(gmu);
589 
590 	/* Stop the interrupts */
591 	a6xx_gmu_irq_disable(gmu);
592 
593 	/* Force off SPTP in case the GMU is managing it */
594 	a6xx_sptprac_disable(gmu);
595 
596 	/* Make sure there are no outstanding RPMh votes */
597 	gmu_poll_timeout(gmu, REG_A6XX_RSCC_TCS0_DRV0_STATUS, val,
598 		(val & 1), 100, 10000);
599 	gmu_poll_timeout(gmu, REG_A6XX_RSCC_TCS1_DRV0_STATUS, val,
600 		(val & 1), 100, 10000);
601 	gmu_poll_timeout(gmu, REG_A6XX_RSCC_TCS2_DRV0_STATUS, val,
602 		(val & 1), 100, 10000);
603 	gmu_poll_timeout(gmu, REG_A6XX_RSCC_TCS3_DRV0_STATUS, val,
604 		(val & 1), 100, 1000);
605 
606 	/* Force off the GX GSDC */
607 	regulator_force_disable(gmu->gx);
608 
609 	/* Disable the resources */
610 	clk_bulk_disable_unprepare(gmu->nr_clocks, gmu->clocks);
611 	pm_runtime_put_sync(gmu->dev);
612 
613 	/* Re-enable the resources */
614 	pm_runtime_get_sync(gmu->dev);
615 
616 	/* Use a known rate to bring up the GMU */
617 	clk_set_rate(gmu->core_clk, 200000000);
618 	ret = clk_bulk_prepare_enable(gmu->nr_clocks, gmu->clocks);
619 	if (ret)
620 		goto out;
621 
622 	a6xx_gmu_irq_enable(gmu);
623 
624 	ret = a6xx_gmu_fw_start(gmu, GMU_RESET);
625 	if (!ret)
626 		ret = a6xx_hfi_start(gmu, GMU_COLD_BOOT);
627 
628 	/* Set the GPU back to the highest power frequency */
629 	a6xx_gmu_set_freq(gmu, gmu->nr_gpu_freqs - 1);
630 
631 out:
632 	if (ret)
633 		a6xx_gmu_clear_oob(gmu, GMU_OOB_BOOT_SLUMBER);
634 
635 	return ret;
636 }
637 
638 int a6xx_gmu_resume(struct a6xx_gpu *a6xx_gpu)
639 {
640 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
641 	int status, ret;
642 
643 	if (WARN(!gmu->mmio, "The GMU is not set up yet\n"))
644 		return 0;
645 
646 	/* Turn on the resources */
647 	pm_runtime_get_sync(gmu->dev);
648 
649 	/* Use a known rate to bring up the GMU */
650 	clk_set_rate(gmu->core_clk, 200000000);
651 	ret = clk_bulk_prepare_enable(gmu->nr_clocks, gmu->clocks);
652 	if (ret)
653 		goto out;
654 
655 	a6xx_gmu_irq_enable(gmu);
656 
657 	/* Check to see if we are doing a cold or warm boot */
658 	status = gmu_read(gmu, REG_A6XX_GMU_GENERAL_7) == 1 ?
659 		GMU_WARM_BOOT : GMU_COLD_BOOT;
660 
661 	ret = a6xx_gmu_fw_start(gmu, status);
662 	if (ret)
663 		goto out;
664 
665 	ret = a6xx_hfi_start(gmu, status);
666 
667 	/* Set the GPU to the highest power frequency */
668 	a6xx_gmu_set_freq(gmu, gmu->nr_gpu_freqs - 1);
669 
670 out:
671 	/* Make sure to turn off the boot OOB request on error */
672 	if (ret)
673 		a6xx_gmu_clear_oob(gmu, GMU_OOB_BOOT_SLUMBER);
674 
675 	return ret;
676 }
677 
678 bool a6xx_gmu_isidle(struct a6xx_gmu *gmu)
679 {
680 	u32 reg;
681 
682 	if (!gmu->mmio)
683 		return true;
684 
685 	reg = gmu_read(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS);
686 
687 	if (reg &  A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS_GPUBUSYIGNAHB)
688 		return false;
689 
690 	return true;
691 }
692 
693 int a6xx_gmu_stop(struct a6xx_gpu *a6xx_gpu)
694 {
695 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
696 	u32 val;
697 
698 	/*
699 	 * The GMU may still be in slumber unless the GPU started so check and
700 	 * skip putting it back into slumber if so
701 	 */
702 	val = gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE);
703 
704 	if (val != 0xf) {
705 		int ret = a6xx_gmu_wait_for_idle(a6xx_gpu);
706 
707 		/* Temporary until we can recover safely */
