1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * (C) COPYRIGHT 2018 ARM Limited. All rights reserved.
4  * Author: James.Qian.Wang <james.qian.wang@arm.com>
5  *
6  */
7 #include "d71_dev.h"
8 #include "komeda_kms.h"
9 #include "malidp_io.h"
10 #include "komeda_framebuffer.h"
11 #include "komeda_color_mgmt.h"
12 
13 static void get_resources_id(u32 hw_id, u32 *pipe_id, u32 *comp_id)
14 {
15 	u32 id = BLOCK_INFO_BLK_ID(hw_id);
16 	u32 pipe = id;
17 
18 	switch (BLOCK_INFO_BLK_TYPE(hw_id)) {
19 	case D71_BLK_TYPE_LPU_WB_LAYER:
20 		id = KOMEDA_COMPONENT_WB_LAYER;
21 		break;
22 	case D71_BLK_TYPE_CU_SPLITTER:
23 		id = KOMEDA_COMPONENT_SPLITTER;
24 		break;
25 	case D71_BLK_TYPE_CU_SCALER:
26 		pipe = id / D71_PIPELINE_MAX_SCALERS;
27 		id %= D71_PIPELINE_MAX_SCALERS;
28 		id += KOMEDA_COMPONENT_SCALER0;
29 		break;
30 	case D71_BLK_TYPE_CU:
31 		id += KOMEDA_COMPONENT_COMPIZ0;
32 		break;
33 	case D71_BLK_TYPE_LPU_LAYER:
34 		pipe = id / D71_PIPELINE_MAX_LAYERS;
35 		id %= D71_PIPELINE_MAX_LAYERS;
36 		id += KOMEDA_COMPONENT_LAYER0;
37 		break;
38 	case D71_BLK_TYPE_DOU_IPS:
39 		id += KOMEDA_COMPONENT_IPS0;
40 		break;
41 	case D71_BLK_TYPE_CU_MERGER:
42 		id = KOMEDA_COMPONENT_MERGER;
43 		break;
44 	case D71_BLK_TYPE_DOU:
45 		id = KOMEDA_COMPONENT_TIMING_CTRLR;
46 		break;
47 	default:
48 		id = 0xFFFFFFFF;
49 	}
50 
51 	if (comp_id)
52 		*comp_id = id;
53 
54 	if (pipe_id)
55 		*pipe_id = pipe;
56 }
57 
58 static u32 get_valid_inputs(struct block_header *blk)
59 {
60 	u32 valid_inputs = 0, comp_id;
61 	int i;
62 
63 	for (i = 0; i < PIPELINE_INFO_N_VALID_INPUTS(blk->pipeline_info); i++) {
64 		get_resources_id(blk->input_ids[i], NULL, &comp_id);
65 		if (comp_id == 0xFFFFFFFF)
66 			continue;
67 		valid_inputs |= BIT(comp_id);
68 	}
69 
70 	return valid_inputs;
71 }
72 
73 static void get_values_from_reg(void __iomem *reg, u32 offset,
74 				u32 count, u32 *val)
75 {
76 	u32 i, addr;
77 
78 	for (i = 0; i < count; i++) {
79 		addr = offset + (i << 2);
80 		/* 0xA4 is WO register */
81 		if (addr != 0xA4)
82 			val[i] = malidp_read32(reg, addr);
83 		else
84 			val[i] = 0xDEADDEAD;
85 	}
86 }
87 
88 static void dump_block_header(struct seq_file *sf, void __iomem *reg)
89 {
90 	struct block_header hdr;
91 	u32 i, n_input, n_output;
92 
93 	d71_read_block_header(reg, &hdr);
94 	seq_printf(sf, "BLOCK_INFO:\t\t0x%X\n", hdr.block_info);
95 	seq_printf(sf, "PIPELINE_INFO:\t\t0x%X\n", hdr.pipeline_info);
96 
97 	n_output = PIPELINE_INFO_N_OUTPUTS(hdr.pipeline_info);
98 	n_input  = PIPELINE_INFO_N_VALID_INPUTS(hdr.pipeline_info);
99 
100 	for (i = 0; i < n_input; i++)
101 		seq_printf(sf, "VALID_INPUT_ID%u:\t0x%X\n",
102 			   i, hdr.input_ids[i]);
103 
104 	for (i = 0; i < n_output; i++)
105 		seq_printf(sf, "OUTPUT_ID%u:\t\t0x%X\n",
106 			   i, hdr.output_ids[i]);
107 }
108 
109 /* On D71, we are using the global line size. From D32, every component have
110  * a line size register to indicate the fifo size.
111  */
112 static u32 __get_blk_line_size(struct d71_dev *d71, u32 __iomem *reg,
113 			       u32 max_default)
114 {
115 	if (!d71->periph_addr)
116 		max_default = malidp_read32(reg, BLK_MAX_LINE_SIZE);
117 
118 	return max_default;
119 }
120 
121 static u32 get_blk_line_size(struct d71_dev *d71, u32 __iomem *reg)
122 {
123 	return __get_blk_line_size(d71, reg, d71->max_line_size);
124 }
125 
126 static u32 to_rot_ctrl(u32 rot)
127 {
128 	u32 lr_ctrl = 0;
129 
130 	switch (rot & DRM_MODE_ROTATE_MASK) {
131 	case DRM_MODE_ROTATE_0:
132 		lr_ctrl |= L_ROT(L_ROT_R0);
133 		break;
134 	case DRM_MODE_ROTATE_90:
135 		lr_ctrl |= L_ROT(L_ROT_R90);
136 		break;
137 	case DRM_MODE_ROTATE_180:
138 		lr_ctrl |= L_ROT(L_ROT_R180);
139 		break;
140 	case DRM_MODE_ROTATE_270:
141 		lr_ctrl |= L_ROT(L_ROT_R270);
142 		break;
143 	}
144 
145 	if (rot & DRM_MODE_REFLECT_X)
146 		lr_ctrl |= L_HFLIP;
147 	if (rot & DRM_MODE_REFLECT_Y)
148 		lr_ctrl |= L_VFLIP;
149 
150 	return lr_ctrl;
151 }
152 
153 static u32 to_ad_ctrl(u64 modifier)
154 {
155 	u32 afbc_ctrl = AD_AEN;
156 
157 	if (!modifier)
158 		return 0;
159 
160 	if ((modifier & AFBC_FORMAT_MOD_BLOCK_SIZE_MASK) ==
161 	    AFBC_FORMAT_MOD_BLOCK_SIZE_32x8)
162 		afbc_ctrl |= AD_WB;
163 
164 	if (modifier & AFBC_FORMAT_MOD_YTR)
165 		afbc_ctrl |= AD_YT;
166 	if (modifier & AFBC_FORMAT_MOD_SPLIT)
167 		afbc_ctrl |= AD_BS;
168 	if (modifier & AFBC_FORMAT_MOD_TILED)
169 		afbc_ctrl |= AD_TH;
170 
171 	return afbc_ctrl;
172 }
173 
174 static inline u32 to_d71_input_id(struct komeda_component_state *st, int idx)
175 {
176 	struct komeda_component_output *input = &st->inputs[idx];
177 
178 	/* if input is not active, set hw input_id(0) to disable it */
179 	if (has_bit(idx, st->active_inputs))
180 		return input->component->hw_id + input->output_port;
181 	else
182 		return 0;
183 }
184 
185 static void d71_layer_update_fb(struct komeda_component *c,
186 				struct komeda_fb *kfb,
187 				dma_addr_t *addr)
188 {
189 	struct drm_framebuffer *fb = &kfb->base;
190 	const struct drm_format_info *info = fb->format;
191 	u32 __iomem *reg = c->reg;
192 	int block_h;
193 
194 	if (info->num_planes > 2)
195 		malidp_write64(reg, BLK_P2_PTR_LOW, addr[2]);
196 
197 	if (info->num_planes > 1) {
198 		block_h = drm_format_info_block_height(info, 1);
199 		malidp_write32(reg, BLK_P1_STRIDE, fb->pitches[1] * block_h);
