xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_snps_phy.c (revision c9933d494c54f72290831191c09bb8488bfd5905)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/util_macros.h>
7 
8 #include "intel_ddi.h"
9 #include "intel_ddi_buf_trans.h"
10 #include "intel_de.h"
11 #include "intel_display_types.h"
12 #include "intel_snps_phy.h"
13 #include "intel_snps_phy_regs.h"
14 
15 /**
16  * DOC: Synopsis PHY support
17  *
18  * Synopsis PHYs are primarily programmed by looking up magic register values
19  * in tables rather than calculating the necessary values at runtime.
20  *
21  * Of special note is that the SNPS PHYs include a dedicated port PLL, known as
22  * an "MPLLB."  The MPLLB replaces the shared DPLL functionality used on other
23  * platforms and must be programming directly during the modeset sequence
24  * since it is not handled by the shared DPLL framework as on other platforms.
25  */
26 
27 void intel_snps_phy_wait_for_calibration(struct drm_i915_private *i915)
28 {
29 	enum phy phy;
30 
31 	for_each_phy_masked(phy, ~0) {
32 		if (!intel_phy_is_snps(i915, phy))
33 			continue;
34 
35 		if (intel_de_wait_for_clear(i915, DG2_PHY_MISC(phy),
36 					    DG2_PHY_DP_TX_ACK_MASK, 25))
37 			drm_err(&i915->drm, "SNPS PHY %c failed to calibrate after 25ms.\n",
38 				phy_name(phy));
39 	}
40 }
41 
42 void intel_snps_phy_update_psr_power_state(struct drm_i915_private *dev_priv,
43 					   enum phy phy, bool enable)
44 {
45 	u32 val;
46 
47 	if (!intel_phy_is_snps(dev_priv, phy))
48 		return;
49 
50 	val = REG_FIELD_PREP(SNPS_PHY_TX_REQ_LN_DIS_PWR_STATE_PSR,
51 			     enable ? 2 : 3);
52 	intel_uncore_rmw(&dev_priv->uncore, SNPS_PHY_TX_REQ(phy),
53 			 SNPS_PHY_TX_REQ_LN_DIS_PWR_STATE_PSR, val);
54 }
55 
56 void intel_snps_phy_set_signal_levels(struct intel_encoder *encoder,
57 				      const struct intel_crtc_state *crtc_state)
58 {
59 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
60 	const struct intel_ddi_buf_trans *trans;
61 	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
62 	int n_entries, ln;
63 
64 	trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
65 	if (drm_WARN_ON_ONCE(&dev_priv->drm, !trans))
66 		return;
67 
68 	for (ln = 0; ln < 4; ln++) {
69 		int level = intel_ddi_level(encoder, crtc_state, ln);
70 		u32 val = 0;
71 
72 		val |= REG_FIELD_PREP(SNPS_PHY_TX_EQ_MAIN, trans->entries[level].snps.vswing);
73 		val |= REG_FIELD_PREP(SNPS_PHY_TX_EQ_PRE, trans->entries[level].snps.pre_cursor);
74 		val |= REG_FIELD_PREP(SNPS_PHY_TX_EQ_POST, trans->entries[level].snps.post_cursor);
75 
76 		intel_de_write(dev_priv, SNPS_PHY_TX_EQ(ln, phy), val);
77 	}
78 }
79 
80 /*
81  * Basic DP link rates with 100 MHz reference clock.
