xref: /openbmc/linux/drivers/gpu/drm/i915/i915_sysfs.c (revision 089a49b6)
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *
26  */
27 
28 #include <linux/device.h>
29 #include <linux/module.h>
30 #include <linux/stat.h>
31 #include <linux/sysfs.h>
32 #include "intel_drv.h"
33 #include "i915_drv.h"
34 
35 #ifdef CONFIG_PM
36 static u32 calc_residency(struct drm_device *dev, const u32 reg)
37 {
38 	struct drm_i915_private *dev_priv = dev->dev_private;
39 	u64 raw_time; /* 32b value may overflow during fixed point math */
40 
41 	if (!intel_enable_rc6(dev))
42 		return 0;
43 
44 	raw_time = I915_READ(reg) * 128ULL;
45 	return DIV_ROUND_UP_ULL(raw_time, 100000);
46 }
47 
48 static ssize_t
49 show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf)
50 {
51 	struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
52 	return snprintf(buf, PAGE_SIZE, "%x\n", intel_enable_rc6(dminor->dev));
53 }
54 
55 static ssize_t
56 show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf)
57 {
58 	struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
59 	u32 rc6_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6);
60 	return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency);
61 }
62 
63 static ssize_t
64 show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf)
65 {
66 	struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
67 	u32 rc6p_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6p);
68 	return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency);
69 }
70 
71 static ssize_t
72 show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf)
73 {
74 	struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
75 	u32 rc6pp_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6pp);
76 	return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency);
77 }
78 
79 static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL);
80 static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL);
81 static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL);
82 static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL);
83 
84 static struct attribute *rc6_attrs[] = {
85 	&dev_attr_rc6_enable.attr,
86 	&dev_attr_rc6_residency_ms.attr,
87 	&dev_attr_rc6p_residency_ms.attr,
88 	&dev_attr_rc6pp_residency_ms.attr,
89 	NULL
90 };
91 
92 static struct attribute_group rc6_attr_group = {
93 	.name = power_group_name,
94 	.attrs =  rc6_attrs
95 };
96 #endif
97 
98 static int l3_access_valid(struct drm_device *dev, loff_t offset)
99 {
100 	if (!HAS_L3_GPU_CACHE(dev))
101 		return -EPERM;
102 
103 	if (offset % 4 != 0)
104 		return -EINVAL;
105 
106 	if (offset >= GEN7_L3LOG_SIZE)
107 		return -ENXIO;
108 
109 	return 0;
110 }
111 
112 static ssize_t
113 i915_l3_read(struct file *filp, struct kobject *kobj,
114 	     struct bin_attribute *attr, char *buf,
115 	     loff_t offset, size_t count)
116 {
117 	struct device *dev = container_of(kobj, struct device, kobj);
118 	struct drm_minor *dminor = container_of(dev, struct drm_minor, kdev);
119 	struct drm_device *drm_dev = dminor->dev;
120 	struct drm_i915_private *dev_priv = drm_dev->dev_private;
121 	uint32_t misccpctl;
122 	int i, ret;
123 
124 	ret = l3_access_valid(drm_dev, offset);
125 	if (ret)
126 		return ret;
127 
128 	ret = i915_mutex_lock_interruptible(drm_dev);
129 	if (ret)
130 		return ret;
131 
132 	misccpctl = I915_READ(GEN7_MISCCPCTL);
133 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
134 
135 	for (i = offset; count >= 4 && i < GEN7_L3LOG_SIZE; i += 4, count -= 4)
136 		*((uint32_t *)(&buf[i])) = I915_READ(GEN7_L3LOG_BASE + i);
137 
138 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
139 
140 	mutex_unlock(&drm_dev->struct_mutex);
141 
142 	return i - offset;
143 }
144 
145 static ssize_t
146 i915_l3_write(struct file *filp, struct kobject *kobj,
147 	      struct bin_attribute *attr, char *buf,
148 	      loff_t offset, size_t count)
149 {
150 	struct device *dev = container_of(kobj, struct device, kobj);
151 	struct drm_minor *dminor = container_of(dev, struct drm_minor, kdev);
152 	struct drm_device *drm_dev = dminor->dev;
153 	struct drm_i915_private *dev_priv = drm_dev->dev_private;
154 	u32 *temp = NULL; /* Just here to make handling failures easy */
155 	int ret;
156 
157 	ret = l3_access_valid(drm_dev, offset);
158 	if (ret)
159 		return ret;
160 
161 	ret = i915_mutex_lock_interruptible(drm_dev);
162 	if (ret)
163 		return ret;
164 
165 	if (!dev_priv->l3_parity.remap_info) {
166 		temp = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL);
167 		if (!temp) {
168 			mutex_unlock(&drm_dev->struct_mutex);
169 			return -ENOMEM;
170 		}
171 	}
172 
173 	ret = i915_gpu_idle(drm_dev);
174 	if (ret) {
175 		kfree(temp);
176 		mutex_unlock(&drm_dev->struct_mutex);
177 		return ret;
178 	}
179 
180 	/* TODO: Ideally we really want a GPU reset here to make sure errors
181 	 * aren't propagated. Since I cannot find a stable way to reset the GPU
182 	 * at this point it is left as a TODO.
