xref: /openbmc/linux/drivers/gpu/drm/i915/i915_sysfs.c (revision 1c2f87c2)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *
26  */
27 
28 #include <linux/device.h>
29 #include <linux/module.h>
30 #include <linux/stat.h>
31 #include <linux/sysfs.h>
32 #include "intel_drv.h"
33 #include "i915_drv.h"
34 
35 #define dev_to_drm_minor(d) dev_get_drvdata((d))
36 
37 #ifdef CONFIG_PM
38 static u32 calc_residency(struct drm_device *dev, const u32 reg)
39 {
40 	struct drm_i915_private *dev_priv = dev->dev_private;
41 	u64 raw_time; /* 32b value may overflow during fixed point math */
42 	u64 units = 128ULL, div = 100000ULL, bias = 100ULL;
43 	u32 ret;
44 
45 	if (!intel_enable_rc6(dev))
46 		return 0;
47 
48 	intel_runtime_pm_get(dev_priv);
49 
50 	/* On VLV, residency time is in CZ units rather than 1.28us */
51 	if (IS_VALLEYVIEW(dev)) {
52 		u32 clkctl2;
53 
54 		clkctl2 = I915_READ(VLV_CLK_CTL2) >>
55 			CLK_CTL2_CZCOUNT_30NS_SHIFT;
56 		if (!clkctl2) {
57 			WARN(!clkctl2, "bogus CZ count value");
58 			ret = 0;
59 			goto out;
60 		}
61 		units = DIV_ROUND_UP_ULL(30ULL * bias, (u64)clkctl2);
62 		if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
63 			units <<= 8;
64 
65 		div = 1000000ULL * bias;
66 	}
67 
68 	raw_time = I915_READ(reg) * units;
69 	ret = DIV_ROUND_UP_ULL(raw_time, div);
70 
71 out:
72 	intel_runtime_pm_put(dev_priv);
73 	return ret;
74 }
75 
76 static ssize_t
77 show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf)
78 {
79 	struct drm_minor *dminor = dev_to_drm_minor(kdev);
80 	return snprintf(buf, PAGE_SIZE, "%x\n", intel_enable_rc6(dminor->dev));
81 }
82 
83 static ssize_t
84 show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf)
85 {
86 	struct drm_minor *dminor = dev_get_drvdata(kdev);
87 	u32 rc6_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6);
88 	return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency);
89 }
90 
91 static ssize_t
92 show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf)
93 {
94 	struct drm_minor *dminor = dev_to_drm_minor(kdev);
95 	u32 rc6p_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6p);
96 	if (IS_VALLEYVIEW(dminor->dev))
97 		rc6p_residency = 0;
98 	return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency);
99 }
100 
101 static ssize_t
102 show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf)
103 {
104 	struct drm_minor *dminor = dev_to_drm_minor(kdev);
105 	u32 rc6pp_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6pp);
106 	if (IS_VALLEYVIEW(dminor->dev))
107 		rc6pp_residency = 0;
108 	return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency);
109 }
110 
111 static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL);
112 static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL);
113 static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL);
114 static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL);
115 
116 static struct attribute *rc6_attrs[] = {
117 	&dev_attr_rc6_enable.attr,
118 	&dev_attr_rc6_residency_ms.attr,
119 	&dev_attr_rc6p_residency_ms.attr,
120 	&dev_attr_rc6pp_residency_ms.attr,
121 	NULL
122 };
123 
124 static struct attribute_group rc6_attr_group = {
125 	.name = power_group_name,
126 	.attrs =  rc6_attrs
127 };
128 #endif
129 
130 static int l3_access_valid(struct drm_device *dev, loff_t offset)
131 {
132 	if (!HAS_L3_DPF(dev))
133 		return -EPERM;
134 
135 	if (offset % 4 != 0)
136 		return -EINVAL;
137 
138 	if (offset >= GEN7_L3LOG_SIZE)
139 		return -ENXIO;
140 
141 	return 0;
142 }
143 
144 static ssize_t
145 i915_l3_read(struct file *filp, struct kobject *kobj,