708 		BUG_ON(ret);
709 
710 		/* tell the GMU we want to slumber */
711 		a6xx_gmu_notify_slumber(gmu);
712 
713 		ret = gmu_poll_timeout(gmu,
714 			REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS, val,
715 			!(val & A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS_GPUBUSYIGNAHB),
716 			100, 10000);
717 
718 		/*
719 		 * Let the user know we failed to slumber but don't worry too
720 		 * much because we are powering down anyway
721 		 */
722 
723 		if (ret)
724 			dev_err(gmu->dev,
725 				"Unable to slumber GMU: status = 0%x/0%x\n",
726 				gmu_read(gmu,
727 					REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS),
728 				gmu_read(gmu,
729 					REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS2));
730 	}
731 
732 	/* Turn off HFI */
733 	a6xx_hfi_stop(gmu);
734 
735 	/* Stop the interrupts and mask the hardware */
736 	a6xx_gmu_irq_disable(gmu);
737 
738 	/* Tell RPMh to power off the GPU */
739 	a6xx_rpmh_stop(gmu);
740 
741 	clk_bulk_disable_unprepare(gmu->nr_clocks, gmu->clocks);
742 
743 	pm_runtime_put_sync(gmu->dev);
744 
745 	return 0;
746 }
747 
748 static void a6xx_gmu_memory_free(struct a6xx_gmu *gmu, struct a6xx_gmu_bo *bo)
749 {
750 	int count, i;
751 	u64 iova;
752 
753 	if (IS_ERR_OR_NULL(bo))
754 		return;
755 
756 	count = bo->size >> PAGE_SHIFT;
757 	iova = bo->iova;
758 
759 	for (i = 0; i < count; i++, iova += PAGE_SIZE) {
760 		iommu_unmap(gmu->domain, iova, PAGE_SIZE);
761 		__free_pages(bo->pages[i], 0);
762 	}
763 
764 	kfree(bo->pages);
765 	kfree(bo);
766 }
767 
768 static struct a6xx_gmu_bo *a6xx_gmu_memory_alloc(struct a6xx_gmu *gmu,
769 		size_t size)
770 {
771 	struct a6xx_gmu_bo *bo;
772 	int ret, count, i;
773 
774 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
775 	if (!bo)
776 		return ERR_PTR(-ENOMEM);
777 
778 	bo->size = PAGE_ALIGN(size);
779 
780 	count = bo->size >> PAGE_SHIFT;
781 
782 	bo->pages = kcalloc(count, sizeof(struct page *), GFP_KERNEL);
783 	if (!bo->pages) {
784 		kfree(bo);
785 		return ERR_PTR(-ENOMEM);
786 	}
787 
788 	for (i = 0; i < count; i++) {
789 		bo->pages[i] = alloc_page(GFP_KERNEL);
790 		if (!bo->pages[i])
791 			goto err;
792 	}
793 
794 	bo->iova = gmu->uncached_iova_base;
795 
796 	for (i = 0; i < count; i++) {
797 		ret = iommu_map(gmu->domain,
798 			bo->iova + (PAGE_SIZE * i),
799 			page_to_phys(bo->pages[i]), PAGE_SIZE,
800 			IOMMU_READ | IOMMU_WRITE);
801 
802 		if (ret) {
803 			dev_err(gmu->dev, "Unable to map GMU buffer object\n");
804 
805 			for (i = i - 1 ; i >= 0; i--)
806 				iommu_unmap(gmu->domain,
807 					bo->iova + (PAGE_SIZE * i),
808 					PAGE_SIZE);
809 
810 			goto err;
811 		}
812 	}
813 
814 	bo->virt = vmap(bo->pages, count, VM_IOREMAP,
815 		pgprot_writecombine(PAGE_KERNEL));
816 	if (!bo->virt)
817 		goto err;
818 
819 	/* Align future IOVA addresses on 1MB boundaries */
820 	gmu->uncached_iova_base += ALIGN(size, SZ_1M);
821 
822 	return bo;
823 
824 err:
825 	for (i = 0; i < count; i++) {
826 		if (bo->pages[i])
827 			__free_pages(bo->pages[i], 0);
828 	}
829 
830 	kfree(bo->pages);
831 	kfree(bo);
832 
833 	return ERR_PTR(-ENOMEM);
834 }
835 
836 static int a6xx_gmu_memory_probe(struct a6xx_gmu *gmu)
837 {
838 	int ret;
839 
840 	/*
841 	 * The GMU address space is hardcoded to treat the range
