1 /* 2 * Copyright © 2012 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Ben Widawsky <ben@bwidawsk.net> 25 * 26 */ 27 28 #include <linux/device.h> 29 #include <linux/module.h> 30 #include <linux/stat.h> 31 #include <linux/sysfs.h> 32 #include "intel_drv.h" 33 #include "i915_drv.h" 34 35 #define dev_to_drm_minor(d) dev_get_drvdata((d)) 36 37 #ifdef CONFIG_PM 38 static u32 calc_residency(struct drm_device *dev, 39 i915_reg_t reg) 40 { 41 struct drm_i915_private *dev_priv = to_i915(dev); 42 u64 raw_time; /* 32b value may overflow during fixed point math */ 43 u64 units = 128ULL, div = 100000ULL; 44 u32 ret; 45 46 if (!intel_enable_rc6()) 47 return 0; 48 49 intel_runtime_pm_get(dev_priv); 50 51 /* On VLV and CHV, residency time is in CZ units rather than 1.28us */ 52 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { 53 units = 1; 54 div = dev_priv->czclk_freq; 55 56 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH) 57 units <<= 8; 58 } else if (IS_BROXTON(dev)) { 59 units = 1; 60 div = 1200; /* 833.33ns */ 61 } 62 63 raw_time = I915_READ(reg) * units; 64 ret = DIV_ROUND_UP_ULL(raw_time, div); 65 66 intel_runtime_pm_put(dev_priv); 67 return ret; 68 } 69 70 static ssize_t 71 show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf) 72 { 73 return snprintf(buf, PAGE_SIZE, "%x\n", intel_enable_rc6()); 74 } 75 76 static ssize_t 77 show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf) 78 { 79 struct drm_minor *dminor = dev_get_drvdata(kdev); 80 u32 rc6_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6); 81 return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency); 82 } 83 84 static ssize_t 85 show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf) 86 { 87 struct drm_minor *dminor = dev_to_drm_minor(kdev); 88 u32 rc6p_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6p); 89 return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency); 90 } 91 92 static ssize_t 93 show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf) 94 { 95 struct drm_minor *dminor = dev_to_drm_minor(kdev); 96 u32 rc6pp_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6pp); 97 return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency); 98 } 99 100 static ssize_t 101 show_media_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf) 102 { 103 struct drm_minor *dminor = dev_get_drvdata(kdev); 104 u32 rc6_residency = calc_residency(dminor->dev, VLV_GT_MEDIA_RC6); 105 return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency); 106 } 107 108 static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL); 109 static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL); 110 static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL); 111 static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL); 112 static DEVICE_ATTR(media_rc6_residency_ms, S_IRUGO, show_media_rc6_ms, NULL); 113 114 static struct attribute *rc6_attrs[] = { 115 &dev_attr_rc6_enable.attr, 116 &dev_attr_rc6_residency_ms.attr, 117 NULL 118 }; 119 120 static struct attribute_group rc6_attr_group = { 121 .name = power_group_name, 122 .attrs = rc6_attrs 123 }; 124 125 static struct attribute *rc6p_attrs[] = { 126 &dev_attr_rc6p_residency_ms.attr, 127 &dev_attr_rc6pp_residency_ms.attr, 128 NULL 129 }; 130 131 static struct attribute_group rc6p_attr_group = { 132 .name = power_group_name, 133 .attrs = rc6p_attrs 134 }; 135 136 static struct attribute *media_rc6_attrs[] = { 137 &dev_attr_media_rc6_residency_ms.attr, 138 NULL 139 }; 140 141 static struct attribute_group media_rc6_attr_group = { 142 .name = power_group_name, 143 .attrs = media_rc6_attrs 144 }; 145 #endif 146 147 static int l3_access_valid(struct drm_device *dev, loff_t offset) 148 { 149 if (!HAS_L3_DPF(dev)) 150 return -EPERM; 151 