1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include <linux/delay.h>
27 
28 #include "dm_services.h"
29 #include "dc.h"
30 #include "dc_bios_types.h"
31 #include "core_types.h"
32 #include "core_status.h"
33 #include "resource.h"
34 #include "dm_helpers.h"
35 #include "dce110_hw_sequencer.h"
36 #include "dce110_timing_generator.h"
37 #include "dce/dce_hwseq.h"
38 #include "gpio_service_interface.h"
39 
40 #include "dce110_compressor.h"
41 
42 #include "bios/bios_parser_helper.h"
43 #include "timing_generator.h"
44 #include "mem_input.h"
45 #include "opp.h"
46 #include "ipp.h"
47 #include "transform.h"
48 #include "stream_encoder.h"
49 #include "link_encoder.h"
50 #include "link_hwss.h"
51 #include "clock_source.h"
52 #include "clk_mgr.h"
53 #include "abm.h"
54 #include "audio.h"
55 #include "reg_helper.h"
56 #include "panel_cntl.h"
57 
58 /* include DCE11 register header files */
59 #include "dce/dce_11_0_d.h"
60 #include "dce/dce_11_0_sh_mask.h"
61 #include "custom_float.h"
62 
63 #include "atomfirmware.h"
64 
65 #define GAMMA_HW_POINTS_NUM 256
66 
67 /*
68  * All values are in milliseconds;
69  * For eDP, after power-up/power/down,
70  * 300/500 msec max. delay from LCDVCC to black video generation
71  */
72 #define PANEL_POWER_UP_TIMEOUT 300
73 #define PANEL_POWER_DOWN_TIMEOUT 500
74 #define HPD_CHECK_INTERVAL 10
75 #define OLED_POST_T7_DELAY 100
76 #define OLED_PRE_T11_DELAY 150
77 
78 #define CTX \
79 	hws->ctx
80 
81 #define DC_LOGGER_INIT()
82 
83 #define REG(reg)\
84 	hws->regs->reg
85 
86 #undef FN
87 #define FN(reg_name, field_name) \
88 	hws->shifts->field_name, hws->masks->field_name
89 
90 struct dce110_hw_seq_reg_offsets {
91 	uint32_t crtc;
92 };
93 
94 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
95 {
96 	.crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
97 },
98 {
99 	.crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
100 },
101 {
102 	.crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
103 },
104 {
105 	.crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
106 }
107 };
108 
109 #define HW_REG_BLND(reg, id)\
110 	(reg + reg_offsets[id].blnd)
111 
112 #define HW_REG_CRTC(reg, id)\
113 	(reg + reg_offsets[id].crtc)
114 
115 #define MAX_WATERMARK 0xFFFF
116 #define SAFE_NBP_MARK 0x7FFF
117 
118 /*******************************************************************************
119  * Private definitions
120  ******************************************************************************/
121 /***************************PIPE_CONTROL***********************************/
122 static void dce110_init_pte(struct dc_context *ctx)
123 {
124 	uint32_t addr;
125 	uint32_t value = 0;
126 	uint32_t chunk_int = 0;
127 	uint32_t chunk_mul = 0;
128 
129 	addr = mmUNP_DVMM_PTE_CONTROL;
130 	value = dm_read_reg(ctx, addr);
131 
132 	set_reg_field_value(
133 		value,
134 		0,
135 		DVMM_PTE_CONTROL,
136 		DVMM_USE_SINGLE_PTE);
137 
138 	set_reg_field_value(
139 		value,
140 		1,
141 		DVMM_PTE_CONTROL,
142 		DVMM_PTE_BUFFER_MODE0);
143 
144 	set_reg_field_value(
145 		value,
146 		1,
147 		DVMM_PTE_CONTROL,
148 		DVMM_PTE_BUFFER_MODE1);
149 
150 	dm_write_reg(ctx, addr, value);
151 
152 	addr = mmDVMM_PTE_REQ;
153 	value = dm_read_reg(ctx, addr);
154 
155 	chunk_int = get_reg_field_value(
156 		value,
157 		DVMM_PTE_REQ,
158 		HFLIP_PTEREQ_PER_CHUNK_INT);
159 
160 	chunk_mul = get_reg_field_value(
161 		value,
162 		DVMM_PTE_REQ,
163 		HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
164 
165 	if (chunk_int != 0x4 || chunk_mul != 0x4) {
166 
167 		set_reg_field_value(
168 			value,
169 			255,
170 			DVMM_PTE_REQ,
171 			MAX_PTEREQ_TO_ISSUE);
172 
173 		set_reg_field_value(
174 			value,
175 			4,
176 			DVMM_PTE_REQ,
177 			HFLIP_PTEREQ_PER_CHUNK_INT);
178 
179 		set_reg_field_value(
180 			value,
181 			4,
182 			DVMM_PTE_REQ,
183 			HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
184 
185 		dm_write_reg(ctx, addr, value);
186 	}
187 }
188 /**************************************************************************/
189 
190 static void enable_display_pipe_clock_gating(
191 	struct dc_context *ctx,
192 	bool clock_gating)
193 {
194 	/*TODO*/
195 }
196 
197 static bool dce110_enable_display_power_gating(
198 	struct dc *dc,
199 	uint8_t controller_id,
200 	struct dc_bios *dcb,
201 	enum pipe_gating_control power_gating)
202 {
203 	enum bp_result bp_result = BP_RESULT_OK;
204 	enum bp_pipe_control_action cntl;
205 	struct dc_context *ctx = dc->ctx;
206 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
207 
208 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment))
209 		return true;
210 
211 	if (power_gating == PIPE_GATING_CONTROL_INIT)
212 		cntl = ASIC_PIPE_INIT;
213 	else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
214 		cntl = ASIC_PIPE_ENABLE;
215 	else
216 		cntl = ASIC_PIPE_DISABLE;
217 
218 	if (controller_id == underlay_idx)
219 		controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
220 
221 	if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0){
222 
223 		bp_result = dcb->funcs->enable_disp_power_gating(
224 						dcb, controller_id + 1, cntl);
225 
226 		/* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
227 		 * by default when command table is called
228 		 *
229 		 * Bios parser accepts controller_id = 6 as indicative of
230 		 * underlay pipe in dce110. But we do not support more
231 		 * than 3.
232 		 */
233 		if (controller_id < CONTROLLER_ID_MAX - 1)
234 			dm_write_reg(ctx,
235 				HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
236 				0);
237 	}
238 
239 	if (power_gating != PIPE_GATING_CONTROL_ENABLE)
240 		dce110_init_pte(ctx);
241 
242 	if (bp_result == BP_RESULT_OK)
243 		return true;
244 	else
245 		return false;
246 }
247 
248 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
249 		const struct dc_plane_state *plane_state)
250 {
251 	prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
252 
253 	switch (plane_state->format) {
254 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
255 		prescale_params->scale = 0x2082;
256 		break;
257 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
258 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
259 		prescale_params->scale = 0x2020;
260 		break;
261 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
262 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
263 		prescale_params->scale = 0x2008;
264 		break;
265 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
266 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
267 		prescale_params->scale = 0x2000;
268 		break;
269 	default:
270 		ASSERT(false);
271 		break;
272 	}
273 }
274 
275 static bool
276 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
277 			       const struct dc_plane_state *plane_state)
278 {
279 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
280 	const struct dc_transfer_func *tf = NULL;
281 	struct ipp_prescale_params prescale_params = { 0 };
282 	bool result = true;
283 
284 	if (ipp == NULL)
285 		return false;
286 
287 	if (plane_state->in_transfer_func)
288 		tf = plane_state->in_transfer_func;
289 
290 	build_prescale_params(&prescale_params, plane_state);
291 	ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
292 
293 	if (plane_state->gamma_correction &&
294 			!plane_state->gamma_correction->is_identity &&
295 			dce_use_lut(plane_state->format))
296 		ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
297 
298 	if (tf == NULL) {
299 		/* Default case if no input transfer function specified */
300 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
301 	} else if (tf->type == TF_TYPE_PREDEFINED) {
302 		switch (tf->tf) {
303 		case TRANSFER_FUNCTION_SRGB:
304 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
305 			break;
306 		case TRANSFER_FUNCTION_BT709:
307 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
308 			break;
309 		case TRANSFER_FUNCTION_LINEAR:
310 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
311 			break;
312 		case TRANSFER_FUNCTION_PQ:
313 		default:
314 			result = false;
315 			break;
316 		}
317 	} else if (tf->type == TF_TYPE_BYPASS) {
318 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
319 	} else {
320 		/*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
321 		result = false;
322 	}
323 
324 	return result;
325 }
326 
327 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
328 				    struct curve_points *arr_points,
329 				    uint32_t hw_points_num)
330 {
331 	struct custom_float_format fmt;
332 
333 	struct pwl_result_data *rgb = rgb_resulted;
334 
335 	uint32_t i = 0;
336 
337 	fmt.exponenta_bits = 6;
338 	fmt.mantissa_bits = 12;
339 	fmt.sign = true;
340 
341 	if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
342 					    &arr_points[0].custom_float_x)) {
343 		BREAK_TO_DEBUGGER();
344 		return false;
345 	}
346 
347 	if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
348 					    &arr_points[0].custom_float_offset)) {
349 		BREAK_TO_DEBUGGER();
350 		return false;
351 	}
352 
353 	if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
354 					    &arr_points[0].custom_float_slope)) {
355 		BREAK_TO_DEBUGGER();
356 		return false;
357 	}
358 
359 	fmt.mantissa_bits = 10;
360 	fmt.sign = false;
361 
362 	if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
363 					    &arr_points[1].custom_float_x)) {
364 		BREAK_TO_DEBUGGER();
365 		return false;
366 	}
367 
368 	if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
369 					    &arr_points[1].custom_float_y)) {
370 		BREAK_TO_DEBUGGER();
371 		return false;
372 	}
373 
374 	if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
375 					    &arr_points[1].custom_float_slope)) {
376 		BREAK_TO_DEBUGGER();
377 		return false;
378 	}
379 
380 	fmt.mantissa_bits = 12;
381 	fmt.sign = true;
382 
383 	while (i != hw_points_num) {
384 		if (!convert_to_custom_float_format(rgb->red, &fmt,
385 						    &rgb->red_reg)) {
386 			BREAK_TO_DEBUGGER();
387 			return false;
388 		}
389 
390 		if (!convert_to_custom_float_format(rgb->green, &fmt,
391 						    &rgb->green_reg)) {
392 			BREAK_TO_DEBUGGER();
393 			return false;
394 		}
395 
396 		if (!convert_to_custom_float_format(rgb->blue, &fmt,
397 						    &rgb->blue_reg)) {
398 			BREAK_TO_DEBUGGER();
399 			return false;
400 		}
401 
402 		if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
403 						    &rgb->delta_red_reg)) {
404 			BREAK_TO_DEBUGGER();
405 			return false;
406 		}
407 
408 		if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
409 						    &rgb->delta_green_reg)) {
410 			BREAK_TO_DEBUGGER();
411 			return false;
412 		}
413 
414 		if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
415 						    &rgb->delta_blue_reg)) {
416 			BREAK_TO_DEBUGGER();
417 			return false;
418 		}
419 
420 		++rgb;
421 		++i;
422 	}
423 
424 	return true;
425 }
426 
427 #define MAX_LOW_POINT      25
428 #define NUMBER_REGIONS     16
429 #define NUMBER_SW_SEGMENTS 16
430 
431 static bool
432 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
433 				      struct pwl_params *regamma_params)
434 {
435 	struct curve_points *arr_points;
436 	struct pwl_result_data *rgb_resulted;
437 	struct pwl_result_data *rgb;
438 	struct pwl_result_data *rgb_plus_1;
439 	struct fixed31_32 y_r;
440 	struct fixed31_32 y_g;
441 	struct fixed31_32 y_b;
442 	struct fixed31_32 y1_min;
443 	struct fixed31_32 y3_max;
444 
445 	int32_t region_start, region_end;
446 	uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
447 
448 	if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
449 		return false;
450 
451 	arr_points = regamma_params->arr_points;
452 	rgb_resulted = regamma_params->rgb_resulted;
453 	hw_points = 0;
454 
455 	memset(regamma_params, 0, sizeof(struct pwl_params));
456 
457 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
458 		/* 16 segments
459 		 * segments are from 2^-11 to 2^5
460 		 */
461 		region_start = -11;
462 		region_end = region_start + NUMBER_REGIONS;
463 
464 		for (i = 0; i < NUMBER_REGIONS; i++)
465 			seg_distr[i] = 4;
466 
467 	} else {
468 		/* 10 segments
469 		 * segment is from 2^-10 to 2^1
470 		 * We include an extra segment for range [2^0, 2^1). This is to
471 		 * ensure that colors with normalized values of 1 don't miss the
472 		 * LUT.
