xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_snps_phy.c (revision a1c7c49c2091926962f8c1c866d386febffec5d8)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/util_macros.h>
7 
8 #include "intel_ddi.h"
9 #include "intel_ddi_buf_trans.h"
10 #include "intel_de.h"
11 #include "intel_display_types.h"
12 #include "intel_snps_phy.h"
13 
14 /**
15  * DOC: Synopsis PHY support
16  *
17  * Synopsis PHYs are primarily programmed by looking up magic register values
18  * in tables rather than calculating the necessary values at runtime.
19  *
20  * Of special note is that the SNPS PHYs include a dedicated port PLL, known as
21  * an "MPLLB."  The MPLLB replaces the shared DPLL functionality used on other
22  * platforms and must be programming directly during the modeset sequence
23  * since it is not handled by the shared DPLL framework as on other platforms.
24  */
25 
26 void intel_snps_phy_wait_for_calibration(struct drm_i915_private *dev_priv)
27 {
28 	enum phy phy;
29 
30 	for_each_phy_masked(phy, ~0) {
31 		if (!intel_phy_is_snps(dev_priv, phy))
32 			continue;
33 
34 		if (intel_de_wait_for_clear(dev_priv, ICL_PHY_MISC(phy),
35 					    DG2_PHY_DP_TX_ACK_MASK, 25))
36 			DRM_ERROR("SNPS PHY %c failed to calibrate after 25ms.\n",
37 				  phy);
38 	}
39 }
40 
41 void intel_snps_phy_update_psr_power_state(struct drm_i915_private *dev_priv,
42 					   enum phy phy, bool enable)
43 {
44 	u32 val;
45 
46 	if (!intel_phy_is_snps(dev_priv, phy))
47 		return;
48 
49 	val = REG_FIELD_PREP(SNPS_PHY_TX_REQ_LN_DIS_PWR_STATE_PSR,
50 			     enable ? 2 : 3);
51 	intel_uncore_rmw(&dev_priv->uncore, SNPS_PHY_TX_REQ(phy),
52 			 SNPS_PHY_TX_REQ_LN_DIS_PWR_STATE_PSR, val);
53 }
54 
55 void intel_snps_phy_set_signal_levels(struct intel_encoder *encoder,
56 				      const struct intel_crtc_state *crtc_state)
57 {
58 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
59 	const struct intel_ddi_buf_trans *trans;
60 	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
61 	int level = intel_ddi_level(encoder, crtc_state, 0);
62 	int n_entries, ln;
63 
64 	trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
65 	if (drm_WARN_ON_ONCE(&dev_priv->drm, !trans))
66 		return;
67 
68 	for (ln = 0; ln < 4; ln++) {
69 		u32 val = 0;
70 
71 		val |= REG_FIELD_PREP(SNPS_PHY_TX_EQ_MAIN, trans->entries[level].snps.vswing);
72 		val |= REG_FIELD_PREP(SNPS_PHY_TX_EQ_PRE, trans->entries[level].snps.pre_cursor);
73 		val |= REG_FIELD_PREP(SNPS_PHY_TX_EQ_POST, trans->entries[level].snps.post_cursor);
74 
75 		intel_de_write(dev_priv, SNPS_PHY_TX_EQ(ln, phy), val);
76 	}
77 }
78 
79 /*
80  * Basic DP link rates with 100 MHz reference clock.
