1 /* 2 * Copyright © 2012 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Ben Widawsky <ben@bwidawsk.net> 25 * 26 */ 27 28 #include <linux/device.h> 29 #include <linux/module.h> 30 #include <linux/stat.h> 31 #include <linux/sysfs.h> 32 #include "intel_drv.h" 33 #include "i915_drv.h" 34 35 #define dev_to_drm_minor(d) dev_get_drvdata((d)) 36 37 #ifdef CONFIG_PM 38 static u32 calc_residency(struct drm_device *dev, const u32 reg) 39 { 40 struct drm_i915_private *dev_priv = dev->dev_private; 41 u64 raw_time; /* 32b value may overflow during fixed point math */ 42 u64 units = 128ULL, div = 100000ULL, bias = 100ULL; 43 u32 ret; 44 45 if (!intel_enable_rc6(dev)) 46 return 0; 47 48 intel_runtime_pm_get(dev_priv); 49 50 /* On VLV, residency time is in CZ units rather than 1.28us */ 51 if (IS_VALLEYVIEW(dev)) { 52 u32 clkctl2; 53 54 clkctl2 = I915_READ(VLV_CLK_CTL2) >> 55 CLK_CTL2_CZCOUNT_30NS_SHIFT; 56 if (!clkctl2) { 57 WARN(!clkctl2, "bogus CZ count value"); 58 ret = 0; 59 goto out; 60 } 61 units = DIV_ROUND_UP_ULL(30ULL * bias, (u64)clkctl2); 62 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH) 63 units <<= 8; 64 65 div = 1000000ULL * bias; 66 } 67 68 raw_time = I915_READ(reg) * units; 69 ret = DIV_ROUND_UP_ULL(raw_time, div); 70 71 out: 72 intel_runtime_pm_put(dev_priv); 73 return ret; 74 } 75 76 static ssize_t 77 show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf) 78 { 79 struct drm_minor *dminor = dev_to_drm_minor(kdev); 80 return snprintf(buf, PAGE_SIZE, "%x\n", intel_enable_rc6(dminor->dev)); 81 } 82 83 static ssize_t 84 show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf) 85 { 86 struct drm_minor *dminor = dev_get_drvdata(kdev); 87 u32 rc6_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6); 88 return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency); 89 } 90 91 static ssize_t 92 show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf) 93 { 94 struct drm_minor *dminor = dev_to_drm_minor(kdev); 95 u32 rc6p_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6p); 96 if (IS_VALLEYVIEW(dminor->dev)) 97 rc6p_residency = 0; 98 return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency); 99 } 100 101 static ssize_t 102 show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf) 103 { 104 struct drm_minor *dminor = dev_to_drm_minor(kdev); 105 u32 rc6pp_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6pp); 106 if (IS_VALLEYVIEW(dminor->dev)) 107 rc6pp_residency = 0; 108 return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency); 109 } 110 111 static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL); 112 static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL); 113 static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL); 114 static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL); 115 116 static struct attribute *rc6_attrs[] = { 117 &dev_attr_rc6_enable.attr, 118 &dev_attr_rc6_residency_ms.attr, 119 &dev_attr_rc6p_residency_ms.attr, 120 &dev_attr_rc6pp_residency_ms.attr, 121 NULL 122 }; 123 124 static struct attribute_group rc6_attr_group = { 125 .name = power_group_name, 126 .attrs = rc6_attrs 127 }; 128 #endif 129 130 static int l3_access_valid(struct drm_device *dev, loff_t offset) 131 { 132 if (!HAS_L3_DPF(dev)) 133 return -EPERM; 134 135 if (offset % 4 != 0) 136 return -EINVAL; 137 138 if (offset >= GEN7_L3LOG_SIZE) 139 return -ENXIO; 140 141 return 0; 142 } 143 144 static ssize_t 145 i915_l3_read(struct file *filp, struct kobject *kobj, 146 struct bin_attribute *attr, char *buf, 147 loff_t offset, size_t count) 148 { 149 struct device *dev = container_of(kobj, struct device, kobj); 150 struct drm_minor *dminor = dev_to_drm_minor(dev); 151 struct drm_device *drm_dev = dminor->dev; 152 struct drm_i915_private *dev_priv = drm_dev->dev_private; 153 int slice = (int)(uintptr_t)attr->private; 154 int ret; 155 156 count = round_down(count, 4); 157 158 ret = l3_access_valid(drm_dev, offset); 159 if (ret) 160 return ret; 161 162 count = min_t(size_t, GEN7_L3LOG_SIZE - offset, count); 163 164 ret = i915_mutex_lock_interruptible(drm_dev); 165 if (ret) 166 return ret; 167 168 if (dev_priv->l3_parity.remap_info[slice]) 169 memcpy(buf, 170 dev_priv->l3_parity.remap_info[slice] + (offset/4), 171 count); 172 else 173 memset(buf, 0, count); 174 175 mutex_unlock(&drm_dev->struct_mutex); 176 177 return count; 178 } 179 180 static ssize_t 181 i915_l3_write(struct file *filp, struct kobject *kobj, 182 struct bin_attribute *attr, char *buf, 183 loff_t offset, size_t count) 184 { 185 struct device *dev = container_of(kobj, struct device, kobj); 186 struct drm_minor *dminor = dev_to_drm_minor(dev); 187 struct drm_device *drm_dev = dminor->dev; 188 struct drm_i915_private *dev_priv = drm_dev->dev_private; 189 struct intel_context *ctx; 190 u32 *temp = NULL; /* Just here to make handling failures easy */ 191 int slice = (int)(uintptr_t)attr->private; 192 int ret; 193 194 if (!HAS_HW_CONTEXTS(drm_dev)) 195 return -ENXIO; 196 197 ret = l3_access_valid(drm_dev, offset); 198 if (ret) 199 return ret; 200 201 ret = i915_mutex_lock_interruptible(drm_dev); 202 if (ret) 203 return ret; 204 205 if (!dev_priv->l3_parity.remap_info[slice]) { 206 temp = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL); 207 if (!temp) { 208 mutex_unlock(&drm_dev->struct_mutex); 209 return -ENOMEM; 210 } 211 } 212 213 ret = i915_gpu_idle(drm_dev); 214 if (ret) { 215 kfree(temp); 216 mutex_unlock(&drm_dev->struct_mutex); 217 return ret; 218 } 219 220 /* TODO: Ideally we really want a GPU reset here to make sure errors 221 * aren't propagated. Since I cannot find a stable way to reset the GPU 222 * at this point it is left as a TODO. 223 */ 224 if (temp) 225 dev_priv->l3_parity.remap_info[slice] = temp; 226 227 memcpy(dev_priv->l3_parity.remap_info[slice] + (offset/4), buf, count); 228 229 /* NB: We defer the remapping until we switch to the context */ 230 list_for_each_entry(ctx, &dev_priv->context_list, link) 231 ctx->remap_slice |= (1<<slice); 232 233 mutex_unlock(&drm_dev->struct_mutex); 234 235 return count; 236 } 237 238 static struct bin_attribute dpf_attrs = { 239 .attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)}, 240 .size = GEN7_L3LOG_SIZE, 241 .read = i915_l3_read, 242 .write = i915_l3_write, 243 .mmap = NULL, 244 .private = (void *)0 245 }; 246 247 static struct bin_attribute dpf_attrs_1 = { 248 .attr = {.name = "l3_parity_slice_1", .mode = (S_IRUSR | S_IWUSR)}, 249 .size = GEN7_L3LOG_SIZE, 250 .read = i915_l3_read, 251 .write = i915_l3_write, 252 .mmap = NULL, 253 .private = (void *)1 254 }; 255 256 static ssize_t gt_cur_freq_mhz_show(struct device *kdev, 257 struct device_attribute *attr, char *buf) 258 { 259 struct drm_minor *minor = dev_to_drm_minor(kdev); 260 struct drm_device *dev = minor->dev; 261 struct drm_i915_private *dev_priv = dev->dev_private; 262 int ret; 263 264 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 265 266 intel_runtime_pm_get(dev_priv); 