146 	     struct bin_attribute *attr, char *buf,
147 	     loff_t offset, size_t count)
148 {
149 	struct device *dev = container_of(kobj, struct device, kobj);
150 	struct drm_minor *dminor = dev_to_drm_minor(dev);
151 	struct drm_device *drm_dev = dminor->dev;
152 	struct drm_i915_private *dev_priv = drm_dev->dev_private;
153 	int slice = (int)(uintptr_t)attr->private;
154 	int ret;
155 
156 	count = round_down(count, 4);
157 
158 	ret = l3_access_valid(drm_dev, offset);
159 	if (ret)
160 		return ret;
161 
162 	count = min_t(size_t, GEN7_L3LOG_SIZE - offset, count);
163 
164 	ret = i915_mutex_lock_interruptible(drm_dev);
165 	if (ret)
166 		return ret;
167 
168 	if (dev_priv->l3_parity.remap_info[slice])
169 		memcpy(buf,
170 		       dev_priv->l3_parity.remap_info[slice] + (offset/4),
171 		       count);
172 	else
173 		memset(buf, 0, count);
174 
175 	mutex_unlock(&drm_dev->struct_mutex);
176 
177 	return count;
178 }
179 
180 static ssize_t
181 i915_l3_write(struct file *filp, struct kobject *kobj,
182 	      struct bin_attribute *attr, char *buf,
183 	      loff_t offset, size_t count)
184 {
185 	struct device *dev = container_of(kobj, struct device, kobj);
186 	struct drm_minor *dminor = dev_to_drm_minor(dev);
187 	struct drm_device *drm_dev = dminor->dev;
188 	struct drm_i915_private *dev_priv = drm_dev->dev_private;
189 	struct i915_hw_context *ctx;
190 	u32 *temp = NULL; /* Just here to make handling failures easy */
191 	int slice = (int)(uintptr_t)attr->private;
192 	int ret;
193 
194 	if (!HAS_HW_CONTEXTS(drm_dev))
195 		return -ENXIO;
196 
197 	ret = l3_access_valid(drm_dev, offset);
198 	if (ret)
199 		return ret;
200 
201 	ret = i915_mutex_lock_interruptible(drm_dev);
202 	if (ret)
203 		return ret;
204 
205 	if (!dev_priv->l3_parity.remap_info[slice]) {
206 		temp = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL);
207 		if (!temp) {
208 			mutex_unlock(&drm_dev->struct_mutex);
209 			return -ENOMEM;
210 		}
211 	}
212 
213 	ret = i915_gpu_idle(drm_dev);
214 	if (ret) {
215 		kfree(temp);
216 		mutex_unlock(&drm_dev->struct_mutex);
217 		return ret;
218 	}
219 
220 	/* TODO: Ideally we really want a GPU reset here to make sure errors
221 	 * aren't propagated. Since I cannot find a stable way to reset the GPU
222 	 * at this point it is left as a TODO.
223 	*/
224 	if (temp)
225 		dev_priv->l3_parity.remap_info[slice] = temp;
226 
227 	memcpy(dev_priv->l3_parity.remap_info[slice] + (offset/4), buf, count);
228 
229 	/* NB: We defer the remapping until we switch to the context */
230 	list_for_each_entry(ctx, &dev_priv->context_list, link)
231 		ctx->remap_slice |= (1<<slice);
232 
233 	mutex_unlock(&drm_dev->struct_mutex);
234 
235 	return count;
236 }
237 
238 static struct bin_attribute dpf_attrs = {
239 	.attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)},
240 	.size = GEN7_L3LOG_SIZE,
241 	.read = i915_l3_read,
242 	.write = i915_l3_write,
243 	.mmap = NULL,
244 	.private = (void *)0
245 };
246 
247 static struct bin_attribute dpf_attrs_1 = {
248 	.attr = {.name = "l3_parity_slice_1", .mode = (S_IRUSR | S_IWUSR)},
249 	.size = GEN7_L3LOG_SIZE,
250 	.read = i915_l3_read,
251 	.write = i915_l3_write,
252 	.mmap = NULL,
253 	.private = (void *)1
254 };
255 
256 static ssize_t gt_cur_freq_mhz_show(struct device *kdev,
257 				    struct device_attribute *attr, char *buf)
258 {
259 	struct drm_minor *minor = dev_to_drm_minor(kdev);
260 	struct drm_device *dev = minor->dev;
261 	struct drm_i915_private *dev_priv = dev->dev_private;
262 	int ret;
263 
264 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