81  */
82 
83 static const struct intel_mpllb_state dg2_dp_rbr_100 = {
84 	.clock = 162000,
85 	.ref_control =
86 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
87 	.mpllb_cp =
88 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
89 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 20) |
90 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
91 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
92 	.mpllb_div =
93 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
94 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 2) |
95 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
96 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
97 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 2),
98 	.mpllb_div2 =
99 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
100 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 226),
101 	.mpllb_fracn1 =
102 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
103 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
104 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
105 	.mpllb_fracn2 =
106 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 39321) |
107 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 3),
108 };
109 
110 static const struct intel_mpllb_state dg2_dp_hbr1_100 = {
111 	.clock = 270000,
112 	.ref_control =
113 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
114 	.mpllb_cp =
115 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
116 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 20) |
117 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
118 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
119 	.mpllb_div =
120 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
121 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 1) |
122 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
123 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 3),
124 	.mpllb_div2 =
125 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
126 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 184),
127 	.mpllb_fracn1 =
128 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
129 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 1),
130 };
131 
132 static const struct intel_mpllb_state dg2_dp_hbr2_100 = {
133 	.clock = 540000,
134 	.ref_control =
135 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
136 	.mpllb_cp =
137 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
138 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 20) |
139 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
140 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
141 	.mpllb_div =
142 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
143 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
144 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 3),
145 	.mpllb_div2 =
146 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
147 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 184),
148 	.mpllb_fracn1 =
149 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
150 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 1),
151 };
152 
153 static const struct intel_mpllb_state dg2_dp_hbr3_100 = {
154 	.clock = 810000,
155 	.ref_control =
156 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
157 	.mpllb_cp =
158 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
159 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 19) |
160 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
161 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
162 	.mpllb_div =
163 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
164 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
165 	.mpllb_div2 =
166 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
167 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 292),
168 	.mpllb_fracn1 =
169 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
170 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 1),
171 };
172 
173 static const struct intel_mpllb_state dg2_dp_uhbr10_100 = {
174 	.clock = 1000000,
175 	.ref_control =
176 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
177 	.mpllb_cp =
178 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
179 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 21) |
180 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
181 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
182 	.mpllb_div =
183 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
184 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV_CLK_EN, 1) |
185 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV_MULTIPLIER, 8) |
186 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
187 		REG_FIELD_PREP(SNPS_PHY_MPLLB_WORD_DIV2_EN, 1) |
188 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DP2_MODE, 1) |
189 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
190 	.mpllb_div2 =
191 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
192 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 368),
193 	.mpllb_fracn1 =
194 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
195 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 1),
196 
197 	/*
198 	 * SSC will be enabled, DP UHBR has a minimum SSC requirement.
199 	 */
200 	.mpllb_sscen =
201 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_EN, 1) |
202 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_PEAK, 58982),
203 	.mpllb_sscstep =
204 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_STEPSIZE, 76101),
205 };
206 
207 static const struct intel_mpllb_state dg2_dp_uhbr13_100 = {
208 	.clock = 1350000,
209 	.ref_control =
210 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
211 	.mpllb_cp =
212 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 5) |
213 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 45) |
214 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
215 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
216 	.mpllb_div =
217 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
218 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV_CLK_EN, 1) |
219 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV_MULTIPLIER, 8) |
220 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
221 		REG_FIELD_PREP(SNPS_PHY_MPLLB_WORD_DIV2_EN, 1) |
222 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DP2_MODE, 1) |
223 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 3),
224 	.mpllb_div2 =
225 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
226 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 508),
227 	.mpllb_fracn1 =
228 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
229 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 1),
230 
231 	/*
232 	 * SSC will be enabled, DP UHBR has a minimum SSC requirement.
233 	 */
234 	.mpllb_sscen =
235 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_EN, 1) |
236 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_PEAK, 79626),
237 	.mpllb_sscstep =
238 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_STEPSIZE, 102737),
239 };
240 
241 static const struct intel_mpllb_state * const dg2_dp_100_tables[] = {
242 	&dg2_dp_rbr_100,
243 	&dg2_dp_hbr1_100,
244 	&dg2_dp_hbr2_100,
245 	&dg2_dp_hbr3_100,
246 	&dg2_dp_uhbr10_100,
247 	&dg2_dp_uhbr13_100,
248 	NULL,
249 };
250 
251 /*
252  * Basic DP link rates with 38.4 MHz reference clock.