200 		malidp_write64(reg, BLK_P1_PTR_LOW, addr[1]);
201 	}
202 
203 	block_h = drm_format_info_block_height(info, 0);
204 	malidp_write32(reg, BLK_P0_STRIDE, fb->pitches[0] * block_h);
205 	malidp_write64(reg, BLK_P0_PTR_LOW, addr[0]);
206 	malidp_write32(reg, LAYER_FMT, kfb->format_caps->hw_id);
207 }
208 
209 static void d71_layer_disable(struct komeda_component *c)
210 {
211 	malidp_write32_mask(c->reg, BLK_CONTROL, L_EN, 0);
212 }
213 
214 static void d71_layer_update(struct komeda_component *c,
215 			     struct komeda_component_state *state)
216 {
217 	struct komeda_layer_state *st = to_layer_st(state);
218 	struct drm_plane_state *plane_st = state->plane->state;
219 	struct drm_framebuffer *fb = plane_st->fb;
220 	struct komeda_fb *kfb = to_kfb(fb);
221 	u32 __iomem *reg = c->reg;
222 	u32 ctrl_mask = L_EN | L_ROT(L_ROT_R270) | L_HFLIP | L_VFLIP | L_TBU_EN;
223 	u32 ctrl = L_EN | to_rot_ctrl(st->rot);
224 
225 	d71_layer_update_fb(c, kfb, st->addr);
226 
227 	malidp_write32(reg, AD_CONTROL, to_ad_ctrl(fb->modifier));
228 	if (fb->modifier) {
229 		u64 addr;
230 
231 		malidp_write32(reg, LAYER_AD_H_CROP, HV_CROP(st->afbc_crop_l,
232 							     st->afbc_crop_r));
233 		malidp_write32(reg, LAYER_AD_V_CROP, HV_CROP(st->afbc_crop_t,
234 							     st->afbc_crop_b));
235 		/* afbc 1.2 wants payload, afbc 1.0/1.1 wants end_addr */
236 		if (fb->modifier & AFBC_FORMAT_MOD_TILED)
237 			addr = st->addr[0] + kfb->offset_payload;
238 		else
239 			addr = st->addr[0] + kfb->afbc_size - 1;
240 
241 		malidp_write32(reg, BLK_P1_PTR_LOW, lower_32_bits(addr));
242 		malidp_write32(reg, BLK_P1_PTR_HIGH, upper_32_bits(addr));
243 	}
244 
245 	if (fb->format->is_yuv) {
246 		u32 upsampling = 0;
247 
248 		switch (kfb->format_caps->fourcc) {
249 		case DRM_FORMAT_YUYV:
250 			upsampling = fb->modifier ? LR_CHI422_BILINEAR :
251 				     LR_CHI422_REPLICATION;
252 			break;
253 		case DRM_FORMAT_UYVY:
254 			upsampling = LR_CHI422_REPLICATION;
255 			break;
256 		case DRM_FORMAT_NV12:
257 		case DRM_FORMAT_YUV420_8BIT:
258 		case DRM_FORMAT_YUV420_10BIT:
259 		case DRM_FORMAT_YUV420:
260 		case DRM_FORMAT_P010:
261 		/* these fmt support MPGE/JPEG both, here perfer JPEG*/
262 			upsampling = LR_CHI420_JPEG;
263 			break;
264 		case DRM_FORMAT_X0L2:
265 			upsampling = LR_CHI420_JPEG;
266 			break;
267 		default:
268 			break;
269 		}
270 
271 		malidp_write32(reg, LAYER_R_CONTROL, upsampling);
272 		malidp_write_group(reg, LAYER_YUV_RGB_COEFF0,
273 				   KOMEDA_N_YUV2RGB_COEFFS,
274 				   komeda_select_yuv2rgb_coeffs(
275 					plane_st->color_encoding,
276 					plane_st->color_range));
277 	}
278 
279 	malidp_write32(reg, BLK_IN_SIZE, HV_SIZE(st->hsize, st->vsize));
280 
281 	if (kfb->is_va)
282 		ctrl |= L_TBU_EN;
283 	malidp_write32_mask(reg, BLK_CONTROL, ctrl_mask, ctrl);
284 }
285 
286 static void d71_layer_dump(struct komeda_component *c, struct seq_file *sf)
287 {
288 	u32 v[15], i;
289 	bool rich, rgb2rgb;
290 	char *prefix;
291 
292 	get_values_from_reg(c->reg, LAYER_INFO, 1, &v[14]);
293 	if (v[14] & 0x1) {
294 		rich = true;
295 		prefix = "LR_";
296 	} else {
297 		rich = false;
298 		prefix = "LS_";
299 	}
300 
301 	rgb2rgb = !!(v[14] & L_INFO_CM);
302 
303 	dump_block_header(sf, c->reg);
304 
305 	seq_printf(sf, "%sLAYER_INFO:\t\t0x%X\n", prefix, v[14]);
306 
307 	get_values_from_reg(c->reg, 0xD0, 1, v);
308 	seq_printf(sf, "%sCONTROL:\t\t0x%X\n", prefix, v[0]);
309 	if (rich) {
310 		get_values_from_reg(c->reg, 0xD4, 1, v);
311 		seq_printf(sf, "LR_RICH_CONTROL:\t0x%X\n", v[0]);
312 	}
313 	get_values_from_reg(c->reg, 0xD8, 4, v);
314 	seq_printf(sf, "%sFORMAT:\t\t0x%X\n", prefix, v[0]);
315 	seq_printf(sf, "%sIT_COEFFTAB:\t\t0x%X\n", prefix, v[1]);
316 	seq_printf(sf, "%sIN_SIZE:\t\t0x%X\n", prefix, v[2]);
317 	seq_printf(sf, "%sPALPHA:\t\t0x%X\n", prefix, v[3]);
318 
319 	get_values_from_reg(c->reg, 0x100, 3, v);
320 	seq_printf(sf, "%sP0_PTR_LOW:\t\t0x%X\n", prefix, v[0]);
321 	seq_printf(sf, "%sP0_PTR_HIGH:\t\t0x%X\n", prefix, v[1]);
322 	seq_printf(sf, "%sP0_STRIDE:\t\t0x%X\n", prefix, v[2]);
323 
324 	get_values_from_reg(c->reg, 0x110, 2, v);
325 	seq_printf(sf, "%sP1_PTR_LOW:\t\t0x%X\n", prefix, v[0]);
326 	seq_printf(sf, "%sP1_PTR_HIGH:\t\t0x%X\n", prefix, v[1]);
327 	if (rich) {
328 		get_values_from_reg(c->reg, 0x118, 1, v);
329 		seq_printf(sf, "LR_P1_STRIDE:\t\t0x%X\n", v[0]);
330 
331 		get_values_from_reg(c->reg, 0x120, 2, v);
332 		seq_printf(sf, "LR_P2_PTR_LOW:\t\t0x%X\n", v[0]);
333 		seq_printf(sf, "LR_P2_PTR_HIGH:\t\t0x%X\n", v[1]);
334 
335 		get_values_from_reg(c->reg, 0x130, 12, v);
336 		for (i = 0; i < 12; i++)
337 			seq_printf(sf, "LR_YUV_RGB_COEFF%u:\t0x%X\n", i, v[i]);
338 	}
339 
340 	if (rgb2rgb) {
341 		get_values_from_reg(c->reg, LAYER_RGB_RGB_COEFF0, 12, v);
342 		for (i = 0; i < 12; i++)
343 			seq_printf(sf, "LS_RGB_RGB_COEFF%u:\t0x%X\n", i, v[i]);
344 	}
345 
346 	get_values_from_reg(c->reg, 0x160, 3, v);
347 	seq_printf(sf, "%sAD_CONTROL:\t\t0x%X\n", prefix, v[0]);
348 	seq_printf(sf, "%sAD_H_CROP:\t\t0x%X\n", prefix, v[1]);
349 	seq_printf(sf, "%sAD_V_CROP:\t\t0x%X\n", prefix, v[2]);
350 }
351 
352 static const struct komeda_component_funcs d71_layer_funcs = {
353 	.update		= d71_layer_update,
354 	.disable	= d71_layer_disable,
355 	.dump_register	= d71_layer_dump,
356 };
357 
