xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_snps_phy.c (revision f019679ea5f2ab650c3348a79e7d9c3625f62899)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/util_macros.h>
7 
8 #include "intel_ddi.h"
9 #include "intel_ddi_buf_trans.h"
10 #include "intel_de.h"
11 #include "intel_display_types.h"
12 #include "intel_snps_phy.h"
13 #include "intel_snps_phy_regs.h"
14 
15 /**
16  * DOC: Synopsis PHY support
17  *
18  * Synopsis PHYs are primarily programmed by looking up magic register values
19  * in tables rather than calculating the necessary values at runtime.
20  *
21  * Of special note is that the SNPS PHYs include a dedicated port PLL, known as
22  * an "MPLLB."  The MPLLB replaces the shared DPLL functionality used on other
23  * platforms and must be programming directly during the modeset sequence
24  * since it is not handled by the shared DPLL framework as on other platforms.
25  */
26 
27 void intel_snps_phy_wait_for_calibration(struct drm_i915_private *i915)
28 {
29 	enum phy phy;
30 
31 	for_each_phy_masked(phy, ~0) {
32 		if (!intel_phy_is_snps(i915, phy))
33 			continue;
34 
35 		/*
36 		 * If calibration does not complete successfully, we'll remember
37 		 * which phy was affected and skip setup of the corresponding
38 		 * output later.
39 		 */
40 		if (intel_de_wait_for_clear(i915, DG2_PHY_MISC(phy),
41 					    DG2_PHY_DP_TX_ACK_MASK, 25))
42 			i915->snps_phy_failed_calibration |= BIT(phy);
43 	}
44 }
45 
46 void intel_snps_phy_update_psr_power_state(struct drm_i915_private *dev_priv,
47 					   enum phy phy, bool enable)
48 {
49 	u32 val;
50 
51 	if (!intel_phy_is_snps(dev_priv, phy))
52 		return;
53 
54 	val = REG_FIELD_PREP(SNPS_PHY_TX_REQ_LN_DIS_PWR_STATE_PSR,
55 			     enable ? 2 : 3);
56 	intel_uncore_rmw(&dev_priv->uncore, SNPS_PHY_TX_REQ(phy),
57 			 SNPS_PHY_TX_REQ_LN_DIS_PWR_STATE_PSR, val);
58 }
59 
60 void intel_snps_phy_set_signal_levels(struct intel_encoder *encoder,
61 				      const struct intel_crtc_state *crtc_state)
62 {
63 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
64 	const struct intel_ddi_buf_trans *trans;
65 	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
66 	int n_entries, ln;
67 
68 	trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
69 	if (drm_WARN_ON_ONCE(&dev_priv->drm, !trans))
70 		return;
71 
72 	for (ln = 0; ln < 4; ln++) {
73 		int level = intel_ddi_level(encoder, crtc_state, ln);
74 		u32 val = 0;
75 
76 		val |= REG_FIELD_PREP(SNPS_PHY_TX_EQ_MAIN, trans->entries[level].snps.vswing);
77 		val |= REG_FIELD_PREP(SNPS_PHY_TX_EQ_PRE, trans->entries[level].snps.pre_cursor);
78 		val |= REG_FIELD_PREP(SNPS_PHY_TX_EQ_POST, trans->entries[level].snps.post_cursor);
79 
80 		intel_de_write(dev_priv, SNPS_PHY_TX_EQ(ln, phy), val);
81 	}
82 }
83 
84 /*
85  * Basic DP link rates with 100 MHz reference clock.