152 if (offset % 4 != 0) 153 return -EINVAL; 154 155 if (offset >= GEN7_L3LOG_SIZE) 156 return -ENXIO; 157 158 return 0; 159 } 160 161 static ssize_t 162 i915_l3_read(struct file *filp, struct kobject *kobj, 163 struct bin_attribute *attr, char *buf, 164 loff_t offset, size_t count) 165 { 166 struct device *dev = kobj_to_dev(kobj); 167 struct drm_minor *dminor = dev_to_drm_minor(dev); 168 struct drm_device *drm_dev = dminor->dev; 169 struct drm_i915_private *dev_priv = to_i915(drm_dev); 170 int slice = (int)(uintptr_t)attr->private; 171 int ret; 172 173 count = round_down(count, 4); 174 175 ret = l3_access_valid(drm_dev, offset); 176 if (ret) 177 return ret; 178 179 count = min_t(size_t, GEN7_L3LOG_SIZE - offset, count); 180 181 ret = i915_mutex_lock_interruptible(drm_dev); 182 if (ret) 183 return ret; 184 185 if (dev_priv->l3_parity.remap_info[slice]) 186 memcpy(buf, 187 dev_priv->l3_parity.remap_info[slice] + (offset/4), 188 count); 189 else 190 memset(buf, 0, count); 191 192 mutex_unlock(&drm_dev->struct_mutex); 193 194 return count; 195 } 196 197 static ssize_t 198 i915_l3_write(struct file *filp, struct kobject *kobj, 199 struct bin_attribute *attr, char *buf, 200 loff_t offset, size_t count) 201 { 202 struct device *dev = kobj_to_dev(kobj); 203 struct drm_minor *dminor = dev_to_drm_minor(dev); 204 struct drm_device *drm_dev = dminor->dev; 205 struct drm_i915_private *dev_priv = to_i915(drm_dev); 206 struct i915_gem_context *ctx; 207 u32 *temp = NULL; /* Just here to make handling failures easy */ 208 int slice = (int)(uintptr_t)attr->private; 209 int ret; 210 211 if (!HAS_HW_CONTEXTS(drm_dev)) 212 return -ENXIO; 213 214 ret = l3_access_valid(drm_dev, offset); 215 if (ret) 216 return ret; 217 218 ret = i915_mutex_lock_interruptible(drm_dev); 219 if (ret) 220 return ret; 221 222 if (!dev_priv->l3_parity.remap_info[slice]) { 223 temp = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL); 224 if (!temp) { 225 mutex_unlock(&drm_dev->struct_mutex); 226 return -ENOMEM; 227 } 228 } 229 230 /* TODO: Ideally we really want a GPU reset here to make sure errors 231 * aren't propagated. Since I cannot find a stable way to reset the GPU 232 * at this point it is left as a TODO. 233 */ 234 if (temp) 235 dev_priv->l3_parity.remap_info[slice] = temp; 236 237 memcpy(dev_priv->l3_parity.remap_info[slice] + (offset/4), buf, count); 238 239 /* NB: We defer the remapping until we switch to the context */ 240 list_for_each_entry(ctx, &dev_priv->context_list, link) 241 ctx->remap_slice |= (1<<slice); 242 243 mutex_unlock(&drm_dev->struct_mutex); 244 245 return count; 246 } 247 248 static struct bin_attribute dpf_attrs = { 249 .attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)}, 250 .size = GEN7_L3LOG_SIZE, 251 .read = i915_l3_read, 252 .write = i915_l3_write, 253 .mmap = NULL, 254 .private = (void *)0 255 }; 256 257 static struct bin_attribute dpf_attrs_1 = { 258 .attr = {.name = "l3_parity_slice_1", .mode = (S_IRUSR | S_IWUSR)}, 259 .size = GEN7_L3LOG_SIZE, 260 .read = i915_l3_read, 261 .write = i915_l3_write, 262 .mmap = NULL, 263 .private = (void *)1 264 }; 265 266 static ssize_t gt_act_freq_mhz_show(struct device *kdev, 267 struct device_attribute *attr, char *buf) 268 { 269 struct drm_minor *minor = dev_to_drm_minor(kdev); 270 struct drm_device *dev = minor->dev; 271 struct drm_i915_private *dev_priv = to_i915(dev); 272 int ret; 273 274 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 275 276 intel_runtime_pm_get(dev_priv); 277 278 mutex_lock(&dev_priv->rps.hw_lock); 279 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 280 u32 freq; 281 freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS); 282 ret = intel_gpu_freq(dev_priv, (freq >> 8) & 0xff); 283 } else { 284 u32 