265 
266 	mutex_lock(&dev_priv->rps.hw_lock);
267 	if (IS_VALLEYVIEW(dev_priv->dev)) {
268 		u32 freq;
269 		freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
270 		ret = vlv_gpu_freq(dev_priv, (freq >> 8) & 0xff);
271 	} else {
272 		ret = dev_priv->rps.cur_freq * GT_FREQUENCY_MULTIPLIER;
273 	}
274 	mutex_unlock(&dev_priv->rps.hw_lock);
275 
276 	return snprintf(buf, PAGE_SIZE, "%d\n", ret);
277 }
278 
279 static ssize_t vlv_rpe_freq_mhz_show(struct device *kdev,
280 				     struct device_attribute *attr, char *buf)
281 {
282 	struct drm_minor *minor = dev_to_drm_minor(kdev);
283 	struct drm_device *dev = minor->dev;
284 	struct drm_i915_private *dev_priv = dev->dev_private;
285 
286 	return snprintf(buf, PAGE_SIZE, "%d\n",
287 			vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
288 }
289 
290 static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
291 {
292 	struct drm_minor *minor = dev_to_drm_minor(kdev);
293 	struct drm_device *dev = minor->dev;
294 	struct drm_i915_private *dev_priv = dev->dev_private;
295 	int ret;
296 
297 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
298 
299 	mutex_lock(&dev_priv->rps.hw_lock);
300 	if (IS_VALLEYVIEW(dev_priv->dev))
301 		ret = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
302 	else
303 		ret = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
304 	mutex_unlock(&dev_priv->rps.hw_lock);
305 
306 	return snprintf(buf, PAGE_SIZE, "%d\n", ret);
307 }
308 
309 static ssize_t gt_max_freq_mhz_store(struct device *kdev,
310 				     struct device_attribute *attr,
311 				     const char *buf, size_t count)
312 {
313 	struct drm_minor *minor = dev_to_drm_minor(kdev);
314 	struct drm_device *dev = minor->dev;
315 	struct drm_i915_private *dev_priv = dev->dev_private;
316 	u32 val;
317 	ssize_t ret;
318 
319 	ret = kstrtou32(buf, 0, &val);
320 	if (ret)
321 		return ret;
322 
323 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
324 
325 	mutex_lock(&dev_priv->rps.hw_lock);
326 
327 	if (IS_VALLEYVIEW(dev_priv->dev))
328 		val = vlv_freq_opcode(dev_priv, val);
329 	else
330 		val /= GT_FREQUENCY_MULTIPLIER;
331 
332 	if (val < dev_priv->rps.min_freq ||
333 	    val > dev_priv->rps.max_freq ||
334 	    val < dev_priv->rps.min_freq_softlimit) {
335 		mutex_unlock(&dev_priv->rps.hw_lock);
336 		return -EINVAL;
337 	}
338 
339 	if (val > dev_priv->rps.rp0_freq)
340 		DRM_DEBUG("User requested overclocking to %d\n",
341 			  val * GT_FREQUENCY_MULTIPLIER);
342 
343 	dev_priv->rps.max_freq_softlimit = val;
344 
345 	if (dev_priv->rps.cur_freq > val) {
346 		if (IS_VALLEYVIEW(dev))
347 			valleyview_set_rps(dev, val);
348 		else
349 			gen6_set_rps(dev, val);
350 	} else if (!IS_VALLEYVIEW(dev)) {
351 		/* We still need gen6_set_rps to process the new max_delay and
352 		 * update the interrupt limits even though frequency request is
353 		 * unchanged. */
354 		gen6_set_rps(dev, dev_priv->rps.cur_freq);
355 	}
356 
357 	mutex_unlock(&dev_priv->rps.hw_lock);
358 
359 	return count;
360 }
361 
362 static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
363 {
364 	struct drm_minor *minor = dev_to_drm_minor(kdev);
365 	struct drm_device *dev = minor->dev;
366 	struct drm_i915_private *dev_priv = dev->dev_private;
367 	int ret;
368 
369 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
370 
371 	mutex_lock(&dev_priv->rps.hw_lock);
372 	if (IS_VALLEYVIEW(dev_priv->dev))
373 		ret = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
374 	else
375 		ret = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
376 	mutex_unlock(&dev_priv->rps.hw_lock);