253  */
254 
255 static const struct intel_mpllb_state dg2_dp_rbr_38_4 = {
256 	.clock = 162000,
257 	.ref_control =
258 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 1),
259 	.mpllb_cp =
260 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 5) |
261 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 25) |
262 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
263 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
264 	.mpllb_div =
265 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
266 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 2) |
267 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
268 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
269 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 2),
270 	.mpllb_div2 =
271 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 1) |
272 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 304),
273 	.mpllb_fracn1 =
274 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
275 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
276 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 1),
277 	.mpllb_fracn2 =
278 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 49152),
279 };
280 
281 static const struct intel_mpllb_state dg2_dp_hbr1_38_4 = {
282 	.clock = 270000,
283 	.ref_control =
284 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 1),
285 	.mpllb_cp =
286 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 5) |
287 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 25) |
288 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
289 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
290 	.mpllb_div =
291 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
292 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 1) |
293 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
294 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
295 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 3),
296 	.mpllb_div2 =
297 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 1) |
298 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 248),
299 	.mpllb_fracn1 =
300 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
301 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
302 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 1),
303 	.mpllb_fracn2 =
304 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 40960),
305 };
306 
307 static const struct intel_mpllb_state dg2_dp_hbr2_38_4 = {
308 	.clock = 540000,
309 	.ref_control =
310 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 1),
311 	.mpllb_cp =
312 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 5) |
313 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 25) |
314 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
315 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
316 	.mpllb_div =
317 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
318 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
319 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
320 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 3),
321 	.mpllb_div2 =
322 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 1) |
323 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 248),
324 	.mpllb_fracn1 =
325 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
326 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
327 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 1),
328 	.mpllb_fracn2 =
329 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 40960),
330 };
331 
332 static const struct intel_mpllb_state dg2_dp_hbr3_38_4 = {
333 	.clock = 810000,
334 	.ref_control =
335 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 1),
336 	.mpllb_cp =
337 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 6) |
338 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 26) |
339 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
340 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
341 	.mpllb_div =
342 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
343 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
344 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
345 	.mpllb_div2 =
346 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 1) |
347 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 388),
348 	.mpllb_fracn1 =
349 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
350 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
351 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 1),
352 	.mpllb_fracn2 =
353 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 61440),
354 };
355 
356 static const struct intel_mpllb_state dg2_dp_uhbr10_38_4 = {
357 	.clock = 1000000,
358 	.ref_control =
359 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 1),
360 	.mpllb_cp =
361 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 5) |
362 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 26) |
363 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
364 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
365 	.mpllb_div =
366 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
367 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV_CLK_EN, 1) |
368 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV_MULTIPLIER, 8) |
369 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
370 		REG_FIELD_PREP(SNPS_PHY_MPLLB_WORD_DIV2_EN, 1) |
371 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DP2_MODE, 1) |
372 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
373 	.mpllb_div2 =
374 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 1) |
375 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 488),
376 	.mpllb_fracn1 =
377 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
378 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
379 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 3),
380 	.mpllb_fracn2 =
381 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 2) |
382 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 27306),
383 
384 	/*
385 	 * SSC will be enabled, DP UHBR has a minimum SSC requirement.
386 	 */
387 	.mpllb_sscen =
388 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_EN, 1) |
389 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_PEAK, 76800),
390 	.mpllb_sscstep =
391 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_STEPSIZE, 129024),
392 };
393 
394 static const struct intel_mpllb_state dg2_dp_uhbr13_38_4 = {
395 	.clock = 1350000,
396 	.ref_control =
397 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 1),
398 	.mpllb_cp =
399 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 6) |
400 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 56) |
401 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
402 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
403 	.mpllb_div =
404 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
405 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV_CLK_EN, 1) |
406 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV_MULTIPLIER, 8) |
407 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
408 		REG_FIELD_PREP(SNPS_PHY_MPLLB_WORD_DIV2_EN, 1) |
409 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DP2_MODE, 1) |
410 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 3),
411 	.mpllb_div2 =
412 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 1) |
413 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 670),
414 	.mpllb_fracn1 =
415 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
416 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
417 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 1),
418 	.mpllb_fracn2 =
419 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 36864),
420 
421 	/*
422 	 * SSC will be enabled, DP UHBR has a minimum SSC requirement.