rpstat = I915_READ(GEN6_RPSTAT1); 285 if (IS_GEN9(dev_priv)) 286 ret = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT; 287 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 288 ret = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT; 289 else 290 ret = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT; 291 ret = intel_gpu_freq(dev_priv, ret); 292 } 293 mutex_unlock(&dev_priv->rps.hw_lock); 294 295 intel_runtime_pm_put(dev_priv); 296 297 return snprintf(buf, PAGE_SIZE, "%d\n", ret); 298 } 299 300 static ssize_t gt_cur_freq_mhz_show(struct device *kdev, 301 struct device_attribute *attr, char *buf) 302 { 303 struct drm_minor *minor = dev_to_drm_minor(kdev); 304 struct drm_device *dev = minor->dev; 305 struct drm_i915_private *dev_priv = to_i915(dev); 306 int ret; 307 308 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 309 310 intel_runtime_pm_get(dev_priv); 311 312 mutex_lock(&dev_priv->rps.hw_lock); 313 ret = intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq); 314 mutex_unlock(&dev_priv->rps.hw_lock); 315 316 intel_runtime_pm_put(dev_priv); 317 318 return snprintf(buf, PAGE_SIZE, "%d\n", ret); 319 } 320 321 static ssize_t vlv_rpe_freq_mhz_show(struct device *kdev, 322 struct device_attribute *attr, char *buf) 323 { 324 struct drm_minor *minor = dev_to_drm_minor(kdev); 325 struct drm_device *dev = minor->dev; 326 struct drm_i915_private *dev_priv = to_i915(dev); 327 328 return snprintf(buf, PAGE_SIZE, 329 "%d\n", 330 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq)); 331 } 332 333 static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) 334 { 335 struct drm_minor *minor = dev_to_drm_minor(kdev); 336 struct drm_device *dev = minor->dev; 337 struct drm_i915_private *dev_priv = to_i915(dev); 338 int ret; 339 340 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 341 342 mutex_lock(&dev_priv->rps.hw_lock); 343 ret = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit); 344 mutex_unlock(&dev_priv->rps.hw_lock); 345 346 return snprintf(buf, PAGE_SIZE, "%d\n", ret); 347 } 348 349 static ssize_t gt_max_freq_mhz_store(struct device *kdev, 350 struct device_attribute *attr, 351 const char *buf, size_t count) 352 { 353 struct drm_minor *minor = dev_to_drm_minor(kdev); 354 struct drm_device *dev = minor->dev; 355 struct drm_i915_private *dev_priv = to_i915(dev); 356 u32 val; 357 ssize_t ret; 358 359 ret = kstrtou32(buf, 0, &val); 360 if (ret) 361 return ret; 362 363 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 364 365 intel_runtime_pm_get(dev_priv); 366 367 mutex_lock(&dev_priv->rps.hw_lock); 368 369 val = intel_freq_opcode(dev_priv, val); 370 371 if (val < dev_priv->rps.min_freq || 372 val > dev_priv->rps.max_freq || 373 val < dev_priv->rps.min_freq_softlimit) { 374 mutex_unlock(&dev_priv->rps.hw_lock); 375 intel_runtime_pm_put(dev_priv); 376 return -EINVAL; 377 } 378 379 if (val > dev_priv->rps.rp0_freq) 380 DRM_DEBUG("User requested overclocking to %d\n", 381 intel_gpu_freq(dev_priv, val)); 382 383 dev_priv->rps.max_freq_softlimit = val; 384 385 val = clamp_t(int, dev_priv->rps.cur_freq, 386 dev_priv->rps.min_freq_softlimit, 387 dev_priv->rps.max_freq_softlimit); 388 389 /* We still need *_set_rps to process the new max_delay and 390 * update the interrupt limits and PMINTRMSK even though 391 * frequency request may be unchanged. */ 392 intel_set_rps(dev_priv, val); 393 394 mutex_unlock(&dev_priv->rps.hw_lock); 395 396 intel_runtime_pm_put(dev_priv); 397 398 return count; 399 } 400 401 static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) 402 { 403 struct drm_minor *minor = dev_to_drm_minor(kdev); 404 struct drm_device *dev = minor->dev; 405 struct drm_i915_private *dev_priv = to_i915(dev); 406 int ret; 407 408 