473 		 */
474 		region_start = -10;
475 		region_end = 1;
476 
477 		seg_distr[0] = 4;
478 		seg_distr[1] = 4;
479 		seg_distr[2] = 4;
480 		seg_distr[3] = 4;
481 		seg_distr[4] = 4;
482 		seg_distr[5] = 4;
483 		seg_distr[6] = 4;
484 		seg_distr[7] = 4;
485 		seg_distr[8] = 4;
486 		seg_distr[9] = 4;
487 		seg_distr[10] = 0;
488 		seg_distr[11] = -1;
489 		seg_distr[12] = -1;
490 		seg_distr[13] = -1;
491 		seg_distr[14] = -1;
492 		seg_distr[15] = -1;
493 	}
494 
495 	for (k = 0; k < 16; k++) {
496 		if (seg_distr[k] != -1)
497 			hw_points += (1 << seg_distr[k]);
498 	}
499 
500 	j = 0;
501 	for (k = 0; k < (region_end - region_start); k++) {
502 		increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
503 		start_index = (region_start + k + MAX_LOW_POINT) *
504 				NUMBER_SW_SEGMENTS;
505 		for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
506 				i += increment) {
507 			if (j == hw_points - 1)
508 				break;
509 			rgb_resulted[j].red = output_tf->tf_pts.red[i];
510 			rgb_resulted[j].green = output_tf->tf_pts.green[i];
511 			rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
512 			j++;
513 		}
514 	}
515 
516 	/* last point */
517 	start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
518 	rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
519 	rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
520 	rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
521 
522 	arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
523 					     dc_fixpt_from_int(region_start));
524 	arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
525 					     dc_fixpt_from_int(region_end));
526 
527 	y_r = rgb_resulted[0].red;
528 	y_g = rgb_resulted[0].green;
529 	y_b = rgb_resulted[0].blue;
530 
531 	y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
532 
533 	arr_points[0].y = y1_min;
534 	arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
535 						 arr_points[0].x);
536 
537 	y_r = rgb_resulted[hw_points - 1].red;
538 	y_g = rgb_resulted[hw_points - 1].green;
539 	y_b = rgb_resulted[hw_points - 1].blue;
540 
541 	/* see comment above, m_arrPoints[1].y should be the Y value for the
542 	 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
543 	 */
544 	y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
545 
546 	arr_points[1].y = y3_max;
547 
548 	arr_points[1].slope = dc_fixpt_zero;
549 
550 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
551 		/* for PQ, we want to have a straight line from last HW X point,
552 		 * and the slope to be such that we hit 1.0 at 10000 nits.
553 		 */
554 		const struct fixed31_32 end_value = dc_fixpt_from_int(125);
555 
556 		arr_points[1].slope = dc_fixpt_div(
557 				dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
558 				dc_fixpt_sub(end_value, arr_points[1].x));
559 	}
560 
561 	regamma_params->hw_points_num = hw_points;
562 
563 	k = 0;
564 	for (i = 1; i < 16; i++) {
565 		if (seg_distr[k] != -1) {
566 			regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
567 			regamma_params->arr_curve_points[i].offset =
568 					regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
569 		}
570 		k++;
571 	}
572 
573 	if (seg_distr[k] != -1)
574 		regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
575 
576 	rgb = rgb_resulted;
577 	rgb_plus_1 = rgb_resulted + 1;
578 
579 	i = 1;
580 
581 	while (i != hw_points + 1) {
582 		if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
583 			rgb_plus_1->red = rgb->red;
584 		if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
585 			rgb_plus_1->green = rgb->green;
586 		if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
587 			rgb_plus_1->blue = rgb->blue;
588 
589 		rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
590 		rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
591 		rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
592 
593 		++rgb_plus_1;
594 		++rgb;
595 		++i;
596 	}
597 
598 	convert_to_custom_float(rgb_resulted, arr_points, hw_points);
599 
600 	return true;
601 }
602 
603 static bool
604 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
605 				const struct dc_stream_state *stream)
606 {
607 	struct transform *xfm = pipe_ctx->plane_res.xfm;
608 
609 	xfm->funcs->opp_power_on_regamma_lut(xfm, true);
610 	xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
611 
612 	if (stream->out_transfer_func &&
613 	    stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
614 	    stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
615 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
616 	} else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
617 							 &xfm->regamma_params)) {
618 		xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
619 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
620 	} else {
621 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
622 	}
623 
624 	xfm->funcs->opp_power_on_regamma_lut(xfm, false);
625 
626 	return true;
627 }
628 
629 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
630 {
631 	bool is_hdmi_tmds;
632 	bool is_dp;
633 
634 	ASSERT(pipe_ctx->stream);
635 
636 	if (pipe_ctx->stream_res.stream_enc == NULL)
637 		return;  /* this is not root pipe */
638 
639 	is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
640 	is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
641 
642 	if (!is_hdmi_tmds && !is_dp)
643 		return;
644 
645 	if (is_hdmi_tmds)
646 		pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
647 			pipe_ctx->stream_res.stream_enc,
648 			&pipe_ctx->stream_res.encoder_info_frame);
649 	else
650 		pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
651 			pipe_ctx->stream_res.stream_enc,
652 			&pipe_ctx->stream_res.encoder_info_frame);
653 }
654 
655 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
656 {
657 	enum dc_lane_count lane_count =
658 		pipe_ctx->stream->link->cur_link_settings.lane_count;
659 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
660 	struct dc_link *link = pipe_ctx->stream->link;
661 	const struct dc *dc = link->dc;
662 
663 	uint32_t active_total_with_borders;
664 	uint32_t early_control = 0;
665 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
666 
667 	/* For MST, there are multiply stream go to only one link.
668 	 * connect DIG back_end to front_end while enable_stream and
669 	 * disconnect them during disable_stream
670 	 * BY this, it is logic clean to separate stream and link */
671 	link->link_enc->funcs->connect_dig_be_to_fe(link->link_enc,
672 						    pipe_ctx->stream_res.stream_enc->id, true);
673 
674 	dc->hwss.update_info_frame(pipe_ctx);
675 
676 	/* enable early control to avoid corruption on DP monitor*/
677 	active_total_with_borders =
678 			timing->h_addressable
679 				+ timing->h_border_left
680 				+ timing->h_border_right;
681 
682 	if (lane_count != 0)
683 		early_control = active_total_with_borders % lane_count;
684 
685 	if (early_control == 0)
686 		early_control = lane_count;
687 
688 	tg->funcs->set_early_control(tg, early_control);
689 
690 	/* enable audio only within mode set */
691 	if (pipe_ctx->stream_res.audio != NULL) {
692 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
693 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc);
694 	}
695 
696 
697 
698 
699 }
700 
701 static enum bp_result link_transmitter_control(
702 		struct dc_bios *bios,
703 	struct bp_transmitter_control *cntl)
704 {
705 	enum bp_result result;
706 
707 	result = bios->funcs->transmitter_control(bios, cntl);
708 
709 	return result;
710 }
711 
712 /*
713  * @brief
714  * eDP only.
715  */
716 void dce110_edp_wait_for_hpd_ready(
717 		struct dc_link *link,
718 		bool power_up)
719 {
720 	struct dc_context *ctx = link->ctx;
721 	struct graphics_object_id connector = link->link_enc->connector;
722 	struct gpio *hpd;
723 	bool edp_hpd_high = false;
724 	uint32_t time_elapsed = 0;
725 	uint32_t timeout = power_up ?
726 		PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
727 
728 	if (dal_graphics_object_id_get_connector_id(connector)
729 			!= CONNECTOR_ID_EDP) {
730 		BREAK_TO_DEBUGGER();
731 		return;
732 	}
733 
734 	if (!power_up)
735 		/*
736 		 * From KV, we will not HPD low after turning off VCC -
737 		 * instead, we will check the SW timer in power_up().
738 		 */
739 		return;
740 
741 	/*
742 	 * When we power on/off the eDP panel,
743 	 * we need to wait until SENSE bit is high/low.
744 	 */
745 
746 	/* obtain HPD */
747 	/* TODO what to do with this? */
748 	hpd = get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
749 
750 	if (!hpd) {
751 		BREAK_TO_DEBUGGER();
752 		return;
753 	}
754 
755 	dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
756 
757 	/* wait until timeout or panel detected */
758 
759 	do {
760 		uint32_t detected = 0;
761 
762 		dal_gpio_get_value(hpd, &detected);
763 
764 		if (!(detected ^ power_up)) {
765 			edp_hpd_high = true;
766 			break;
767 		}
768 
769 		msleep(HPD_CHECK_INTERVAL);
770 
771 		time_elapsed += HPD_CHECK_INTERVAL;
772 	} while (time_elapsed < timeout);
773 
774 	dal_gpio_close(hpd);
775 
776 	dal_gpio_destroy_irq(&hpd);
777 
778 	if (false == edp_hpd_high) {
779 		DC_LOG_ERROR(
780 				"%s: wait timed out!\n", __func__);
781 	}
782 }
783 
784 void dce110_edp_power_control(
785 		struct dc_link *link,
786 		bool power_up)
787 {
788 	struct dc_context *ctx = link->ctx;
789 	struct bp_transmitter_control cntl = { 0 };
790 	enum bp_result bp_result;
791 
792 
793 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
794 			!= CONNECTOR_ID_EDP) {
795 		BREAK_TO_DEBUGGER();
796 		return;
797 	}
798 
799 	if (!link->panel_cntl)
800 		return;
801 
802 	if (power_up !=
803 		link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
804 		/* Send VBIOS command to prompt eDP panel power */
805 		if (power_up) {
806 			unsigned long long current_ts = dm_get_timestamp(ctx);
807 			unsigned long long duration_in_ms =
808 					div64_u64(dm_get_elapse_time_in_ns(
809 							ctx,
810 							current_ts,
811 							link->link_trace.time_stamp.edp_poweroff), 1000000);
812 			unsigned long long wait_time_ms = 0;
813 
814 			/* max 500ms from LCDVDD off to on */
815 			unsigned long long edp_poweroff_time_ms = 500;
816 
817 			if (link->local_sink != NULL)
818 				edp_poweroff_time_ms =
819 						500 + link->local_sink->edid_caps.panel_patch.extra_t12_ms;
820 			if (link->link_trace.time_stamp.edp_poweroff == 0)
821 				wait_time_ms = edp_poweroff_time_ms;
822 			else if (duration_in_ms < edp_poweroff_time_ms)
823 				wait_time_ms = edp_poweroff_time_ms - duration_in_ms;
824 
825 			if (wait_time_ms) {
826 				msleep(wait_time_ms);
827 				dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
828 						__func__, wait_time_ms);
829 			}
830 
831 		}
832 
833 		DC_LOG_HW_RESUME_S3(
834 				"%s: Panel Power action: %s\n",
835 				__func__, (power_up ? "On":"Off"));
836 
837 		cntl.action = power_up ?