358 static int d71_layer_init(struct d71_dev *d71,
359 			  struct block_header *blk, u32 __iomem *reg)
360 {
361 	struct komeda_component *c;
362 	struct komeda_layer *layer;
363 	u32 pipe_id, layer_id, layer_info;
364 
365 	get_resources_id(blk->block_info, &pipe_id, &layer_id);
366 	c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*layer),
367 				 layer_id,
368 				 BLOCK_INFO_INPUT_ID(blk->block_info),
369 				 &d71_layer_funcs, 0,
370 				 get_valid_inputs(blk),
371 				 1, reg, "LPU%d_LAYER%d", pipe_id, layer_id);
372 	if (IS_ERR(c)) {
373 		DRM_ERROR("Failed to add layer component\n");
374 		return PTR_ERR(c);
375 	}
376 
377 	layer = to_layer(c);
378 	layer_info = malidp_read32(reg, LAYER_INFO);
379 
380 	if (layer_info & L_INFO_RF)
381 		layer->layer_type = KOMEDA_FMT_RICH_LAYER;
382 	else
383 		layer->layer_type = KOMEDA_FMT_SIMPLE_LAYER;
384 
385 	if (!d71->periph_addr) {
386 		/* D32 or newer product */
387 		layer->line_sz = malidp_read32(reg, BLK_MAX_LINE_SIZE);
388 		layer->yuv_line_sz = L_INFO_YUV_MAX_LINESZ(layer_info);
389 	} else if (d71->max_line_size > 2048) {
390 		/* D71 4K */
391 		layer->line_sz = d71->max_line_size;
392 		layer->yuv_line_sz = layer->line_sz / 2;
393 	} else	{
394 		/* D71 2K */
395 		if (layer->layer_type == KOMEDA_FMT_RICH_LAYER) {
396 			/* rich layer is 4K configuration */
397 			layer->line_sz = d71->max_line_size * 2;
398 			layer->yuv_line_sz = layer->line_sz / 2;
399 		} else {
400 			layer->line_sz = d71->max_line_size;
401 			layer->yuv_line_sz = 0;
402 		}
403 	}
404 
405 	set_range(&layer->hsize_in, 4, layer->line_sz);
406 
407 	set_range(&layer->vsize_in, 4, d71->max_vsize);
408 
409 	malidp_write32(reg, LAYER_PALPHA, D71_PALPHA_DEF_MAP);
410 
411 	layer->supported_rots = DRM_MODE_ROTATE_MASK | DRM_MODE_REFLECT_MASK;
412 
413 	return 0;
414 }
415 
416 static void d71_wb_layer_update(struct komeda_component *c,
417 				struct komeda_component_state *state)
418 {
419 	struct komeda_layer_state *st = to_layer_st(state);
420 	struct drm_connector_state *conn_st = state->wb_conn->state;
421 	struct komeda_fb *kfb = to_kfb(conn_st->writeback_job->fb);
422 	u32 ctrl = L_EN | LW_OFM, mask = L_EN | LW_OFM | LW_TBU_EN;
423 	u32 __iomem *reg = c->reg;
424 
425 	d71_layer_update_fb(c, kfb, st->addr);
426 
427 	if (kfb->is_va)
428 		ctrl |= LW_TBU_EN;
429 
430 	malidp_write32(reg, BLK_IN_SIZE, HV_SIZE(st->hsize, st->vsize));
431 	malidp_write32(reg, BLK_INPUT_ID0, to_d71_input_id(state, 0));
432 	malidp_write32_mask(reg, BLK_CONTROL, mask, ctrl);
433 }
434 
435 static void d71_wb_layer_dump(struct komeda_component *c, struct seq_file *sf)
436 {
437 	u32 v[12], i;
438 
439 	dump_block_header(sf, c->reg);
440 
441 	get_values_from_reg(c->reg, 0x80, 1, v);
442 	seq_printf(sf, "LW_INPUT_ID0:\t\t0x%X\n", v[0]);
443 
444 	get_values_from_reg(c->reg, 0xD0, 3, v);
445 	seq_printf(sf, "LW_CONTROL:\t\t0x%X\n", v[0]);
446 	seq_printf(sf, "LW_PROG_LINE:\t\t0x%X\n", v[1]);
447 	seq_printf(sf, "LW_FORMAT:\t\t0x%X\n", v[2]);
448 
449 	get_values_from_reg(c->reg, 0xE0, 1, v);
450 	seq_printf(sf, "LW_IN_SIZE:\t\t0x%X\n", v[0]);
451 
452 	for (i = 0; i < 2; i++) {
453 		get_values_from_reg(c->reg, 0x100 + i * 0x10, 3, v);
454 		seq_printf(sf, "LW_P%u_PTR_LOW:\t\t0x%X\n", i, v[0]);
455 		seq_printf(sf, "LW_P%u_PTR_HIGH:\t\t0x%X\n", i, v[1]);
456 		seq_printf(sf, "LW_P%u_STRIDE:\t\t0x%X\n", i, v[2]);
457 	}
458 
459 	get_values_from_reg(c->reg, 0x130, 12, v);
460 	for (i = 0; i < 12; i++)
461 		seq_printf(sf, "LW_RGB_YUV_COEFF%u:\t0x%X\n", i, v[i]);
462 }
463 
464 static void d71_wb_layer_disable(struct komeda_component *c)
465 {
466 	malidp_write32(c->reg, BLK_INPUT_ID0, 0);
467 	malidp_write32_mask(c->reg, BLK_CONTROL, L_EN, 0);
468 }
469 
470 static const struct komeda_component_funcs d71_wb_layer_funcs = {
471 	.update		= d71_wb_layer_update,
472 	.disable	= d71_wb_layer_disable,
473 	.dump_register	= d71_wb_layer_dump,
474 };
475 
476 static int d71_wb_layer_init(struct d71_dev *d71,
477 			     struct block_header *blk, u32 __iomem *reg)
478 {
479 	struct komeda_component *c;
480 	struct komeda_layer *wb_layer;
481 	u32 pipe_id, layer_id;
482 
483 	get_resources_id(blk->block_info, &pipe_id, &layer_id);
484 
485 	c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*wb_layer),
486 				 layer_id, BLOCK_INFO_INPUT_ID(blk->block_info),
487 				 &d71_wb_layer_funcs,
488 				 1, get_valid_inputs(blk), 0, reg,
489 				 "LPU%d_LAYER_WR", pipe_id);
490 	if (IS_ERR(c)) {
491 		DRM_ERROR("Failed to add wb_layer component\n");
492 		return PTR_ERR(c);
493 	}
494 
495 	wb_layer = to_layer(c);
496 	wb_layer->layer_type = KOMEDA_FMT_WB_LAYER;
497 	wb_layer->line_sz = get_blk_line_size(d71, reg);
498 	wb_layer->yuv_line_sz = wb_layer->line_sz;
499 
500 	set_range(&wb_layer->hsize_in, 64, wb_layer->line_sz);
501 	set_range(&wb_layer->vsize_in, 64, d71->max_vsize);
502 
503 	return 0;
504 }
505 
506 static void d71_component_disable(struct komeda_component *c)
507 {
508 	u32 __iomem *reg = c->reg;
509 	u32 i;
510 
511 	malidp_write32(reg, BLK_CONTROL, 0);
512 
513 	for (i = 0; i < c->max_active_inputs; i++) {
514 		malidp_write32(reg, BLK_INPUT_ID0 + (i << 2), 0);
515 
516 		/* Besides clearing the input ID to zero, D71 compiz also has
517 		 * input enable bit in CU_INPUTx_CONTROL which need to be
518 		 * cleared.