86  */
87 
88 static const struct intel_mpllb_state dg2_dp_rbr_100 = {
89 	.clock = 162000,
90 	.ref_control =
91 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
92 	.mpllb_cp =
93 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
94 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 20) |
95 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
96 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
97 	.mpllb_div =
98 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
99 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 2) |
100 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
101 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
102 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 2),
103 	.mpllb_div2 =
104 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
105 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 226),
106 	.mpllb_fracn1 =
107 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
108 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
109 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
110 	.mpllb_fracn2 =
111 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 39321) |
112 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 3),
113 };
114 
115 static const struct intel_mpllb_state dg2_dp_hbr1_100 = {
116 	.clock = 270000,
117 	.ref_control =
118 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
119 	.mpllb_cp =
120 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
121 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 20) |
122 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
123 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
124 	.mpllb_div =
125 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
126 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 1) |
127 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
128 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 3),
129 	.mpllb_div2 =
130 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
131 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 184),
132 	.mpllb_fracn1 =
133 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
134 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 1),
135 };
136 
137 static const struct intel_mpllb_state dg2_dp_hbr2_100 = {
138 	.clock = 540000,
139 	.ref_control =
140 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
141 	.mpllb_cp =
142 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
143 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 20) |
144 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
145 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
146 	.mpllb_div =
147 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
148 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
149 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 3),
150 	.mpllb_div2 =
151 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
152 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 184),
153 	.mpllb_fracn1 =
154 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
155 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 1),
156 };
157 
158 static const struct intel_mpllb_state dg2_dp_hbr3_100 = {
159 	.clock = 810000,
160 	.ref_control =
161 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
162 	.mpllb_cp =
163 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
164 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 19) |
165 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
166 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
167 	.mpllb_div =
168 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
169 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
170 	.mpllb_div2 =
171 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
172 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 292),
173 	.mpllb_fracn1 =
174 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
175 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 1),
176 };
177 
178 static const struct intel_mpllb_state dg2_dp_uhbr10_100 = {
179 	.clock = 1000000,
180 	.ref_control =
181 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
182 	.mpllb_cp =
183 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
184 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 21) |
185 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
186 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
187 	.mpllb_div =
188 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
189 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV_CLK_EN, 1) |
190 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV_MULTIPLIER, 8) |
191 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
192 		REG_FIELD_PREP(SNPS_PHY_MPLLB_WORD_DIV2_EN, 1) |
193 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DP2_MODE, 1) |
194 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SHIM_DIV32_CLK_SEL, 1) |
195 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
196 	.mpllb_div2 =
197 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
198 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 368),
199 	.mpllb_fracn1 =
200 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
201 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 1),
202 
203 	/*
204 	 * SSC will be enabled, DP UHBR has a minimum SSC requirement.
205 	 */
206 	.mpllb_sscen =
207 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_EN, 1) |
208 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_PEAK, 58982),
209 	.mpllb_sscstep =
210 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_STEPSIZE, 76101),
211 };
212 
213 static const struct intel_mpllb_state dg2_dp_uhbr13_100 = {
214 	.clock = 1350000,
215 	.ref_control =
216 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
217 	.mpllb_cp =
218 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 5) |
219 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 45) |
220 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
221 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
222 	.mpllb_div =
223 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
224 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV_CLK_EN, 1) |
225 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV_MULTIPLIER, 8) |
226 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
227 		REG_FIELD_PREP(SNPS_PHY_MPLLB_WORD_DIV2_EN, 1) |
228 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DP2_MODE, 1) |
229 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 3),
230 	.mpllb_div2 =
231 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
232 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 508),
233 	.mpllb_fracn1 =
234 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
235 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 1),
236 
237 	/*
238 	 * SSC will be enabled, DP UHBR has a minimum SSC requirement.
239 	 */
240 	.mpllb_sscen =
241 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_EN, 1) |
242 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_PEAK, 79626),
243 	.mpllb_sscstep =
244 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_STEPSIZE, 102737),
245 };
246 
247 static const struct intel_mpllb_state * const dg2_dp_100_tables[] = {
248 	&dg2_dp_rbr_100,
249 	&dg2_dp_hbr1_100,
250 	&dg2_dp_hbr2_100,
251 	&dg2_dp_hbr3_100,
252 	&dg2_dp_uhbr10_100,
253 	&dg2_dp_uhbr13_100,
254 	NULL,
255 };
256 
257 /*
258  * eDP link rates with 100 MHz reference clock.
