1 /* 2 * Copyright © 2012 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Ben Widawsky <ben@bwidawsk.net> 25 * 26 */ 27 28 #include <linux/device.h> 29 #include <linux/module.h> 30 #include <linux/stat.h> 31 #include <linux/sysfs.h> 32 #include "intel_drv.h" 33 #include "i915_drv.h" 34 35 #define dev_to_drm_minor(d) dev_get_drvdata((d)) 36 37 #ifdef CONFIG_PM 38 static u32 calc_residency(struct drm_device *dev, 39 i915_reg_t reg) 40 { 41 struct drm_i915_private *dev_priv = dev->dev_private; 42 u64 raw_time; /* 32b value may overflow during fixed point math */ 43 u64 units = 128ULL, div = 100000ULL; 44 u32 ret; 45 46 if (!intel_enable_rc6(dev)) 47 return 0; 48 49 intel_runtime_pm_get(dev_priv); 50 51 /* On VLV and CHV, residency time is in CZ units rather than 1.28us */ 52 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { 53 units = 1; 54 div = dev_priv->czclk_freq; 55 56 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH) 57 units <<= 8; 58 } else if (IS_BROXTON(dev)) { 59 units = 1; 60 div = 1200; /* 833.33ns */ 61 } 62 63 raw_time = I915_READ(reg) * units; 64 ret = DIV_ROUND_UP_ULL(raw_time, div); 65 66 intel_runtime_pm_put(dev_priv); 67 return ret; 68 } 69 70 static ssize_t 71 show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf) 72 { 73 struct drm_minor *dminor = dev_to_drm_minor(kdev); 74 return snprintf(buf, PAGE_SIZE, "%x\n", intel_enable_rc6(dminor->dev)); 75 } 76 77 static ssize_t 78 show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf) 79 { 80 struct drm_minor *dminor = dev_get_drvdata(kdev); 81 u32 rc6_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6); 82 return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency); 83 } 84 85 static ssize_t 86 show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf) 87 { 88 struct drm_minor *dminor = dev_to_drm_minor(kdev); 89 u32 rc6p_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6p); 90 return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency); 91 } 92 93 static ssize_t 94 show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf) 95 { 96 struct drm_minor *dminor = dev_to_drm_minor(kdev); 97 u32 rc6pp_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6pp); 98 return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency); 99 } 100 101 static ssize_t 102 show_media_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf) 103 { 104 struct drm_minor *dminor = dev_get_drvdata(kdev); 105 u32 rc6_residency = calc_residency(dminor->dev, VLV_GT_MEDIA_RC6); 106 return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency); 107 } 108 109 static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL); 110 static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL); 111 static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL); 112 static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL); 113 static DEVICE_ATTR(media_rc6_residency_ms, S_IRUGO, show_media_rc6_ms, NULL); 114 115 static struct attribute *rc6_attrs[] = { 116 &dev_attr_rc6_enable.attr, 117 &dev_attr_rc6_residency_ms.attr, 118 NULL 119 }; 120 121 static struct attribute_group rc6_attr_group = { 122 .name = power_group_name, 123 .attrs = rc6_attrs 124 }; 125 126 static struct attribute *rc6p_attrs[] = { 127 &dev_attr_rc6p_residency_ms.attr, 128 &dev_attr_rc6pp_residency_ms.attr, 129 NULL 130 }; 131 132 static struct attribute_group rc6p_attr_group = { 133 .name = power_group_name, 134 .attrs = rc6p_attrs 135 }; 136 137 static struct attribute *media_rc6_attrs[] = { 138 &dev_attr_media_rc6_residency_ms.attr, 139 NULL 140 }; 141 142 static struct attribute_group media_rc6_attr_group = { 143 .name = power_group_name, 144 .attrs = media_rc6_attrs 145 }; 146 #endif 147 148 static int l3_access_valid(struct drm_device *dev, loff_t offset) 