838 			TRANSMITTER_CONTROL_POWER_ON :
839 			TRANSMITTER_CONTROL_POWER_OFF;
840 		cntl.transmitter = link->link_enc->transmitter;
841 		cntl.connector_obj_id = link->link_enc->connector;
842 		cntl.coherent = false;
843 		cntl.lanes_number = LANE_COUNT_FOUR;
844 		cntl.hpd_sel = link->link_enc->hpd_source;
845 
846 		if (ctx->dc->ctx->dmub_srv &&
847 				ctx->dc->debug.dmub_command_table) {
848 			if (cntl.action == TRANSMITTER_CONTROL_POWER_ON)
849 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
850 						LVTMA_CONTROL_POWER_ON);
851 			else
852 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
853 						LVTMA_CONTROL_POWER_OFF);
854 		}
855 
856 		bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
857 
858 		if (!power_up)
859 			/*save driver power off time stamp*/
860 			link->link_trace.time_stamp.edp_poweroff = dm_get_timestamp(ctx);
861 		else
862 			link->link_trace.time_stamp.edp_poweron = dm_get_timestamp(ctx);
863 
864 		if (bp_result != BP_RESULT_OK)
865 			DC_LOG_ERROR(
866 					"%s: Panel Power bp_result: %d\n",
867 					__func__, bp_result);
868 	} else {
869 		DC_LOG_HW_RESUME_S3(
870 				"%s: Skipping Panel Power action: %s\n",
871 				__func__, (power_up ? "On":"Off"));
872 	}
873 }
874 
875 /*todo: cloned in stream enc, fix*/
876 /*
877  * @brief
878  * eDP only. Control the backlight of the eDP panel
879  */
880 void dce110_edp_backlight_control(
881 		struct dc_link *link,
882 		bool enable)
883 {
884 	struct dc_context *ctx = link->ctx;
885 	struct bp_transmitter_control cntl = { 0 };
886 
887 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
888 		!= CONNECTOR_ID_EDP) {
889 		BREAK_TO_DEBUGGER();
890 		return;
891 	}
892 
893 	if (enable && link->panel_cntl &&
894 		link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl)) {
895 		DC_LOG_HW_RESUME_S3(
896 				"%s: panel already powered up. Do nothing.\n",
897 				__func__);
898 		return;
899 	}
900 
901 	/* Send VBIOS command to control eDP panel backlight */
902 
903 	DC_LOG_HW_RESUME_S3(
904 			"%s: backlight action: %s\n",
905 			__func__, (enable ? "On":"Off"));
906 
907 	cntl.action = enable ?
908 		TRANSMITTER_CONTROL_BACKLIGHT_ON :
909 		TRANSMITTER_CONTROL_BACKLIGHT_OFF;
910 
911 	/*cntl.engine_id = ctx->engine;*/
912 	cntl.transmitter = link->link_enc->transmitter;
913 	cntl.connector_obj_id = link->link_enc->connector;
914 	/*todo: unhardcode*/
915 	cntl.lanes_number = LANE_COUNT_FOUR;
916 	cntl.hpd_sel = link->link_enc->hpd_source;
917 	cntl.signal = SIGNAL_TYPE_EDP;
918 
919 	/* For eDP, the following delays might need to be considered
920 	 * after link training completed:
921 	 * idle period - min. accounts for required BS-Idle pattern,
922 	 * max. allows for source frame synchronization);
923 	 * 50 msec max. delay from valid video data from source
924 	 * to video on dislpay or backlight enable.
925 	 *
926 	 * Disable the delay for now.
927 	 * Enable it in the future if necessary.
928 	 */
929 	/* dc_service_sleep_in_milliseconds(50); */
930 		/*edp 1.2*/
931 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
932 		edp_receiver_ready_T7(link);
933 
934 	if (ctx->dc->ctx->dmub_srv &&
935 			ctx->dc->debug.dmub_command_table) {
936 		if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
937 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
938 					LVTMA_CONTROL_LCD_BLON);
939 		else
940 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
941 					LVTMA_CONTROL_LCD_BLOFF);
942 	}
943 
944 	link_transmitter_control(ctx->dc_bios, &cntl);
945 
946 
947 
948 	if (enable && link->dpcd_sink_ext_caps.bits.oled)
949 		msleep(OLED_POST_T7_DELAY);
950 
951 	if (link->dpcd_sink_ext_caps.bits.oled ||
952 		link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
953 		link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
954 		dc_link_backlight_enable_aux(link, enable);
955 
956 	/*edp 1.2*/
957 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF)
958 		edp_receiver_ready_T9(link);
959 
960 	if (!enable && link->dpcd_sink_ext_caps.bits.oled)
961 		msleep(OLED_PRE_T11_DELAY);
962 }
963 
964 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
965 {
966 	/* notify audio driver for audio modes of monitor */
967 	struct dc *dc;
968 	struct clk_mgr *clk_mgr;
969 	unsigned int i, num_audio = 1;
970 
971 	if (!pipe_ctx->stream)
972 		return;
973 
974 	dc = pipe_ctx->stream->ctx->dc;
975 	clk_mgr = dc->clk_mgr;
976 
977 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
978 		return;
979 
980 	if (pipe_ctx->stream_res.audio) {
981 		for (i = 0; i < MAX_PIPES; i++) {
982 			/*current_state not updated yet*/
983 			if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
984 				num_audio++;
985 		}
986 
987 		pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
988 
989 		if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
990 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
991 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
992 		/* un-mute audio */
993 		/* TODO: audio should be per stream rather than per link */
994 		pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
995 					pipe_ctx->stream_res.stream_enc, false);
996 		if (pipe_ctx->stream_res.audio)
997 			pipe_ctx->stream_res.audio->enabled = true;
998 	}
999 }
1000 
1001 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1002 {
1003 	struct dc *dc;
1004 	struct clk_mgr *clk_mgr;
1005 
1006 	if (!pipe_ctx || !pipe_ctx->stream)
1007 		return;
1008 
1009 	dc = pipe_ctx->stream->ctx->dc;
1010 	clk_mgr = dc->clk_mgr;
1011 
1012 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1013 		return;
1014 
1015 	pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1016 			pipe_ctx->stream_res.stream_enc, true);
1017 	if (pipe_ctx->stream_res.audio) {
1018 		pipe_ctx->stream_res.audio->enabled = false;
1019 
1020 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
1021 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_disable(
1022 					pipe_ctx->stream_res.stream_enc);
1023 		else
1024 			pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_disable(
1025 					pipe_ctx->stream_res.stream_enc);
1026 
1027 		if (clk_mgr->funcs->enable_pme_wa)
1028 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1029 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1030 
1031 		/* TODO: notify audio driver for if audio modes list changed
1032 		 * add audio mode list change flag */
1033 		/* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1034 		 * stream->stream_engine_id);
1035 		 */
1036 	}
1037 }
1038 
1039 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1040 {
1041 	struct dc_stream_state *stream = pipe_ctx->stream;
1042 	struct dc_link *link = stream->link;
1043 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1044 
1045 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1046 		pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1047 			pipe_ctx->stream_res.stream_enc);
1048 		pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1049 			pipe_ctx->stream_res.stream_enc);
1050 	}
1051 
1052 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1053 		pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1054 			pipe_ctx->stream_res.stream_enc);
1055 
1056 	dc->hwss.disable_audio_stream(pipe_ctx);
1057 
1058 	link->link_enc->funcs->connect_dig_be_to_fe(
1059 			link->link_enc,
1060 			pipe_ctx->stream_res.stream_enc->id,
1061 			false);
1062 
1063 }
1064 
1065 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1066 		struct dc_link_settings *link_settings)
1067 {
1068 	struct encoder_unblank_param params = { { 0 } };
1069 	struct dc_stream_state *stream = pipe_ctx->stream;
1070 	struct dc_link *link = stream->link;
1071 	struct dce_hwseq *hws = link->dc->hwseq;
1072 
1073 	/* only 3 items below are used by unblank */
1074 	params.timing = pipe_ctx->stream->timing;
1075 	params.link_settings.link_rate = link_settings->link_rate;
1076 
1077 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1078 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(pipe_ctx->stream_res.stream_enc, &params);
1079 
1080 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1081 		hws->funcs.edp_backlight_control(link, true);
1082 	}
1083 }
1084 
1085 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1086 {
1087 	struct dc_stream_state *stream = pipe_ctx->stream;
1088 	struct dc_link *link = stream->link;
1089 	struct dce_hwseq *hws = link->dc->hwseq;
1090 
1091 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1092 		hws->funcs.edp_backlight_control(link, false);
1093 		link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1094 	}
1095 
1096 	if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1097 		pipe_ctx->stream_res.stream_enc->funcs->dp_blank(pipe_ctx->stream_res.stream_enc);
1098 
1099 		/*
1100 		 * After output is idle pattern some sinks need time to recognize the stream
1101 		 * has changed or they enter protection state and hang.