82  */
83 
84 static const struct intel_mpllb_state dg2_dp_rbr_100 = {
85 	.clock = 162000,
86 	.ref_control =
87 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
88 	.mpllb_cp =
89 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
90 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 20) |
91 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
92 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
93 	.mpllb_div =
94 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
95 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 2) |
96 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
97 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
98 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 2),
99 	.mpllb_div2 =
100 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
101 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 226),
102 	.mpllb_fracn1 =
103 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
104 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
105 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
106 	.mpllb_fracn2 =
107 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 39321) |
108 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 3),
109 };
110 
111 static const struct intel_mpllb_state dg2_dp_hbr1_100 = {
112 	.clock = 270000,
113 	.ref_control =
114 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
115 	.mpllb_cp =
116 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
117 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 20) |
118 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
119 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
120 	.mpllb_div =
121 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
122 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 1) |
123 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
124 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 3),
125 	.mpllb_div2 =
126 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
127 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 184),
128 	.mpllb_fracn1 =
129 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
130 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 1),
131 };
132 
133 static const struct intel_mpllb_state dg2_dp_hbr2_100 = {
134 	.clock = 540000,
135 	.ref_control =
136 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
137 	.mpllb_cp =
138 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
139 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 20) |
140 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
141 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
142 	.mpllb_div =
143 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
144 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
145 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 3),
146 	.mpllb_div2 =
147 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
148 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 184),
149 	.mpllb_fracn1 =
150 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
151 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 1),
152 };
153 
154 static const struct intel_mpllb_state dg2_dp_hbr3_100 = {
155 	.clock = 810000,
156 	.ref_control =
157 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
158 	.mpllb_cp =
159 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
160 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 19) |
161 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
162 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
163 	.mpllb_div =
164 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
165 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
166 	.mpllb_div2 =
167 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
168 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 292),
169 	.mpllb_fracn1 =
170 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
171 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 1),
172 };
173 
174 static const struct intel_mpllb_state dg2_dp_uhbr10_100 = {
175 	.clock = 1000000,
176 	.ref_control =
177 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
178 	.mpllb_cp =
179 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
180 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 21) |
181 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
182 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
183 	.mpllb_div =
184 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
185 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV_CLK_EN, 1) |
186 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV_MULTIPLIER, 8) |
187 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
188 		REG_FIELD_PREP(SNPS_PHY_MPLLB_WORD_DIV2_EN, 1) |
189 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DP2_MODE, 1) |
190 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SHIM_DIV32_CLK_SEL, 1) |
191 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
192 	.mpllb_div2 =
193 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
194 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 368),
195 	.mpllb_fracn1 =
196 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
197 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 1),
198 
199 	/*
200 	 * SSC will be enabled, DP UHBR has a minimum SSC requirement.
201 	 */
202 	.mpllb_sscen =
203 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_EN, 1) |
204 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_PEAK, 58982),
205 	.mpllb_sscstep =
206 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_STEPSIZE, 76101),
207 };
208 
209 static const struct intel_mpllb_state dg2_dp_uhbr13_100 = {
210 	.clock = 1350000,
211 	.ref_control =
212 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
213 	.mpllb_cp =
214 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 5) |
215 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 45) |
216 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
217 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
218 	.mpllb_div =
219 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
220 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV_CLK_EN, 1) |
221 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV_MULTIPLIER, 8) |
222 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
223 		REG_FIELD_PREP(SNPS_PHY_MPLLB_WORD_DIV2_EN, 1) |
224 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DP2_MODE, 1) |
225 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 3),
226 	.mpllb_div2 =
227 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
228 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 508),
229 	.mpllb_fracn1 =
230 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
231 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 1),
232 
233 	/*
234 	 * SSC will be enabled, DP UHBR has a minimum SSC requirement.
235 	 */
236 	.mpllb_sscen =
237 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_EN, 1) |
238 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_PEAK, 79626),
239 	.mpllb_sscstep =
240 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_STEPSIZE, 102737),
241 };
242 
243 static const struct intel_mpllb_state * const dg2_dp_100_tables[] = {
244 	&dg2_dp_rbr_100,
245 	&dg2_dp_hbr1_100,
246 	&dg2_dp_hbr2_100,
247 	&dg2_dp_hbr3_100,
248 	&dg2_dp_uhbr10_100,
249 	&dg2_dp_uhbr13_100,
250 	NULL,
251 };
252 
253 /*
254  * eDP link rates with 100 MHz reference clock.