423 	 */
424 	.mpllb_sscen =
425 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_EN, 1) |
426 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_PEAK, 103680),
427 	.mpllb_sscstep =
428 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_STEPSIZE, 174182),
429 };
430 
431 static const struct intel_mpllb_state * const dg2_dp_38_4_tables[] = {
432 	&dg2_dp_rbr_38_4,
433 	&dg2_dp_hbr1_38_4,
434 	&dg2_dp_hbr2_38_4,
435 	&dg2_dp_hbr3_38_4,
436 	&dg2_dp_uhbr10_38_4,
437 	&dg2_dp_uhbr13_38_4,
438 	NULL,
439 };
440 
441 /*
442  * eDP link rates with 100 MHz reference clock.
443  */
444 
445 static const struct intel_mpllb_state dg2_edp_r216 = {
446 	.clock = 216000,
447 	.ref_control =
448 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
449 	.mpllb_cp =
450 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
451 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 19) |
452 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
453 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
454 	.mpllb_div =
455 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
456 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 2) |
457 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
458 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
459 	.mpllb_div2 =
460 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
461 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 312),
462 	.mpllb_fracn1 =
463 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
464 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
465 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
466 	.mpllb_fracn2 =
467 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 52428) |
468 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 4),
469 	.mpllb_sscen =
470 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_EN, 1) |
471 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_PEAK, 50961),
472 	.mpllb_sscstep =
473 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_STEPSIZE, 65752),
474 };
475 
476 static const struct intel_mpllb_state dg2_edp_r243 = {
477 	.clock = 243000,
478 	.ref_control =
479 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
480 	.mpllb_cp =
481 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
482 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 20) |
483 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
484 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
485 	.mpllb_div =
486 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
487 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 2) |
488 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
489 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
490 	.mpllb_div2 =
491 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
492 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 356),
493 	.mpllb_fracn1 =
494 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
495 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
496 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
497 	.mpllb_fracn2 =
498 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 26214) |
499 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 2),
500 	.mpllb_sscen =
501 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_EN, 1) |
502 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_PEAK, 57331),
503 	.mpllb_sscstep =
504 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_STEPSIZE, 73971),
505 };
506 
507 static const struct intel_mpllb_state dg2_edp_r324 = {
508 	.clock = 324000,
509 	.ref_control =
510 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
511 	.mpllb_cp =
512 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
513 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 20) |
514 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
515 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
516 	.mpllb_div =
517 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
518 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 1) |
519 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
520 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
521 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 2),
522 	.mpllb_div2 =
523 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
524 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 226),
525 	.mpllb_fracn1 =
526 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
527 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
528 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
529 	.mpllb_fracn2 =
530 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 39321) |
531 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 3),
532 	.mpllb_sscen =
533 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_EN, 1) |
534 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_PEAK, 38221),
535 	.mpllb_sscstep =
536 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_STEPSIZE, 49314),
537 };
538 
539 static const struct intel_mpllb_state dg2_edp_r432 = {
540 	.clock = 432000,
541 	.ref_control =
542 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
543 	.mpllb_cp =
544 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
545 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 19) |
546 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 65) |
547 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 127),
548 	.mpllb_div =
549 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
550 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 1) |
551 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
552 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
553 	.mpllb_div2 =
554 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 2) |
555 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 312),
556 	.mpllb_fracn1 =
557 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
558 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
559 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
560 	.mpllb_fracn2 =
561 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 52428) |
562 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 4),
563 	.mpllb_sscen =
564 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_EN, 1) |
565 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_PEAK, 50961),
566 	.mpllb_sscstep =
567 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_STEPSIZE, 65752),
568 };
569 
570 static const struct intel_mpllb_state * const dg2_edp_tables[] = {
571 	&dg2_dp_rbr_100,
572 	&dg2_edp_r216,
573 	&dg2_edp_r243,
574 	&dg2_dp_hbr1_100,
575 	&dg2_edp_r324,
576 	&dg2_edp_r432,
577 	&dg2_dp_hbr2_100,
578 	&dg2_dp_hbr3_100,
579 	NULL,
580 };
581 
582 /*
583  * HDMI link rates with 100 MHz reference clock.