149 { 150 if (!HAS_L3_DPF(dev)) 151 return -EPERM; 152 153 if (offset % 4 != 0) 154 return -EINVAL; 155 156 if (offset >= GEN7_L3LOG_SIZE) 157 return -ENXIO; 158 159 return 0; 160 } 161 162 static ssize_t 163 i915_l3_read(struct file *filp, struct kobject *kobj, 164 struct bin_attribute *attr, char *buf, 165 loff_t offset, size_t count) 166 { 167 struct device *dev = container_of(kobj, struct device, kobj); 168 struct drm_minor *dminor = dev_to_drm_minor(dev); 169 struct drm_device *drm_dev = dminor->dev; 170 struct drm_i915_private *dev_priv = drm_dev->dev_private; 171 int slice = (int)(uintptr_t)attr->private; 172 int ret; 173 174 count = round_down(count, 4); 175 176 ret = l3_access_valid(drm_dev, offset); 177 if (ret) 178 return ret; 179 180 count = min_t(size_t, GEN7_L3LOG_SIZE - offset, count); 181 182 ret = i915_mutex_lock_interruptible(drm_dev); 183 if (ret) 184 return ret; 185 186 if (dev_priv->l3_parity.remap_info[slice]) 187 memcpy(buf, 188 dev_priv->l3_parity.remap_info[slice] + (offset/4), 189 count); 190 else 191 memset(buf, 0, count); 192 193 mutex_unlock(&drm_dev->struct_mutex); 194 195 return count; 196 } 197 198 static ssize_t 199 i915_l3_write(struct file *filp, struct kobject *kobj, 200 struct bin_attribute *attr, char *buf, 201 loff_t offset, size_t count) 202 { 203 struct device *dev = container_of(kobj, struct device, kobj); 204 struct drm_minor *dminor = dev_to_drm_minor(dev); 205 struct drm_device *drm_dev = dminor->dev; 206 struct drm_i915_private *dev_priv = drm_dev->dev_private; 207 struct intel_context *ctx; 208 u32 *temp = NULL; /* Just here to make handling failures easy */ 209 int slice = (int)(uintptr_t)attr->private; 210 int ret; 211 212 if (!HAS_HW_CONTEXTS(drm_dev)) 213 return -ENXIO; 214 215 ret = l3_access_valid(drm_dev, offset); 216 if (ret) 217 return ret; 218 219 ret = i915_mutex_lock_interruptible(drm_dev); 220 if (ret) 221 return ret; 222 223 if (!dev_priv->l3_parity.remap_info[slice]) { 224 temp = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL); 225 if (!temp) { 226 mutex_unlock(&drm_dev->struct_mutex); 227 return -ENOMEM; 228 } 229 } 230 231 ret = i915_gpu_idle(drm_dev); 232 if (ret) { 233 kfree(temp); 234 mutex_unlock(&drm_dev->struct_mutex); 235 return ret; 236 } 237 238 /* TODO: Ideally we really want a GPU reset here to make sure errors 239 * aren't propagated. Since I cannot find a stable way to reset the GPU 240 * at this point it is left as a TODO. 241 */ 242 if (temp) 243 dev_priv->l3_parity.remap_info[slice] = temp; 244 245 memcpy(dev_priv->l3_parity.remap_info[slice] + (offset/4), buf, count); 246 247 /* NB: We defer the remapping until we switch to the context */ 248 list_for_each_entry(ctx, &dev_priv->context_list, link) 249 ctx->remap_slice |= (1<<slice); 250 251 mutex_unlock(&drm_dev->struct_mutex); 252 253 return count; 254 } 255 256 static struct bin_attribute dpf_attrs = { 257 .attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)}, 258 .size = GEN7_L3LOG_SIZE, 259 .read = i915_l3_read, 260 .write = i915_l3_write, 261 .mmap = NULL, 262 .private = (void *)0 263 }; 264 265 static struct bin_attribute dpf_attrs_1 = { 266 .attr = {.name = "l3_parity_slice_1", .mode = (S_IRUSR | S_IWUSR)}, 267 .size = GEN7_L3LOG_SIZE, 268 .read = i915_l3_read, 269 .write = i915_l3_write, 270 .mmap = NULL, 271 .private = (void *)1 272 }; 273 274 static ssize_t gt_act_freq_mhz_show(struct device *kdev, 275 struct device_attribute *attr, char *buf) 276 { 277 struct drm_minor *minor = dev_to_drm_minor(kdev); 278 struct drm_device *dev = minor->dev; 279 struct drm_i915_private *dev_priv = dev->dev_private; 280 int ret; 281 282 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 283 284 intel_runtime_pm_get(dev_priv); 285 286 mutex_lock(&dev_priv->rps.hw_lock); 