255  */
256 
257 static const struct intel_mpllb_state dg2_edp_r216 = {
258 	.clock = 216000,
259 	.ref_control =
260 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
261 	.mpllb_cp =
262 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
263 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 19) |
264 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
265 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
266 	.mpllb_div =
267 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
268 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 2) |
269 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
270 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
271 	.mpllb_div2 =
272 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
273 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 312),
274 	.mpllb_fracn1 =
275 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
276 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
277 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
278 	.mpllb_fracn2 =
279 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 52428) |
280 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 4),
281 	.mpllb_sscen =
282 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_EN, 1) |
283 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_PEAK, 50961),
284 	.mpllb_sscstep =
285 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_STEPSIZE, 65752),
286 };
287 
288 static const struct intel_mpllb_state dg2_edp_r243 = {
289 	.clock = 243000,
290 	.ref_control =
291 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
292 	.mpllb_cp =
293 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
294 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 20) |
295 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
296 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
297 	.mpllb_div =
298 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
299 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 2) |
300 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
301 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
302 	.mpllb_div2 =
303 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
304 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 356),
305 	.mpllb_fracn1 =
306 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
307 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
308 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
309 	.mpllb_fracn2 =
310 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 26214) |
311 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 2),
312 	.mpllb_sscen =
313 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_EN, 1) |
314 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_PEAK, 57331),
315 	.mpllb_sscstep =
316 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_STEPSIZE, 73971),
317 };
318 
319 static const struct intel_mpllb_state dg2_edp_r324 = {
320 	.clock = 324000,
321 	.ref_control =
322 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
323 	.mpllb_cp =
324 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
325 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 20) |
326 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
327 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
328 	.mpllb_div =
329 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
330 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 1) |
331 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
332 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
333 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 2),
334 	.mpllb_div2 =
335 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
336 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 226),
337 	.mpllb_fracn1 =
338 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
339 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
340 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
341 	.mpllb_fracn2 =
342 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 39321) |
343 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 3),
344 	.mpllb_sscen =
345 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_EN, 1) |
346 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_PEAK, 38221),
347 	.mpllb_sscstep =
348 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_STEPSIZE, 49314),
349 };
350 
351 static const struct intel_mpllb_state dg2_edp_r432 = {
352 	.clock = 432000,
353 	.ref_control =
354 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
355 	.mpllb_cp =
356 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
357 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 19) |
358 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
359 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
360 	.mpllb_div =
361 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
362 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 1) |
363 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
364 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
365 	.mpllb_div2 =
366 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
367 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 312),
368 	.mpllb_fracn1 =
369 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
370 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
371 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
372 	.mpllb_fracn2 =
373 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 52428) |
374 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 4),
375 	.mpllb_sscen =
376 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_EN, 1) |
377 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_PEAK, 50961),
378 	.mpllb_sscstep =
379 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_STEPSIZE, 65752),
380 };
381 
382 static const struct intel_mpllb_state * const dg2_edp_tables[] = {
383 	&dg2_dp_rbr_100,
384 	&dg2_edp_r216,
385 	&dg2_edp_r243,
386 	&dg2_dp_hbr1_100,
387 	&dg2_edp_r324,
388 	&dg2_edp_r432,
389 	&dg2_dp_hbr2_100,
390 	&dg2_dp_hbr3_100,
391 	NULL,
392 };
393 
394 /*
395  * HDMI link rates with 100 MHz reference clock.
396  */
397 
398 static const struct intel_mpllb_state dg2_hdmi_25_175 = {
399 	.clock = 25175,
400 	.ref_control =
401 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
402 	.mpllb_cp =
403 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 5) |
404 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 15) |
405 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 64) |
406 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 124),
407 	.mpllb_div =
408 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
409 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 5) |
410 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
411 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
412 	.mpllb_div2 =
413 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 1) |
414 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 128) |
415 		REG_FIELD_PREP(SNPS_PHY_MPLLB_HDMI_DIV, 1),
416 	.mpllb_fracn1 =
417 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
418 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
419 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 143),
420 	.mpllb_fracn2 =
421 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 36663) |
422 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 71),
423 	.mpllb_sscen =
424 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_UP_SPREAD, 1),
425 };
426 