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 409 410 mutex_lock(&dev_priv->rps.hw_lock); 411 ret = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit); 412 mutex_unlock(&dev_priv->rps.hw_lock); 413 414 return snprintf(buf, PAGE_SIZE, "%d\n", ret); 415 } 416 417 static ssize_t gt_min_freq_mhz_store(struct device *kdev, 418 struct device_attribute *attr, 419 const char *buf, size_t count) 420 { 421 struct drm_minor *minor = dev_to_drm_minor(kdev); 422 struct drm_device *dev = minor->dev; 423 struct drm_i915_private *dev_priv = to_i915(dev); 424 u32 val; 425 ssize_t ret; 426 427 ret = kstrtou32(buf, 0, &val); 428 if (ret) 429 return ret; 430 431 flush_delayed_work(&dev_priv->rps.delayed_resume_work); 432 433 intel_runtime_pm_get(dev_priv); 434 435 mutex_lock(&dev_priv->rps.hw_lock); 436 437 val = intel_freq_opcode(dev_priv, val); 438 439 if (val < dev_priv->rps.min_freq || 440 val > dev_priv->rps.max_freq || 441 val > dev_priv->rps.max_freq_softlimit) { 442 mutex_unlock(&dev_priv->rps.hw_lock); 443 intel_runtime_pm_put(dev_priv); 444 return -EINVAL; 445 } 446 447 dev_priv->rps.min_freq_softlimit = val; 448 449 val = clamp_t(int, dev_priv->rps.cur_freq, 450 dev_priv->rps.min_freq_softlimit, 451 dev_priv->rps.max_freq_softlimit); 452 453 /* We still need *_set_rps to process the new min_delay and 454 * update the interrupt limits and PMINTRMSK even though 455 * frequency request may be unchanged. */ 456 intel_set_rps(dev_priv, val); 457 458 mutex_unlock(&dev_priv->rps.hw_lock); 459 460 intel_runtime_pm_put(dev_priv); 461 462 return count; 463 464 } 465 466 static DEVICE_ATTR(gt_act_freq_mhz, S_IRUGO, gt_act_freq_mhz_show, NULL); 467 static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL); 468 static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store); 469 static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store); 470 471 static DEVICE_ATTR(vlv_rpe_freq_mhz, S_IRUGO, vlv_rpe_freq_mhz_show, NULL); 472 473 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf); 474 static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL); 475 static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL); 476 static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL); 477 478 /* For now we have a static number of RP states */ 479 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) 480 { 481 struct drm_minor *minor = dev_to_drm_minor(kdev); 482 struct drm_device *dev = minor->dev; 483 struct drm_i915_private *dev_priv = to_i915(dev); 484 u32 val; 485 486 if (attr == &dev_attr_gt_RP0_freq_mhz) 487 val = intel_gpu_freq(dev_priv, dev_priv->rps.rp0_freq); 488 else if (attr == &dev_attr_gt_RP1_freq_mhz) 489 val = intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq); 490 else if (attr == &dev_attr_gt_RPn_freq_mhz) 491 val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq); 492 else 493 BUG(); 494 495 return snprintf(buf, PAGE_SIZE, "%d\n", val); 496 } 497 498 static const struct attribute *gen6_attrs[] = { 499 &dev_attr_gt_act_freq_mhz.attr, 500 &dev_attr_gt_cur_freq_mhz.attr, 501 &dev_attr_gt_max_freq_mhz.attr, 502 &dev_attr_gt_min_freq_mhz.attr, 503 &dev_attr_gt_RP0_freq_mhz.attr, 504 &dev_attr_gt_RP1_freq_mhz.attr, 505 &dev_attr_gt_RPn_freq_mhz.attr, 506 NULL, 507 }; 508 509 static const struct attribute *vlv_attrs[] = { 510 &dev_attr_gt_act_freq_mhz.attr, 511 &dev_attr_gt_cur_freq_mhz.attr, 512 &dev_attr_gt_max_freq_mhz.attr, 513 &dev_attr_gt_min_freq_mhz.attr, 514 &dev_attr_gt_RP0_freq_mhz.attr, 515 &dev_attr_gt_RP1_freq_mhz.attr, 516 &dev_attr_gt_RPn_freq_mhz.attr, 517 &dev_attr_vlv_rpe_freq_mhz.attr, 518 NULL, 519 }; 520 521 static ssize_t error_state_read(struct file *filp, struct kobject *kobj, 522 struct bin_attribute *attr, char *buf, 523 loff_t off, size_t