1102 		 */
1103 		if (!dc_is_embedded_signal(pipe_ctx->stream->signal))
1104 			msleep(60);
1105 	}
1106 
1107 }
1108 
1109 
1110 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1111 {
1112 	if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1113 		pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1114 }
1115 
1116 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1117 {
1118 	switch (crtc_id) {
1119 	case CONTROLLER_ID_D0:
1120 		return DTO_SOURCE_ID0;
1121 	case CONTROLLER_ID_D1:
1122 		return DTO_SOURCE_ID1;
1123 	case CONTROLLER_ID_D2:
1124 		return DTO_SOURCE_ID2;
1125 	case CONTROLLER_ID_D3:
1126 		return DTO_SOURCE_ID3;
1127 	case CONTROLLER_ID_D4:
1128 		return DTO_SOURCE_ID4;
1129 	case CONTROLLER_ID_D5:
1130 		return DTO_SOURCE_ID5;
1131 	default:
1132 		return DTO_SOURCE_UNKNOWN;
1133 	}
1134 }
1135 
1136 static void build_audio_output(
1137 	struct dc_state *state,
1138 	const struct pipe_ctx *pipe_ctx,
1139 	struct audio_output *audio_output)
1140 {
1141 	const struct dc_stream_state *stream = pipe_ctx->stream;
1142 	audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1143 
1144 	audio_output->signal = pipe_ctx->stream->signal;
1145 
1146 	/* audio_crtc_info  */
1147 
1148 	audio_output->crtc_info.h_total =
1149 		stream->timing.h_total;
1150 
1151 	/*
1152 	 * Audio packets are sent during actual CRTC blank physical signal, we
1153 	 * need to specify actual active signal portion
1154 	 */
1155 	audio_output->crtc_info.h_active =
1156 			stream->timing.h_addressable
1157 			+ stream->timing.h_border_left
1158 			+ stream->timing.h_border_right;
1159 
1160 	audio_output->crtc_info.v_active =
1161 			stream->timing.v_addressable
1162 			+ stream->timing.v_border_top
1163 			+ stream->timing.v_border_bottom;
1164 
1165 	audio_output->crtc_info.pixel_repetition = 1;
1166 
1167 	audio_output->crtc_info.interlaced =
1168 			stream->timing.flags.INTERLACE;
1169 
1170 	audio_output->crtc_info.refresh_rate =
1171 		(stream->timing.pix_clk_100hz*100)/
1172 		(stream->timing.h_total*stream->timing.v_total);
1173 
1174 	audio_output->crtc_info.color_depth =
1175 		stream->timing.display_color_depth;
1176 
1177 	audio_output->crtc_info.requested_pixel_clock_100Hz =
1178 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1179 
1180 	audio_output->crtc_info.calculated_pixel_clock_100Hz =
1181 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1182 
1183 /*for HDMI, audio ACR is with deep color ratio factor*/
1184 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1185 		audio_output->crtc_info.requested_pixel_clock_100Hz ==
1186 				(stream->timing.pix_clk_100hz)) {
1187 		if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1188 			audio_output->crtc_info.requested_pixel_clock_100Hz =
1189 					audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1190 			audio_output->crtc_info.calculated_pixel_clock_100Hz =
1191 					pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1192 
1193 		}
1194 	}
1195 
1196 	if (state->clk_mgr &&
1197 		(pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1198 			pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1199 		audio_output->pll_info.dp_dto_source_clock_in_khz =
1200 				state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1201 						state->clk_mgr);
1202 	}
1203 
1204 	audio_output->pll_info.feed_back_divider =
1205 			pipe_ctx->pll_settings.feedback_divider;
1206 
1207 	audio_output->pll_info.dto_source =
1208 		translate_to_dto_source(
1209 			pipe_ctx->stream_res.tg->inst + 1);
1210 
1211 	/* TODO hard code to enable for now. Need get from stream */
1212 	audio_output->pll_info.ss_enabled = true;
1213 
1214 	audio_output->pll_info.ss_percentage =
1215 			pipe_ctx->pll_settings.ss_percentage;
1216 }
1217 
1218 static void get_surface_visual_confirm_color(const struct pipe_ctx *pipe_ctx,
1219 		struct tg_color *color)
1220 {
1221 	uint32_t color_value = MAX_TG_COLOR_VALUE * (4 - pipe_ctx->stream_res.tg->inst) / 4;
1222 
1223 	switch (pipe_ctx->plane_res.scl_data.format) {
1224 	case PIXEL_FORMAT_ARGB8888:
1225 		/* set boarder color to red */
1226 		color->color_r_cr = color_value;
1227 		break;
1228 
1229 	case PIXEL_FORMAT_ARGB2101010:
1230 		/* set boarder color to blue */
1231 		color->color_b_cb = color_value;
1232 		break;
1233 	case PIXEL_FORMAT_420BPP8:
1234 		/* set boarder color to green */
1235 		color->color_g_y = color_value;
1236 		break;
1237 	case PIXEL_FORMAT_420BPP10:
1238 		/* set boarder color to yellow */
1239 		color->color_g_y = color_value;
1240 		color->color_r_cr = color_value;
1241 		break;
1242 	case PIXEL_FORMAT_FP16:
1243 		/* set boarder color to white */
1244 		color->color_r_cr = color_value;
1245 		color->color_b_cb = color_value;
1246 		color->color_g_y = color_value;
1247 		break;
1248 	default:
1249 		break;
1250 	}
1251 }
1252 
1253 static void program_scaler(const struct dc *dc,
1254 		const struct pipe_ctx *pipe_ctx)
1255 {
1256 	struct tg_color color = {0};
1257 
1258 #if defined(CONFIG_DRM_AMD_DC_DCN)
1259 	/* TOFPGA */
1260 	if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1261 		return;
1262 #endif
1263 
1264 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1265 		get_surface_visual_confirm_color(pipe_ctx, &color);
1266 	else
1267 		color_space_to_black_color(dc,
1268 				pipe_ctx->stream->output_color_space,
1269 				&color);
1270 
1271 	pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1272 		pipe_ctx->plane_res.xfm,
1273 		pipe_ctx->plane_res.scl_data.lb_params.depth,
1274 		&pipe_ctx->stream->bit_depth_params);
1275 
1276 	if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1277 		/*
1278 		 * The way 420 is packed, 2 channels carry Y component, 1 channel
1279 		 * alternate between Cb and Cr, so both channels need the pixel
1280 		 * value for Y
1281 		 */
1282 		if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1283 			color.color_r_cr = color.color_g_y;
1284 
1285 		pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1286 				pipe_ctx->stream_res.tg,
1287 				&color);
1288 	}
1289 
1290 	pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1291 		&pipe_ctx->plane_res.scl_data);
1292 }
1293 
1294 static enum dc_status dce110_enable_stream_timing(
1295 		struct pipe_ctx *pipe_ctx,
1296 		struct dc_state *context,
1297 		struct dc *dc)
1298 {
1299 	struct dc_stream_state *stream = pipe_ctx->stream;
1300 	struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1301 			pipe_ctx[pipe_ctx->pipe_idx];
1302 	struct tg_color black_color = {0};
1303 
1304 	if (!pipe_ctx_old->stream) {
1305 
1306 		/* program blank color */
1307 		color_space_to_black_color(dc,
1308 				stream->output_color_space, &black_color);
1309 		pipe_ctx->stream_res.tg->funcs->set_blank_color(
1310 				pipe_ctx->stream_res.tg,
1311 				&black_color);
1312 
1313 		/*
1314 		 * Must blank CRTC after disabling power gating and before any
1315 		 * programming, otherwise CRTC will be hung in bad state
1316 		 */
1317 		pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1318 
1319 		if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1320 				pipe_ctx->clock_source,
1321 				&pipe_ctx->stream_res.pix_clk_params,
1322 				&pipe_ctx->pll_settings)) {
1323 			BREAK_TO_DEBUGGER();
1324 			return DC_ERROR_UNEXPECTED;
1325 		}
1326 
1327 		pipe_ctx->stream_res.tg->funcs->program_timing(
1328 				pipe_ctx->stream_res.tg,
1329 				&stream->timing,
1330 				0,
1331 				0,
1332 				0,
1333 				0,
1334 				pipe_ctx->stream->signal,
1335 				true);
1336 	}
1337 
1338 	if (!pipe_ctx_old->stream) {
1339 		if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1340 				pipe_ctx->stream_res.tg)) {
1341 			BREAK_TO_DEBUGGER();
1342 			return DC_ERROR_UNEXPECTED;
1343 		}
1344 	}
1345 
1346 	return DC_OK;
1347 }
1348 
1349 static enum dc_status apply_single_controller_ctx_to_hw(
1350 		struct pipe_ctx *pipe_ctx,
1351 		struct dc_state *context,
1352 		struct dc *dc)
1353 {
1354 	struct dc_stream_state *stream = pipe_ctx->stream;
1355 	struct drr_params params = {0};
1356 	unsigned int event_triggers = 0;
1357 	struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1358 	struct dce_hwseq *hws = dc->hwseq;
1359 
1360 	if (hws->funcs.disable_stream_gating) {
1361 		hws->funcs.disable_stream_gating(dc, pipe_ctx);
1362 	}
1363 
1364 	if (pipe_ctx->stream_res.audio != NULL) {
1365 		struct audio_output audio_output;
1366 
1367 		build_audio_output(context, pipe_ctx, &audio_output);
1368 
1369 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
1370 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_setup(
1371 					pipe_ctx->stream_res.stream_enc,
1372 					pipe_ctx->stream_res.audio->inst,
1373 					&pipe_ctx->stream->audio_info);
1374 		else
1375 			pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_setup(
1376 					pipe_ctx->stream_res.stream_enc,
1377 					pipe_ctx->stream_res.audio->inst,
1378 					&pipe_ctx->stream->audio_info,
1379 					&audio_output.crtc_info);
1380 
1381 		pipe_ctx->stream_res.audio->funcs->az_configure(
1382 				pipe_ctx->stream_res.audio,
1383 				pipe_ctx->stream->signal,
1384 				&audio_output.crtc_info,
1385 				&pipe_ctx->stream->audio_info);
1386 	}
1387 
1388 	/*  */
1389 	/* Do not touch stream timing on seamless boot optimization. */
1390 	if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1391 		hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1392 
1393 	if (hws->funcs.setup_vupdate_interrupt)
1394 		hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1395 
1396 	params.vertical_total_min = stream->adjust.v_total_min;
1397 	params.vertical_total_max = stream->adjust.v_total_max;
1398 	if (pipe_ctx->stream_res.tg->funcs->set_drr)
1399 		pipe_ctx->stream_res.tg->funcs->set_drr(
1400 			pipe_ctx->stream_res.tg, &params);
1401 
1402 	// DRR should set trigger event to monitor surface update event
1403 	if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1404 		event_triggers = 0x80;
1405 	/* Event triggers and num frames initialized for DRR, but can be
1406 	 * later updated for PSR use. Note DRR trigger events are generated
1407 	 * regardless of whether num frames met.
