1 /* 2 * Copyright © 2012 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Ben Widawsky <ben@bwidawsk.net> 25 * 26 */ 27 28 #include <linux/device.h> 29 #include <linux/module.h> 30 #include <linux/stat.h> 31 #include <linux/sysfs.h> 32 #include "intel_drv.h" 33 #include "i915_drv.h" 34 35 #ifdef CONFIG_PM 36 static u32 calc_residency(struct drm_device *dev, const u32 reg) 37 { 38 struct drm_i915_private *dev_priv = dev->dev_private; 39 u64 raw_time; /* 32b value may overflow during fixed point math */ 40 41 if (!intel_enable_rc6(dev)) 42 return 0; 43 44 raw_time = I915_READ(reg) * 128ULL; 45 return DIV_ROUND_UP_ULL(raw_time, 100000); 46 } 47 48 static ssize_t 49 show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf) 50 { 51 struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev); 52 return snprintf(buf, PAGE_SIZE, "%x\n", intel_enable_rc6(dminor->dev)); 53 } 54 55 static ssize_t 56 show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf) 57 { 58 struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev); 59 u32 rc6_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6); 60 return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency); 61 } 62 63 static ssize_t 64 show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf) 65 { 66 struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev); 67 u32 rc6p_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6p); 68 return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency); 69 } 70 71 static ssize_t 72 show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf) 73 { 74 struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev); 75 u32 rc6pp_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6pp); 76 return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency); 77 } 78 79 static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL); 80 static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL); 81 static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL); 82 static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL); 83 84 static struct attribute *rc6_attrs[] = { 85 &dev_attr_rc6_enable.attr, 86 &dev_attr_rc6_residency_ms.attr, 87 &dev_attr_rc6p_residency_ms.attr, 88 &dev_attr_rc6pp_residency_ms.attr, 89 NULL 90 }; 91 92 static struct attribute_group rc6_attr_group = { 93 .name = power_group_name, 94 .attrs = rc6_attrs 95 }; 96 #endif 97 98 static int l3_access_valid(struct drm_device *dev, loff_t offset) 99 { 100 if (!HAS_L3_GPU_CACHE(dev)) 101 return -EPERM; 102 103 if (offset % 4 != 0) 104 return -EINVAL; 105 106 if (offset >= GEN7_L3LOG_SIZE) 107 return -ENXIO; 108 109 return 0; 110 } 111 112 static ssize_t 113 i915_l3_read(struct file *filp, struct kobject *kobj, 114 struct bin_attribute *attr, char *buf, 115 loff_t offset, size_t count) 116 { 117 struct device *dev = container_of(kobj, struct device, kobj); 118 struct drm_minor *dminor = container_of(dev, struct drm_minor, kdev); 119 struct drm_device *drm_dev = dminor->dev; 120 struct drm_i915_private *dev_priv = drm_dev->dev_private; 121 uint32_t misccpctl; 122 int i, ret; 123 124 ret = l3_access_valid(drm_dev, offset); 125 if (ret) 126 return ret; 127 128 ret = i915_mutex_lock_interruptible(drm_dev); 129 if (ret) 130 return ret; 131 132 misccpctl = I915_READ(GEN7_MISCCPCTL); 133 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 134 135 for (i = offset; count >= 4 && i < GEN7_L3LOG_SIZE; i += 4, count -= 4) 136 *((uint32_t *)(&buf[i])) = I915_READ(GEN7_L3LOG_BASE + i); 137 138 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 139 140 mutex_unlock(&drm_dev->struct_mutex); 141 142 return i - offset; 143 } 144 145 static ssize_t 146 i915_l3_write(struct file *filp, struct kobject *kobj, 147 struct bin_attribute *attr, char *buf, 148 loff_t offset, size_t count) 149 { 150 struct device *dev = container_of(kobj, struct device, kobj); 151 struct drm_minor *dminor = container_of(dev, struct drm_minor, kdev); 152 struct drm_device *drm_dev = dminor->dev; 153 struct drm_i915_private *dev_priv = drm_dev->dev_private; 154 u32 *temp = NULL; /* Just here to make handling failures easy */ 155 int ret; 156 157 ret = l3_access_valid(drm_dev, offset); 158 if (ret) 159 return ret; 160 161 ret = i915_mutex_lock_interruptible(drm_dev); 162 if (ret) 163 return ret; 164 165 if (!dev_priv->l3_parity.remap_info) { 166 temp = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL); 167 if (!temp) { 168 mutex_unlock(&drm_dev->struct_mutex); 169 return -ENOMEM; 170 } 171 } 172 173 ret = i915_gpu_idle(drm_dev); 174 if (ret) { 175 kfree(temp); 176 mutex_unlock(&drm_dev->struct_mutex); 177 return ret; 178 } 179 180 /* TODO: Ideally we really want a GPU reset here to make sure errors 181 * aren't propagated. Since I cannot find a stable way to reset the GPU 182 * at this point it is left as a TODO. 183 */ 184 if (temp) 185 dev_priv->l3_parity.remap_info = temp; 186 187 memcpy(dev_priv->l3_parity.remap_info + (offset/4), 188 buf + (offset/4), 189 count); 190 191 i915_gem_l3_remap(drm_dev); 192 193 mutex_unlock(&drm_dev->struct_mutex); 194 195 return count; 196 } 197 198 static struct bin_attribute dpf_attrs = { 199 .attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)}, 200 .size = GEN7_L3LOG_SIZE, 201 .read = i915_l3_read, 202 .write = i915_l3_write, 203 .mmap = NULL 204 }; 205 206 static ssize_t gt_cur_freq_mhz_show(struct device *kdev, 207 struct device_attribute *attr, char *buf) 208 { 209 struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev); 210 struct drm_device *dev = minor->dev; 211 struct drm_i915_private *dev_priv = dev->dev_private; 212 int ret; 213 214 mutex_lock(&dev_priv->rps.hw_lock); 215 if (IS_VALLEYVIEW(dev_priv->dev)) { 216 u32 freq; 217 freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS); 218 ret = vlv_gpu_freq(dev_priv->mem_freq, (freq >> 8) & 0xff); 219 } else { 220 ret = dev_priv->rps.cur_delay * GT_FREQUENCY_MULTIPLIER; 221 } 222 mutex_unlock(&dev_priv->rps.hw_lock); 223 224 return snprintf(buf, PAGE_SIZE, "%d\n", ret); 225 } 226 227 static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) 228 { 229 struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev); 230 struct drm_device *dev = minor->dev; 231 struct drm_i915_private *dev_priv = dev->dev_private; 232 int ret; 233 234 mutex_lock(&dev_priv->rps.hw_lock); 235 if (IS_VALLEYVIEW(dev_priv->dev)) 236 ret = vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.max_delay); 237 else 238 ret = dev_priv->rps.max_delay * GT_FREQUENCY_MULTIPLIER; 239 mutex_unlock(&dev_priv->rps.hw_lock); 240 241 return snprintf(buf, PAGE_SIZE, "%d\n", ret); 242 } 243 244 static ssize_t gt_max_freq_mhz_store(struct device *kdev, 245 struct device_attribute *attr, 246 const char *buf, size_t count) 247 { 248 struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev); 249 struct drm_device *dev = minor->dev; 250 struct drm_i915_private *dev_priv = dev->dev_private; 251 u32 val, rp_state_cap, hw_max, hw_min, non_oc_max; 252 ssize_t ret; 253 254 ret = kstrtou32(buf, 0, &val); 255 if (ret) 256 return ret; 257 258 mutex_lock(&dev_priv->rps.hw_lock); 259 260 if (IS_VALLEYVIEW(dev_priv->dev)) { 261 val = vlv_freq_opcode(dev_priv->mem_freq, val); 262 263 hw_max = valleyview_rps_max_freq(dev_priv); 264 hw_min = valleyview_rps_min_freq(dev_priv); 265 non_oc_max = hw_max; 266 } else { 267 val /= GT_FREQUENCY_MULTIPLIER; 268 269 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP); 270 hw_max = dev_priv->rps.hw_max; 271 non_oc_max = (rp_state_cap & 0xff); 272 hw_min = ((rp_state_cap & 0xff0000) >> 16); 273 } 274 275 if (val < hw_min || val > hw_max || 276 val < dev_priv->rps.min_delay) { 277 mutex_unlock(&dev_priv->rps.hw_lock); 278 return -EINVAL; 279 } 280 281 if (val > non_oc_max) 282 DRM_DEBUG("User requested overclocking to %d\n", 283 val * GT_FREQUENCY_MULTIPLIER); 284 285 if (dev_priv->rps.cur_delay > val) { 286 if (IS_VALLEYVIEW(dev_priv->dev)) 287 valleyview_set_rps(dev_priv->dev, val); 288 else 289 gen6_set_rps(dev_priv->dev, val); 290 } 291 292 dev_priv->rps.max_delay = val; 293 294 mutex_unlock(&dev_priv->rps.hw_lock); 295 296 return count; 297 } 298 299 static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) 300 { 301 struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev); 302 struct drm_device *dev = minor->dev; 303 struct drm_i915_private *dev_priv = dev->dev_private; 304 int ret; 305 306 mutex_lock(&dev_priv->rps.hw_lock); 307 if (IS_VALLEYVIEW(dev_priv->dev)) 