519 		 */
520 		if (has_bit(c->id, KOMEDA_PIPELINE_COMPIZS))
521 			malidp_write32(reg, CU_INPUT0_CONTROL +
522 				       i * CU_PER_INPUT_REGS * 4,
523 				       CU_INPUT_CTRL_ALPHA(0xFF));
524 	}
525 }
526 
527 static void compiz_enable_input(u32 __iomem *id_reg,
528 				u32 __iomem *cfg_reg,
529 				u32 input_hw_id,
530 				struct komeda_compiz_input_cfg *cin)
531 {
532 	u32 ctrl = CU_INPUT_CTRL_EN;
533 	u8 blend = cin->pixel_blend_mode;
534 
535 	if (blend == DRM_MODE_BLEND_PIXEL_NONE)
536 		ctrl |= CU_INPUT_CTRL_PAD;
537 	else if (blend == DRM_MODE_BLEND_PREMULTI)
538 		ctrl |= CU_INPUT_CTRL_PMUL;
539 
540 	ctrl |= CU_INPUT_CTRL_ALPHA(cin->layer_alpha);
541 
542 	malidp_write32(id_reg, BLK_INPUT_ID0, input_hw_id);
543 
544 	malidp_write32(cfg_reg, CU_INPUT0_SIZE,
545 		       HV_SIZE(cin->hsize, cin->vsize));
546 	malidp_write32(cfg_reg, CU_INPUT0_OFFSET,
547 		       HV_OFFSET(cin->hoffset, cin->voffset));
548 	malidp_write32(cfg_reg, CU_INPUT0_CONTROL, ctrl);
549 }
550 
551 static void d71_compiz_update(struct komeda_component *c,
552 			      struct komeda_component_state *state)
553 {
554 	struct komeda_compiz_state *st = to_compiz_st(state);
555 	u32 __iomem *reg = c->reg;
556 	u32 __iomem *id_reg, *cfg_reg;
557 	u32 index;
558 
559 	for_each_changed_input(state, index) {
560 		id_reg = reg + index;
561 		cfg_reg = reg + index * CU_PER_INPUT_REGS;
562 		if (state->active_inputs & BIT(index)) {
563 			compiz_enable_input(id_reg, cfg_reg,
564 					    to_d71_input_id(state, index),
565 					    &st->cins[index]);
566 		} else {
567 			malidp_write32(id_reg, BLK_INPUT_ID0, 0);
568 			malidp_write32(cfg_reg, CU_INPUT0_CONTROL, 0);
569 		}
570 	}
571 
572 	malidp_write32(reg, BLK_SIZE, HV_SIZE(st->hsize, st->vsize));
573 }
574 
575 static void d71_compiz_dump(struct komeda_component *c, struct seq_file *sf)
576 {
577 	u32 v[8], i;
578 
579 	dump_block_header(sf, c->reg);
580 
581 	get_values_from_reg(c->reg, 0x80, 5, v);
582 	for (i = 0; i < 5; i++)
583 		seq_printf(sf, "CU_INPUT_ID%u:\t\t0x%X\n", i, v[i]);
584 
585 	get_values_from_reg(c->reg, 0xA0, 5, v);
586 	seq_printf(sf, "CU_IRQ_RAW_STATUS:\t0x%X\n", v[0]);
587 	seq_printf(sf, "CU_IRQ_CLEAR:\t\t0x%X\n", v[1]);
588 	seq_printf(sf, "CU_IRQ_MASK:\t\t0x%X\n", v[2]);
589 	seq_printf(sf, "CU_IRQ_STATUS:\t\t0x%X\n", v[3]);
590 	seq_printf(sf, "CU_STATUS:\t\t0x%X\n", v[4]);
591 
592 	get_values_from_reg(c->reg, 0xD0, 2, v);
593 	seq_printf(sf, "CU_CONTROL:\t\t0x%X\n", v[0]);
594 	seq_printf(sf, "CU_SIZE:\t\t0x%X\n", v[1]);
595 
596 	get_values_from_reg(c->reg, 0xDC, 1, v);
597 	seq_printf(sf, "CU_BG_COLOR:\t\t0x%X\n", v[0]);
598 
599 	for (i = 0, v[4] = 0xE0; i < 5; i++, v[4] += 0x10) {
600 		get_values_from_reg(c->reg, v[4], 3, v);
601 		seq_printf(sf, "CU_INPUT%u_SIZE:\t\t0x%X\n", i, v[0]);
602 		seq_printf(sf, "CU_INPUT%u_OFFSET:\t0x%X\n", i, v[1]);
603 		seq_printf(sf, "CU_INPUT%u_CONTROL:\t0x%X\n", i, v[2]);
604 	}
605 
606 	get_values_from_reg(c->reg, 0x130, 2, v);
607 	seq_printf(sf, "CU_USER_LOW:\t\t0x%X\n", v[0]);
608 	seq_printf(sf, "CU_USER_HIGH:\t\t0x%X\n", v[1]);
609 }
610 
611 static const struct komeda_component_funcs d71_compiz_funcs = {
612 	.update		= d71_compiz_update,
613 	.disable	= d71_component_disable,
614 	.dump_register	= d71_compiz_dump,
615 };
616 
617 static int d71_compiz_init(struct d71_dev *d71,
618 			   struct block_header *blk, u32 __iomem *reg)
619 {
620 	struct komeda_component *c;
621 	struct komeda_compiz *compiz;
622 	u32 pipe_id, comp_id;
623 
624 	get_resources_id(blk->block_info, &pipe_id, &comp_id);
625 
626 	c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*compiz),
627 				 comp_id,
628 				 BLOCK_INFO_INPUT_ID(blk->block_info),
629 				 &d71_compiz_funcs,
630 				 CU_NUM_INPUT_IDS, get_valid_inputs(blk),
631 				 CU_NUM_OUTPUT_IDS, reg,
632 				 "CU%d", pipe_id);
633 	if (IS_ERR(c))
634 		return PTR_ERR(c);
635 
636 	compiz = to_compiz(c);
637 
638 	set_range(&compiz->hsize, 64, get_blk_line_size(d71, reg));
639 	set_range(&compiz->vsize, 64, d71->max_vsize);
640 
641 	return 0;
642 }
643 
644 static void d71_scaler_update_filter_lut(u32 __iomem *reg, u32 hsize_in,
645 					 u32 vsize_in, u32 hsize_out,
646 					 u32 vsize_out)
647 {
648 	u32 val = 0;
649 
650 	if (hsize_in <= hsize_out)
651 		val  |= 0x62;
652 	else if (hsize_in <= (hsize_out + hsize_out / 2))
653 		val |= 0x63;
654 	else if (hsize_in <= hsize_out * 2)
655 		val |= 0x64;
656 	else if (hsize_in <= hsize_out * 2 + (hsize_out * 3) / 4)
657 		val |= 0x65;
658 	else
659 		val |= 0x66;
660 
661 	if (vsize_in <= vsize_out)
662 		val  |= SC_VTSEL(0x6A);
663 	else if (vsize_in <= (vsize_out + vsize_out / 2))
664 		val |= SC_VTSEL(0x6B);
665 	else if (vsize_in <= vsize_out * 2)
666 		val |= SC_VTSEL(0x6C);
667 	else if (vsize_in <= vsize_out * 2 + vsize_out * 3 / 4)
668 		val |= SC_VTSEL(0x6D);
669 	else
670 		val |= SC_VTSEL(0x6E);
671 
672 	malidp_write32(reg, SC_COEFFTAB, val);
673 }
674 
675 static void d71_scaler_update(struct komeda_component *c,
676 			      struct komeda_component_state *state)
677 {
678 	struct komeda_scaler_state *st = to_scaler_st(state);
679 	u32 __iomem *reg = c->reg;
680 	u32 init_ph, delta_ph, ctrl;
681 
682 	d71_scaler_update_filter_lut(reg, st->hsize_in, st->vsize_in,
683 				     st->hsize_out, st->vsize_out);
684 
685 	malidp_write32(reg, BLK_IN_SIZE, HV_SIZE(st->hsize_in, st->vsize_in));
686 	malidp_write32(reg, SC_OUT_SIZE, HV_SIZE(st->hsize_out, st->vsize_out));
687 	malidp_write32(reg, SC_H_CROP, HV_CROP(st->left_crop, st->right_crop));