1408 	 */
1409 	if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1410 		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1411 				pipe_ctx->stream_res.tg, event_triggers, 2);
1412 
1413 	if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1414 		pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1415 			pipe_ctx->stream_res.stream_enc,
1416 			pipe_ctx->stream_res.tg->inst);
1417 
1418 	pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1419 			pipe_ctx->stream_res.opp,
1420 			COLOR_SPACE_YCBCR601,
1421 			stream->timing.display_color_depth,
1422 			stream->signal);
1423 
1424 	pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1425 		pipe_ctx->stream_res.opp,
1426 		&stream->bit_depth_params,
1427 		&stream->clamping);
1428 	while (odm_pipe) {
1429 		odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1430 				odm_pipe->stream_res.opp,
1431 				COLOR_SPACE_YCBCR601,
1432 				stream->timing.display_color_depth,
1433 				stream->signal);
1434 
1435 		odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1436 				odm_pipe->stream_res.opp,
1437 				&stream->bit_depth_params,
1438 				&stream->clamping);
1439 		odm_pipe = odm_pipe->next_odm_pipe;
1440 	}
1441 
1442 	if (!stream->dpms_off)
1443 		core_link_enable_stream(context, pipe_ctx);
1444 
1445 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
1446 
1447 	pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1448 
1449 	return DC_OK;
1450 }
1451 
1452 /******************************************************************************/
1453 
1454 static void power_down_encoders(struct dc *dc)
1455 {
1456 	int i;
1457 
1458 	/* do not know BIOS back-front mapping, simply blank all. It will not
1459 	 * hurt for non-DP
1460 	 */
1461 	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1462 		dc->res_pool->stream_enc[i]->funcs->dp_blank(
1463 					dc->res_pool->stream_enc[i]);
1464 	}
1465 
1466 	for (i = 0; i < dc->link_count; i++) {
1467 		enum signal_type signal = dc->links[i]->connector_signal;
1468 
1469 		if ((signal == SIGNAL_TYPE_EDP) ||
1470 			(signal == SIGNAL_TYPE_DISPLAY_PORT))
1471 			if (!dc->links[i]->wa_flags.dp_keep_receiver_powered)
1472 				dp_receiver_power_ctrl(dc->links[i], false);
1473 
1474 		if (signal != SIGNAL_TYPE_EDP)
1475 			signal = SIGNAL_TYPE_NONE;
1476 
1477 		dc->links[i]->link_enc->funcs->disable_output(
1478 				dc->links[i]->link_enc, signal);
1479 
1480 		dc->links[i]->link_status.link_active = false;
1481 	}
1482 }
1483 
1484 static void power_down_controllers(struct dc *dc)
1485 {
1486 	int i;
1487 
1488 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1489 		dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1490 				dc->res_pool->timing_generators[i]);
1491 	}
1492 }
1493 
1494 static void power_down_clock_sources(struct dc *dc)
1495 {
1496 	int i;
1497 
1498 	if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1499 		dc->res_pool->dp_clock_source) == false)
1500 		dm_error("Failed to power down pll! (dp clk src)\n");
1501 
1502 	for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1503 		if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1504 				dc->res_pool->clock_sources[i]) == false)
1505 			dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1506 	}
1507 }
1508 
1509 static void power_down_all_hw_blocks(struct dc *dc)
1510 {
1511 	power_down_encoders(dc);
1512 
1513 	power_down_controllers(dc);
1514 
1515 	power_down_clock_sources(dc);
1516 
1517 	if (dc->fbc_compressor)
1518 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1519 }
1520 
1521 static void disable_vga_and_power_gate_all_controllers(
1522 		struct dc *dc)
1523 {
1524 	int i;
1525 	struct timing_generator *tg;
1526 	struct dc_context *ctx = dc->ctx;
1527 
1528 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1529 		tg = dc->res_pool->timing_generators[i];
1530 
1531 		if (tg->funcs->disable_vga)
1532 			tg->funcs->disable_vga(tg);
1533 	}
1534 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1535 		/* Enable CLOCK gating for each pipe BEFORE controller
1536 		 * powergating. */
1537 		enable_display_pipe_clock_gating(ctx,
1538 				true);
1539 
1540 		dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1541 		dc->hwss.disable_plane(dc,
1542 			&dc->current_state->res_ctx.pipe_ctx[i]);
1543 	}
1544 }
1545 
1546 
1547 static struct dc_stream_state *get_edp_stream(struct dc_state *context)
1548 {
1549 	int i;
1550 
1551 	for (i = 0; i < context->stream_count; i++) {
1552 		if (context->streams[i]->signal == SIGNAL_TYPE_EDP)
1553 			return context->streams[i];
1554 	}
1555 	return NULL;
1556 }
1557 
1558 static struct dc_link *get_edp_link_with_sink(
1559 		struct dc *dc,
1560 		struct dc_state *context)
1561 {
1562 	int i;
1563 	struct dc_link *link = NULL;
1564 
1565 	/* check if there is an eDP panel not in use */
1566 	for (i = 0; i < dc->link_count; i++) {
1567 		if (dc->links[i]->local_sink &&
1568 			dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1569 			link = dc->links[i];
1570 			break;
1571 		}
1572 	}
1573 
1574 	return link;
1575 }
1576 
1577 /**
1578  * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1579  *  1. Power down all DC HW blocks
1580  *  2. Disable VGA engine on all controllers
1581  *  3. Enable power gating for controller
1582  *  4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1583  */
1584 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1585 {
1586 	int i;
1587 	struct dc_link *edp_link_with_sink = get_edp_link_with_sink(dc, context);
1588 	struct dc_link *edp_link = get_edp_link(dc);
1589 	struct dc_stream_state *edp_stream = NULL;
1590 	bool can_apply_edp_fast_boot = false;
1591 	bool can_apply_seamless_boot = false;
1592 	bool keep_edp_vdd_on = false;
1593 	struct dce_hwseq *hws = dc->hwseq;
1594 
1595 	if (hws->funcs.init_pipes)
1596 		hws->funcs.init_pipes(dc, context);
1597 
1598 	edp_stream = get_edp_stream(context);
1599 
1600 	// Check fastboot support, disable on DCE8 because of blank screens
1601 	if (edp_link && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1602 		    dc->ctx->dce_version != DCE_VERSION_8_1 &&
1603 		    dc->ctx->dce_version != DCE_VERSION_8_3) {
1604 
1605 		// enable fastboot if backend is enabled on eDP
1606 		if (edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc)) {
1607 			/* Set optimization flag on eDP stream*/
1608 			if (edp_stream) {
1609 				edp_stream->apply_edp_fast_boot_optimization = true;
1610 				can_apply_edp_fast_boot = true;
1611 			}
1612 		}
1613 
1614 		// We are trying to enable eDP, don't power down VDD
1615 		if (edp_stream)
1616 			keep_edp_vdd_on = true;
1617 	}
1618 
1619 	// Check seamless boot support
1620 	for (i = 0; i < context->stream_count; i++) {
1621 		if (context->streams[i]->apply_seamless_boot_optimization) {
1622 			can_apply_seamless_boot = true;
1623 			break;
1624 		}
1625 	}
1626 
1627 	/* eDP should not have stream in resume from S4 and so even with VBios post
1628 	 * it should get turned off
1629 	 */
1630 	if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1631 		if (edp_link_with_sink && !keep_edp_vdd_on) {
1632 			/*turn off backlight before DP_blank and encoder powered down*/
1633 			hws->funcs.edp_backlight_control(edp_link_with_sink, false);
1634 		}
1635 		/*resume from S3, no vbios posting, no need to power down again*/
1636 		power_down_all_hw_blocks(dc);
1637 		disable_vga_and_power_gate_all_controllers(dc);
1638 		if (edp_link_with_sink && !keep_edp_vdd_on)
1639 			dc->hwss.edp_power_control(edp_link_with_sink, false);
1640 	}
1641 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios);
1642 }
1643 
1644 static uint32_t compute_pstate_blackout_duration(
1645 	struct bw_fixed blackout_duration,
1646 	const struct dc_stream_state *stream)
1647 {
1648 	uint32_t total_dest_line_time_ns;
1649 	uint32_t pstate_blackout_duration_ns;
1650 
1651 	pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1652 
1653 	total_dest_line_time_ns = 1000000UL *
1654 		(stream->timing.h_total * 10) /
1655 		stream->timing.pix_clk_100hz +
1656 		pstate_blackout_duration_ns;
1657 
1658 	return total_dest_line_time_ns;
1659 }
1660 
1661 static void dce110_set_displaymarks(
1662 	const struct dc *dc,
1663 	struct dc_state *context)
1664 {
1665 	uint8_t i, num_pipes;
1666 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1667 
1668 	for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1669 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1670 		uint32_t total_dest_line_time_ns;
1671 
1672 		if (pipe_ctx->stream == NULL)
1673 			continue;
1674 
1675 		total_dest_line_time_ns = compute_pstate_blackout_duration(
1676 			dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1677 		pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1678 			pipe_ctx->plane_res.mi,
1679 			context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1680 			context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1681 			context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
1682 			context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1683 			total_dest_line_time_ns);
1684 		if (i == underlay_idx) {
1685 			num_pipes++;
1686 			pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1687 				pipe_ctx->plane_res.mi,
1688 				context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1689 				context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1690 				context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1691 				total_dest_line_time_ns);
1692 		}
1693 		num_pipes++;
1694 	}
1695 }
1696 
1697 void dce110_set_safe_displaymarks(
1698 		struct resource_context *res_ctx,
1699 		const struct resource_pool *pool)
1700 {
1701 	int i;
1702 	int underlay_idx = pool->underlay_pipe_index;
1703 	struct dce_watermarks max_marks = {
1704 		MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1705 	struct dce_watermarks nbp_marks = {
1706 		SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1707 	struct dce_watermarks min_marks = { 0, 0, 0, 0};
1708 
1709 	for (i = 0; i < MAX_PIPES; i++) {
1710 		if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1711 			continue;
1712 
1713 		res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1714 				res_ctx->pipe_ctx[i].plane_res.mi,
1715 				nbp_marks,
1716 				max_marks,
1717 				min_marks,
1718 				max_marks,
1719 				MAX_WATERMARK);
1720 
1721 		if (i == underlay_idx)
1722 			res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1723 				res_ctx->pipe_ctx[i].plane_res.mi,
1724 				nbp_marks,
1725 				max_marks,
1726 				max_marks,
1727 				MAX_WATERMARK);
1728 
1729 	}
1730 }
1731 
1732 /*******************************************************************************
1733  * Public functions
1734  ******************************************************************************/
1735 
1736 static void set_drr(struct pipe_ctx **pipe_ctx,
1737 		int num_pipes, unsigned int vmin, unsigned int vmax,
1738 		unsigned int vmid, unsigned int vmid_frame_number)
1739 {
1740 	int i = 0;
1741 	struct drr_params params = {0};
1742 	// DRR should set trigger event to monitor surface update event
1743 	unsigned int event_triggers = 0x80;
1744 	// Note DRR trigger events are generated regardless of whether num frames met.
1745 	unsigned int num_frames = 2;
1746 
1747 	params.vertical_total_max = vmax;
1748 	params.vertical_total_min = vmin;
1749 
1750 	/* TODO: If multiple pipes are to be supported, you need
1751 	 * some GSL stuff. Static screen triggers may be programmed differently
1752 	 * as well.