308 ret = vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.min_delay); 309 else 310 ret = dev_priv->rps.min_delay * GT_FREQUENCY_MULTIPLIER; 311 mutex_unlock(&dev_priv->rps.hw_lock); 312 313 return snprintf(buf, PAGE_SIZE, "%d\n", ret); 314 } 315 316 static ssize_t gt_min_freq_mhz_store(struct device *kdev, 317 struct device_attribute *attr, 318 const char *buf, size_t count) 319 { 320 struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev); 321 struct drm_device *dev = minor->dev; 322 struct drm_i915_private *dev_priv = dev->dev_private; 323 u32 val, rp_state_cap, hw_max, hw_min; 324 ssize_t ret; 325 326 ret = kstrtou32(buf, 0, &val); 327 if (ret) 328 return ret; 329 330 mutex_lock(&dev_priv->rps.hw_lock); 331 332 if (IS_VALLEYVIEW(dev)) { 333 val = vlv_freq_opcode(dev_priv->mem_freq, val); 334 335 hw_max = valleyview_rps_max_freq(dev_priv); 336 hw_min = valleyview_rps_min_freq(dev_priv); 337 } else { 338 val /= GT_FREQUENCY_MULTIPLIER; 339 340 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP); 341 hw_max = dev_priv->rps.hw_max; 342 hw_min = ((rp_state_cap & 0xff0000) >> 16); 343 } 344 345 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_delay) { 346 mutex_unlock(&dev_priv->rps.hw_lock); 347 return -EINVAL; 348 } 349 350 if (dev_priv->rps.cur_delay < val) { 351 if (IS_VALLEYVIEW(dev)) 352 valleyview_set_rps(dev, val); 353 else 354 gen6_set_rps(dev_priv->dev, val); 355 } 356 357 dev_priv->rps.min_delay = val; 358 359 mutex_unlock(&dev_priv->rps.hw_lock); 360 361 return count; 362 363 } 364 365 static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL); 366 static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store); 367 static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store); 368 369 370 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf); 371 static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL); 372 static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL); 373 static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL); 374 375 /* For now we have a static number of RP states */ 376 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) 377 { 378 struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev); 379 struct drm_device *dev = minor->dev; 380 struct drm_i915_private *dev_priv = dev->dev_private; 381 u32 val, rp_state_cap; 382 ssize_t ret; 383 384 ret = mutex_lock_interruptible(&dev->struct_mutex); 385 if (ret) 386 return ret; 387 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP); 388 mutex_unlock(&dev->struct_mutex); 389 390 if (attr == &dev_attr_gt_RP0_freq_mhz) { 391 val = ((rp_state_cap & 0x0000ff) >> 0) * GT_FREQUENCY_MULTIPLIER; 392 } else if (attr == &dev_attr_gt_RP1_freq_mhz) { 393 val = ((rp_state_cap & 0x00ff00) >> 8) * GT_FREQUENCY_MULTIPLIER; 394 } else if (attr == &dev_attr_gt_RPn_freq_mhz) { 395 val = ((rp_state_cap & 0xff0000) >> 16) * GT_FREQUENCY_MULTIPLIER; 396 } else { 397 BUG(); 398 } 399 return snprintf(buf, PAGE_SIZE, "%d\n", val); 400 } 401 402 static const struct attribute *gen6_attrs[] = { 403 &dev_attr_gt_cur_freq_mhz.attr, 404 &dev_attr_gt_max_freq_mhz.attr, 405 &dev_attr_gt_min_freq_mhz.attr, 406 &dev_attr_gt_RP0_freq_mhz.attr, 407 &dev_attr_gt_RP1_freq_mhz.attr, 408 &dev_attr_gt_RPn_freq_mhz.attr, 409 NULL, 410 }; 411 412 void i915_setup_sysfs(struct drm_device *dev) 413 { 414 int ret; 415 416 #ifdef CONFIG_PM 417 if (INTEL_INFO(dev)->gen >= 6) { 418 ret = sysfs_merge_group(&dev->primary->kdev.kobj, 419 &rc6_attr_group); 420 if (ret) 421 DRM_ERROR("RC6 residency sysfs setup failed\n"); 422 } 423 #endif 424 if (HAS_L3_GPU_CACHE(dev)) { 425 ret = device_create_bin_file(&dev->primary->kdev, &dpf_attrs); 426 if (ret) 427 DRM_ERROR("l3 parity sysfs setup failed\n"); 428 } 429 430 if (INTEL_INFO(dev)->gen >= 6) { 431 ret = sysfs_create_files(&dev->primary->kdev.kobj, gen6_attrs); 432 if (ret) 433 DRM_ERROR("gen6 sysfs setup failed\n"); 434 } 435 } 436 437 void i915_teardown_sysfs(struct drm_device *dev) 438 { 439 sysfs_remove_files(&dev->primary->kdev.kobj, gen6_attrs); 440 device_remove_bin_file(&dev->primary->kdev, &dpf_attrs); 441 #ifdef CONFIG_PM 442 sysfs_unmerge_group(&dev->primary->kdev.kobj, &rc6_attr_group); 443 #endif 444 } 445