183 	*/
184 	if (temp)
185 		dev_priv->l3_parity.remap_info = temp;
186 
187 	memcpy(dev_priv->l3_parity.remap_info + (offset/4),
188 	       buf + (offset/4),
189 	       count);
190 
191 	i915_gem_l3_remap(drm_dev);
192 
193 	mutex_unlock(&drm_dev->struct_mutex);
194 
195 	return count;
196 }
197 
198 static struct bin_attribute dpf_attrs = {
199 	.attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)},
200 	.size = GEN7_L3LOG_SIZE,
201 	.read = i915_l3_read,
202 	.write = i915_l3_write,
203 	.mmap = NULL
204 };
205 
206 static ssize_t gt_cur_freq_mhz_show(struct device *kdev,
207 				    struct device_attribute *attr, char *buf)
208 {
209 	struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
210 	struct drm_device *dev = minor->dev;
211 	struct drm_i915_private *dev_priv = dev->dev_private;
212 	int ret;
213 
214 	mutex_lock(&dev_priv->rps.hw_lock);
215 	if (IS_VALLEYVIEW(dev_priv->dev)) {
216 		u32 freq;
217 		freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
218 		ret = vlv_gpu_freq(dev_priv->mem_freq, (freq >> 8) & 0xff);
219 	} else {
220 		ret = dev_priv->rps.cur_delay * GT_FREQUENCY_MULTIPLIER;
221 	}
222 	mutex_unlock(&dev_priv->rps.hw_lock);
223 
224 	return snprintf(buf, PAGE_SIZE, "%d\n", ret);
225 }
226 
227 static ssize_t vlv_rpe_freq_mhz_show(struct device *kdev,
228 				     struct device_attribute *attr, char *buf)
229 {
230 	struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
231 	struct drm_device *dev = minor->dev;
232 	struct drm_i915_private *dev_priv = dev->dev_private;
233 
234 	return snprintf(buf, PAGE_SIZE, "%d\n",
235 			vlv_gpu_freq(dev_priv->mem_freq,
236 				     dev_priv->rps.rpe_delay));
237 }
238 
239 static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
240 {
241 	struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
242 	struct drm_device *dev = minor->dev;
243 	struct drm_i915_private *dev_priv = dev->dev_private;
244 	int ret;
245 
246 	mutex_lock(&dev_priv->rps.hw_lock);
247 	if (IS_VALLEYVIEW(dev_priv->dev))
248 		ret = vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.max_delay);
249 	else
250 		ret = dev_priv->rps.max_delay * GT_FREQUENCY_MULTIPLIER;
251 	mutex_unlock(&dev_priv->rps.hw_lock);
252 
253 	return snprintf(buf, PAGE_SIZE, "%d\n", ret);
254 }
255 
256 static ssize_t gt_max_freq_mhz_store(struct device *kdev,
257 				     struct device_attribute *attr,
258 				     const char *buf, size_t count)
259 {
260 	struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
261 	struct drm_device *dev = minor->dev;
262 	struct drm_i915_private *dev_priv = dev->dev_private;
263 	u32 val, rp_state_cap, hw_max, hw_min, non_oc_max;
264 	ssize_t ret;
265 
266 	ret = kstrtou32(buf, 0, &val);
267 	if (ret)
268 		return ret;
269 
270 	mutex_lock(&dev_priv->rps.hw_lock);
271 
272 	if (IS_VALLEYVIEW(dev_priv->dev)) {
273 		val = vlv_freq_opcode(dev_priv->mem_freq, val);
274 
275 		hw_max = valleyview_rps_max_freq(dev_priv);
276 		hw_min = valleyview_rps_min_freq(dev_priv);
277 		non_oc_max = hw_max;
278 	} else {
279 		val /= GT_FREQUENCY_MULTIPLIER;
280 
281 		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
282 		hw_max = dev_priv->rps.hw_max;
283 		non_oc_max = (rp_state_cap & 0xff);
284 		hw_min = ((rp_state_cap & 0xff0000) >> 16);
285 	}
286 
287 	if (val < hw_min || val > hw_max ||
288 	    val < dev_priv->rps.min_delay) {
289 		mutex_unlock(&dev_priv->rps.hw_lock);
290 		return -EINVAL;
291 	}
292 
293 	if (val > non_oc_max)
294 		DRM_DEBUG("User requested overclocking to %d\n",
295 			  val * GT_FREQUENCY_MULTIPLIER);
296 
297 	if (dev_priv->rps.cur_delay > val) {
298 		if (IS_VALLEYVIEW(dev_priv->dev))
299 			valleyview_set_rps(dev_priv->dev, val);
300 		else
301 			gen6_set_rps(dev_priv->dev, val);