1753 	 */
1754 	for (i = 0; i < num_pipes; i++) {
1755 		pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1756 			pipe_ctx[i]->stream_res.tg, &params);
1757 
1758 		if (vmax != 0 && vmin != 0)
1759 			pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1760 					pipe_ctx[i]->stream_res.tg,
1761 					event_triggers, num_frames);
1762 	}
1763 }
1764 
1765 static void get_position(struct pipe_ctx **pipe_ctx,
1766 		int num_pipes,
1767 		struct crtc_position *position)
1768 {
1769 	int i = 0;
1770 
1771 	/* TODO: handle pipes > 1
1772 	 */
1773 	for (i = 0; i < num_pipes; i++)
1774 		pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1775 }
1776 
1777 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1778 		int num_pipes, const struct dc_static_screen_params *params)
1779 {
1780 	unsigned int i;
1781 	unsigned int triggers = 0;
1782 
1783 	if (params->triggers.overlay_update)
1784 		triggers |= 0x100;
1785 	if (params->triggers.surface_update)
1786 		triggers |= 0x80;
1787 	if (params->triggers.cursor_update)
1788 		triggers |= 0x2;
1789 	if (params->triggers.force_trigger)
1790 		triggers |= 0x1;
1791 
1792 	if (num_pipes) {
1793 		struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
1794 
1795 		if (dc->fbc_compressor)
1796 			triggers |= 0x84;
1797 	}
1798 
1799 	for (i = 0; i < num_pipes; i++)
1800 		pipe_ctx[i]->stream_res.tg->funcs->
1801 			set_static_screen_control(pipe_ctx[i]->stream_res.tg,
1802 					triggers, params->num_frames);
1803 }
1804 
1805 /*
1806  *  Check if FBC can be enabled
1807  */
1808 static bool should_enable_fbc(struct dc *dc,
1809 		struct dc_state *context,
1810 		uint32_t *pipe_idx)
1811 {
1812 	uint32_t i;
1813 	struct pipe_ctx *pipe_ctx = NULL;
1814 	struct resource_context *res_ctx = &context->res_ctx;
1815 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1816 
1817 
1818 	ASSERT(dc->fbc_compressor);
1819 
1820 	/* FBC memory should be allocated */
1821 	if (!dc->ctx->fbc_gpu_addr)
1822 		return false;
1823 
1824 	/* Only supports single display */
1825 	if (context->stream_count != 1)
1826 		return false;
1827 
1828 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1829 		if (res_ctx->pipe_ctx[i].stream) {
1830 
1831 			pipe_ctx = &res_ctx->pipe_ctx[i];
1832 
1833 			if (!pipe_ctx)
1834 				continue;
1835 
1836 			/* fbc not applicable on underlay pipe */
1837 			if (pipe_ctx->pipe_idx != underlay_idx) {
1838 				*pipe_idx = i;
1839 				break;
1840 			}
1841 		}
1842 	}
1843 
1844 	if (i == dc->res_pool->pipe_count)
1845 		return false;
1846 
1847 	if (!pipe_ctx->stream->link)
1848 		return false;
1849 
1850 	/* Only supports eDP */
1851 	if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
1852 		return false;
1853 
1854 	/* PSR should not be enabled */
1855 	if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
1856 		return false;
1857 
1858 	/* Nothing to compress */
1859 	if (!pipe_ctx->plane_state)
1860 		return false;
1861 
1862 	/* Only for non-linear tiling */
1863 	if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
1864 		return false;
1865 
1866 	return true;
1867 }
1868 
1869 /*
1870  *  Enable FBC
1871  */
1872 static void enable_fbc(
1873 		struct dc *dc,
1874 		struct dc_state *context)
1875 {
1876 	uint32_t pipe_idx = 0;
1877 
1878 	if (should_enable_fbc(dc, context, &pipe_idx)) {
1879 		/* Program GRPH COMPRESSED ADDRESS and PITCH */
1880 		struct compr_addr_and_pitch_params params = {0, 0, 0};
1881 		struct compressor *compr = dc->fbc_compressor;
1882 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
1883 
1884 		params.source_view_width = pipe_ctx->stream->timing.h_addressable;
1885 		params.source_view_height = pipe_ctx->stream->timing.v_addressable;
1886 		params.inst = pipe_ctx->stream_res.tg->inst;
1887 		compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
1888 
1889 		compr->funcs->surface_address_and_pitch(compr, &params);
1890 		compr->funcs->set_fbc_invalidation_triggers(compr, 1);
1891 
1892 		compr->funcs->enable_fbc(compr, &params);
1893 	}
1894 }
1895 
1896 static void dce110_reset_hw_ctx_wrap(
1897 		struct dc *dc,
1898 		struct dc_state *context)
1899 {
1900 	int i;
1901 
1902 	/* Reset old context */
1903 	/* look up the targets that have been removed since last commit */
1904 	for (i = 0; i < MAX_PIPES; i++) {
1905 		struct pipe_ctx *pipe_ctx_old =
1906 			&dc->current_state->res_ctx.pipe_ctx[i];
1907 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1908 
1909 		/* Note: We need to disable output if clock sources change,
1910 		 * since bios does optimization and doesn't apply if changing
1911 		 * PHY when not already disabled.
1912 		 */
1913 
1914 		/* Skip underlay pipe since it will be handled in commit surface*/
1915 		if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
1916 			continue;
1917 
1918 		if (!pipe_ctx->stream ||
1919 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
1920 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
1921 
1922 			/* Disable if new stream is null. O/w, if stream is
1923 			 * disabled already, no need to disable again.
1924 			 */
1925 			if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
1926 				core_link_disable_stream(pipe_ctx_old);
1927 
1928 				/* free acquired resources*/
1929 				if (pipe_ctx_old->stream_res.audio) {
1930 					/*disable az_endpoint*/
1931 					pipe_ctx_old->stream_res.audio->funcs->
1932 							az_disable(pipe_ctx_old->stream_res.audio);
1933 
1934 					/*free audio*/
1935 					if (dc->caps.dynamic_audio == true) {
1936 						/*we have to dynamic arbitrate the audio endpoints*/
1937 						/*we free the resource, need reset is_audio_acquired*/
1938 						update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
1939 								pipe_ctx_old->stream_res.audio, false);
1940 						pipe_ctx_old->stream_res.audio = NULL;
1941 					}
1942 				}
1943 			}
1944 
1945 			pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
1946 			if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
1947 				dm_error("DC: failed to blank crtc!\n");
1948 				BREAK_TO_DEBUGGER();
1949 			}
1950 			pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
1951 			pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
1952 					pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
1953 
1954 			if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
1955 										dc->res_pool,
1956 										old_clk))
1957 				old_clk->funcs->cs_power_down(old_clk);
1958 
1959 			dc->hwss.disable_plane(dc, pipe_ctx_old);
1960 
1961 			pipe_ctx_old->stream = NULL;
1962 		}
1963 	}
1964 }
1965 
1966 static void dce110_setup_audio_dto(
1967 		struct dc *dc,
1968 		struct dc_state *context)
1969 {
1970 	int i;
1971 
1972 	/* program audio wall clock. use HDMI as clock source if HDMI
1973 	 * audio active. Otherwise, use DP as clock source
1974 	 * first, loop to find any HDMI audio, if not, loop find DP audio
1975 	 */
1976 	/* Setup audio rate clock source */
1977 	/* Issue:
1978 	* Audio lag happened on DP monitor when unplug a HDMI monitor
1979 	*
1980 	* Cause:
1981 	* In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
1982 	* is set to either dto0 or dto1, audio should work fine.
1983 	* In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
1984 	* set to dto0 will cause audio lag.
1985 	*
1986 	* Solution:
1987 	* Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
1988 	* find first available pipe with audio, setup audio wall DTO per topology
1989 	* instead of per pipe.
1990 	*/
1991 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1992 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1993 
1994 		if (pipe_ctx->stream == NULL)
1995 			continue;
1996 
1997 		if (pipe_ctx->top_pipe)
1998 			continue;
1999 		if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2000 			continue;
2001 		if (pipe_ctx->stream_res.audio != NULL) {
2002 			struct audio_output audio_output;
2003 
2004 			build_audio_output(context, pipe_ctx, &audio_output);
2005 
2006 			pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2007 				pipe_ctx->stream_res.audio,
2008 				pipe_ctx->stream->signal,
2009 				&audio_output.crtc_info,
2010 				&audio_output.pll_info);
2011 			break;
2012 		}
2013 	}
2014 
2015 	/* no HDMI audio is found, try DP audio */
2016 	if (i == dc->res_pool->pipe_count) {
2017 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2018 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2019 
2020 			if (pipe_ctx->stream == NULL)
2021 				continue;
2022 
2023 			if (pipe_ctx->top_pipe)
2024 				continue;
2025 
2026 			if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2027 				continue;
2028 
2029 			if (pipe_ctx->stream_res.audio != NULL) {
2030 				struct audio_output audio_output;
2031 
2032 				build_audio_output(context, pipe_ctx, &audio_output);
2033 
2034 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2035 					pipe_ctx->stream_res.audio,
2036 					pipe_ctx->stream->signal,
2037 					&audio_output.crtc_info,
2038 					&audio_output.pll_info);
2039 				break;
2040 			}
2041 		}
2042 	}
2043 }
2044 
2045 enum dc_status dce110_apply_ctx_to_hw(
2046 		struct dc *dc,
2047 		struct dc_state *context)
2048 {
2049 	struct dce_hwseq *hws = dc->hwseq;
2050 	struct dc_bios *dcb = dc->ctx->dc_bios;
2051 	enum dc_status status;
2052 	int i;
2053 
2054 	/* Reset old context */
2055 	/* look up the targets that have been removed since last commit */
2056 	hws->funcs.reset_hw_ctx_wrap(dc, context);
2057 
2058 	/* Skip applying if no targets */
2059 	if (context->stream_count <= 0)
2060 		return DC_OK;
2061 
2062 	/* Apply new context */
2063 	dcb->funcs->set_scratch_critical_state(dcb, true);
2064 
2065 	/* below is for real asic only */
2066 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2067 		struct pipe_ctx *pipe_ctx_old =
2068 					&dc->current_state->res_ctx.pipe_ctx[i];
2069 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2070 
2071 		if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2072 			continue;
2073 
2074 		if (pipe_ctx->stream == pipe_ctx_old->stream) {
2075 			if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2076 				dce_crtc_switch_to_clk_src(dc->hwseq,
2077 						pipe_ctx->clock_source, i);
2078 			continue;
2079 		}
2080 
2081 		hws->funcs.enable_display_power_gating(
2082 				dc, i, dc->ctx->dc_bios,
2083 				PIPE_GATING_CONTROL_DISABLE);
2084 	}
2085 
2086 	if (dc->fbc_compressor)
2087 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2088 
2089 	dce110_setup_audio_dto(dc, context);
2090 
2091 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2092 		struct pipe_ctx *pipe_ctx_old =
2093 					&dc->current_state->res_ctx.pipe_ctx[i];
2094 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2095 
2096 		if (pipe_ctx->stream == NULL)
2097 			continue;
2098 
2099 		if (pipe_ctx->stream == pipe_ctx_old->stream &&
2100 			pipe_ctx->stream->link->link_state_valid) {
2101 			continue;
2102 		}
2103 
2104 		if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2105 			continue;
2106 
2107 		if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2108 			continue;
2109 
2110 		status = apply_single_controller_ctx_to_hw(
2111 				pipe_ctx,
2112 				context,
2113 				dc);
2114 
2115 		if (DC_OK != status)
2116 			return status;
2117 	}
2118 
2119 	if (dc->fbc_compressor)
2120 		enable_fbc(dc, dc->current_state);
2121 
2122 	dcb->funcs->set_scratch_critical_state(dcb, false);
2123 
2124 	return DC_OK;
2125 }
2126 
2127 /*******************************************************************************
2128  * Front End programming
2129  ******************************************************************************/
2130 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2131 {
2132 	struct default_adjustment default_adjust = { 0 };
2133 
2134 	default_adjust.force_hw_default = false;
2135 	default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2136 	default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2137 	default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2138 	default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2139 