267 268 mutex_lock(&dev_priv->rps.hw_lock); 269 if (IS_VALLEYVIEW(dev_priv->dev)) { 270 u32 freq; 271 freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS); 272 ret = vlv_gpu_freq(dev_priv, (freq >> 8) & 0xff); 273 } else { 274 ret = dev_priv->rps.cur_freq * GT_FREQUENCY_MULTIPLIER; 275 } 276 mutex_unlock(&dev_priv->rps.hw_lock); 277 278 intel_runtime_pm_put(dev_priv); 279 280 return snprintf(buf, PAGE_SIZE, "%d\n", ret); 281 } 282 283 static ssize_t vlv_rpe_freq_mhz_show(struct device *kdev, 284 struct device_attribute *attr, char *buf) 285 { 286 struct drm_minor *minor = dev_to_drm_minor(kdev); 287 struct drm_device *dev = minor->dev; 288 struct drm_i915_private *dev_priv = dev->dev_private; 289 290 return snprintf(buf, PAGE_SIZE, "%d\n", 291 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq)); 292 } 293 294 static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) 295 { 296 struct drm_minor *minor = dev_to_drm_minor(kdev); 297 struct drm_device *dev = minor->dev; 298 struct drm_i915_private *dev_priv = dev->dev_private; 299 int ret; 300 301 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 302 303 mutex_lock(&dev_priv->rps.hw_lock); 304 if (IS_VALLEYVIEW(dev_priv->dev)) 305 ret = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit); 306 else 307 ret = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER; 308 mutex_unlock(&dev_priv->rps.hw_lock); 309 310 return snprintf(buf, PAGE_SIZE, "%d\n", ret); 311 } 312 313 static ssize_t gt_max_freq_mhz_store(struct device *kdev, 314 struct device_attribute *attr, 315 const char *buf, size_t count) 316 { 317 struct drm_minor *minor = dev_to_drm_minor(kdev); 318 struct drm_device *dev = minor->dev; 319 struct drm_i915_private *dev_priv = dev->dev_private; 320 u32 val; 321 ssize_t ret; 322 323 ret = kstrtou32(buf, 0, &val); 324 if (ret) 325 return ret; 326 327 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 328 329 mutex_lock(&dev_priv->rps.hw_lock); 330 331 if (IS_VALLEYVIEW(dev_priv->dev)) 332 val = vlv_freq_opcode(dev_priv, val); 333 else 334 val /= GT_FREQUENCY_MULTIPLIER; 335 336 if (val < dev_priv->rps.min_freq || 337 val > dev_priv->rps.max_freq || 338 val < dev_priv->rps.min_freq_softlimit) { 339 mutex_unlock(&dev_priv->rps.hw_lock); 340 return -EINVAL; 341 } 342 343 if (val > dev_priv->rps.rp0_freq) 344 DRM_DEBUG("User requested overclocking to %d\n", 345 val * GT_FREQUENCY_MULTIPLIER); 346 347 dev_priv->rps.max_freq_softlimit = val; 348 349 if (dev_priv->rps.cur_freq > val) { 350 if (IS_VALLEYVIEW(dev)) 351 valleyview_set_rps(dev, val); 352 else 353 gen6_set_rps(dev, val); 354 } else if (!IS_VALLEYVIEW(dev)) { 355 /* We still need gen6_set_rps to process the new max_delay and 356 * update the interrupt limits even though frequency request is 357 * unchanged. */ 358 gen6_set_rps(dev, dev_priv->rps.cur_freq); 359 } 360 361 mutex_unlock(&dev_priv->rps.hw_lock); 362 363 return count; 364 } 365 366 static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) 367 { 368 struct drm_minor *minor = dev_to_drm_minor(kdev); 369 struct drm_device *dev = minor->dev; 370 struct drm_i915_private *dev_priv = dev->dev_private; 371 int ret; 372 373 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 374 375 mutex_lock(&dev_priv->rps.hw_lock); 376 if (IS_VALLEYVIEW(dev_priv->dev)) 377 ret = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit); 378 else 379 ret = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER; 380 