688 
689 	/* for right part, HW only sample the valid pixel which means the pixels
690 	 * in left_crop will be jumpped, and the first sample pixel is:
691 	 *
692 	 * dst_a = st->total_hsize_out - st->hsize_out + st->left_crop + 0.5;
693 	 *
694 	 * Then the corresponding texel in src is:
695 	 *
696 	 * h_delta_phase = st->total_hsize_in / st->total_hsize_out;
697 	 * src_a = dst_A * h_delta_phase;
698 	 *
699 	 * and h_init_phase is src_a deduct the real source start src_S;
700 	 *
701 	 * src_S = st->total_hsize_in - st->hsize_in;
702 	 * h_init_phase = src_a - src_S;
703 	 *
704 	 * And HW precision for the initial/delta_phase is 16:16 fixed point,
705 	 * the following is the simplified formula
706 	 */
707 	if (st->right_part) {
708 		u32 dst_a = st->total_hsize_out - st->hsize_out + st->left_crop;
709 
710 		if (st->en_img_enhancement)
711 			dst_a -= 1;
712 
713 		init_ph = ((st->total_hsize_in * (2 * dst_a + 1) -
714 			    2 * st->total_hsize_out * (st->total_hsize_in -
715 			    st->hsize_in)) << 15) / st->total_hsize_out;
716 	} else {
717 		init_ph = (st->total_hsize_in << 15) / st->total_hsize_out;
718 	}
719 
720 	malidp_write32(reg, SC_H_INIT_PH, init_ph);
721 
722 	delta_ph = (st->total_hsize_in << 16) / st->total_hsize_out;
723 	malidp_write32(reg, SC_H_DELTA_PH, delta_ph);
724 
725 	init_ph = (st->total_vsize_in << 15) / st->vsize_out;
726 	malidp_write32(reg, SC_V_INIT_PH, init_ph);
727 
728 	delta_ph = (st->total_vsize_in << 16) / st->vsize_out;
729 	malidp_write32(reg, SC_V_DELTA_PH, delta_ph);
730 
731 	ctrl = 0;
732 	ctrl |= st->en_scaling ? SC_CTRL_SCL : 0;
733 	ctrl |= st->en_alpha ? SC_CTRL_AP : 0;
734 	ctrl |= st->en_img_enhancement ? SC_CTRL_IENH : 0;
735 	/* If we use the hardware splitter we shouldn't set SC_CTRL_LS */
736 	if (st->en_split &&
737 	    state->inputs[0].component->id != KOMEDA_COMPONENT_SPLITTER)
738 		ctrl |= SC_CTRL_LS;
739 
740 	malidp_write32(reg, BLK_CONTROL, ctrl);
741 	malidp_write32(reg, BLK_INPUT_ID0, to_d71_input_id(state, 0));
742 }
743 
744 static void d71_scaler_dump(struct komeda_component *c, struct seq_file *sf)
745 {
746 	u32 v[9];
747 
748 	dump_block_header(sf, c->reg);
749 
750 	get_values_from_reg(c->reg, 0x80, 1, v);
751 	seq_printf(sf, "SC_INPUT_ID0:\t\t0x%X\n", v[0]);
752 
753 	get_values_from_reg(c->reg, 0xD0, 1, v);
754 	seq_printf(sf, "SC_CONTROL:\t\t0x%X\n", v[0]);
755 
756 	get_values_from_reg(c->reg, 0xDC, 9, v);
757 	seq_printf(sf, "SC_COEFFTAB:\t\t0x%X\n", v[0]);
758 	seq_printf(sf, "SC_IN_SIZE:\t\t0x%X\n", v[1]);
759 	seq_printf(sf, "SC_OUT_SIZE:\t\t0x%X\n", v[2]);
760 	seq_printf(sf, "SC_H_CROP:\t\t0x%X\n", v[3]);
761 	seq_printf(sf, "SC_V_CROP:\t\t0x%X\n", v[4]);
762 	seq_printf(sf, "SC_H_INIT_PH:\t\t0x%X\n", v[5]);
763 	seq_printf(sf, "SC_H_DELTA_PH:\t\t0x%X\n", v[6]);
764 	seq_printf(sf, "SC_V_INIT_PH:\t\t0x%X\n", v[7]);
765 	seq_printf(sf, "SC_V_DELTA_PH:\t\t0x%X\n", v[8]);
766 }
767 
768 static const struct komeda_component_funcs d71_scaler_funcs = {
769 	.update		= d71_scaler_update,
770 	.disable	= d71_component_disable,
771 	.dump_register	= d71_scaler_dump,
772 };
773 
774 static int d71_scaler_init(struct d71_dev *d71,
775 			   struct block_header *blk, u32 __iomem *reg)
776 {
777 	struct komeda_component *c;
778 	struct komeda_scaler *scaler;
779 	u32 pipe_id, comp_id;
780 
781 	get_resources_id(blk->block_info, &pipe_id, &comp_id);
782 
783 	c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*scaler),
784 				 comp_id, BLOCK_INFO_INPUT_ID(blk->block_info),
785 				 &d71_scaler_funcs,
786 				 1, get_valid_inputs(blk), 1, reg,
787 				 "CU%d_SCALER%d",
788 				 pipe_id, BLOCK_INFO_BLK_ID(blk->block_info));
789 
790 	if (IS_ERR(c)) {
791 		DRM_ERROR("Failed to initialize scaler");
792 		return PTR_ERR(c);
793 	}
794 
795 	scaler = to_scaler(c);
796 	set_range(&scaler->hsize, 4, __get_blk_line_size(d71, reg, 2048));
797 	set_range(&scaler->vsize, 4, 4096);
798 	scaler->max_downscaling = 6;
799 	scaler->max_upscaling = 64;
800 	scaler->scaling_split_overlap = 8;
801 	scaler->enh_split_overlap = 1;
802 
803 	malidp_write32(c->reg, BLK_CONTROL, 0);
804 
805 	return 0;
806 }
807 
808 static int d71_downscaling_clk_check(struct komeda_pipeline *pipe,
809 				     struct drm_display_mode *mode,
810 				     unsigned long aclk_rate,
811 				     struct komeda_data_flow_cfg *dflow)
812 {
813 	u32 h_in = dflow->in_w;
814 	u32 v_in = dflow->in_h;
815 	u32 v_out = dflow->out_h;
816 	u64 fraction, denominator;
817 
818 	/* D71 downscaling must satisfy the following equation
819 	 *
820 	 *   ACLK                   h_in * v_in
821 	 * ------- >= ---------------------------------------------
822 	 *  PXLCLK     (h_total - (1 + 2 * v_in / v_out)) * v_out
823 	 *
824 	 * In only horizontal downscaling situation, the right side should be
825 	 * multiplied by (h_total - 3) / (h_active - 3), then equation becomes
826 	 *
827 	 *   ACLK          h_in
828 	 * ------- >= ----------------
829 	 *  PXLCLK     (h_active - 3)
830 	 *
831 	 * To avoid precision lost the equation 1 will be convert to:
832 	 *
833 	 *   ACLK             h_in * v_in
834 	 * ------- >= -----------------------------------
835 	 *  PXLCLK     (h_total -1 ) * v_out -  2 * v_in
836 	 */
837 	if (v_in == v_out) {
838 		fraction = h_in;
839 		denominator = mode->hdisplay - 3;
840 	} else {
841 		fraction = h_in * v_in;
842 		denominator = (mode->htotal - 1) * v_out -  2 * v_in;
843 	}
844 
845 	return aclk_rate * denominator >= mode->crtc_clock * 1000 * fraction ?