2140 	/* display color depth */
2141 	default_adjust.color_depth =
2142 		pipe_ctx->stream->timing.display_color_depth;
2143 
2144 	/* Lb color depth */
2145 	default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2146 
2147 	pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2148 					pipe_ctx->plane_res.xfm, &default_adjust);
2149 }
2150 
2151 
2152 /*******************************************************************************
2153  * In order to turn on/off specific surface we will program
2154  * Blender + CRTC
2155  *
2156  * In case that we have two surfaces and they have a different visibility
2157  * we can't turn off the CRTC since it will turn off the entire display
2158  *
2159  * |----------------------------------------------- |
2160  * |bottom pipe|curr pipe  |              |         |
2161  * |Surface    |Surface    | Blender      |  CRCT   |
2162  * |visibility |visibility | Configuration|         |
2163  * |------------------------------------------------|
2164  * |   off     |    off    | CURRENT_PIPE | blank   |
2165  * |   off     |    on     | CURRENT_PIPE | unblank |
2166  * |   on      |    off    | OTHER_PIPE   | unblank |
2167  * |   on      |    on     | BLENDING     | unblank |
2168  * -------------------------------------------------|
2169  *
2170  ******************************************************************************/
2171 static void program_surface_visibility(const struct dc *dc,
2172 		struct pipe_ctx *pipe_ctx)
2173 {
2174 	enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2175 	bool blank_target = false;
2176 
2177 	if (pipe_ctx->bottom_pipe) {
2178 
2179 		/* For now we are supporting only two pipes */
2180 		ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2181 
2182 		if (pipe_ctx->bottom_pipe->plane_state->visible) {
2183 			if (pipe_ctx->plane_state->visible)
2184 				blender_mode = BLND_MODE_BLENDING;
2185 			else
2186 				blender_mode = BLND_MODE_OTHER_PIPE;
2187 
2188 		} else if (!pipe_ctx->plane_state->visible)
2189 			blank_target = true;
2190 
2191 	} else if (!pipe_ctx->plane_state->visible)
2192 		blank_target = true;
2193 
2194 	dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2195 	pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2196 
2197 }
2198 
2199 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2200 {
2201 	int i = 0;
2202 	struct xfm_grph_csc_adjustment adjust;
2203 	memset(&adjust, 0, sizeof(adjust));
2204 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2205 
2206 
2207 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2208 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2209 
2210 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2211 			adjust.temperature_matrix[i] =
2212 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2213 	}
2214 
2215 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2216 }
2217 static void update_plane_addr(const struct dc *dc,
2218 		struct pipe_ctx *pipe_ctx)
2219 {
2220 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2221 
2222 	if (plane_state == NULL)
2223 		return;
2224 
2225 	pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2226 			pipe_ctx->plane_res.mi,
2227 			&plane_state->address,
2228 			plane_state->flip_immediate);
2229 
2230 	plane_state->status.requested_address = plane_state->address;
2231 }
2232 
2233 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2234 {
2235 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2236 
2237 	if (plane_state == NULL)
2238 		return;
2239 
2240 	plane_state->status.is_flip_pending =
2241 			pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2242 					pipe_ctx->plane_res.mi);
2243 
2244 	if (plane_state->status.is_flip_pending && !plane_state->visible)
2245 		pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2246 
2247 	plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2248 	if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2249 			pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2250 		plane_state->status.is_right_eye =\
2251 				!pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2252 	}
2253 }
2254 
2255 void dce110_power_down(struct dc *dc)
2256 {
2257 	power_down_all_hw_blocks(dc);
2258 	disable_vga_and_power_gate_all_controllers(dc);
2259 }
2260 
2261 static bool wait_for_reset_trigger_to_occur(
2262 	struct dc_context *dc_ctx,
2263 	struct timing_generator *tg)
2264 {
2265 	bool rc = false;
2266 
2267 	/* To avoid endless loop we wait at most
2268 	 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2269 	const uint32_t frames_to_wait_on_triggered_reset = 10;
2270 	uint32_t i;
2271 
2272 	for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2273 
2274 		if (!tg->funcs->is_counter_moving(tg)) {
2275 			DC_ERROR("TG counter is not moving!\n");
2276 			break;
2277 		}
2278 
2279 		if (tg->funcs->did_triggered_reset_occur(tg)) {
2280 			rc = true;
2281 			/* usually occurs at i=1 */
2282 			DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2283 					i);
2284 			break;
2285 		}
2286 
2287 		/* Wait for one frame. */
2288 		tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2289 		tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2290 	}
2291 
2292 	if (false == rc)
2293 		DC_ERROR("GSL: Timeout on reset trigger!\n");
2294 
2295 	return rc;
2296 }
2297 
2298 /* Enable timing synchronization for a group of Timing Generators. */
2299 static void dce110_enable_timing_synchronization(
2300 		struct dc *dc,
2301 		int group_index,
2302 		int group_size,
2303 		struct pipe_ctx *grouped_pipes[])
2304 {
2305 	struct dc_context *dc_ctx = dc->ctx;
2306 	struct dcp_gsl_params gsl_params = { 0 };
2307 	int i;
2308 
2309 	DC_SYNC_INFO("GSL: Setting-up...\n");
2310 
2311 	/* Designate a single TG in the group as a master.
2312 	 * Since HW doesn't care which one, we always assign
2313 	 * the 1st one in the group. */
2314 	gsl_params.gsl_group = 0;
2315 	gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2316 
2317 	for (i = 0; i < group_size; i++)
2318 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2319 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2320 
2321 	/* Reset slave controllers on master VSync */
2322 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2323 
2324 	for (i = 1 /* skip the master */; i < group_size; i++)
2325 		grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2326 				grouped_pipes[i]->stream_res.tg,
2327 				gsl_params.gsl_group);
2328 
2329 	for (i = 1 /* skip the master */; i < group_size; i++) {
2330 		DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2331 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2332 		grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2333 				grouped_pipes[i]->stream_res.tg);
2334 	}
2335 
2336 	/* GSL Vblank synchronization is a one time sync mechanism, assumption
2337 	 * is that the sync'ed displays will not drift out of sync over time*/
2338 	DC_SYNC_INFO("GSL: Restoring register states.\n");
2339 	for (i = 0; i < group_size; i++)
2340 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2341 
2342 	DC_SYNC_INFO("GSL: Set-up complete.\n");
2343 }
2344 
2345 static void dce110_enable_per_frame_crtc_position_reset(
2346 		struct dc *dc,
2347 		int group_size,
2348 		struct pipe_ctx *grouped_pipes[])
2349 {
2350 	struct dc_context *dc_ctx = dc->ctx;
2351 	struct dcp_gsl_params gsl_params = { 0 };
2352 	int i;
2353 
2354 	gsl_params.gsl_group = 0;
2355 	gsl_params.gsl_master = 0;
2356 
2357 	for (i = 0; i < group_size; i++)
2358 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2359 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2360 
2361 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2362 
2363 	for (i = 1; i < group_size; i++)
2364 		grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2365 				grouped_pipes[i]->stream_res.tg,
2366 				gsl_params.gsl_master,
2367 				&grouped_pipes[i]->stream->triggered_crtc_reset);
2368 
2369 	DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2370 	for (i = 1; i < group_size; i++)
2371 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2372 
2373 	for (i = 0; i < group_size; i++)
2374 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2375 
2376 }
2377 
2378 static void init_pipes(struct dc *dc, struct dc_state *context)
2379 {
2380 	// Do nothing
2381 }
2382 
2383 static void init_hw(struct dc *dc)
2384 {
2385 	int i;
2386 	struct dc_bios *bp;
2387 	struct transform *xfm;
2388 	struct abm *abm;
2389 	struct dmcu *dmcu;
2390 	struct dce_hwseq *hws = dc->hwseq;
2391 	uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2392 
2393 	bp = dc->ctx->dc_bios;
2394 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2395 		xfm = dc->res_pool->transforms[i];
2396 		xfm->funcs->transform_reset(xfm);
2397 
2398 		hws->funcs.enable_display_power_gating(
2399 				dc, i, bp,
2400 				PIPE_GATING_CONTROL_INIT);
2401 		hws->funcs.enable_display_power_gating(
2402 				dc, i, bp,
2403 				PIPE_GATING_CONTROL_DISABLE);
2404 		hws->funcs.enable_display_pipe_clock_gating(
2405 			dc->ctx,
2406 			true);
2407 	}
2408 
2409 	dce_clock_gating_power_up(dc->hwseq, false);
2410 	/***************************************/
2411 
2412 	for (i = 0; i < dc->link_count; i++) {
2413 		/****************************************/
2414 		/* Power up AND update implementation according to the
2415 		 * required signal (which may be different from the
2416 		 * default signal on connector). */
2417 		struct dc_link *link = dc->links[i];
2418 
2419 		link->link_enc->funcs->hw_init(link->link_enc);
2420 	}
2421 
2422 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2423 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2424 
2425 		tg->funcs->disable_vga(tg);
2426 
2427 		/* Blank controller using driver code instead of
2428 		 * command table. */
2429 		tg->funcs->set_blank(tg, true);
2430 		hwss_wait_for_blank_complete(tg);
2431 	}
2432 
2433 	for (i = 0; i < dc->res_pool->audio_count; i++) {
2434 		struct audio *audio = dc->res_pool->audios[i];
2435 		audio->funcs->hw_init(audio);
2436 	}
2437 
2438 	for (i = 0; i < dc->link_count; i++) {
2439 		struct dc_link *link = dc->links[i];
2440 
2441 		if (link->panel_cntl)
2442 			backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2443 	}
2444 
2445 	abm = dc->res_pool->abm;
2446 	if (abm != NULL)
2447 		abm->funcs->abm_init(abm, backlight);
2448 
2449 	dmcu = dc->res_pool->dmcu;
2450 	if (dmcu != NULL && abm != NULL)
2451 		abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2452 
2453 	if (dc->fbc_compressor)
2454 		dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2455 
2456 }
2457 
2458 
2459 void dce110_prepare_bandwidth(
2460 		struct dc *dc,
2461 		struct dc_state *context)
2462 {
2463 	struct clk_mgr *dccg = dc->clk_mgr;
2464 
2465 	dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2466 
2467 	dccg->funcs->update_clocks(
2468 			dccg,
2469 			context,
2470 			false);
2471 }
2472 
2473 void dce110_optimize_bandwidth(
2474 		struct dc *dc,
2475 		struct dc_state *context)
2476 {
2477 	struct clk_mgr *dccg = dc->clk_mgr;
2478 
2479 	dce110_set_displaymarks(dc, context);
2480 
2481 	dccg->funcs->update_clocks(
2482 			dccg,
2483 			context,
2484 			true);
2485 }
2486 
2487 static void dce110_program_front_end_for_pipe(
2488 		struct dc *dc, struct pipe_ctx *pipe_ctx)
2489 {
2490 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2491 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2492 	struct xfm_grph_csc_adjustment adjust;
2493 	struct out_csc_color_matrix tbl_entry;
2494 	unsigned int i;
2495 	struct dce_hwseq *hws = dc->hwseq;
2496 
2497 	DC_LOGGER_INIT();
2498 	memset(&tbl_entry, 0, sizeof(tbl_entry));
2499 
2500 	memset(&adjust, 0, sizeof(adjust));
2501 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2502 
2503 	dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2504 
2505 	set_default_colors(pipe_ctx);