259  */
260 
261 static const struct intel_mpllb_state dg2_edp_r216 = {
262 	.clock = 216000,
263 	.ref_control =
264 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
265 	.mpllb_cp =
266 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
267 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 19) |
268 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
269 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
270 	.mpllb_div =
271 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
272 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 2) |
273 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
274 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
275 	.mpllb_div2 =
276 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
277 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 312),
278 	.mpllb_fracn1 =
279 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
280 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
281 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
282 	.mpllb_fracn2 =
283 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 52428) |
284 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 4),
285 	.mpllb_sscen =
286 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_EN, 1) |
287 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_PEAK, 50961),
288 	.mpllb_sscstep =
289 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_STEPSIZE, 65752),
290 };
291 
292 static const struct intel_mpllb_state dg2_edp_r243 = {
293 	.clock = 243000,
294 	.ref_control =
295 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
296 	.mpllb_cp =
297 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
298 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 20) |
299 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
300 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
301 	.mpllb_div =
302 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
303 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 2) |
304 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
305 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
306 	.mpllb_div2 =
307 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
308 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 356),
309 	.mpllb_fracn1 =
310 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
311 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
312 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
313 	.mpllb_fracn2 =
314 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 26214) |
315 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 2),
316 	.mpllb_sscen =
317 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_EN, 1) |
318 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_PEAK, 57331),
319 	.mpllb_sscstep =
320 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_STEPSIZE, 73971),
321 };
322 
323 static const struct intel_mpllb_state dg2_edp_r324 = {
324 	.clock = 324000,
325 	.ref_control =
326 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
327 	.mpllb_cp =
328 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
329 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 20) |
330 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
331 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
332 	.mpllb_div =
333 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
334 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 1) |
335 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
336 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
337 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 2),
338 	.mpllb_div2 =
339 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
340 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 226),
341 	.mpllb_fracn1 =
342 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
343 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
344 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
345 	.mpllb_fracn2 =
346 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 39321) |
347 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 3),
348 	.mpllb_sscen =
349 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_EN, 1) |
350 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_PEAK, 38221),
351 	.mpllb_sscstep =
352 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_STEPSIZE, 49314),
353 };
354 
355 static const struct intel_mpllb_state dg2_edp_r432 = {
356 	.clock = 432000,
357 	.ref_control =
358 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
359 	.mpllb_cp =
360 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
361 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 19) |
362 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
363 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
364 	.mpllb_div =
365 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
366 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 1) |
367 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
368 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
369 	.mpllb_div2 =
370 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
371 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 312),
372 	.mpllb_fracn1 =
373 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
374 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
375 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
376 	.mpllb_fracn2 =
377 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 52428) |
378 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 4),
379 	.mpllb_sscen =
380 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_EN, 1) |
381 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_PEAK, 50961),
382 	.mpllb_sscstep =
383 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_STEPSIZE, 65752),
384 };
385 
386 static const struct intel_mpllb_state * const dg2_edp_tables[] = {
387 	&dg2_dp_rbr_100,
388 	&dg2_edp_r216,
389 	&dg2_edp_r243,
390 	&dg2_dp_hbr1_100,
391 	&dg2_edp_r324,
392 	&dg2_edp_r432,
393 	&dg2_dp_hbr2_100,
394 	&dg2_dp_hbr3_100,
395 	NULL,
396 };
397 
398 /*
399  * HDMI link rates with 100 MHz reference clock.
400  */
401 
402 static const struct intel_mpllb_state dg2_hdmi_25_175 = {
403 	.clock = 25175,
404 	.ref_control =
405 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
406 	.mpllb_cp =
407 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 5) |
408 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 15) |
409 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 64) |
410 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 124),
411 	.mpllb_div =
412 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
413 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 5) |
414 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
415 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
416 	.mpllb_div2 =
417 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 1) |
418 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 128) |
419 		REG_FIELD_PREP(SNPS_PHY_MPLLB_HDMI_DIV, 1),
420 	.mpllb_fracn1 =
421 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
422 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
423 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 143),
424 	.mpllb_fracn2 =
425 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 36663) |
426 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 71),
427 	.mpllb_sscen =
428 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_UP_SPREAD, 1),
429 };
430 