287 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 288 u32 freq; 289 freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS); 290 ret = intel_gpu_freq(dev_priv, (freq >> 8) & 0xff); 291 } else { 292 u32 rpstat = I915_READ(GEN6_RPSTAT1); 293 if (IS_GEN9(dev_priv)) 294 ret = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT; 295 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 296 ret = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT; 297 else 298 ret = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT; 299 ret = intel_gpu_freq(dev_priv, ret); 300 } 301 mutex_unlock(&dev_priv->rps.hw_lock); 302 303 intel_runtime_pm_put(dev_priv); 304 305 return snprintf(buf, PAGE_SIZE, "%d\n", ret); 306 } 307 308 static ssize_t gt_cur_freq_mhz_show(struct device *kdev, 309 struct device_attribute *attr, char *buf) 310 { 311 struct drm_minor *minor = dev_to_drm_minor(kdev); 312 struct drm_device *dev = minor->dev; 313 struct drm_i915_private *dev_priv = dev->dev_private; 314 int ret; 315 316 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 317 318 intel_runtime_pm_get(dev_priv); 319 320 mutex_lock(&dev_priv->rps.hw_lock); 321 ret = intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq); 322 mutex_unlock(&dev_priv->rps.hw_lock); 323 324 intel_runtime_pm_put(dev_priv); 325 326 return snprintf(buf, PAGE_SIZE, "%d\n", ret); 327 } 328 329 static ssize_t vlv_rpe_freq_mhz_show(struct device *kdev, 330 struct device_attribute *attr, char *buf) 331 { 332 struct drm_minor *minor = dev_to_drm_minor(kdev); 333 struct drm_device *dev = minor->dev; 334 struct drm_i915_private *dev_priv = dev->dev_private; 335 336 return snprintf(buf, PAGE_SIZE, 337 "%d\n", 338 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq)); 339 } 340 341 static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) 342 { 343 struct drm_minor *minor = dev_to_drm_minor(kdev); 344 struct drm_device *dev = minor->dev; 345 struct drm_i915_private *dev_priv = dev->dev_private; 346 int ret; 347 348 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 349 350 mutex_lock(&dev_priv->rps.hw_lock); 351 ret = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit); 352 mutex_unlock(&dev_priv->rps.hw_lock); 353 354 return snprintf(buf, PAGE_SIZE, "%d\n", ret); 355 } 356 357 static ssize_t gt_max_freq_mhz_store(struct device *kdev, 358 struct device_attribute *attr, 359 const char *buf, size_t count) 360 { 361 struct drm_minor *minor = dev_to_drm_minor(kdev); 362 struct drm_device *dev = minor->dev; 363 struct drm_i915_private *dev_priv = dev->dev_private; 364 u32 val; 365 ssize_t ret; 366 367 ret = kstrtou32(buf, 0, &val); 368 if (ret) 369 return ret; 370 371 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 372 373 mutex_lock(&dev_priv->rps.hw_lock); 374 375 val = intel_freq_opcode(dev_priv, val); 376 377 if (val < dev_priv->rps.min_freq || 378 val > dev_priv->rps.max_freq || 379 val < dev_priv->rps.min_freq_softlimit) { 380 mutex_unlock(&dev_priv->rps.hw_lock); 381 return -EINVAL; 382 } 383 384 if (val > dev_priv->rps.rp0_freq) 385 DRM_DEBUG("User requested overclocking to %d\n", 386 intel_gpu_freq(dev_priv, val)); 387 388 dev_priv->rps.max_freq_softlimit = val; 389 390 val = clamp_t(int, dev_priv->rps.cur_freq, 391 dev_priv->rps.min_freq_softlimit, 392 dev_priv->rps.max_freq_softlimit); 393 394 /* We still need *_set_rps to process the new max_delay and 395 * update the interrupt limits and PMINTRMSK even though 396 * frequency request may be unchanged. */ 397 intel_set_rps(dev, val); 398 399 mutex_unlock(&dev_priv->rps.hw_lock); 400 401 return count; 402 } 403 404 static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) 405 { 406 struct drm_minor *minor = dev_to_drm_minor(kdev); 407 struct drm_device *dev = minor->dev; 408 struct drm_i915_private *dev_priv = dev->dev_private; 409 int ret; 410 411 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 412 413 mutex_lock(&dev_priv->rps.hw_lock); 414 ret = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit); 415 mutex_unlock(&dev_priv->rps.hw_lock); 416 417 return snprintf(buf, PAGE_SIZE, "%d\n", ret); 418 } 419 420 static ssize_t gt_min_freq_mhz_store(struct device *kdev, 421 struct device_attribute *attr, 422 const char *buf, size_t count) 423 { 424 struct drm_minor *minor = dev_to_drm_minor(kdev); 425 struct drm_device *dev = minor->dev; 426 struct drm_i915_private *dev_priv = dev->dev_private; 427 u32 val; 428 ssize_t ret; 429 430 ret = kstrtou32(buf, 0, &val); 431 if (ret) 432 return ret; 433 434 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 435 436 mutex_lock(&dev_priv->rps.hw_lock); 437 438 val = intel_freq_opcode(dev_priv, val); 439 440 if (val < dev_priv->rps.min_freq || 441 val > dev_priv->rps.max_freq || 442 val > dev_priv->rps.max_freq_softlimit) { 443 mutex_unlock(&dev_priv->rps.hw_lock); 444 return -EINVAL; 445 } 446 447 dev_priv->rps.min_freq_softlimit = val; 448 449 val = clamp_t(int, dev_priv->rps.cur_freq, 450 dev_priv->rps.min_freq_softlimit, 451 dev_priv->rps.max_freq_softlimit); 452 453 /* We still need *_set_rps to process the new min_delay and 454 * update the interrupt limits and PMINTRMSK even though 455 * frequency request may be unchanged. */ 456 intel_set_rps(dev, val); 457 458 mutex_unlock(&dev_priv->rps.hw_lock); 459 460 return count; 461 462 } 463 464 static DEVICE_ATTR(gt_act_freq_mhz, S_IRUGO, gt_act_freq_mhz_show, NULL); 465 static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL); 466 static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store); 467 static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store); 468 469 static DEVICE_ATTR(vlv_rpe_freq_mhz, S_IRUGO, vlv_rpe_freq_mhz_show, NULL); 470 471 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf); 472 static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL); 473 static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL); 474 static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL); 475 476 /* For now we have a static number of RP states */ 477 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) 478 { 479 struct drm_minor *minor = dev_to_drm_minor(kdev); 480 struct drm_device *dev = minor->dev; 481 struct drm_i915_private *dev_priv = dev->dev_private; 482 u32 val; 483 484 if (attr == &dev_attr_gt_RP0_freq_mhz) 485 val = intel_gpu_freq(dev_priv, dev_priv->rps.rp0_freq); 486 else if (attr == &dev_attr_gt_RP1_freq_mhz) 487 val = intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq); 488 else if (attr == &dev_attr_gt_RPn_freq_mhz) 489 val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq); 490 else 491 BUG(); 492 493 return snprintf(buf, PAGE_SIZE, "%d\n", val); 494 } 495 496 static const struct attribute *gen6_attrs[] = { 497 &dev_attr_gt_act_freq_mhz.attr, 498 &dev_attr_gt_cur_freq_mhz.attr, 499 &dev_attr_gt_max_freq_mhz.attr, 500 &dev_attr_gt_min_freq_mhz.attr, 501 &dev_attr_gt_RP0_freq_mhz.attr, 502 &dev_attr_gt_RP1_freq_mhz.attr, 503 &dev_attr_gt_RPn_freq_mhz.attr, 504 NULL, 505 }; 506 507 static const struct attribute *vlv_attrs[] = { 508 &dev_attr_gt_act_freq_mhz.attr, 509 &dev_attr_gt_cur_freq_mhz.attr, 510 &dev_attr_gt_max_freq_mhz.attr, 511 &dev_attr_gt_min_freq_mhz.attr, 512 &dev_attr_gt_RP0_freq_mhz.attr, 513 &dev_attr_gt_RP1_freq_mhz.attr, 514 &dev_attr_gt_RPn_freq_mhz.attr, 515 &dev_attr_vlv_rpe_freq_mhz.attr, 516 NULL, 517 }; 518 519 static ssize_t error_state_read(struct file *filp, struct kobject *kobj, 520 struct bin_attribute *attr, char *buf, 521 loff_t off, size_t count) 522 { 523 524 struct