584  */
585 
586 static const struct intel_mpllb_state dg2_hdmi_25_175 = {
587 	.clock = 25175,
588 	.ref_control =
589 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
590 	.mpllb_cp =
591 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 5) |
592 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 15) |
593 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 64) |
594 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 124),
595 	.mpllb_div =
596 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
597 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 5) |
598 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
599 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
600 	.mpllb_div2 =
601 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 1) |
602 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 128) |
603 		REG_FIELD_PREP(SNPS_PHY_MPLLB_HDMI_DIV, 1),
604 	.mpllb_fracn1 =
605 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
606 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
607 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 143),
608 	.mpllb_fracn2 =
609 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 36663) |
610 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 71),
611 	.mpllb_sscen =
612 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_UP_SPREAD, 1),
613 };
614 
615 static const struct intel_mpllb_state dg2_hdmi_27_0 = {
616 	.clock = 27000,
617 	.ref_control =
618 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
619 	.mpllb_cp =
620 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 5) |
621 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 15) |
622 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 64) |
623 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 124),
624 	.mpllb_div =
625 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
626 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 5) |
627 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
628 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2),
629 	.mpllb_div2 =
630 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 1) |
631 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 140) |
632 		REG_FIELD_PREP(SNPS_PHY_MPLLB_HDMI_DIV, 1),
633 	.mpllb_fracn1 =
634 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
635 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
636 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
637 	.mpllb_fracn2 =
638 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 26214) |
639 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 2),
640 	.mpllb_sscen =
641 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_UP_SPREAD, 1),
642 };
643 
644 static const struct intel_mpllb_state dg2_hdmi_74_25 = {
645 	.clock = 74250,
646 	.ref_control =
647 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
648 	.mpllb_cp =
649 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
650 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 15) |
651 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 64) |
652 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 124),
653 	.mpllb_div =
654 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
655 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 3) |
656 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
657 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
658 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 3),
659 	.mpllb_div2 =
660 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 1) |
661 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 86) |
662 		REG_FIELD_PREP(SNPS_PHY_MPLLB_HDMI_DIV, 1),
663 	.mpllb_fracn1 =
664 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
665 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
666 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
667 	.mpllb_fracn2 =
668 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 26214) |
669 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 2),
670 	.mpllb_sscen =
671 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_UP_SPREAD, 1),
672 };
673 
674 static const struct intel_mpllb_state dg2_hdmi_148_5 = {
675 	.clock = 148500,
676 	.ref_control =
677 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
678 	.mpllb_cp =
679 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
680 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 15) |
681 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 64) |
682 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 124),
683 	.mpllb_div =
684 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
685 		REG_FIELD_PREP(SNPS_PHY_MPLLB_TX_CLK_DIV, 2) |
686 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
687 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
688 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 3),