431 static const struct intel_mpllb_state dg2_hdmi_27_0 = {
432 	.clock = 27000,
433 	.ref_control =
434 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
435 	.mpllb_cp =
436 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 5) |
437 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 15) |
438 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 64) |
439 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 124),
440 	.mpllb_div =
441 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
442 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 5) |
443 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
444 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
445 	.mpllb_div2 =
446 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 1) |
447 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 140) |
448 		REG_FIELD_PREP(SNPS_PHY_MPLLB_HDMI_DIV, 1),
449 	.mpllb_fracn1 =
450 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
451 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
452 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
453 	.mpllb_fracn2 =
454 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 26214) |
455 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 2),
456 	.mpllb_sscen =
457 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_UP_SPREAD, 1),
458 };
459 
460 static const struct intel_mpllb_state dg2_hdmi_74_25 = {
461 	.clock = 74250,
462 	.ref_control =
463 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
464 	.mpllb_cp =
465 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
466 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 15) |
467 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 64) |
468 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 124),
469 	.mpllb_div =
470 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
471 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 3) |
472 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
473 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
474 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 3),
475 	.mpllb_div2 =
476 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 1) |
477 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 86) |
478 		REG_FIELD_PREP(SNPS_PHY_MPLLB_HDMI_DIV, 1),
479 	.mpllb_fracn1 =
480 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
481 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
482 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
483 	.mpllb_fracn2 =
484 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 26214) |
485 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 2),
486 	.mpllb_sscen =
487 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_UP_SPREAD, 1),
488 };
489 
490 static const struct intel_mpllb_state dg2_hdmi_148_5 = {
491 	.clock = 148500,
492 	.ref_control =
493 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
494 	.mpllb_cp =
495 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
496 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 15) |
497 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 64) |
498 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 124),
499 	.mpllb_div =
500 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
501 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 2) |
502 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
503 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
504 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 3),
505 	.mpllb_div2 =
506 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 1) |
507 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 86) |
508 		REG_FIELD_PREP(SNPS_PHY_MPLLB_HDMI_DIV, 1),
509 	.mpllb_fracn1 =
510 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
511 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
512 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
513 	.mpllb_fracn2 =
514 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 26214) |
515 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 2),
516 	.mpllb_sscen =
517 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_UP_SPREAD, 1),
518 };
519 
520 static const struct intel_mpllb_state dg2_hdmi_594 = {
521 	.clock = 594000,
522 	.ref_control =
523 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
524 	.mpllb_cp =
525 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
526 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 15) |
527 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 64) |
528 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 124),
529 	.mpllb_div =
530 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
531 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
532 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
533 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 3),
534 	.mpllb_div2 =
535 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 1) |
536 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 86) |
537 		REG_FIELD_PREP(SNPS_PHY_MPLLB_HDMI_DIV, 1),
538 	.mpllb_fracn1 =
539 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
540 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
541 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
542 	.mpllb_fracn2 =
543 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 26214) |
544 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 2),
545 	.mpllb_sscen =
546 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_UP_SPREAD, 1),
547 };
548 
549 static const struct intel_mpllb_state * const dg2_hdmi_tables[] = {
550 	&dg2_hdmi_25_175,
551 	&dg2_hdmi_27_0,
552 	&dg2_hdmi_74_25,
553 	&dg2_hdmi_148_5,
554 	&dg2_hdmi_594,
555 	NULL,
556 };
557 
558 static const struct intel_mpllb_state * const *
559 intel_mpllb_tables_get(struct intel_crtc_state *crtc_state,
560 		       struct intel_encoder *encoder)
561 {
562 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) {
563 		return dg2_edp_tables;
564 	} else if (intel_crtc_has_dp_encoder(crtc_state)) {
565 		return dg2_dp_100_tables;
566 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
567 		return dg2_hdmi_tables;
568 	}
569 
570 	MISSING_CASE(encoder->type);
571 	return NULL;
572 }
573 
574 int intel_mpllb_calc_state(struct intel_crtc_state *crtc_state,
575 			   struct intel_encoder *encoder)
576 {
577 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
578 	const struct intel_mpllb_state * const *tables;
579 	int i;
580 
581 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
582 		if (intel_snps_phy_check_hdmi_link_rate(crtc_state->port_clock)
583 		    != MODE_OK) {
584 			/*
585 			 * FIXME: Can only support fixed HDMI frequencies
586 			 * until we have a proper algorithm under a valid
587 			 * license.
588 			 */
589 			drm_dbg_kms(&i915->drm, "Can't support HDMI link rate %d\n",
590 				    crtc_state->port_clock);
591 			return -EINVAL;
592 		}
593 	}
594 
595 	tables = intel_mpllb_tables_get(crtc_state, encoder);
596 	if (!tables)
597 		return -EINVAL;
598 
599 	for (i = 0; tables[i]; i++) {
600 		if (crtc_state->port_clock <= tables[i]->clock) {
601 			crtc_state->mpllb_state = *tables[i];
602 			return 0;
603 		}
604 	}
605 
606 	return -EINVAL;
607 }
608 
609 void intel_mpllb_enable(struct intel_encoder *encoder,
610 			const struct intel_crtc_state *crtc_state)
611 {
612 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
613 	const struct intel_mpllb_state *pll_state = &crtc_state->mpllb_state;
614 	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
615 	i915_reg_t enable_reg = (phy <= PHY_D ?
