1 /* 2 * Copyright © 2012 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Ben Widawsky <ben@bwidawsk.net> 25 * 26 */ 27 28 #include <linux/device.h> 29 #include <linux/module.h> 30 #include <linux/stat.h> 31 #include <linux/sysfs.h> 32 #include "intel_drv.h" 33 #include "i915_drv.h" 34 35 #ifdef CONFIG_PM 36 static u32 calc_residency(struct drm_device *dev, const u32 reg) 37 { 38 struct drm_i915_private *dev_priv = dev->dev_private; 39 u64 raw_time; /* 32b value may overflow during fixed point math */ 40 41 if (!intel_enable_rc6(dev)) 42 return 0; 43 44 raw_time = I915_READ(reg) * 128ULL; 45 return DIV_ROUND_UP_ULL(raw_time, 100000); 46 } 47 48 static ssize_t 49 show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf) 50 { 51 struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev); 52 return snprintf(buf, PAGE_SIZE, "%x", intel_enable_rc6(dminor->dev)); 53 } 54 55 static ssize_t 56 show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf) 57 { 58 struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev); 59 u32 rc6_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6); 60 return snprintf(buf, PAGE_SIZE, "%u", rc6_residency); 61 } 62 63 static ssize_t 64 show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf) 65 { 66 struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev); 67 u32 rc6p_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6p); 68 return snprintf(buf, PAGE_SIZE, "%u", rc6p_residency); 69 } 70 71 static ssize_t 72 show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf) 73 { 74 struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev); 75 u32 rc6pp_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6pp); 76 return snprintf(buf, PAGE_SIZE, "%u", rc6pp_residency); 77 } 78 79 static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL); 80 static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL); 81 static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL); 82 static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL); 83 84 static struct attribute *rc6_attrs[] = { 85 &dev_attr_rc6_enable.attr, 86 &dev_attr_rc6_residency_ms.attr, 87 &dev_attr_rc6p_residency_ms.attr, 88 &dev_attr_rc6pp_residency_ms.attr, 89 NULL 90 }; 91 92 static struct attribute_group rc6_attr_group = { 93 .name = power_group_name, 94 .attrs = rc6_attrs 95 }; 96 #endif 97 98 static int l3_access_valid(struct drm_device *dev, loff_t offset) 99 { 100 if (!IS_IVYBRIDGE(dev)) 101 return -EPERM; 102 103 if (offset % 4 != 0) 104 return -EINVAL; 105 106 if (offset >= GEN7_L3LOG_SIZE) 107 return -ENXIO; 108 109 return 0; 110 } 111 112 static ssize_t 113 i915_l3_read(struct file *filp, struct kobject *kobj, 114 struct bin_attribute *attr, char *buf, 115 loff_t offset, size_t count) 116 { 117 struct device *dev = container_of(kobj, struct device, kobj); 118 struct drm_minor *dminor = container_of(dev, struct drm_minor, kdev); 119 struct drm_device *drm_dev = dminor->dev; 120 struct drm_i915_private *dev_priv = drm_dev->dev_private; 121 uint32_t misccpctl; 122 int i, ret; 123 124 ret = l3_access_valid(drm_dev, offset); 125 if (ret) 126 return ret; 127 128 ret = i915_mutex_lock_interruptible(drm_dev); 129 if (ret) 130 return ret; 131 132 misccpctl = I915_READ(GEN7_MISCCPCTL); 133 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 134 135 for (i = offset; count >= 4 && i < GEN7_L3LOG_SIZE; i += 4, count -= 4) 136 *((uint32_t *)(&buf[i])) = I915_READ(GEN7_L3LOG_BASE + i); 137 138 I915_WRITE(GEN7_MISCCPCTL, misccpctl); 139 140 mutex_unlock(&drm_dev->struct_mutex); 141 142 return i - offset; 143 } 144 145 static ssize_t 146 i915_l3_write(struct file *filp, struct kobject *kobj, 147 struct bin_attribute *attr, char *buf, 148 loff_t offset, size_t count) 149 { 150 struct device *dev = container_of(kobj, struct device, kobj); 151 struct drm_minor *dminor = container_of(dev, struct drm_minor, kdev); 152 struct drm_device *drm_dev = dminor->dev; 153 struct drm_i915_private *dev_priv = drm_dev->dev_private; 154 u32 *temp = NULL; /* Just here to make handling failures easy */ 155 int ret; 156 157 ret = l3_access_valid(drm_dev, offset); 158 if (ret) 159 return ret; 160 161 ret = i915_mutex_lock_interruptible(drm_dev); 162 if (ret) 163 return ret; 164 165 if (!dev_priv->mm.l3_remap_info) { 166 temp = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL); 167 if (!temp) { 168 mutex_unlock(&drm_dev->struct_mutex); 169 return -ENOMEM; 170 } 171 } 172 173 ret = i915_gpu_idle(drm_dev); 174 if (ret) { 175 kfree(temp); 176 mutex_unlock(&drm_dev->struct_mutex); 177 return ret; 178 } 179 180 /* TODO: Ideally we really want a GPU reset here to make sure errors 181 * aren't propagated. Since I cannot find a stable way to reset the GPU 182 * at this point it is left as a TODO. 183 */ 184 if (temp) 185 dev_priv->mm.l3_remap_info = temp; 186 187 memcpy(dev_priv->mm.l3_remap_info + (offset/4), 188 buf + (offset/4), 189 count); 190 191 i915_gem_l3_remap(drm_dev); 192 193 mutex_unlock(&drm_dev->struct_mutex); 194 195 return count; 196 } 197 198 static struct bin_attribute dpf_attrs = { 199 .attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)}, 200 .size = GEN7_L3LOG_SIZE, 201 .read = i915_l3_read, 202 .write = i915_l3_write, 203 .mmap = NULL 204 }; 205 206 static ssize_t gt_cur_freq_mhz_show(struct device *kdev, 207 struct device_attribute *attr, char *buf) 208 { 209 struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev); 210 struct drm_device *dev = minor->dev; 211 struct drm_i915_private *dev_priv = dev->dev_private; 212 int ret; 213 214 ret = i915_mutex_lock_interruptible(dev); 215 if (ret) 216 return ret; 217 218 ret = dev_priv->rps.cur_delay * GT_FREQUENCY_MULTIPLIER; 219 mutex_unlock(&dev->struct_mutex); 220 221 return snprintf(buf, PAGE_SIZE, "%d", ret); 222 } 223 224 static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) 225 { 226 struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev); 227 struct drm_device *dev = minor->dev; 228 struct drm_i915_private *dev_priv = dev->dev_private; 229 int ret; 230 231 ret = i915_mutex_lock_interruptible(dev); 232 if (ret) 233 return ret; 234 235 ret = dev_priv->rps.max_delay * GT_FREQUENCY_MULTIPLIER; 236 mutex_unlock(&dev->struct_mutex); 237 238 return snprintf(buf, PAGE_SIZE, "%d", ret); 239 } 240 241 static ssize_t gt_max_freq_mhz_store(struct device *kdev, 242 struct device_attribute *attr, 243 const char *buf, size_t count) 244 { 245 struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev); 246 struct drm_device *dev = minor->dev; 247 struct drm_i915_private *dev_priv = dev->dev_private; 248 u32 val, rp_state_cap, hw_max, hw_min; 249 ssize_t ret; 250 251 ret = kstrtou32(buf, 0, &val); 252 if (ret) 253 return ret; 254 255 val /= GT_FREQUENCY_MULTIPLIER; 256 257 ret = mutex_lock_interruptible(&dev->struct_mutex); 258 if (ret) 259 return ret; 260 261 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP); 262 hw_max = (rp_state_cap & 0xff); 263 hw_min = ((rp_state_cap & 0xff0000) >> 16); 264 265 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_delay) { 266 mutex_unlock(&dev->struct_mutex); 267 return -EINVAL; 268 } 269 270 if (dev_priv->rps.cur_delay > val) 271 gen6_set_rps(dev_priv->dev, val); 272 273 dev_priv->rps.max_delay = val; 274 275 mutex_unlock(&dev->struct_mutex); 276 277 return count; 278 } 279 280 static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) 281 { 282 struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev); 283 struct drm_device *dev = minor->dev; 284 struct drm_i915_private *dev_priv = dev->dev_private; 285 int ret; 286 287 ret = i915_mutex_lock_interruptible(dev); 288 if (ret) 289 return ret; 290 291 ret = dev_priv->rps.min_delay * GT_FREQUENCY_MULTIPLIER; 292 mutex_unlock(&dev->struct_mutex); 293 294 return snprintf(buf, PAGE_SIZE, "%d", ret); 295 } 296 297 static ssize_t gt_min_freq_mhz_store(struct device *kdev, 298 struct device_attribute *attr, 299 const char *buf, size_t count) 300 { 301 struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev); 302 struct drm_device *dev = minor->dev; 303 struct drm_i915_private *dev_priv = dev->dev_private; 304 u32 val, rp_state_cap, hw_max, hw_min; 305 ssize_t ret; 306 307 ret = kstrtou32(buf, 0, &val); 308 if (ret) 309 return ret; 310 311 val /= GT_FREQUENCY_MULTIPLIER; 312 313 ret = mutex_lock_interruptible(&dev->struct_mutex); 314 if (ret) 315 return ret; 316 317 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP); 318 hw_max = (rp_state_cap & 0xff); 319 hw_min = ((rp_state_cap & 0xff0000) >> 16); 320 321 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_delay) { 322 mutex_unlock(&dev->struct_mutex); 323 return -EINVAL; 324 } 325 326 if (dev_priv->rps.cur_delay < val) 327 gen6_set_rps(dev_priv->dev, val); 328 329 dev_priv->rps.min_delay = val; 330 331 mutex_unlock(&dev->struct_mutex); 332 333 return count; 334 335 } 336 337 static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL); 338 static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store); 339 static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store); 340 341 342 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf); 343 static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL); 344 static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL); 345 static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL); 346 347 /* For now we have a static number of RP states */ 348 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf) 349 { 350 struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev); 351 struct drm_device *dev = minor->dev; 352 struct drm_i915_private *dev_priv = dev->dev_private; 353 u32 val, rp_state_cap; 354 ssize_t ret; 355 356 ret = mutex_lock_interruptible(&dev->struct_mutex); 357 if (ret) 358 return ret; 359 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP); 360 mutex_unlock(&dev->struct_mutex); 361 362 if (attr == &dev_attr_gt_RP0_freq_mhz) { 363 val = ((rp_state_cap & 0x0000ff) >> 0) * GT_FREQUENCY_MULTIPLIER; 364 } else if (attr == &dev_attr_gt_RP1_freq_mhz) { 365 val = ((rp_state_cap & 0x00ff00) >> 8) * GT_FREQUENCY_MULTIPLIER; 366 } else if (attr == &dev_attr_gt_RPn_freq_mhz) { 367 val = ((rp_state_cap & 0xff0000) >> 16) * GT_FREQUENCY_MULTIPLIER; 368 } else { 369 BUG(); 370 } 371 return snprintf(buf, PAGE_SIZE, "%d", val); 372 } 373 374 static const struct attribute *gen6_attrs[] = { 375 &dev_attr_gt_cur_freq_mhz.attr, 376 &dev_attr_gt_max_freq_mhz.attr, 377 &dev_attr_gt_min_freq_mhz.attr, 378 &dev_attr_gt_RP0_freq_mhz.attr, 379 &dev_attr_gt_RP1_freq_mhz.attr, 380 &dev_attr_gt_RPn_freq_mhz.attr, 381 NULL, 382 }; 383 384 void i915_setup_sysfs(struct drm_device *dev) 385 { 386 int ret; 387 388 #ifdef CONFIG_PM 389 if (INTEL_INFO(dev)->gen >= 6) { 390 ret = sysfs_merge_group(&dev->primary->kdev.kobj, 391 &rc6_attr_group); 392 if (ret) 393 DRM_ERROR("RC6 residency sysfs setup failed\n"); 394 } 395 #endif 396 if (HAS_L3_GPU_CACHE(dev)) { 397 ret = device_create_bin_file(&dev->primary->kdev, &dpf_attrs); 398 if (ret) 399 DRM_ERROR("l3 parity sysfs setup failed\n"); 400 } 401 402 if (INTEL_INFO(dev)->gen >= 6) { 403 ret = sysfs_create_files(&dev->primary->kdev.kobj, gen6_attrs); 404 if (ret) 405 DRM_ERROR("gen6 sysfs setup failed\n"); 406 } 407 } 408 409 void i915_teardown_sysfs(struct drm_device *dev) 410 { 411 sysfs_remove_files(&dev->primary->kdev.kobj, gen6_attrs); 412 device_remove_bin_file(&dev->primary->kdev, &dpf_attrs); 413 #ifdef CONFIG_PM 414 sysfs_unmerge_group(&dev->primary->kdev.kobj, &rc6_attr_group); 415 #endif 416 } 417