846 	       0 : -EINVAL;
847 }
848 
849 static void d71_splitter_update(struct komeda_component *c,
850 				struct komeda_component_state *state)
851 {
852 	struct komeda_splitter_state *st = to_splitter_st(state);
853 	u32 __iomem *reg = c->reg;
854 
855 	malidp_write32(reg, BLK_INPUT_ID0, to_d71_input_id(state, 0));
856 	malidp_write32(reg, BLK_SIZE, HV_SIZE(st->hsize, st->vsize));
857 	malidp_write32(reg, SP_OVERLAP_SIZE, st->overlap & 0x1FFF);
858 	malidp_write32(reg, BLK_CONTROL, BLK_CTRL_EN);
859 }
860 
861 static void d71_splitter_dump(struct komeda_component *c, struct seq_file *sf)
862 {
863 	u32 v[3];
864 
865 	dump_block_header(sf, c->reg);
866 
867 	get_values_from_reg(c->reg, BLK_INPUT_ID0, 1, v);
868 	seq_printf(sf, "SP_INPUT_ID0:\t\t0x%X\n", v[0]);
869 
870 	get_values_from_reg(c->reg, BLK_CONTROL, 3, v);
871 	seq_printf(sf, "SP_CONTROL:\t\t0x%X\n", v[0]);
872 	seq_printf(sf, "SP_SIZE:\t\t0x%X\n", v[1]);
873 	seq_printf(sf, "SP_OVERLAP_SIZE:\t0x%X\n", v[2]);
874 }
875 
876 static const struct komeda_component_funcs d71_splitter_funcs = {
877 	.update		= d71_splitter_update,
878 	.disable	= d71_component_disable,
879 	.dump_register	= d71_splitter_dump,
880 };
881 
882 static int d71_splitter_init(struct d71_dev *d71,
883 			     struct block_header *blk, u32 __iomem *reg)
884 {
885 	struct komeda_component *c;
886 	struct komeda_splitter *splitter;
887 	u32 pipe_id, comp_id;
888 
889 	get_resources_id(blk->block_info, &pipe_id, &comp_id);
890 
891 	c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*splitter),
892 				 comp_id,
893 				 BLOCK_INFO_INPUT_ID(blk->block_info),
894 				 &d71_splitter_funcs,
895 				 1, get_valid_inputs(blk), 2, reg,
896 				 "CU%d_SPLITTER", pipe_id);
897 
898 	if (IS_ERR(c)) {
899 		DRM_ERROR("Failed to initialize splitter");
900 		return -1;
901 	}
902 
903 	splitter = to_splitter(c);
904 
905 	set_range(&splitter->hsize, 4, get_blk_line_size(d71, reg));
906 	set_range(&splitter->vsize, 4, d71->max_vsize);
907 
908 	return 0;
909 }
910 
911 static void d71_merger_update(struct komeda_component *c,
912 			      struct komeda_component_state *state)
913 {
914 	struct komeda_merger_state *st = to_merger_st(state);
915 	u32 __iomem *reg = c->reg;
916 	u32 index;
917 
918 	for_each_changed_input(state, index)
919 		malidp_write32(reg, MG_INPUT_ID0 + index * 4,
920 			       to_d71_input_id(state, index));
921 
922 	malidp_write32(reg, MG_SIZE, HV_SIZE(st->hsize_merged,
923 					     st->vsize_merged));
924 	malidp_write32(reg, BLK_CONTROL, BLK_CTRL_EN);
925 }
926 
927 static void d71_merger_dump(struct komeda_component *c, struct seq_file *sf)
928 {
929 	u32 v;
930 
931 	dump_block_header(sf, c->reg);
932 
933 	get_values_from_reg(c->reg, MG_INPUT_ID0, 1, &v);
934 	seq_printf(sf, "MG_INPUT_ID0:\t\t0x%X\n", v);
935 
936 	get_values_from_reg(c->reg, MG_INPUT_ID1, 1, &v);
937 	seq_printf(sf, "MG_INPUT_ID1:\t\t0x%X\n", v);
938 
939 	get_values_from_reg(c->reg, BLK_CONTROL, 1, &v);
940 	seq_printf(sf, "MG_CONTROL:\t\t0x%X\n", v);
941 
942 	get_values_from_reg(c->reg, MG_SIZE, 1, &v);
943 	seq_printf(sf, "MG_SIZE:\t\t0x%X\n", v);
944 }
945 
946 static const struct komeda_component_funcs d71_merger_funcs = {
947 	.update		= d71_merger_update,
948 	.disable	= d71_component_disable,
949 	.dump_register	= d71_merger_dump,
950 };
951 
952 static int d71_merger_init(struct d71_dev *d71,
953 			   struct block_header *blk, u32 __iomem *reg)
954 {
955 	struct komeda_component *c;
956 	struct komeda_merger *merger;
957 	u32 pipe_id, comp_id;
958 
959 	get_resources_id(blk->block_info, &pipe_id, &comp_id);
960 
961 	c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*merger),
962 				 comp_id,
963 				 BLOCK_INFO_INPUT_ID(blk->block_info),
964 				 &d71_merger_funcs,
965 				 MG_NUM_INPUTS_IDS, get_valid_inputs(blk),
966 				 MG_NUM_OUTPUTS_IDS, reg,
967 				 "CU%d_MERGER", pipe_id);
968 
969 	if (IS_ERR(c)) {
970 		DRM_ERROR("Failed to initialize merger.\n");
971 		return PTR_ERR(c);
972 	}
973 
974 	merger = to_merger(c);
975 
976 	set_range(&merger->hsize_merged, 4,
977 		  __get_blk_line_size(d71, reg, 4032));
978 	set_range(&merger->vsize_merged, 4, 4096);
979 
980 	return 0;
981 }
982 
983 static void d71_improc_update(struct komeda_component *c,
984 			      struct komeda_component_state *state)
985 {
986 	struct komeda_improc_state *st = to_improc_st(state);
987 	u32 __iomem *reg = c->reg;
988 	u32 index;
989 
990 	for_each_changed_input(state, index)
991 		malidp_write32(reg, BLK_INPUT_ID0 + index * 4,
992 			       to_d71_input_id(state, index));
993 
994 	malidp_write32(reg, BLK_SIZE, HV_SIZE(st->hsize, st->vsize));
995 }
996 
997 static void d71_improc_dump(struct komeda_component *c, struct seq_file *sf)
998 {
999 	u32 v[12], i;
1000 
1001 	dump_block_header(sf, c->reg);
1002 
1003 	get_values_from_reg(c->reg, 0x80, 2, v);
1004 	seq_printf(sf, "IPS_INPUT_ID0:\t\t0x%X\n", v[0]);
1005 	seq_printf(sf, "IPS_INPUT_ID1:\t\t0x%X\n", v[1]);
1006 
1007 	get_values_from_reg(c->reg, 0xC0, 1, v);
1008 	seq_printf(sf, "IPS_INFO:\t\t0x%X\n", v[0]);
1009 
1010 	get_values_from_reg(c->reg, 0xD0, 3, v);
1011 	seq_printf(sf, "IPS_CONTROL:\t\t0x%X\n", v[0]);
1012 	seq_printf(sf, "IPS_SIZE:\t\t0x%X\n", v[1]);
1013 	seq_printf(sf, "IPS_DEPTH:\t\t0x%X\n", v[2]);
1014 
1015 	get_values_from_reg(c->reg, 0x130, 12, v);
1016 	for (i = 0; i < 12; i++)
1017 		seq_printf(sf, "IPS_RGB_RGB_COEFF%u:\t0x%X\n", i, v[i]);
1018 
1019 	get_values_from_reg(c->reg, 0x170, 12, v);
1020 	for (i = 0; i < 12; i++)