842 	 * 0x60000000 - 0x80000000 as un-cached memory. All buffers shared
843 	 * between the GMU and the CPU will live in this space
844 	 */
845 	gmu->uncached_iova_base = 0x60000000;
846 
847 
848 	gmu->domain = iommu_domain_alloc(&platform_bus_type);
849 	if (!gmu->domain)
850 		return -ENODEV;
851 
852 	ret = iommu_attach_device(gmu->domain, gmu->dev);
853 
854 	if (ret) {
855 		iommu_domain_free(gmu->domain);
856 		gmu->domain = NULL;
857 	}
858 
859 	return ret;
860 }
861 
862 /* Get the list of RPMh voltage levels from cmd-db */
863 static int a6xx_gmu_rpmh_arc_cmds(const char *id, void *vals, int size)
864 {
865 	u32 len = cmd_db_read_aux_data_len(id);
866 
867 	if (!len)
868 		return 0;
869 
870 	if (WARN_ON(len > size))
871 		return -EINVAL;
872 
873 	cmd_db_read_aux_data(id, vals, len);
874 
875 	/*
876 	 * The data comes back as an array of unsigned shorts so adjust the
877 	 * count accordingly
878 	 */
879 	return len >> 1;
880 }
881 
882 /* Return the 'arc-level' for the given frequency */
883 static u32 a6xx_gmu_get_arc_level(struct device *dev, unsigned long freq)
884 {
885 	struct dev_pm_opp *opp;
886 	struct device_node *np;
887 	u32 val = 0;
888 
889 	if (!freq)
890 		return 0;
891 
892 	opp  = dev_pm_opp_find_freq_exact(dev, freq, true);
893 	if (IS_ERR(opp))
894 		return 0;
895 
896 	np = dev_pm_opp_get_of_node(opp);
897 
898 	if (np) {
899 		of_property_read_u32(np, "qcom,level", &val);
900 		of_node_put(np);
901 	}
902 
903 	dev_pm_opp_put(opp);
904 
905 	return val;
906 }
907 
908 static int a6xx_gmu_rpmh_arc_votes_init(struct device *dev, u32 *votes,
909 		unsigned long *freqs, int freqs_count,
910 		u16 *pri, int pri_count,
911 		u16 *sec, int sec_count)
912 {
913 	int i, j;
914 
915 	/* Construct a vote for each frequency */
916 	for (i = 0; i < freqs_count; i++) {
917 		u8 pindex = 0, sindex = 0;
918 		u32 level = a6xx_gmu_get_arc_level(dev, freqs[i]);
919 
920 		/* Get the primary index that matches the arc level */
921 		for (j = 0; j < pri_count; j++) {
922 			if (pri[j] >= level) {
923 				pindex = j;
924 				break;
925 			}
926 		}
927 
928 		if (j == pri_count) {
929 			dev_err(dev,
930 				"Level %u not found in in the RPMh list\n",
931 					level);
932 			dev_err(dev, "Available levels:\n");
933 			for (j = 0; j < pri_count; j++)
934 				dev_err(dev, "  %u\n", pri[j]);
935 
936 			return -EINVAL;
937 		}
938 
939 		/*
940 		 * Look for a level in in the secondary list that matches. If
941 		 * nothing fits, use the maximum non zero vote
942 		 */
943 
944 		for (j = 0; j < sec_count; j++) {
945 			if (sec[j] >= level) {
946 				sindex = j;
947 				break;
948 			} else if (sec[j]) {
949 				sindex = j;
950 			}
951 		}
952 
953 		/* Construct the vote */
954 		votes[i] = ((pri[pindex] & 0xffff) << 16) |
955 			(sindex << 8) | pindex;
956 	}
957 
958 	return 0;
959 }
960 
961 /*
962  * The GMU votes with the RPMh for itself and on behalf of the GPU but we need
963  * to construct the list of votes on the CPU and send it over. Query the RPMh
964  * voltage levels and build the votes
965  */
966 
967 static int a6xx_gmu_rpmh_votes_init(struct a6xx_gmu *gmu)
968 {
969 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
970 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
971 	struct msm_gpu *gpu = &adreno_gpu->base;
972 
973 	u16 gx[16], cx[16], mx[16];
974 	u32 gxcount, cxcount, mxcount;