count) 524 { 525 526 struct device *kdev = kobj_to_dev(kobj); 527 struct drm_minor *minor = dev_to_drm_minor(kdev); 528 struct drm_device *dev = minor->dev; 529 struct i915_error_state_file_priv error_priv; 530 struct drm_i915_error_state_buf error_str; 531 ssize_t ret_count = 0; 532 int ret; 533 534 memset(&error_priv, 0, sizeof(error_priv)); 535 536 ret = i915_error_state_buf_init(&error_str, to_i915(dev), count, off); 537 if (ret) 538 return ret; 539 540 error_priv.dev = dev; 541 i915_error_state_get(dev, &error_priv); 542 543 ret = i915_error_state_to_str(&error_str, &error_priv); 544 if (ret) 545 goto out; 546 547 ret_count = count < error_str.bytes ? count : error_str.bytes; 548 549 memcpy(buf, error_str.buf, ret_count); 550 out: 551 i915_error_state_put(&error_priv); 552 i915_error_state_buf_release(&error_str); 553 554 return ret ?: ret_count; 555 } 556 557 static ssize_t error_state_write(struct file *file, struct kobject *kobj, 558 struct bin_attribute *attr, char *buf, 559 loff_t off, size_t count) 560 { 561 struct device *kdev = kobj_to_dev(kobj); 562 struct drm_minor *minor = dev_to_drm_minor(kdev); 563 struct drm_device *dev = minor->dev; 564 int ret; 565 566 DRM_DEBUG_DRIVER("Resetting error state\n"); 567 568 ret = mutex_lock_interruptible(&dev->struct_mutex); 569 if (ret) 570 return ret; 571 572 i915_destroy_error_state(dev); 573 mutex_unlock(&dev->struct_mutex); 574 575 return count; 576 } 577 578 static struct bin_attribute error_state_attr = { 579 .attr.name = "error", 580 .attr.mode = S_IRUSR | S_IWUSR, 581 .size = 0, 582 .read = error_state_read, 583 .write = error_state_write, 584 }; 585 586 void i915_setup_sysfs(struct drm_device *dev) 587 { 588 int ret; 589 590 #ifdef CONFIG_PM 591 if (HAS_RC6(dev)) { 592 ret = sysfs_merge_group(&dev->primary->kdev->kobj, 593 &rc6_attr_group); 594 if (ret) 595 DRM_ERROR("RC6 residency sysfs setup failed\n"); 596 } 597 if (HAS_RC6p(dev)) { 598 ret = sysfs_merge_group(&dev->primary->kdev->kobj, 599 &rc6p_attr_group); 600 if (ret) 601 DRM_ERROR("RC6p residency sysfs setup failed\n"); 602 } 603 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { 604 ret = sysfs_merge_group(&dev->primary->kdev->kobj, 605 &media_rc6_attr_group); 606 if (ret) 607 DRM_ERROR("Media RC6 residency sysfs setup failed\n"); 608 } 609 #endif 610 if (HAS_L3_DPF(dev)) { 611 ret = device_create_bin_file(dev->primary->kdev, &dpf_attrs); 612 if (ret) 613 DRM_ERROR("l3 parity sysfs setup failed\n"); 614 615 if (NUM_L3_SLICES(dev) > 1) { 616 ret = device_create_bin_file(dev->primary->kdev, 617 &dpf_attrs_1); 618 if (ret) 619 DRM_ERROR("l3 parity slice 1 setup failed\n"); 620 } 621 } 622 623 ret = 0; 624 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) 625 ret = sysfs_create_files(&dev->primary->kdev->kobj, vlv_attrs); 626 else if (INTEL_INFO(dev)->gen >= 6) 627 ret = sysfs_create_files(&dev->primary->kdev->kobj, gen6_attrs); 628 if (ret) 629 DRM_ERROR("RPS sysfs setup failed\n"); 630 631 ret = sysfs_create_bin_file(&dev->primary->kdev->kobj, 632 &error_state_attr); 633 if (ret) 634 DRM_ERROR("error_state sysfs setup failed\n"); 635 } 636 637 void i915_teardown_sysfs(struct drm_device *dev) 638 { 639 sysfs_remove_bin_file(&dev->primary->kdev->kobj, &error_state_attr); 640 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) 641 sysfs_remove_files(&dev->primary->kdev->kobj, vlv_attrs); 642 else 643 sysfs_remove_files(&dev->primary->kdev->kobj, gen6_attrs); 644 device_remove_bin_file(dev->primary->kdev, &dpf_attrs_1); 645 device_remove_bin_file(dev->primary->kdev, &dpf_attrs); 646 #ifdef CONFIG_PM 647 sysfs_unmerge_group(&dev->primary->kdev->kobj, &rc6_attr_group); 648 sysfs_unmerge_group(&dev->primary->kdev->kobj, &rc6p_attr_group); 649 #endif 650 } 651