377 
378 	return snprintf(buf, PAGE_SIZE, "%d\n", ret);
379 }
380 
381 static ssize_t gt_min_freq_mhz_store(struct device *kdev,
382 				     struct device_attribute *attr,
383 				     const char *buf, size_t count)
384 {
385 	struct drm_minor *minor = dev_to_drm_minor(kdev);
386 	struct drm_device *dev = minor->dev;
387 	struct drm_i915_private *dev_priv = dev->dev_private;
388 	u32 val;
389 	ssize_t ret;
390 
391 	ret = kstrtou32(buf, 0, &val);
392 	if (ret)
393 		return ret;
394 
395 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
396 
397 	mutex_lock(&dev_priv->rps.hw_lock);
398 
399 	if (IS_VALLEYVIEW(dev))
400 		val = vlv_freq_opcode(dev_priv, val);
401 	else
402 		val /= GT_FREQUENCY_MULTIPLIER;
403 
404 	if (val < dev_priv->rps.min_freq ||
405 	    val > dev_priv->rps.max_freq ||
406 	    val > dev_priv->rps.max_freq_softlimit) {
407 		mutex_unlock(&dev_priv->rps.hw_lock);
408 		return -EINVAL;
409 	}
410 
411 	dev_priv->rps.min_freq_softlimit = val;
412 
413 	if (dev_priv->rps.cur_freq < val) {
414 		if (IS_VALLEYVIEW(dev))
415 			valleyview_set_rps(dev, val);
416 		else
417 			gen6_set_rps(dev, val);
418 	} else if (!IS_VALLEYVIEW(dev)) {
419 		/* We still need gen6_set_rps to process the new min_delay and
420 		 * update the interrupt limits even though frequency request is
421 		 * unchanged. */
422 		gen6_set_rps(dev, dev_priv->rps.cur_freq);
423 	}
424 
425 	mutex_unlock(&dev_priv->rps.hw_lock);
426 
427 	return count;
428 
429 }
430 
431 static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL);
432 static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store);
433 static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store);
434 
435 static DEVICE_ATTR(vlv_rpe_freq_mhz, S_IRUGO, vlv_rpe_freq_mhz_show, NULL);
436 
437 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf);
438 static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
439 static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
440 static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
441 
442 /* For now we have a static number of RP states */
443 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
444 {
445 	struct drm_minor *minor = dev_to_drm_minor(kdev);
446 	struct drm_device *dev = minor->dev;
447 	struct drm_i915_private *dev_priv = dev->dev_private;
448 	u32 val, rp_state_cap;
449 	ssize_t ret;
450 
451 	ret = mutex_lock_interruptible(&dev->struct_mutex);
452 	if (ret)
453 		return ret;
454 	intel_runtime_pm_get(dev_priv);
455 	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
456 	intel_runtime_pm_put(dev_priv);
457 	mutex_unlock(&dev->struct_mutex);
458 
459 	if (attr == &dev_attr_gt_RP0_freq_mhz) {
460 		val = ((rp_state_cap & 0x0000ff) >> 0) * GT_FREQUENCY_MULTIPLIER;
461 	} else if (attr == &dev_attr_gt_RP1_freq_mhz) {
462 		val = ((rp_state_cap & 0x00ff00) >> 8) * GT_FREQUENCY_MULTIPLIER;
463 	} else if (attr == &dev_attr_gt_RPn_freq_mhz) {
464 		val = ((rp_state_cap & 0xff0000) >> 16) * GT_FREQUENCY_MULTIPLIER;
465 	} else {
466 		BUG();
467 	}
468 	return snprintf(buf, PAGE_SIZE, "%d\n", val);
469 }
470 
471 static const struct attribute *gen6_attrs[] = {
472 	&dev_attr_gt_cur_freq_mhz.attr,
473 	&dev_attr_gt_max_freq_mhz.attr,
474 	&dev_attr_gt_min_freq_mhz.attr,
475 	&dev_attr_gt_RP0_freq_mhz.attr,
476 	&dev_attr_gt_RP1_freq_mhz.attr,
477 	&dev_attr_gt_RPn_freq_mhz.attr,
478 	NULL,
479 };
480 
481 static const struct attribute *vlv_attrs[] = {
482 	&dev_attr_gt_cur_freq_mhz.attr,
483 	&dev_attr_gt_max_freq_mhz.attr,
484 	&dev_attr_gt_min_freq_mhz.attr,
485 	&dev_attr_vlv_rpe_freq_mhz.attr,