689 	.mpllb_div2 =
690 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 1) |
691 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 86) |
692 		REG_FIELD_PREP(SNPS_PHY_MPLLB_HDMI_DIV, 1),
693 	.mpllb_fracn1 =
694 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
695 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
696 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
697 	.mpllb_fracn2 =
698 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 26214) |
699 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 2),
700 	.mpllb_sscen =
701 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_UP_SPREAD, 1),
702 };
703 
704 static const struct intel_mpllb_state dg2_hdmi_594 = {
705 	.clock = 594000,
706 	.ref_control =
707 		REG_FIELD_PREP(SNPS_PHY_REF_CONTROL_REF_RANGE, 3),
708 	.mpllb_cp =
709 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT, 4) |
710 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP, 15) |
711 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_INT_GS, 64) |
712 		REG_FIELD_PREP(SNPS_PHY_MPLLB_CP_PROP_GS, 124),
713 	.mpllb_div =
714 		REG_FIELD_PREP(SNPS_PHY_MPLLB_DIV5_CLK_EN, 1) |
715 		REG_FIELD_PREP(SNPS_PHY_MPLLB_PMIX_EN, 1) |
716 		REG_FIELD_PREP(SNPS_PHY_MPLLB_V2I, 2) |
717 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FREQ_VCO, 3),
718 	.mpllb_div2 =
719 		REG_FIELD_PREP(SNPS_PHY_MPLLB_REF_CLK_DIV, 1) |
720 		REG_FIELD_PREP(SNPS_PHY_MPLLB_MULTIPLIER, 86) |
721 		REG_FIELD_PREP(SNPS_PHY_MPLLB_HDMI_DIV, 1),
722 	.mpllb_fracn1 =
723 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_CGG_UPDATE_EN, 1) |
724 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_EN, 1) |
725 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_DEN, 5),
726 	.mpllb_fracn2 =
727 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_QUOT, 26214) |
728 		REG_FIELD_PREP(SNPS_PHY_MPLLB_FRACN_REM, 2),
729 	.mpllb_sscen =
730 		REG_FIELD_PREP(SNPS_PHY_MPLLB_SSC_UP_SPREAD, 1),
731 };
732 
733 static const struct intel_mpllb_state * const dg2_hdmi_tables[] = {
734 	&dg2_hdmi_25_175,
735 	&dg2_hdmi_27_0,
736 	&dg2_hdmi_74_25,
737 	&dg2_hdmi_148_5,
738 	&dg2_hdmi_594,
739 	NULL,
740 };
741 
742 static const struct intel_mpllb_state * const *
743 intel_mpllb_tables_get(struct intel_crtc_state *crtc_state,
744 		       struct intel_encoder *encoder)
745 {
746 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) {
747 		return dg2_edp_tables;
748 	} else if (intel_crtc_has_dp_encoder(crtc_state)) {
749 		/*
750 		 * FIXME: Initially we're just enabling the "combo" outputs on
751 		 * port A-D.  The MPLLB for those ports takes an input from the
752 		 * "Display Filter PLL" which always has an output frequency
753 		 * of 100 MHz, hence the use of the _100 tables below.
754 		 *
755 		 * Once we enable port TC1 it will either use the same 100 MHz
756 		 * "Display Filter PLL" (when strapped to support a native
757 		 * display connection) or different 38.4 MHz "Filter PLL" when
758 		 * strapped to support a USB connection, so we'll need to check
759 		 * that to determine which table to use.
760 		 */
761 		if (0)
762 			return dg2_dp_38_4_tables;
763 		else
764 			return dg2_dp_100_tables;
765 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
766 		return dg2_hdmi_tables;
767 	}
768 
769 	MISSING_CASE(encoder->type);
770 	return NULL;
771 }
772 
773 int intel_mpllb_calc_state(struct intel_crtc_state *crtc_state,
774 			   struct intel_encoder *encoder)
775 {
776 	const struct intel_mpllb_state * const *tables;
777 	int i;
778 
779 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
780 		if (intel_snps_phy_check_hdmi_link_rate(crtc_state->port_clock)
781 		    != MODE_OK) {
782 			/*
783 			 * FIXME: Can only support fixed HDMI frequencies
784 			 * until we have a proper algorithm under a valid
785 			 * license.
786 			 */
787 			DRM_DEBUG_KMS("Can't support HDMI link rate %d\n",
788 				      crtc_state->port_clock);
789 			return -EINVAL;
790 		}
791 	}
792 
793 	tables = intel_mpllb_tables_get(crtc_state, encoder);
794 	if (!tables)
795 		return -EINVAL;
796 
797 	for (i = 0; tables[i]; i++) {
798 		if (crtc_state->port_clock <= tables[i]->clock) {
799 			crtc_state->mpllb_state = *tables[i];
800 			return 0;
801 		}
802 	}
803 
804 	return -EINVAL;
805 }
806 
807 void intel_mpllb_enable(struct intel_encoder *encoder,
808 			const struct intel_crtc_state *crtc_state)
809 {
810 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
811 	const struct intel_mpllb_state *pll_state = &crtc_state->mpllb_state;
812 	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
813 	i915_reg_t enable_reg = (phy <= PHY_D ?
814 				 DG2_PLL_ENABLE(phy) : MG_PLL_ENABLE(0));
815 
816 	/*
817 	 * 3. Software programs the following PLL registers for the desired
818 	 * frequency.