616 				 DG2_PLL_ENABLE(phy) : MG_PLL_ENABLE(0));
617 
618 	/*
619 	 * 3. Software programs the following PLL registers for the desired
620 	 * frequency.
621 	 */
622 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_CP(phy), pll_state->mpllb_cp);
623 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_DIV(phy), pll_state->mpllb_div);
624 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_DIV2(phy), pll_state->mpllb_div2);
625 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_SSCEN(phy), pll_state->mpllb_sscen);
626 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_SSCSTEP(phy), pll_state->mpllb_sscstep);
627 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_FRACN1(phy), pll_state->mpllb_fracn1);
628 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_FRACN2(phy), pll_state->mpllb_fracn2);
629 
630 	/*
631 	 * 4. If the frequency will result in a change to the voltage
632 	 * requirement, follow the Display Voltage Frequency Switching -
633 	 * Sequence Before Frequency Change.
634 	 *
635 	 * We handle this step in bxt_set_cdclk().
636 	 */
637 
638 	/* 5. Software sets DPLL_ENABLE [PLL Enable] to "1". */
639 	intel_uncore_rmw(&dev_priv->uncore, enable_reg, 0, PLL_ENABLE);
640 
641 	/*
642 	 * 9. Software sets SNPS_PHY_MPLLB_DIV dp_mpllb_force_en to "1". This
643 	 * will keep the PLL running during the DDI lane programming and any
644 	 * typeC DP cable disconnect. Do not set the force before enabling the
645 	 * PLL because that will start the PLL before it has sampled the
646 	 * divider values.
647 	 */
648 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_DIV(phy),
649 		       pll_state->mpllb_div | SNPS_PHY_MPLLB_FORCE_EN);
650 
651 	/*
652 	 * 10. Software polls on register DPLL_ENABLE [PLL Lock] to confirm PLL
653 	 * is locked at new settings. This register bit is sampling PHY
654 	 * dp_mpllb_state interface signal.
655 	 */
656 	if (intel_de_wait_for_set(dev_priv, enable_reg, PLL_LOCK, 5))
657 		drm_dbg_kms(&dev_priv->drm, "Port %c PLL not locked\n", phy_name(phy));
658 
659 	/*
660 	 * 11. If the frequency will result in a change to the voltage
661 	 * requirement, follow the Display Voltage Frequency Switching -
662 	 * Sequence After Frequency Change.
663 	 *
664 	 * We handle this step in bxt_set_cdclk().
665 	 */
666 }
667 
668 void intel_mpllb_disable(struct intel_encoder *encoder)
669 {
670 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
671 	enum phy phy = intel_port_to_phy(i915, encoder->port);
672 	i915_reg_t enable_reg = (phy <= PHY_D ?
673 				 DG2_PLL_ENABLE(phy) : MG_PLL_ENABLE(0));
674 
675 	/*
676 	 * 1. If the frequency will result in a change to the voltage
677 	 * requirement, follow the Display Voltage Frequency Switching -
678 	 * Sequence Before Frequency Change.
679 	 *
680 	 * We handle this step in bxt_set_cdclk().
681 	 */
682 
683 	/* 2. Software programs DPLL_ENABLE [PLL Enable] to "0" */
684 	intel_uncore_rmw(&i915->uncore, enable_reg, PLL_ENABLE, 0);
685 
686 	/*
687 	 * 4. Software programs SNPS_PHY_MPLLB_DIV dp_mpllb_force_en to "0".
688 	 * This will allow the PLL to stop running.
689 	 */
690 	intel_uncore_rmw(&i915->uncore, SNPS_PHY_MPLLB_DIV(phy),
691 			 SNPS_PHY_MPLLB_FORCE_EN, 0);
692 
693 	/*
694 	 * 5. Software polls DPLL_ENABLE [PLL Lock] for PHY acknowledgment
695 	 * (dp_txX_ack) that the new transmitter setting request is completed.
696 	 */
697 	if (intel_de_wait_for_clear(i915, enable_reg, PLL_LOCK, 5))
698 		drm_err(&i915->drm, "Port %c PLL not locked\n", phy_name(phy));
699 
700 	/*
701 	 * 6. If the frequency will result in a change to the voltage
702 	 * requirement, follow the Display Voltage Frequency Switching -
703 	 * Sequence After Frequency Change.