427 static const struct intel_mpllb_state dg2_hdmi_27_0 = {
428 	.clock = 27000,
429 	.ref_control =
430 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
431 	.mpllb_cp =
432 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 5) |
433 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 15) |
434 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 64) |
435 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 124),
436 	.mpllb_div =
437 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
438 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 5) |
439 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
440 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
441 	.mpllb_div2 =
442 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 1) |
443 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 140) |
444 		REG_FIELD_PREP(SNPS_PHY_MPLLB_HDMI_DIV, 1),
445 	.mpllb_fracn1 =
446 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
447 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
448 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
449 	.mpllb_fracn2 =
450 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 26214) |
451 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 2),
452 	.mpllb_sscen =
453 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_UP_SPREAD, 1),
454 };
455 
456 static const struct intel_mpllb_state dg2_hdmi_74_25 = {
457 	.clock = 74250,
458 	.ref_control =
459 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
460 	.mpllb_cp =
461 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
462 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 15) |
463 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 64) |
464 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 124),
465 	.mpllb_div =
466 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
467 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 3) |
468 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
469 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
470 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 3),
471 	.mpllb_div2 =
472 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 1) |
473 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 86) |
474 		REG_FIELD_PREP(SNPS_PHY_MPLLB_HDMI_DIV, 1),
475 	.mpllb_fracn1 =
476 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
477 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
478 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
479 	.mpllb_fracn2 =
480 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 26214) |
481 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 2),
482 	.mpllb_sscen =
483 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_UP_SPREAD, 1),
484 };
485 
486 static const struct intel_mpllb_state dg2_hdmi_148_5 = {
487 	.clock = 148500,
488 	.ref_control =
489 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
490 	.mpllb_cp =
491 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
492 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 15) |
493 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 64) |
494 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 124),
495 	.mpllb_div =
496 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
497 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 2) |
498 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
499 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
500 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 3),
501 	.mpllb_div2 =
502 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 1) |
503 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 86) |
504 		REG_FIELD_PREP(SNPS_PHY_MPLLB_HDMI_DIV, 1),
505 	.mpllb_fracn1 =
506 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
507 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
508 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
509 	.mpllb_fracn2 =
510 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 26214) |
511 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 2),
512 	.mpllb_sscen =
513 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_UP_SPREAD, 1),
514 };
515 
516 static const struct intel_mpllb_state dg2_hdmi_594 = {
517 	.clock = 594000,
518 	.ref_control =
519 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
520 	.mpllb_cp =
521 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
522 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 15) |
523 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 64) |
524 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 124),
525 	.mpllb_div =
526 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
527 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
528 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
529 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 3),
530 	.mpllb_div2 =
531 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 1) |
532 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 86) |
533 		REG_FIELD_PREP(SNPS_PHY_MPLLB_HDMI_DIV, 1),
534 	.mpllb_fracn1 =
535 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
536 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
537 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
538 	.mpllb_fracn2 =
539 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 26214) |
540 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 2),
541 	.mpllb_sscen =
542 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_UP_SPREAD, 1),
543 };
544 
545 static const struct intel_mpllb_state * const dg2_hdmi_tables[] = {
546 	&dg2_hdmi_25_175,
547 	&dg2_hdmi_27_0,
548 	&dg2_hdmi_74_25,
549 	&dg2_hdmi_148_5,
550 	&dg2_hdmi_594,
551 	NULL,
552 };
553 
554 static const struct intel_mpllb_state * const *
555 intel_mpllb_tables_get(struct intel_crtc_state *crtc_state,
556 		       struct intel_encoder *encoder)
557 {
558 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) {
559 		return dg2_edp_tables;
560 	} else if (intel_crtc_has_dp_encoder(crtc_state)) {
561 		return dg2_dp_100_tables;
562 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
563 		return dg2_hdmi_tables;
564 	}
565 
566 	MISSING_CASE(encoder->type);
567 	return NULL;
568 }
569 
570 int intel_mpllb_calc_state(struct intel_crtc_state *crtc_state,
571 			   struct intel_encoder *encoder)
572 {
573 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
574 	const struct intel_mpllb_state * const *tables;
575 	int i;
576 
577 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
578 		if (intel_snps_phy_check_hdmi_link_rate(crtc_state->port_clock)
579 		    != MODE_OK) {
580 			/*
581 			 * FIXME: Can only support fixed HDMI frequencies
582 			 * until we have a proper algorithm under a valid
583 			 * license.
584 			 */
585 			drm_dbg_kms(&i915->drm, "Can't support HDMI link rate %d\n",
586 				    crtc_state->port_clock);
587 			return -EINVAL;
588 		}
589 	}
590 
591 	tables = intel_mpllb_tables_get(crtc_state, encoder);
592 	if (!tables)
593 		return -EINVAL;
594 
595 	for (i = 0; tables[i]; i++) {
596 		if (crtc_state->port_clock <= tables[i]->clock) {
597 			crtc_state->mpllb_state = *tables[i];
598 			return 0;
599 		}
600 	}
601 
602 	return -EINVAL;
603 }
604 
605 void intel_mpllb_enable(struct intel_encoder *encoder,
606 			const struct intel_crtc_state *crtc_state)
607 {
608 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
609 	const struct intel_mpllb_state *pll_state = &crtc_state->mpllb_state;
610 	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
611 	i915_reg_t enable_reg = (phy <= PHY_D ?