1021 		seq_printf(sf, "IPS_RGB_YUV_COEFF%u:\t0x%X\n", i, v[i]);
1022 }
1023 
1024 static const struct komeda_component_funcs d71_improc_funcs = {
1025 	.update		= d71_improc_update,
1026 	.disable	= d71_component_disable,
1027 	.dump_register	= d71_improc_dump,
1028 };
1029 
1030 static int d71_improc_init(struct d71_dev *d71,
1031 			   struct block_header *blk, u32 __iomem *reg)
1032 {
1033 	struct komeda_component *c;
1034 	struct komeda_improc *improc;
1035 	u32 pipe_id, comp_id, value;
1036 
1037 	get_resources_id(blk->block_info, &pipe_id, &comp_id);
1038 
1039 	c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*improc),
1040 				 comp_id,
1041 				 BLOCK_INFO_INPUT_ID(blk->block_info),
1042 				 &d71_improc_funcs, IPS_NUM_INPUT_IDS,
1043 				 get_valid_inputs(blk),
1044 				 IPS_NUM_OUTPUT_IDS, reg, "DOU%d_IPS", pipe_id);
1045 	if (IS_ERR(c)) {
1046 		DRM_ERROR("Failed to add improc component\n");
1047 		return PTR_ERR(c);
1048 	}
1049 
1050 	improc = to_improc(c);
1051 	improc->supported_color_depths = BIT(8) | BIT(10);
1052 	improc->supported_color_formats = DRM_COLOR_FORMAT_RGB444 |
1053 					  DRM_COLOR_FORMAT_YCRCB444 |
1054 					  DRM_COLOR_FORMAT_YCRCB422;
1055 	value = malidp_read32(reg, BLK_INFO);
1056 	if (value & IPS_INFO_CHD420)
1057 		improc->supported_color_formats |= DRM_COLOR_FORMAT_YCRCB420;
1058 
1059 	improc->supports_csc = true;
1060 	improc->supports_gamma = true;
1061 
1062 	return 0;
1063 }
1064 
1065 static void d71_timing_ctrlr_disable(struct komeda_component *c)
1066 {
1067 	malidp_write32_mask(c->reg, BLK_CONTROL, BS_CTRL_EN, 0);
1068 }
1069 
1070 static void d71_timing_ctrlr_update(struct komeda_component *c,
1071 				    struct komeda_component_state *state)
1072 {
1073 	struct drm_crtc_state *crtc_st = state->crtc->state;
1074 	struct drm_display_mode *mode = &crtc_st->adjusted_mode;
1075 	u32 __iomem *reg = c->reg;
1076 	u32 hactive, hfront_porch, hback_porch, hsync_len;
1077 	u32 vactive, vfront_porch, vback_porch, vsync_len;
1078 	u32 value;
1079 
1080 	hactive = mode->crtc_hdisplay;
1081 	hfront_porch = mode->crtc_hsync_start - mode->crtc_hdisplay;
1082 	hsync_len = mode->crtc_hsync_end - mode->crtc_hsync_start;
1083 	hback_porch = mode->crtc_htotal - mode->crtc_hsync_end;
1084 
1085 	vactive = mode->crtc_vdisplay;
1086 	vfront_porch = mode->crtc_vsync_start - mode->crtc_vdisplay;
1087 	vsync_len = mode->crtc_vsync_end - mode->crtc_vsync_start;
1088 	vback_porch = mode->crtc_vtotal - mode->crtc_vsync_end;
1089 
1090 	malidp_write32(reg, BS_ACTIVESIZE, HV_SIZE(hactive, vactive));
1091 	malidp_write32(reg, BS_HINTERVALS, BS_H_INTVALS(hfront_porch,
1092 							hback_porch));
1093 	malidp_write32(reg, BS_VINTERVALS, BS_V_INTVALS(vfront_porch,
1094 							vback_porch));
1095 
1096 	value = BS_SYNC_VSW(vsync_len) | BS_SYNC_HSW(hsync_len);
1097 	value |= mode->flags & DRM_MODE_FLAG_PVSYNC ? BS_SYNC_VSP : 0;
1098 	value |= mode->flags & DRM_MODE_FLAG_PHSYNC ? BS_SYNC_HSP : 0;
1099 	malidp_write32(reg, BS_SYNC, value);
1100 
1101 	malidp_write32(reg, BS_PROG_LINE, D71_DEFAULT_PREPRETCH_LINE - 1);
1102 	malidp_write32(reg, BS_PREFETCH_LINE, D71_DEFAULT_PREPRETCH_LINE);
1103 
1104 	/* configure bs control register */
1105 	value = BS_CTRL_EN | BS_CTRL_VM;
1106 	if (c->pipeline->dual_link) {
1107 		malidp_write32(reg, BS_DRIFT_TO, hfront_porch + 16);
1108 		value |= BS_CTRL_DL;
1109 	}
1110 
1111 	malidp_write32(reg, BLK_CONTROL, value);
1112 }
1113 
1114 static void d71_timing_ctrlr_dump(struct komeda_component *c,
1115 				  struct seq_file *sf)
1116 {
1117 	u32 v[8], i;
1118 
1119 	dump_block_header(sf, c->reg);
1120 
1121 	get_values_from_reg(c->reg, 0xC0, 1, v);
1122 	seq_printf(sf, "BS_INFO:\t\t0x%X\n", v[0]);
1123 
1124 	get_values_from_reg(c->reg, 0xD0, 8, v);
1125 	seq_printf(sf, "BS_CONTROL:\t\t0x%X\n", v[0]);
1126 	seq_printf(sf, "BS_PROG_LINE:\t\t0x%X\n", v[1]);
1127 	seq_printf(sf, "BS_PREFETCH_LINE:\t0x%X\n", v[2]);
1128 	seq_printf(sf, "BS_BG_COLOR:\t\t0x%X\n", v[3]);
1129 	seq_printf(sf, "BS_ACTIVESIZE:\t\t0x%X\n", v[4]);
1130 	seq_printf(sf, "BS_HINTERVALS:\t\t0x%X\n", v[5]);
1131 	seq_printf(sf, "BS_VINTERVALS:\t\t0x%X\n", v[6]);
1132 	seq_printf(sf, "BS_SYNC:\t\t0x%X\n", v[7]);
1133 
1134 	get_values_from_reg(c->reg, 0x100, 3, v);
1135 	seq_printf(sf, "BS_DRIFT_TO:\t\t0x%X\n", v[0]);
1136 	seq_printf(sf, "BS_FRAME_TO:\t\t0x%X\n", v[1]);
1137 	seq_printf(sf, "BS_TE_TO:\t\t0x%X\n", v[2]);
1138 
1139 	get_values_from_reg(c->reg, 0x110, 3, v);
1140 	for (i = 0; i < 3; i++)
1141 		seq_printf(sf, "BS_T%u_INTERVAL:\t\t0x%X\n", i, v[i]);
1142 
1143 	get_values_from_reg(c->reg, 0x120, 5, v);
1144 	for (i = 0; i < 2; i++) {
1145 		seq_printf(sf, "BS_CRC%u_LOW:\t\t0x%X\n", i, v[i << 1]);
1146 		seq_printf(sf, "BS_CRC%u_HIGH:\t\t0x%X\n", i, v[(i << 1) + 1]);
1147 	}
1148 	seq_printf(sf, "BS_USER:\t\t0x%X\n", v[4]);
1149 }
1150 
1151 static const struct komeda_component_funcs d71_timing_ctrlr_funcs = {
1152 	.update		= d71_timing_ctrlr_update,
1153 	.disable	= d71_timing_ctrlr_disable,
1154 	.dump_register	= d71_timing_ctrlr_dump,
1155 };
1156 
1157 static int d71_timing_ctrlr_init(struct d71_dev *d71,
1158 				 struct block_header *blk, u32 __iomem *reg)
1159 {
1160 	struct komeda_component *c;
1161 	struct komeda_timing_ctrlr *ctrlr;
1162 	u32 pipe_id, comp_id;
1163 
1164 	get_resources_id(blk->block_info, &pipe_id, &comp_id);
1165 
1166 	c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*ctrlr),
1167 				 KOMEDA_COMPONENT_TIMING_CTRLR,