486 	NULL,
487 };
488 
489 static ssize_t error_state_read(struct file *filp, struct kobject *kobj,
490 				struct bin_attribute *attr, char *buf,
491 				loff_t off, size_t count)
492 {
493 
494 	struct device *kdev = container_of(kobj, struct device, kobj);
495 	struct drm_minor *minor = dev_to_drm_minor(kdev);
496 	struct drm_device *dev = minor->dev;
497 	struct i915_error_state_file_priv error_priv;
498 	struct drm_i915_error_state_buf error_str;
499 	ssize_t ret_count = 0;
500 	int ret;
501 
502 	memset(&error_priv, 0, sizeof(error_priv));
503 
504 	ret = i915_error_state_buf_init(&error_str, count, off);
505 	if (ret)
506 		return ret;
507 
508 	error_priv.dev = dev;
509 	i915_error_state_get(dev, &error_priv);
510 
511 	ret = i915_error_state_to_str(&error_str, &error_priv);
512 	if (ret)
513 		goto out;
514 
515 	ret_count = count < error_str.bytes ? count : error_str.bytes;
516 
517 	memcpy(buf, error_str.buf, ret_count);
518 out:
519 	i915_error_state_put(&error_priv);
520 	i915_error_state_buf_release(&error_str);
521 
522 	return ret ?: ret_count;
523 }
524 
525 static ssize_t error_state_write(struct file *file, struct kobject *kobj,
526 				 struct bin_attribute *attr, char *buf,
527 				 loff_t off, size_t count)
528 {
529 	struct device *kdev = container_of(kobj, struct device, kobj);
530 	struct drm_minor *minor = dev_to_drm_minor(kdev);
531 	struct drm_device *dev = minor->dev;
532 	int ret;
533 
534 	DRM_DEBUG_DRIVER("Resetting error state\n");
535 
536 	ret = mutex_lock_interruptible(&dev->struct_mutex);
537 	if (ret)
538 		return ret;
539 
540 	i915_destroy_error_state(dev);
541 	mutex_unlock(&dev->struct_mutex);
542 
543 	return count;
544 }
545 
546 static struct bin_attribute error_state_attr = {
547 	.attr.name = "error",
548 	.attr.mode = S_IRUSR | S_IWUSR,
549 	.size = 0,
550 	.read = error_state_read,
551 	.write = error_state_write,
552 };
553 
554 void i915_setup_sysfs(struct drm_device *dev)
555 {
556 	int ret;
557 
558 #ifdef CONFIG_PM
559 	if (INTEL_INFO(dev)->gen >= 6) {
560 		ret = sysfs_merge_group(&dev->primary->kdev->kobj,
561 					&rc6_attr_group);
562 		if (ret)
563 			DRM_ERROR("RC6 residency sysfs setup failed\n");
564 	}
565 #endif
566 	if (HAS_L3_DPF(dev)) {
567 		ret = device_create_bin_file(dev->primary->kdev, &dpf_attrs);
568 		if (ret)
569 			DRM_ERROR("l3 parity sysfs setup failed\n");
570 
571 		if (NUM_L3_SLICES(dev) > 1) {
572 			ret = device_create_bin_file(dev->primary->kdev,
573 						     &dpf_attrs_1);
574 			if (ret)
575 				DRM_ERROR("l3 parity slice 1 setup failed\n");
576 		}
577 	}
578 
579 	ret = 0;
580 	if (IS_VALLEYVIEW(dev))
581 		ret = sysfs_create_files(&dev->primary->kdev->kobj, vlv_attrs);
582 	else if (INTEL_INFO(dev)->gen >= 6)
583 		ret = sysfs_create_files(&dev->primary->kdev->kobj, gen6_attrs);
584 	if (ret)
585 		DRM_ERROR("RPS sysfs setup failed\n");
586 
587 	ret = sysfs_create_bin_file(&dev->primary->kdev->kobj,
588 				    &error_state_attr);
589 	if (ret)
590 		DRM_ERROR("error_state sysfs setup failed\n");
591 }
592 
593 void i915_teardown_sysfs(struct drm_device *dev)
594 {
595 	sysfs_remove_bin_file(&dev->primary->kdev->kobj, &error_state_attr);
596 	if (IS_VALLEYVIEW(dev))
597 		sysfs_remove_files(&dev->primary->kdev->kobj, vlv_attrs);
598 	else
599 		sysfs_remove_files(&dev->primary->kdev->kobj, gen6_attrs);
600 	device_remove_bin_file(dev->primary->kdev,  &dpf_attrs_1);
601 	device_remove_bin_file(dev->primary->kdev,  &dpf_attrs);
602 #ifdef CONFIG_PM
603 	sysfs_unmerge_group(&dev->primary->kdev->kobj, &rc6_attr_group);
604 #endif
605 }
606