612 				 DG2_PLL_ENABLE(phy) : MG_PLL_ENABLE(0));
613 
614 	/*
615 	 * 3. Software programs the following PLL registers for the desired
616 	 * frequency.
617 	 */
618 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_CP(phy), pll_state->mpllb_cp);
619 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_DIV(phy), pll_state->mpllb_div);
620 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_DIV2(phy), pll_state->mpllb_div2);
621 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_SSCEN(phy), pll_state->mpllb_sscen);
622 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_SSCSTEP(phy), pll_state->mpllb_sscstep);
623 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_FRACN1(phy), pll_state->mpllb_fracn1);
624 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_FRACN2(phy), pll_state->mpllb_fracn2);
625 
626 	/*
627 	 * 4. If the frequency will result in a change to the voltage
628 	 * requirement, follow the Display Voltage Frequency Switching -
629 	 * Sequence Before Frequency Change.
630 	 *
631 	 * We handle this step in bxt_set_cdclk().
632 	 */
633 
634 	/* 5. Software sets DPLL_ENABLE [PLL Enable] to "1". */
635 	intel_uncore_rmw(&dev_priv->uncore, enable_reg, 0, PLL_ENABLE);
636 
637 	/*
638 	 * 9. Software sets SNPS_PHY_MPLLB_DIV dp_mpllb_force_en to "1". This
639 	 * will keep the PLL running during the DDI lane programming and any
640 	 * typeC DP cable disconnect. Do not set the force before enabling the
641 	 * PLL because that will start the PLL before it has sampled the
642 	 * divider values.
643 	 */
644 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_DIV(phy),
645 		       pll_state->mpllb_div | SNPS_PHY_MPLLB_FORCE_EN);
646 
647 	/*
648 	 * 10. Software polls on register DPLL_ENABLE [PLL Lock] to confirm PLL
649 	 * is locked at new settings. This register bit is sampling PHY
650 	 * dp_mpllb_state interface signal.
651 	 */
652 	if (intel_de_wait_for_set(dev_priv, enable_reg, PLL_LOCK, 5))
653 		drm_dbg_kms(&dev_priv->drm, "Port %c PLL not locked\n", phy_name(phy));
654 
655 	/*
656 	 * 11. If the frequency will result in a change to the voltage
657 	 * requirement, follow the Display Voltage Frequency Switching -
658 	 * Sequence After Frequency Change.
659 	 *
660 	 * We handle this step in bxt_set_cdclk().
661 	 */
662 }
663 
664 void intel_mpllb_disable(struct intel_encoder *encoder)
665 {
666 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
667 	enum phy phy = intel_port_to_phy(i915, encoder->port);
668 	i915_reg_t enable_reg = (phy <= PHY_D ?
669 				 DG2_PLL_ENABLE(phy) : MG_PLL_ENABLE(0));
670 
671 	/*
672 	 * 1. If the frequency will result in a change to the voltage
673 	 * requirement, follow the Display Voltage Frequency Switching -
674 	 * Sequence Before Frequency Change.
675 	 *
676 	 * We handle this step in bxt_set_cdclk().
677 	 */
678 
679 	/* 2. Software programs DPLL_ENABLE [PLL Enable] to "0" */
680 	intel_uncore_rmw(&i915->uncore, enable_reg, PLL_ENABLE, 0);
681 
682 	/*
683 	 * 4. Software programs SNPS_PHY_MPLLB_DIV dp_mpllb_force_en to "0".
684 	 * This will allow the PLL to stop running.
685 	 */
686 	intel_uncore_rmw(&i915->uncore, SNPS_PHY_MPLLB_DIV(phy),
687 			 SNPS_PHY_MPLLB_FORCE_EN, 0);
688 
689 	/*
690 	 * 5. Software polls DPLL_ENABLE [PLL Lock] for PHY acknowledgment
691 	 * (dp_txX_ack) that the new transmitter setting request is completed.
692 	 */
693 	if (intel_de_wait_for_clear(i915, enable_reg, PLL_LOCK, 5))
694 		drm_err(&i915->drm, "Port %c PLL not locked\n", phy_name(phy));
695 
696 	/*
697 	 * 6. If the frequency will result in a change to the voltage
698 	 * requirement, follow the Display Voltage Frequency Switching -
699 	 * Sequence After Frequency Change.