975 	int ret;
976 
977 	/* Get the list of available voltage levels for each component */
978 	gxcount = a6xx_gmu_rpmh_arc_cmds("gfx.lvl", gx, sizeof(gx));
979 	cxcount = a6xx_gmu_rpmh_arc_cmds("cx.lvl", cx, sizeof(cx));
980 	mxcount = a6xx_gmu_rpmh_arc_cmds("mx.lvl", mx, sizeof(mx));
981 
982 	/* Build the GX votes */
983 	ret = a6xx_gmu_rpmh_arc_votes_init(&gpu->pdev->dev, gmu->gx_arc_votes,
984 		gmu->gpu_freqs, gmu->nr_gpu_freqs,
985 		gx, gxcount, mx, mxcount);
986 
987 	/* Build the CX votes */
988 	ret |= a6xx_gmu_rpmh_arc_votes_init(gmu->dev, gmu->cx_arc_votes,
989 		gmu->gmu_freqs, gmu->nr_gmu_freqs,
990 		cx, cxcount, mx, mxcount);
991 
992 	return ret;
993 }
994 
995 static int a6xx_gmu_build_freq_table(struct device *dev, unsigned long *freqs,
996 		u32 size)
997 {
998 	int count = dev_pm_opp_get_opp_count(dev);
999 	struct dev_pm_opp *opp;
1000 	int i, index = 0;
1001 	unsigned long freq = 1;
1002 
1003 	/*
1004 	 * The OPP table doesn't contain the "off" frequency level so we need to
1005 	 * add 1 to the table size to account for it
1006 	 */
1007 
1008 	if (WARN(count + 1 > size,
1009 		"The GMU frequency table is being truncated\n"))
1010 		count = size - 1;
1011 
1012 	/* Set the "off" frequency */
1013 	freqs[index++] = 0;
1014 
1015 	for (i = 0; i < count; i++) {
1016 		opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1017 		if (IS_ERR(opp))
1018 			break;
1019 
1020 		dev_pm_opp_put(opp);
1021 		freqs[index++] = freq++;
1022 	}
1023 
1024 	return index;
1025 }
1026 
1027 static int a6xx_gmu_pwrlevels_probe(struct a6xx_gmu *gmu)
1028 {
1029 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
1030 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1031 	struct msm_gpu *gpu = &adreno_gpu->base;
1032 
1033 	int ret = 0;
1034 
1035 	/*
1036 	 * The GMU handles its own frequency switching so build a list of
1037 	 * available frequencies to send during initalization
1038 	 */
1039 	ret = dev_pm_opp_of_add_table(gmu->dev);
1040 	if (ret) {
1041 		dev_err(gmu->dev, "Unable to set the OPP table for the GMU\n");
1042 		return ret;
1043 	}
1044 
1045 	gmu->nr_gmu_freqs = a6xx_gmu_build_freq_table(gmu->dev,
1046 		gmu->gmu_freqs, ARRAY_SIZE(gmu->gmu_freqs));
1047 
1048 	/*
1049 	 * The GMU also handles GPU frequency switching so build a list
1050 	 * from the GPU OPP table
1051 	 */
1052 	gmu->nr_gpu_freqs = a6xx_gmu_build_freq_table(&gpu->pdev->dev,
1053 		gmu->gpu_freqs, ARRAY_SIZE(gmu->gpu_freqs));
1054 
1055 	/* Build the list of RPMh votes that we'll send to the GMU */
1056 	return a6xx_gmu_rpmh_votes_init(gmu);
1057 }
1058 
1059 static int a6xx_gmu_clocks_probe(struct a6xx_gmu *gmu)
1060 {
1061 	int ret = msm_clk_bulk_get(gmu->dev, &gmu->clocks);
1062 
1063 	if (ret < 1)
1064 		return ret;
1065 
1066 	gmu->nr_clocks = ret;
1067 
1068 	gmu->core_clk = msm_clk_bulk_get_clock(gmu->clocks,
1069 		gmu->nr_clocks, "gmu");
1070 
1071 	return 0;
1072 }
1073 
1074 static void __iomem *a6xx_gmu_get_mmio(struct platform_device *pdev,
1075 		const char *name)
1076 {
1077 	void __iomem *ret;
1078 	struct resource *res = platform_get_resource_byname(pdev,
1079 			IORESOURCE_MEM, name);
1080 
1081 	if (!res) {
1082 		dev_err(&pdev->dev, "Unable to find the %s registers\n", name);
1083 		return ERR_PTR(-EINVAL);
1084 	}
1085 
1086 	ret = devm_ioremap(&pdev->dev, res->start, resource_size(res));