mutex_unlock(&dev_priv->rps.hw_lock); 381 382 return snprintf(buf, PAGE_SIZE, "%d\n", ret); 383 } 384 385 static ssize_t gt_min_freq_mhz_store(struct device *kdev, 386 struct device_attribute *attr, 387 const char *buf, size_t count) 388 { 389 struct drm_minor *minor = dev_to_drm_minor(kdev); 390 struct drm_device *dev = minor->dev; 391 struct drm_i915_private *dev_priv = dev->dev_private; 392 u32 val; 393 ssize_t ret; 394 395 ret = kstrtou32(buf, 0, &val); 396 if (ret) 397 return ret; 398 399 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 400 401 mutex_lock(&dev_priv->rps.hw_lock); 402 403 if (IS_VALLEYVIEW(dev)) 404 val = vlv_freq_opcode(dev_priv, val); 405 else 406 val /= GT_FREQUENCY_MULTIPLIER; 407 408 if (val < dev_priv->rps.min_freq || 409 val > dev_priv->rps.max_freq || 410 val > dev_priv->rps.max_freq_softlimit) { 411 mutex_unlock(&dev_priv->rps.hw_lock); 412 return -EINVAL; 413 } 414 415 dev_priv->rps.min_freq_softlimit = val; 416 417 if (dev_priv->rps.cur_freq < val) { 418 if (IS_VALLEYVIEW(dev)) 419 valleyview_set_rps(dev, val); 420 else 421 gen6_set_rps(dev, val); 422 } else if (!IS_VALLEYVIEW(dev)) { 423 /* We still need gen6_set_rps to process the new min_delay and 424 * update the interrupt limits even though frequency request is 425 * unchanged. */ 426 gen6_set_rps(dev, dev_priv->rps.cur_freq); 427 } 428 429 mutex_unlock(&dev_priv->rps.hw_lock); 430 431 return count; 432 433 } 434 435 static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL); 436 static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store); 437 static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store); 438 439 static DEVICE_ATTR(vlv_rpe_freq_mhz, S_IRUGO, vlv_rpe_freq_mhz_show, NULL); 440 441 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf); 442 static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL); 443 static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL); 444 static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL); 445 446 /* For now we have a static number of RP states */ 447 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) 448 { 449 struct drm_minor *minor = dev_to_drm_minor(kdev); 450 struct drm_device *dev = minor->dev; 451 struct drm_i915_private *dev_priv = dev->dev_private; 452 u32 val, rp_state_cap; 453 ssize_t ret; 454 455 ret = mutex_lock_interruptible(&dev->struct_mutex); 456 if (ret) 457 return ret; 458 intel_runtime_pm_get(dev_priv); 459 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP); 460 intel_runtime_pm_put(dev_priv); 461 mutex_unlock(&dev->struct_mutex); 462 463 if (attr == &dev_attr_gt_RP0_freq_mhz) { 464 val = ((rp_state_cap & 0x0000ff) >> 0) * GT_FREQUENCY_MULTIPLIER; 465 } else if (attr == &dev_attr_gt_RP1_freq_mhz) { 466 val = ((rp_state_cap & 0x00ff00) >> 8) * GT_FREQUENCY_MULTIPLIER; 467 } else if (attr == &dev_attr_gt_RPn_freq_mhz) { 468 val = ((rp_state_cap & 0xff0000) >> 16) * GT_FREQUENCY_MULTIPLIER; 469 } else { 470 BUG(); 471 } 472 return snprintf(buf, PAGE_SIZE, "%d\n", val); 473 } 474 475 static const struct attribute *gen6_attrs[] = { 476 &dev_attr_gt_cur_freq_mhz.attr, 477 &dev_attr_gt_max_freq_mhz.attr, 478 &dev_attr_gt_min_freq_mhz.attr, 479 &dev_attr_gt_RP0_freq_mhz.attr, 480 &dev_attr_gt_RP1_freq_mhz.attr, 481 &dev_attr_gt_RPn_freq_mhz.attr, 482 NULL, 483 }; 484 485 static const struct attribute *vlv_attrs[] = { 486 &dev_attr_gt_cur_freq_mhz.attr, 487 &dev_attr_gt_max_freq_mhz.attr, 488 &dev_attr_gt_min_freq_mhz.attr, 