819 	 */
820 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_CP(phy), pll_state->mpllb_cp);
821 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_DIV(phy), pll_state->mpllb_div);
822 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_DIV2(phy), pll_state->mpllb_div2);
823 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_SSCEN(phy), pll_state->mpllb_sscen);
824 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_SSCSTEP(phy), pll_state->mpllb_sscstep);
825 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_FRACN1(phy), pll_state->mpllb_fracn1);
826 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_FRACN2(phy), pll_state->mpllb_fracn2);
827 
828 	/*
829 	 * 4. If the frequency will result in a change to the voltage
830 	 * requirement, follow the Display Voltage Frequency Switching -
831 	 * Sequence Before Frequency Change.
832 	 *
833 	 * We handle this step in bxt_set_cdclk().
834 	 */
835 
836 	/* 5. Software sets DPLL_ENABLE [PLL Enable] to "1". */
837 	intel_uncore_rmw(&dev_priv->uncore, enable_reg, 0, PLL_ENABLE);
838 
839 	/*
840 	 * 9. Software sets SNPS_PHY_MPLLB_DIV dp_mpllb_force_en to "1". This
841 	 * will keep the PLL running during the DDI lane programming and any
842 	 * typeC DP cable disconnect. Do not set the force before enabling the
843 	 * PLL because that will start the PLL before it has sampled the
844 	 * divider values.
845 	 */
846 	intel_de_write(dev_priv, SNPS_PHY_MPLLB_DIV(phy),
847 		       pll_state->mpllb_div | SNPS_PHY_MPLLB_FORCE_EN);
848 
849 	/*
850 	 * 10. Software polls on register DPLL_ENABLE [PLL Lock] to confirm PLL
851 	 * is locked at new settings. This register bit is sampling PHY
852 	 * dp_mpllb_state interface signal.
853 	 */
854 	if (intel_de_wait_for_set(dev_priv, enable_reg, PLL_LOCK, 5))
855 		DRM_ERROR("Port %c PLL not locked\n", phy_name(phy));
856 
857 	/*
858 	 * 11. If the frequency will result in a change to the voltage
859 	 * requirement, follow the Display Voltage Frequency Switching -
860 	 * Sequence After Frequency Change.
861 	 *
862 	 * We handle this step in bxt_set_cdclk().
863 	 */
864 }
865 
866 void intel_mpllb_disable(struct intel_encoder *encoder)
867 {
868 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
869 	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
870 	i915_reg_t enable_reg = (phy <= PHY_D ?
871 				 DG2_PLL_ENABLE(phy) : MG_PLL_ENABLE(0));
872 
873 	/*
874 	 * 1. If the frequency will result in a change to the voltage
875 	 * requirement, follow the Display Voltage Frequency Switching -
876 	 * Sequence Before Frequency Change.
877 	 *
878 	 * We handle this step in bxt_set_cdclk().
879 	 */
880 
881 	/* 2. Software programs DPLL_ENABLE [PLL Enable] to "0" */
882 	intel_uncore_rmw(&dev_priv->uncore, enable_reg, PLL_ENABLE, 0);
883 
884 	/*
885 	 * 4. Software programs SNPS_PHY_MPLLB_DIV dp_mpllb_force_en to "0".
886 	 * This will allow the PLL to stop running.
887 	 */
888 	intel_uncore_rmw(&dev_priv->uncore, SNPS_PHY_MPLLB_DIV(phy),
889 			 SNPS_PHY_MPLLB_FORCE_EN, 0);
890 
891 	/*
892 	 * 5. Software polls DPLL_ENABLE [PLL Lock] for PHY acknowledgment
893 	 * (dp_txX_ack) that the new transmitter setting request is completed.
894 	 */
895 	if (intel_de_wait_for_clear(dev_priv, enable_reg, PLL_LOCK, 5))
896 		DRM_ERROR("Port %c PLL not locked\n", phy_name(phy));
897 
898 	/*
899 	 * 6. If the frequency will result in a change to the voltage
900 	 * requirement, follow the Display Voltage Frequency Switching -
901 	 * Sequence After Frequency Change.
902 	 *
903 	 * We handle this step in bxt_set_cdclk().