302 	}
303 
304 	dev_priv->rps.max_delay = val;
305 
306 	mutex_unlock(&dev_priv->rps.hw_lock);
307 
308 	return count;
309 }
310 
311 static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
312 {
313 	struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
314 	struct drm_device *dev = minor->dev;
315 	struct drm_i915_private *dev_priv = dev->dev_private;
316 	int ret;
317 
318 	mutex_lock(&dev_priv->rps.hw_lock);
319 	if (IS_VALLEYVIEW(dev_priv->dev))
320 		ret = vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.min_delay);
321 	else
322 		ret = dev_priv->rps.min_delay * GT_FREQUENCY_MULTIPLIER;
323 	mutex_unlock(&dev_priv->rps.hw_lock);
324 
325 	return snprintf(buf, PAGE_SIZE, "%d\n", ret);
326 }
327 
328 static ssize_t gt_min_freq_mhz_store(struct device *kdev,
329 				     struct device_attribute *attr,
330 				     const char *buf, size_t count)
331 {
332 	struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
333 	struct drm_device *dev = minor->dev;
334 	struct drm_i915_private *dev_priv = dev->dev_private;
335 	u32 val, rp_state_cap, hw_max, hw_min;
336 	ssize_t ret;
337 
338 	ret = kstrtou32(buf, 0, &val);
339 	if (ret)
340 		return ret;
341 
342 	mutex_lock(&dev_priv->rps.hw_lock);
343 
344 	if (IS_VALLEYVIEW(dev)) {
345 		val = vlv_freq_opcode(dev_priv->mem_freq, val);
346 
347 		hw_max = valleyview_rps_max_freq(dev_priv);
348 		hw_min = valleyview_rps_min_freq(dev_priv);
349 	} else {
350 		val /= GT_FREQUENCY_MULTIPLIER;
351 
352 		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
353 		hw_max = dev_priv->rps.hw_max;
354 		hw_min = ((rp_state_cap & 0xff0000) >> 16);
355 	}
356 
357 	if (val < hw_min || val > hw_max || val > dev_priv->rps.max_delay) {
358 		mutex_unlock(&dev_priv->rps.hw_lock);
359 		return -EINVAL;
360 	}
361 
362 	if (dev_priv->rps.cur_delay < val) {
363 		if (IS_VALLEYVIEW(dev))
364 			valleyview_set_rps(dev, val);
365 		else
366 			gen6_set_rps(dev_priv->dev, val);
367 	}
368 
369 	dev_priv->rps.min_delay = val;
370 
371 	mutex_unlock(&dev_priv->rps.hw_lock);
372 
373 	return count;
374 
375 }
376 
377 static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL);
378 static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store);
379 static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store);
380 
381 static DEVICE_ATTR(vlv_rpe_freq_mhz, S_IRUGO, vlv_rpe_freq_mhz_show, NULL);
382 
383 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf);
384 static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
385 static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
386 static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
387 
388 /* For now we have a static number of RP states */
389 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
390 {
391 	struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
392 	struct drm_device *dev = minor->dev;
393 	struct drm_i915_private *dev_priv = dev->dev_private;
394 	u32 val, rp_state_cap;
395 	ssize_t ret;
396 
397 	ret = mutex_lock_interruptible(&dev->struct_mutex);
398 	if (ret)
399 		return ret;
400 	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
401 	mutex_unlock(&dev->struct_mutex);
402 
403 	if (attr == &dev_attr_gt_RP0_freq_mhz) {
404 		val = ((rp_state_cap & 0x0000ff) >> 0) * GT_FREQUENCY_MULTIPLIER;
405 	} else if (attr == &dev_attr_gt_RP1_freq_mhz) {
406 		val = ((rp_state_cap & 0x00ff00) >> 8) * GT_FREQUENCY_MULTIPLIER;
407 	} else if (attr == &dev_attr_gt_RPn_freq_mhz) {
408 		val = ((rp_state_cap & 0xff0000) >> 16) * GT_FREQUENCY_MULTIPLIER;
409 	} else {
410 		BUG();
411 	}
412 	return snprintf(buf, PAGE_SIZE, "%d\n", val);
413 }
414 
415 static const struct attribute *gen6_attrs[] = {
416 	&dev_attr_gt_cur_freq_mhz.attr,