489 &dev_attr_vlv_rpe_freq_mhz.attr, 490 NULL, 491 }; 492 493 static ssize_t error_state_read(struct file *filp, struct kobject *kobj, 494 struct bin_attribute *attr, char *buf, 495 loff_t off, size_t count) 496 { 497 498 struct device *kdev = container_of(kobj, struct device, kobj); 499 struct drm_minor *minor = dev_to_drm_minor(kdev); 500 struct drm_device *dev = minor->dev; 501 struct i915_error_state_file_priv error_priv; 502 struct drm_i915_error_state_buf error_str; 503 ssize_t ret_count = 0; 504 int ret; 505 506 memset(&error_priv, 0, sizeof(error_priv)); 507 508 ret = i915_error_state_buf_init(&error_str, count, off); 509 if (ret) 510 return ret; 511 512 error_priv.dev = dev; 513 i915_error_state_get(dev, &error_priv); 514 515 ret = i915_error_state_to_str(&error_str, &error_priv); 516 if (ret) 517 goto out; 518 519 ret_count = count < error_str.bytes ? count : error_str.bytes; 520 521 memcpy(buf, error_str.buf, ret_count); 522 out: 523 i915_error_state_put(&error_priv); 524 i915_error_state_buf_release(&error_str); 525 526 return ret ?: ret_count; 527 } 528 529 static ssize_t error_state_write(struct file *file, struct kobject *kobj, 530 struct bin_attribute *attr, char *buf, 531 loff_t off, size_t count) 532 { 533 struct device *kdev = container_of(kobj, struct device, kobj); 534 struct drm_minor *minor = dev_to_drm_minor(kdev); 535 struct drm_device *dev = minor->dev; 536 int ret; 537 538 DRM_DEBUG_DRIVER("Resetting error state\n"); 539 540 ret = mutex_lock_interruptible(&dev->struct_mutex); 541 if (ret) 542 return ret; 543 544 i915_destroy_error_state(dev); 545 mutex_unlock(&dev->struct_mutex); 546 547 return count; 548 } 549 550 static struct bin_attribute error_state_attr = { 551 .attr.name = "error", 552 .attr.mode = S_IRUSR | S_IWUSR, 553 .size = 0, 554 .read = error_state_read, 555 .write = error_state_write, 556 }; 557 558 void i915_setup_sysfs(struct drm_device *dev) 559 { 560 int ret; 561 562 #ifdef CONFIG_PM 563 if (INTEL_INFO(dev)->gen >= 6) { 564 ret = sysfs_merge_group(&dev->primary->kdev->kobj, 565 &rc6_attr_group); 566 if (ret) 567 DRM_ERROR("RC6 residency sysfs setup failed\n"); 568 } 569 #endif 570 if (HAS_L3_DPF(dev)) { 571 ret = device_create_bin_file(dev->primary->kdev, &dpf_attrs); 572 if (ret) 573 DRM_ERROR("l3 parity sysfs setup failed\n"); 574 575 if (NUM_L3_SLICES(dev) > 1) { 576 ret = device_create_bin_file(dev->primary->kdev, 577 &dpf_attrs_1); 578 if (ret) 579 DRM_ERROR("l3 parity slice 1 setup failed\n"); 580 } 581 } 582 583 ret = 0; 584 if (IS_VALLEYVIEW(dev)) 585 ret = sysfs_create_files(&dev->primary->kdev->kobj, vlv_attrs); 586 else if (INTEL_INFO(dev)->gen >= 6) 587 ret = sysfs_create_files(&dev->primary->kdev->kobj, gen6_attrs); 588 if (ret) 589 DRM_ERROR("RPS sysfs setup failed\n"); 590 591 ret = sysfs_create_bin_file(&dev->primary->kdev->kobj, 592 &error_state_attr); 593 if (ret) 594 DRM_ERROR("error_state sysfs setup failed\n"); 595 } 596 597 void i915_teardown_sysfs(struct drm_device *dev) 598 { 599 sysfs_remove_bin_file(&dev->primary->kdev->kobj, &error_state_attr); 600 if (IS_VALLEYVIEW(dev)) 601 sysfs_remove_files(&dev->primary->kdev->kobj, vlv_attrs); 602 else 603 sysfs_remove_files(&dev->primary->kdev->kobj, gen6_attrs); 604 device_remove_bin_file(dev->primary->kdev, &dpf_attrs_1); 605 device_remove_bin_file(dev->primary->kdev, &dpf_attrs); 606 #ifdef CONFIG_PM 607 sysfs_unmerge_group(&dev->primary->kdev->kobj, &rc6_attr_group); 608 #endif 609 } 610