904 	 */
905 }
906 
907 int intel_mpllb_calc_port_clock(struct intel_encoder *encoder,
908 				const struct intel_mpllb_state *pll_state)
909 {
910 	unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
911 	unsigned int multiplier, tx_clk_div, refclk;
912 	bool frac_en;
913 
914 	if (0)
915 		refclk = 38400;
916 	else
917 		refclk = 100000;
918 
919 	refclk >>= REG_FIELD_GET(SNPS_PHY_MPLLB_REF_CLK_DIV, pll_state->mpllb_div2) - 1;
920 
921 	frac_en = REG_FIELD_GET(SNPS_PHY_MPLLB_FRACN_EN, pll_state->mpllb_fracn1);
922 
923 	if (frac_en) {
924 		frac_quot = REG_FIELD_GET(SNPS_PHY_MPLLB_FRACN_QUOT, pll_state->mpllb_fracn2);
925 		frac_rem = REG_FIELD_GET(SNPS_PHY_MPLLB_FRACN_REM, pll_state->mpllb_fracn2);
926 		frac_den = REG_FIELD_GET(SNPS_PHY_MPLLB_FRACN_DEN, pll_state->mpllb_fracn1);
927 	}
928 
929 	multiplier = REG_FIELD_GET(SNPS_PHY_MPLLB_MULTIPLIER, pll_state->mpllb_div2) / 2 + 16;
930 
931 	tx_clk_div = REG_FIELD_GET(SNPS_PHY_MPLLB_TX_CLK_DIV, pll_state->mpllb_div);
932 
933 	return DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, (multiplier << 16) + frac_quot) +
934 				     DIV_ROUND_CLOSEST(refclk * frac_rem, frac_den),
935 				     10 << (tx_clk_div + 16));
936 }
937 
938 void intel_mpllb_readout_hw_state(struct intel_encoder *encoder,
939 				  struct intel_mpllb_state *pll_state)
940 {
941 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
942 	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
943 
944 	pll_state->mpllb_cp = intel_de_read(dev_priv, SNPS_PHY_MPLLB_CP(phy));
945 	pll_state->mpllb_div = intel_de_read(dev_priv, SNPS_PHY_MPLLB_DIV(phy));
946 	pll_state->mpllb_div2 = intel_de_read(dev_priv, SNPS_PHY_MPLLB_DIV2(phy));
947 	pll_state->mpllb_sscen = intel_de_read(dev_priv, SNPS_PHY_MPLLB_SSCEN(phy));
948 	pll_state->mpllb_sscstep = intel_de_read(dev_priv, SNPS_PHY_MPLLB_SSCSTEP(phy));
949 	pll_state->mpllb_fracn1 = intel_de_read(dev_priv, SNPS_PHY_MPLLB_FRACN1(phy));
950 	pll_state->mpllb_fracn2 = intel_de_read(dev_priv, SNPS_PHY_MPLLB_FRACN2(phy));
951 
952 	/*
953 	 * REF_CONTROL is under firmware control and never programmed by the
954 	 * driver; we read it only for sanity checking purposes.  The bspec
955 	 * only tells us the expected value for one field in this register,
956 	 * so we'll only read out those specific bits here.
957 	 */
958 	pll_state->ref_control = intel_de_read(dev_priv, SNPS_PHY_REF_CONTROL(phy)) &
959 		SNPS_PHY_REF_CONTROL_REF_RANGE;
960 
961 	/*
962 	 * MPLLB_DIV is programmed twice, once with the software-computed
963 	 * state, then again with the MPLLB_FORCE_EN bit added.  Drop that
964 	 * extra bit during readout so that we return the actual expected
965 	 * software state.
966 	 */
967 	pll_state->mpllb_div &= ~SNPS_PHY_MPLLB_FORCE_EN;
968 }
969 
970 int intel_snps_phy_check_hdmi_link_rate(int clock)
971 {
972 	const struct intel_mpllb_state * const *tables = dg2_hdmi_tables;
973 	int i;
974 
975 	for (i = 0; tables[i]; i++) {
976 		if (clock == tables[i]->clock)
977 			return MODE_OK;
978 	}
979 
980 	return MODE_CLOCK_RANGE;
981 }
982