1168 				 BLOCK_INFO_INPUT_ID(blk->block_info),
1169 				 &d71_timing_ctrlr_funcs,
1170 				 1, BIT(KOMEDA_COMPONENT_IPS0 + pipe_id),
1171 				 BS_NUM_OUTPUT_IDS, reg, "DOU%d_BS", pipe_id);
1172 	if (IS_ERR(c)) {
1173 		DRM_ERROR("Failed to add display_ctrl component\n");
1174 		return PTR_ERR(c);
1175 	}
1176 
1177 	ctrlr = to_ctrlr(c);
1178 
1179 	ctrlr->supports_dual_link = true;
1180 
1181 	return 0;
1182 }
1183 
1184 int d71_probe_block(struct d71_dev *d71,
1185 		    struct block_header *blk, u32 __iomem *reg)
1186 {
1187 	struct d71_pipeline *pipe;
1188 	int blk_id = BLOCK_INFO_BLK_ID(blk->block_info);
1189 
1190 	int err = 0;
1191 
1192 	switch (BLOCK_INFO_BLK_TYPE(blk->block_info)) {
1193 	case D71_BLK_TYPE_GCU:
1194 		break;
1195 
1196 	case D71_BLK_TYPE_LPU:
1197 		pipe = d71->pipes[blk_id];
1198 		pipe->lpu_addr = reg;
1199 		break;
1200 
1201 	case D71_BLK_TYPE_LPU_LAYER:
1202 		err = d71_layer_init(d71, blk, reg);
1203 		break;
1204 
1205 	case D71_BLK_TYPE_LPU_WB_LAYER:
1206 		err = d71_wb_layer_init(d71, blk, reg);
1207 		break;
1208 
1209 	case D71_BLK_TYPE_CU:
1210 		pipe = d71->pipes[blk_id];
1211 		pipe->cu_addr = reg;
1212 		err = d71_compiz_init(d71, blk, reg);
1213 		break;
1214 
1215 	case D71_BLK_TYPE_CU_SCALER:
1216 		err = d71_scaler_init(d71, blk, reg);
1217 		break;
1218 
1219 	case D71_BLK_TYPE_CU_SPLITTER:
1220 		err = d71_splitter_init(d71, blk, reg);
1221 		break;
1222 
1223 	case D71_BLK_TYPE_CU_MERGER:
1224 		err = d71_merger_init(d71, blk, reg);
1225 		break;
1226 
1227 	case D71_BLK_TYPE_DOU:
1228 		pipe = d71->pipes[blk_id];
1229 		pipe->dou_addr = reg;
1230 		break;
1231 
1232 	case D71_BLK_TYPE_DOU_IPS:
1233 		err = d71_improc_init(d71, blk, reg);
1234 		break;
1235 
1236 	case D71_BLK_TYPE_DOU_FT_COEFF:
1237 		pipe = d71->pipes[blk_id];
1238 		pipe->dou_ft_coeff_addr = reg;
1239 		break;
1240 
1241 	case D71_BLK_TYPE_DOU_BS:
1242 		err = d71_timing_ctrlr_init(d71, blk, reg);
1243 		break;
1244 
1245 	case D71_BLK_TYPE_GLB_LT_COEFF:
1246 		break;
1247 
1248 	case D71_BLK_TYPE_GLB_SCL_COEFF:
1249 		d71->glb_scl_coeff_addr[blk_id] = reg;
1250 		break;
1251 
1252 	default:
1253 		DRM_ERROR("Unknown block (block_info: 0x%x) is found\n",
1254 			  blk->block_info);
1255 		err = -EINVAL;
1256 		break;
1257 	}
1258 
1259 	return err;
1260 }
1261 
1262 static void d71_gcu_dump(struct d71_dev *d71, struct seq_file *sf)
1263 {
1264 	u32 v[5];
1265 
1266 	seq_puts(sf, "\n------ GCU ------\n");
1267 
1268 	get_values_from_reg(d71->gcu_addr, 0, 3, v);
1269 	seq_printf(sf, "GLB_ARCH_ID:\t\t0x%X\n", v[0]);
1270 	seq_printf(sf, "GLB_CORE_ID:\t\t0x%X\n", v[1]);
1271 	seq_printf(sf, "GLB_CORE_INFO:\t\t0x%X\n", v[2]);
1272 
1273 	get_values_from_reg(d71->gcu_addr, 0x10, 1, v);
1274 	seq_printf(sf, "GLB_IRQ_STATUS:\t\t0x%X\n", v[0]);
1275 
1276 	get_values_from_reg(d71->gcu_addr, 0xA0, 5, v);
1277 	seq_printf(sf, "GCU_IRQ_RAW_STATUS:\t0x%X\n", v[0]);
1278 	seq_printf(sf, "GCU_IRQ_CLEAR:\t\t0x%X\n", v[1]);
1279 	seq_printf(sf, "GCU_IRQ_MASK:\t\t0x%X\n", v[2]);
1280 	seq_printf(sf, "GCU_IRQ_STATUS:\t\t0x%X\n", v[3]);
1281 	seq_printf(sf, "GCU_STATUS:\t\t0x%X\n", v[4]);
1282 
1283 	get_values_from_reg(d71->gcu_addr, 0xD0, 3, v);
1284 	seq_printf(sf, "GCU_CONTROL:\t\t0x%X\n", v[0]);
1285 	seq_printf(sf, "GCU_CONFIG_VALID0:\t0x%X\n", v[1]);
1286 	seq_printf(sf, "GCU_CONFIG_VALID1:\t0x%X\n", v[2]);
1287 }
1288 
1289 static void d71_lpu_dump(struct d71_pipeline *pipe, struct seq_file *sf)
1290 {
1291 	u32 v[6];
1292 
1293 	seq_printf(sf, "\n------ LPU%d ------\n", pipe->base.id);
1294 
1295 	dump_block_header(sf, pipe->lpu_addr);
1296 
1297 	get_values_from_reg(pipe->lpu_addr, 0xA0, 6, v);
1298 	seq_printf(sf, "LPU_IRQ_RAW_STATUS:\t0x%X\n", v[0]);
1299 	seq_printf(sf, "LPU_IRQ_CLEAR:\t\t0x%X\n", v[1]);
1300 	seq_printf(sf, "LPU_IRQ_MASK:\t\t0x%X\n", v[2]);
1301 	seq_printf(sf, "LPU_IRQ_STATUS:\t\t0x%X\n", v[3]);
1302 	seq_printf(sf, "LPU_STATUS:\t\t0x%X\n", v[4]);
1303 	seq_printf(sf, "LPU_TBU_STATUS:\t\t0x%X\n", v[5]);
1304 
1305 	get_values_from_reg(pipe->lpu_addr, 0xC0, 1, v);
1306 	seq_printf(sf, "LPU_INFO:\t\t0x%X\n", v[0]);
1307 
1308 	get_values_from_reg(pipe->lpu_addr, 0xD0, 3, v);
1309 	seq_printf(sf, "LPU_RAXI_CONTROL:\t0x%X\n", v[0]);
1310 	seq_printf(sf, "LPU_WAXI_CONTROL:\t0x%X\n", v[1]);
1311 	seq_printf(sf, "LPU_TBU_CONTROL:\t0x%X\n", v[2]);
1312 }
1313 
1314 static void d71_dou_dump(struct d71_pipeline *pipe, struct seq_file *sf)
1315 {
1316 	u32 v[5];
1317 
1318 	seq_printf(sf, "\n------ DOU%d ------\n", pipe->base.id);
1319 
1320 	dump_block_header(sf, pipe->dou_addr);
1321 
1322 	get_values_from_reg(pipe->dou_addr, 0xA0, 5, v);
1323 	seq_printf(sf, "DOU_IRQ_RAW_STATUS:\t0x%X\n", v[0]);
1324 	seq_printf(sf, "DOU_IRQ_CLEAR:\t\t0x%X\n", v[1]);
1325 	seq_printf(sf, "DOU_IRQ_MASK:\t\t0x%X\n", v[2]);
1326 	seq_printf(sf, "DOU_IRQ_STATUS:\t\t0x%X\n", v[3]);
1327 	seq_printf(sf, "DOU_STATUS:\t\t0x%X\n", v[4]);
1328 }
1329 
1330 static void d71_pipeline_dump(struct komeda_pipeline *pipe, struct seq_file *sf)
1331 {
1332 	struct d71_pipeline *d71_pipe = to_d71_pipeline(pipe);
1333 
1334 	d71_lpu_dump(d71_pipe, sf);
1335 	d71_dou_dump(d71_pipe, sf);
1336 }
1337 
1338 const struct komeda_pipeline_funcs d71_pipeline_funcs = {
1339 	.downscaling_clk_check	= d71_downscaling_clk_check,
1340 	.dump_register		= d71_pipeline_dump,
1341 };
1342 
1343 void d71_dump(struct komeda_dev *mdev, struct seq_file *sf)
1344 {
1345 	struct d71_dev *d71 = mdev->chip_data;
1346 
1347 	d71_gcu_dump(d71, sf);
1348 }
1349