704 	 *
705 	 * We handle this step in bxt_set_cdclk().
706 	 */
707 }
708 
709 int intel_mpllb_calc_port_clock(struct intel_encoder *encoder,
710 				const struct intel_mpllb_state *pll_state)
711 {
712 	unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
713 	unsigned int multiplier, tx_clk_div, refclk;
714 	bool frac_en;
715 
716 	if (0)
717 		refclk = 38400;
718 	else
719 		refclk = 100000;
720 
721 	refclk >>= REG_FIELD_GET(SNPS_PHY_MPLLB_REF_CLK_DIV, pll_state->mpllb_div2) - 1;
722 
723 	frac_en = REG_FIELD_GET(SNPS_PHY_MPLLB_FRACN_EN, pll_state->mpllb_fracn1);
724 
725 	if (frac_en) {
726 		frac_quot = REG_FIELD_GET(SNPS_PHY_MPLLB_FRACN_QUOT, pll_state->mpllb_fracn2);
727 		frac_rem = REG_FIELD_GET(SNPS_PHY_MPLLB_FRACN_REM, pll_state->mpllb_fracn2);
728 		frac_den = REG_FIELD_GET(SNPS_PHY_MPLLB_FRACN_DEN, pll_state->mpllb_fracn1);
729 	}
730 
731 	multiplier = REG_FIELD_GET(SNPS_PHY_MPLLB_MULTIPLIER, pll_state->mpllb_div2) / 2 + 16;
732 
733 	tx_clk_div = REG_FIELD_GET(SNPS_PHY_MPLLB_TX_CLK_DIV, pll_state->mpllb_div);
734 
735 	return DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, (multiplier << 16) + frac_quot) +
736 				     DIV_ROUND_CLOSEST(refclk * frac_rem, frac_den),
737 				     10 << (tx_clk_div + 16));
738 }
739 
740 void intel_mpllb_readout_hw_state(struct intel_encoder *encoder,
741 				  struct intel_mpllb_state *pll_state)
742 {
743 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
744 	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
745 
746 	pll_state->mpllb_cp = intel_de_read(dev_priv, SNPS_PHY_MPLLB_CP(phy));
747 	pll_state->mpllb_div = intel_de_read(dev_priv, SNPS_PHY_MPLLB_DIV(phy));
748 	pll_state->mpllb_div2 = intel_de_read(dev_priv, SNPS_PHY_MPLLB_DIV2(phy));
749 	pll_state->mpllb_sscen = intel_de_read(dev_priv, SNPS_PHY_MPLLB_SSCEN(phy));
750 	pll_state->mpllb_sscstep = intel_de_read(dev_priv, SNPS_PHY_MPLLB_SSCSTEP(phy));
751 	pll_state->mpllb_fracn1 = intel_de_read(dev_priv, SNPS_PHY_MPLLB_FRACN1(phy));
752 	pll_state->mpllb_fracn2 = intel_de_read(dev_priv, SNPS_PHY_MPLLB_FRACN2(phy));
753 
754 	/*
755 	 * REF_CONTROL is under firmware control and never programmed by the
756 	 * driver; we read it only for sanity checking purposes.  The bspec
757 	 * only tells us the expected value for one field in this register,
758 	 * so we'll only read out those specific bits here.
759 	 */
760 	pll_state->ref_control = intel_de_read(dev_priv, SNPS_PHY_REF_CONTROL(phy)) &
761 		SNPS_PHY_REF_CONTROL_REF_RANGE;
762 
763 	/*
764 	 * MPLLB_DIV is programmed twice, once with the software-computed
765 	 * state, then again with the MPLLB_FORCE_EN bit added.  Drop that
766 	 * extra bit during readout so that we return the actual expected
767 	 * software state.
768 	 */
769 	pll_state->mpllb_div &= ~SNPS_PHY_MPLLB_FORCE_EN;
770 }
771 
772 int intel_snps_phy_check_hdmi_link_rate(int clock)
773 {
774 	const struct intel_mpllb_state * const *tables = dg2_hdmi_tables;
775 	int i;
776 
777 	for (i = 0; tables[i]; i++) {
778 		if (clock == tables[i]->clock)
779 			return MODE_OK;
780 	}
781 
782 	return MODE_CLOCK_RANGE;
783 }
784