1087 	if (!ret) {
1088 		dev_err(&pdev->dev, "Unable to map the %s registers\n", name);
1089 		return ERR_PTR(-EINVAL);
1090 	}
1091 
1092 	return ret;
1093 }
1094 
1095 static int a6xx_gmu_get_irq(struct a6xx_gmu *gmu, struct platform_device *pdev,
1096 		const char *name, irq_handler_t handler)
1097 {
1098 	int irq, ret;
1099 
1100 	irq = platform_get_irq_byname(pdev, name);
1101 
1102 	ret = devm_request_irq(&pdev->dev, irq, handler, IRQF_TRIGGER_HIGH,
1103 		name, gmu);
1104 	if (ret) {
1105 		dev_err(&pdev->dev, "Unable to get interrupt %s\n", name);
1106 		return ret;
1107 	}
1108 
1109 	disable_irq(irq);
1110 
1111 	return irq;
1112 }
1113 
1114 void a6xx_gmu_remove(struct a6xx_gpu *a6xx_gpu)
1115 {
1116 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
1117 
1118 	if (IS_ERR_OR_NULL(gmu->mmio))
1119 		return;
1120 
1121 	pm_runtime_disable(gmu->dev);
1122 	a6xx_gmu_stop(a6xx_gpu);
1123 
1124 	a6xx_gmu_irq_disable(gmu);
1125 	a6xx_gmu_memory_free(gmu, gmu->hfi);
1126 
1127 	iommu_detach_device(gmu->domain, gmu->dev);
1128 
1129 	iommu_domain_free(gmu->domain);
1130 }
1131 
1132 int a6xx_gmu_probe(struct a6xx_gpu *a6xx_gpu, struct device_node *node)
1133 {
1134 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
1135 	struct platform_device *pdev = of_find_device_by_node(node);
1136 	int ret;
1137 
1138 	if (!pdev)
1139 		return -ENODEV;
1140 
1141 	gmu->dev = &pdev->dev;
1142 
1143 	of_dma_configure(gmu->dev, node, false);
1144 
1145 	/* Fow now, don't do anything fancy until we get our feet under us */
1146 	gmu->idle_level = GMU_IDLE_STATE_ACTIVE;
1147 
1148 	pm_runtime_enable(gmu->dev);
1149 	gmu->gx = devm_regulator_get(gmu->dev, "vdd");
1150 
1151 	/* Get the list of clocks */
1152 	ret = a6xx_gmu_clocks_probe(gmu);
1153 	if (ret)
1154 		return ret;
1155 
1156 	/* Set up the IOMMU context bank */
1157 	ret = a6xx_gmu_memory_probe(gmu);
1158 	if (ret)
1159 		return ret;
1160 
1161 	/* Allocate memory for for the HFI queues */
1162 	gmu->hfi = a6xx_gmu_memory_alloc(gmu, SZ_16K);
1163 	if (IS_ERR(gmu->hfi))
1164 		goto err;
1165 
1166 	/* Allocate memory for the GMU debug region */
1167 	gmu->debug = a6xx_gmu_memory_alloc(gmu, SZ_16K);
1168 	if (IS_ERR(gmu->debug))
1169 		goto err;
1170 
1171 	/* Map the GMU registers */
1172 	gmu->mmio = a6xx_gmu_get_mmio(pdev, "gmu");
1173 
1174 	/* Map the GPU power domain controller registers */
1175 	gmu->pdc_mmio = a6xx_gmu_get_mmio(pdev, "gmu_pdc");
1176 
1177 	if (IS_ERR(gmu->mmio) || IS_ERR(gmu->pdc_mmio))
1178 		goto err;
1179 
1180 	/* Get the HFI and GMU interrupts */
1181 	gmu->hfi_irq = a6xx_gmu_get_irq(gmu, pdev, "hfi", a6xx_hfi_irq);
1182 	gmu->gmu_irq = a6xx_gmu_get_irq(gmu, pdev, "gmu", a6xx_gmu_irq);
1183 
1184 	if (gmu->hfi_irq < 0 || gmu->gmu_irq < 0)
1185 		goto err;
1186 
1187 	/* Set up a tasklet to handle GMU HFI responses */
1188 	tasklet_init(&gmu->hfi_tasklet, a6xx_hfi_task, (unsigned long) gmu);
1189 
1190 	/* Get the power levels for the GMU and GPU */
1191 	a6xx_gmu_pwrlevels_probe(gmu);
1192 
1193 	/* Set up the HFI queues */
1194 	a6xx_hfi_init(gmu);
1195 
1196 	return 0;
1197 err:
1198 	a6xx_gmu_memory_free(gmu, gmu->hfi);
1199 
1200 	if (gmu->domain) {
1201 		iommu_detach_device(gmu->domain, gmu->dev);
1202 
1203 		iommu_domain_free(gmu->domain);
1204 	}
1205 
1206 	return -ENODEV;
1207 }
1208