700 	 *
701 	 * We handle this step in bxt_set_cdclk().
702 	 */
703 }
704 
705 int intel_mpllb_calc_port_clock(struct intel_encoder *encoder,
706 				const struct intel_mpllb_state *pll_state)
707 {
708 	unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
709 	unsigned int multiplier, tx_clk_div, refclk;
710 	bool frac_en;
711 
712 	if (0)
713 		refclk = 38400;
714 	else
715 		refclk = 100000;
716 
717 	refclk >>= REG_FIELD_GET(SNPS_PHY_MPLLB_REF_CLK_DIV, pll_state->mpllb_div2) - 1;
718 
719 	frac_en = REG_FIELD_GET(SNPS_PHY_MPLLB_FRACN_EN, pll_state->mpllb_fracn1);
720 
721 	if (frac_en) {
722 		frac_quot = REG_FIELD_GET(SNPS_PHY_MPLLB_FRACN_QUOT, pll_state->mpllb_fracn2);
723 		frac_rem = REG_FIELD_GET(SNPS_PHY_MPLLB_FRACN_REM, pll_state->mpllb_fracn2);
724 		frac_den = REG_FIELD_GET(SNPS_PHY_MPLLB_FRACN_DEN, pll_state->mpllb_fracn1);
725 	}
726 
727 	multiplier = REG_FIELD_GET(SNPS_PHY_MPLLB_MULTIPLIER, pll_state->mpllb_div2) / 2 + 16;
728 
729 	tx_clk_div = REG_FIELD_GET(SNPS_PHY_MPLLB_TX_CLK_DIV, pll_state->mpllb_div);
730 
731 	return DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, (multiplier << 16) + frac_quot) +
732 				     DIV_ROUND_CLOSEST(refclk * frac_rem, frac_den),
733 				     10 << (tx_clk_div + 16));
734 }
735 
736 void intel_mpllb_readout_hw_state(struct intel_encoder *encoder,
737 				  struct intel_mpllb_state *pll_state)
738 {
739 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
740 	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
741 
742 	pll_state->mpllb_cp = intel_de_read(dev_priv, SNPS_PHY_MPLLB_CP(phy));
743 	pll_state->mpllb_div = intel_de_read(dev_priv, SNPS_PHY_MPLLB_DIV(phy));
744 	pll_state->mpllb_div2 = intel_de_read(dev_priv, SNPS_PHY_MPLLB_DIV2(phy));
745 	pll_state->mpllb_sscen = intel_de_read(dev_priv, SNPS_PHY_MPLLB_SSCEN(phy));
746 	pll_state->mpllb_sscstep = intel_de_read(dev_priv, SNPS_PHY_MPLLB_SSCSTEP(phy));
747 	pll_state->mpllb_fracn1 = intel_de_read(dev_priv, SNPS_PHY_MPLLB_FRACN1(phy));
748 	pll_state->mpllb_fracn2 = intel_de_read(dev_priv, SNPS_PHY_MPLLB_FRACN2(phy));
749 
750 	/*
751 	 * REF_CONTROL is under firmware control and never programmed by the
752 	 * driver; we read it only for sanity checking purposes.  The bspec
753 	 * only tells us the expected value for one field in this register,
754 	 * so we'll only read out those specific bits here.
755 	 */
756 	pll_state->ref_control = intel_de_read(dev_priv, SNPS_PHY_REF_CONTROL(phy)) &
757 		SNPS_PHY_REF_CONTROL_REF_RANGE;
758 
759 	/*
760 	 * MPLLB_DIV is programmed twice, once with the software-computed
761 	 * state, then again with the MPLLB_FORCE_EN bit added.  Drop that
762 	 * extra bit during readout so that we return the actual expected
763 	 * software state.
764 	 */
765 	pll_state->mpllb_div &= ~SNPS_PHY_MPLLB_FORCE_EN;
766 }
767 
768 int intel_snps_phy_check_hdmi_link_rate(int clock)
769 {
770 	const struct intel_mpllb_state * const *tables = dg2_hdmi_tables;
771 	int i;
772 
773 	for (i = 0; tables[i]; i++) {
774 		if (clock == tables[i]->clock)
775 			return MODE_OK;
776 	}
777 
778 	return MODE_CLOCK_RANGE;
779 }
780