417 	&dev_attr_gt_max_freq_mhz.attr,
418 	&dev_attr_gt_min_freq_mhz.attr,
419 	&dev_attr_gt_RP0_freq_mhz.attr,
420 	&dev_attr_gt_RP1_freq_mhz.attr,
421 	&dev_attr_gt_RPn_freq_mhz.attr,
422 	NULL,
423 };
424 
425 static const struct attribute *vlv_attrs[] = {
426 	&dev_attr_gt_cur_freq_mhz.attr,
427 	&dev_attr_gt_max_freq_mhz.attr,
428 	&dev_attr_gt_min_freq_mhz.attr,
429 	&dev_attr_vlv_rpe_freq_mhz.attr,
430 	NULL,
431 };
432 
433 static ssize_t error_state_read(struct file *filp, struct kobject *kobj,
434 				struct bin_attribute *attr, char *buf,
435 				loff_t off, size_t count)
436 {
437 
438 	struct device *kdev = container_of(kobj, struct device, kobj);
439 	struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
440 	struct drm_device *dev = minor->dev;
441 	struct i915_error_state_file_priv error_priv;
442 	struct drm_i915_error_state_buf error_str;
443 	ssize_t ret_count = 0;
444 	int ret;
445 
446 	memset(&error_priv, 0, sizeof(error_priv));
447 
448 	ret = i915_error_state_buf_init(&error_str, count, off);
449 	if (ret)
450 		return ret;
451 
452 	error_priv.dev = dev;
453 	i915_error_state_get(dev, &error_priv);
454 
455 	ret = i915_error_state_to_str(&error_str, &error_priv);
456 	if (ret)
457 		goto out;
458 
459 	ret_count = count < error_str.bytes ? count : error_str.bytes;
460 
461 	memcpy(buf, error_str.buf, ret_count);
462 out:
463 	i915_error_state_put(&error_priv);
464 	i915_error_state_buf_release(&error_str);
465 
466 	return ret ?: ret_count;
467 }
468 
469 static ssize_t error_state_write(struct file *file, struct kobject *kobj,
470 				 struct bin_attribute *attr, char *buf,
471 				 loff_t off, size_t count)
472 {
473 	struct device *kdev = container_of(kobj, struct device, kobj);
474 	struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
475 	struct drm_device *dev = minor->dev;
476 	int ret;
477 
478 	DRM_DEBUG_DRIVER("Resetting error state\n");
479 
480 	ret = mutex_lock_interruptible(&dev->struct_mutex);
481 	if (ret)
482 		return ret;
483 
484 	i915_destroy_error_state(dev);
485 	mutex_unlock(&dev->struct_mutex);
486 
487 	return count;
488 }
489 
490 static struct bin_attribute error_state_attr = {
491 	.attr.name = "error",
492 	.attr.mode = S_IRUSR | S_IWUSR,
493 	.size = 0,
494 	.read = error_state_read,
495 	.write = error_state_write,
496 };
497 
498 void i915_setup_sysfs(struct drm_device *dev)
499 {
500 	int ret;
501 
502 #ifdef CONFIG_PM
503 	if (INTEL_INFO(dev)->gen >= 6) {
504 		ret = sysfs_merge_group(&dev->primary->kdev.kobj,
505 					&rc6_attr_group);
506 		if (ret)
507 			DRM_ERROR("RC6 residency sysfs setup failed\n");
508 	}
509 #endif
510 	if (HAS_L3_GPU_CACHE(dev)) {
511 		ret = device_create_bin_file(&dev->primary->kdev, &dpf_attrs);
512 		if (ret)
513 			DRM_ERROR("l3 parity sysfs setup failed\n");
514 	}
515 
516 	ret = 0;
517 	if (IS_VALLEYVIEW(dev))
518 		ret = sysfs_create_files(&dev->primary->kdev.kobj, vlv_attrs);
519 	else if (INTEL_INFO(dev)->gen >= 6)
520 		ret = sysfs_create_files(&dev->primary->kdev.kobj, gen6_attrs);
521 	if (ret)
522 		DRM_ERROR("RPS sysfs setup failed\n");
523 
524 	ret = sysfs_create_bin_file(&dev->primary->kdev.kobj,
525 				    &error_state_attr);
526 	if (ret)
527 		DRM_ERROR("error_state sysfs setup failed\n");
528 }
529 
530 void i915_teardown_sysfs(struct drm_device *dev)
531 {
532 	sysfs_remove_bin_file(&dev->primary->kdev.kobj, &error_state_attr);
533 	if (IS_VALLEYVIEW(dev))
534 		sysfs_remove_files(&dev->primary->kdev.kobj, vlv_attrs);
535 	else
536 		sysfs_remove_files(&dev->primary->kdev.kobj, gen6_attrs);
537 	device_remove_bin_file(&dev->primary->kdev,  &dpf_attrs);
538 #ifdef CONFIG_PM
539 	sysfs_unmerge_group(&dev->primary->kdev.kobj, &rc6_attr_group);
540 #endif
541 }
542