device *kdev = container_of(kobj, struct device, kobj); 525 struct drm_minor *minor = dev_to_drm_minor(kdev); 526 struct drm_device *dev = minor->dev; 527 struct i915_error_state_file_priv error_priv; 528 struct drm_i915_error_state_buf error_str; 529 ssize_t ret_count = 0; 530 int ret; 531 532 memset(&error_priv, 0, sizeof(error_priv)); 533 534 ret = i915_error_state_buf_init(&error_str, to_i915(dev), count, off); 535 if (ret) 536 return ret; 537 538 error_priv.dev = dev; 539 i915_error_state_get(dev, &error_priv); 540 541 ret = i915_error_state_to_str(&error_str, &error_priv); 542 if (ret) 543 goto out; 544 545 ret_count = count < error_str.bytes ? count : error_str.bytes; 546 547 memcpy(buf, error_str.buf, ret_count); 548 out: 549 i915_error_state_put(&error_priv); 550 i915_error_state_buf_release(&error_str); 551 552 return ret ?: ret_count; 553 } 554 555 static ssize_t error_state_write(struct file *file, struct kobject *kobj, 556 struct bin_attribute *attr, char *buf, 557 loff_t off, size_t count) 558 { 559 struct device *kdev = container_of(kobj, struct device, kobj); 560 struct drm_minor *minor = dev_to_drm_minor(kdev); 561 struct drm_device *dev = minor->dev; 562 int ret; 563 564 DRM_DEBUG_DRIVER("Resetting error state\n"); 565 566 ret = mutex_lock_interruptible(&dev->struct_mutex); 567 if (ret) 568 return ret; 569 570 i915_destroy_error_state(dev); 571 mutex_unlock(&dev->struct_mutex); 572 573 return count; 574 } 575 576 static struct bin_attribute error_state_attr = { 577 .attr.name = "error", 578 .attr.mode = S_IRUSR | S_IWUSR, 579 .size = 0, 580 .read = error_state_read, 581 .write = error_state_write, 582 }; 583 584 void i915_setup_sysfs(struct drm_device *dev) 585 { 586 int ret; 587 588 #ifdef CONFIG_PM 589 if (HAS_RC6(dev)) { 590 ret = sysfs_merge_group(&dev->primary->kdev->kobj, 591 &rc6_attr_group); 592 if (ret) 593 DRM_ERROR("RC6 residency sysfs setup failed\n"); 594 } 595 if (HAS_RC6p(dev)) { 596 ret = sysfs_merge_group(&dev->primary->kdev->kobj, 597 &rc6p_attr_group); 598 if (ret) 599 DRM_ERROR("RC6p residency sysfs setup failed\n"); 600 } 601 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { 602 ret = sysfs_merge_group(&dev->primary->kdev->kobj, 603 &media_rc6_attr_group); 604 if (ret) 605 DRM_ERROR("Media RC6 residency sysfs setup failed\n"); 606 } 607 #endif 608 if (HAS_L3_DPF(dev)) { 609 ret = device_create_bin_file(dev->primary->kdev, &dpf_attrs); 610 if (ret) 611 DRM_ERROR("l3 parity sysfs setup failed\n"); 612 613 if (NUM_L3_SLICES(dev) > 1) { 614 ret = device_create_bin_file(dev->primary->kdev, 615 &dpf_attrs_1); 616 if (ret) 617 DRM_ERROR("l3 parity slice 1 setup failed\n"); 618 } 619 } 620 621 ret = 0; 622 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) 623 ret = sysfs_create_files(&dev->primary->kdev->kobj, vlv_attrs); 624 else if (INTEL_INFO(dev)->gen >= 6) 625 ret = sysfs_create_files(&dev->primary->kdev->kobj, gen6_attrs); 626 if (ret) 627 DRM_ERROR("RPS sysfs setup failed\n"); 628 629 ret = sysfs_create_bin_file(&dev->primary->kdev->kobj, 630 &error_state_attr); 631 if (ret) 632 DRM_ERROR("error_state sysfs setup failed\n"); 633 } 634 635 void i915_teardown_sysfs(struct drm_device *dev) 636 { 637 sysfs_remove_bin_file(&dev->primary->kdev->kobj, &error_state_attr); 638 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) 639 sysfs_remove_files(&dev->primary->kdev->kobj, vlv_attrs); 640 else 641 sysfs_remove_files(&dev->primary->kdev->kobj, gen6_attrs); 642 device_remove_bin_file(dev->primary->kdev, &dpf_attrs_1); 643 device_remove_bin_file(dev->primary->kdev, &dpf_attrs); 644 #ifdef CONFIG_PM 645 sysfs_unmerge_group(&dev->primary->kdev->kobj, &rc6_attr_group); 646 sysfs_unmerge_group(&dev->primary->kdev->kobj, &rc6p_attr_group); 647 #endif 648 } 649