2506 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2507 			== true) {
2508 		tbl_entry.color_space =
2509 			pipe_ctx->stream->output_color_space;
2510 
2511 		for (i = 0; i < 12; i++)
2512 			tbl_entry.regval[i] =
2513 			pipe_ctx->stream->csc_color_matrix.matrix[i];
2514 
2515 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2516 				(pipe_ctx->plane_res.xfm, &tbl_entry);
2517 	}
2518 
2519 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2520 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2521 
2522 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2523 			adjust.temperature_matrix[i] =
2524 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2525 	}
2526 
2527 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2528 
2529 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
2530 
2531 	program_scaler(dc, pipe_ctx);
2532 
2533 	mi->funcs->mem_input_program_surface_config(
2534 			mi,
2535 			plane_state->format,
2536 			&plane_state->tiling_info,
2537 			&plane_state->plane_size,
2538 			plane_state->rotation,
2539 			NULL,
2540 			false);
2541 	if (mi->funcs->set_blank)
2542 		mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2543 
2544 	if (dc->config.gpu_vm_support)
2545 		mi->funcs->mem_input_program_pte_vm(
2546 				pipe_ctx->plane_res.mi,
2547 				plane_state->format,
2548 				&plane_state->tiling_info,
2549 				plane_state->rotation);
2550 
2551 	/* Moved programming gamma from dc to hwss */
2552 	if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2553 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2554 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
2555 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2556 
2557 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
2558 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2559 
2560 	DC_LOG_SURFACE(
2561 			"Pipe:%d %p: addr hi:0x%x, "
2562 			"addr low:0x%x, "
2563 			"src: %d, %d, %d,"
2564 			" %d; dst: %d, %d, %d, %d;"
2565 			"clip: %d, %d, %d, %d\n",
2566 			pipe_ctx->pipe_idx,
2567 			(void *) pipe_ctx->plane_state,
2568 			pipe_ctx->plane_state->address.grph.addr.high_part,
2569 			pipe_ctx->plane_state->address.grph.addr.low_part,
2570 			pipe_ctx->plane_state->src_rect.x,
2571 			pipe_ctx->plane_state->src_rect.y,
2572 			pipe_ctx->plane_state->src_rect.width,
2573 			pipe_ctx->plane_state->src_rect.height,
2574 			pipe_ctx->plane_state->dst_rect.x,
2575 			pipe_ctx->plane_state->dst_rect.y,
2576 			pipe_ctx->plane_state->dst_rect.width,
2577 			pipe_ctx->plane_state->dst_rect.height,
2578 			pipe_ctx->plane_state->clip_rect.x,
2579 			pipe_ctx->plane_state->clip_rect.y,
2580 			pipe_ctx->plane_state->clip_rect.width,
2581 			pipe_ctx->plane_state->clip_rect.height);
2582 
2583 	DC_LOG_SURFACE(
2584 			"Pipe %d: width, height, x, y\n"
2585 			"viewport:%d, %d, %d, %d\n"
2586 			"recout:  %d, %d, %d, %d\n",
2587 			pipe_ctx->pipe_idx,
2588 			pipe_ctx->plane_res.scl_data.viewport.width,
2589 			pipe_ctx->plane_res.scl_data.viewport.height,
2590 			pipe_ctx->plane_res.scl_data.viewport.x,
2591 			pipe_ctx->plane_res.scl_data.viewport.y,
2592 			pipe_ctx->plane_res.scl_data.recout.width,
2593 			pipe_ctx->plane_res.scl_data.recout.height,
2594 			pipe_ctx->plane_res.scl_data.recout.x,
2595 			pipe_ctx->plane_res.scl_data.recout.y);
2596 }
2597 
2598 static void dce110_apply_ctx_for_surface(
2599 		struct dc *dc,
2600 		const struct dc_stream_state *stream,
2601 		int num_planes,
2602 		struct dc_state *context)
2603 {
2604 	int i;
2605 
2606 	if (num_planes == 0)
2607 		return;
2608 
2609 	if (dc->fbc_compressor)
2610 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2611 
2612 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2613 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2614 
2615 		if (pipe_ctx->stream != stream)
2616 			continue;
2617 
2618 		/* Need to allocate mem before program front end for Fiji */
2619 		pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2620 				pipe_ctx->plane_res.mi,
2621 				pipe_ctx->stream->timing.h_total,
2622 				pipe_ctx->stream->timing.v_total,
2623 				pipe_ctx->stream->timing.pix_clk_100hz / 10,
2624 				context->stream_count);
2625 
2626 		dce110_program_front_end_for_pipe(dc, pipe_ctx);
2627 
2628 		dc->hwss.update_plane_addr(dc, pipe_ctx);
2629 
2630 		program_surface_visibility(dc, pipe_ctx);
2631 
2632 	}
2633 
2634 	if (dc->fbc_compressor)
2635 		enable_fbc(dc, context);
2636 }
2637 
2638 static void dce110_post_unlock_program_front_end(
2639 		struct dc *dc,
2640 		struct dc_state *context)
2641 {
2642 }
2643 
2644 static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
2645 {
2646 	struct dce_hwseq *hws = dc->hwseq;
2647 	int fe_idx = pipe_ctx->plane_res.mi ?
2648 		pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2649 
2650 	/* Do not power down fe when stream is active on dce*/
2651 	if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2652 		return;
2653 
2654 	hws->funcs.enable_display_power_gating(
2655 		dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2656 
2657 	dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2658 				dc->res_pool->transforms[fe_idx]);
2659 }
2660 
2661 static void dce110_wait_for_mpcc_disconnect(
2662 		struct dc *dc,
2663 		struct resource_pool *res_pool,
2664 		struct pipe_ctx *pipe_ctx)
2665 {
2666 	/* do nothing*/
2667 }
2668 
2669 static void program_output_csc(struct dc *dc,
2670 		struct pipe_ctx *pipe_ctx,
2671 		enum dc_color_space colorspace,
2672 		uint16_t *matrix,
2673 		int opp_id)
2674 {
2675 	int i;
2676 	struct out_csc_color_matrix tbl_entry;
2677 
2678 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2679 		enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
2680 
2681 		for (i = 0; i < 12; i++)
2682 			tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2683 
2684 		tbl_entry.color_space = color_space;
2685 
2686 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
2687 				pipe_ctx->plane_res.xfm, &tbl_entry);
2688 	}
2689 }
2690 
2691 void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2692 {
2693 	struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2694 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2695 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2696 	struct dc_cursor_mi_param param = {
2697 		.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
2698 		.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
2699 		.viewport = pipe_ctx->plane_res.scl_data.viewport,
2700 		.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2701 		.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2702 		.rotation = pipe_ctx->plane_state->rotation,
2703 		.mirror = pipe_ctx->plane_state->horizontal_mirror
2704 	};
2705 
2706 	/**
2707 	 * If the cursor's source viewport is clipped then we need to
2708 	 * translate the cursor to appear in the correct position on
2709 	 * the screen.
2710 	 *
2711 	 * This translation isn't affected by scaling so it needs to be
2712 	 * done *after* we adjust the position for the scale factor.
2713 	 *
2714 	 * This is only done by opt-in for now since there are still
2715 	 * some usecases like tiled display that might enable the
2716 	 * cursor on both streams while expecting dc to clip it.
2717 	 */
2718 	if (pos_cpy.translate_by_source) {
2719 		pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
2720 		pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
2721 	}
2722 
2723 	if (pipe_ctx->plane_state->address.type
2724 			== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2725 		pos_cpy.enable = false;
2726 
2727 	if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2728 		pos_cpy.enable = false;
2729 
2730 	if (ipp->funcs->ipp_cursor_set_position)
2731 		ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
2732 	if (mi->funcs->set_cursor_position)
2733 		mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
2734 }
2735 
2736 void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2737 {
2738 	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2739 
2740 	if (pipe_ctx->plane_res.ipp &&
2741 	    pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2742 		pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2743 				pipe_ctx->plane_res.ipp, attributes);
2744 
2745 	if (pipe_ctx->plane_res.mi &&
2746 	    pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2747 		pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2748 				pipe_ctx->plane_res.mi, attributes);
2749 
2750 	if (pipe_ctx->plane_res.xfm &&
2751 	    pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2752 		pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2753 				pipe_ctx->plane_res.xfm, attributes);
2754 }
2755 
2756 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
2757 		uint32_t backlight_pwm_u16_16,
2758 		uint32_t frame_ramp)
2759 {
2760 	struct dc_link *link = pipe_ctx->stream->link;
2761 	struct dc  *dc = link->ctx->dc;
2762 	struct abm *abm = pipe_ctx->stream_res.abm;
2763 	struct panel_cntl *panel_cntl = link->panel_cntl;
2764 	struct dmcu *dmcu = dc->res_pool->dmcu;
2765 	bool fw_set_brightness = true;
2766 	/* DMCU -1 for all controller id values,
2767 	 * therefore +1 here
2768 	 */
2769 	uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
2770 
2771 	if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
2772 		return false;
2773 
2774 	if (dmcu)
2775 		fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
2776 
2777 	if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
2778 		panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
2779 	else
2780 		abm->funcs->set_backlight_level_pwm(
2781 				abm,
2782 				backlight_pwm_u16_16,
2783 				frame_ramp,
2784 				controller_id,
2785 				link->panel_cntl->inst);
2786 
2787 	return true;
2788 }
2789 
2790 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
2791 {
2792 	struct abm *abm = pipe_ctx->stream_res.abm;
2793 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2794 
2795 	if (abm)
2796 		abm->funcs->set_abm_immediate_disable(abm,
2797 				pipe_ctx->stream->link->panel_cntl->inst);
2798 
2799 	if (panel_cntl)
2800 		panel_cntl->funcs->store_backlight_level(panel_cntl);
2801 }
2802 
2803 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
2804 {
2805 	struct abm *abm = pipe_ctx->stream_res.abm;
2806 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2807 	uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
2808 
2809 	if (abm && panel_cntl)
2810 		abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
2811 }
2812 
2813 static const struct hw_sequencer_funcs dce110_funcs = {
2814 	.program_gamut_remap = program_gamut_remap,
2815 	.program_output_csc = program_output_csc,
2816 	.init_hw = init_hw,
2817 	.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
2818 	.apply_ctx_for_surface = dce110_apply_ctx_for_surface,
2819 	.post_unlock_program_front_end = dce110_post_unlock_program_front_end,
2820 	.update_plane_addr = update_plane_addr,
2821 	.update_pending_status = dce110_update_pending_status,
2822 	.enable_accelerated_mode = dce110_enable_accelerated_mode,
2823 	.enable_timing_synchronization = dce110_enable_timing_synchronization,
2824 	.enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
2825 	.update_info_frame = dce110_update_info_frame,
2826 	.enable_stream = dce110_enable_stream,
2827 	.disable_stream = dce110_disable_stream,
2828 	.unblank_stream = dce110_unblank_stream,
2829 	.blank_stream = dce110_blank_stream,
2830 	.enable_audio_stream = dce110_enable_audio_stream,
2831 	.disable_audio_stream = dce110_disable_audio_stream,
2832 	.disable_plane = dce110_power_down_fe,
2833 	.pipe_control_lock = dce_pipe_control_lock,
2834 	.interdependent_update_lock = NULL,
2835 	.cursor_lock = dce_pipe_control_lock,
2836 	.prepare_bandwidth = dce110_prepare_bandwidth,
2837 	.optimize_bandwidth = dce110_optimize_bandwidth,
2838 	.set_drr = set_drr,
2839 	.get_position = get_position,
2840 	.set_static_screen_control = set_static_screen_control,
2841 	.setup_stereo = NULL,
2842 	.set_avmute = dce110_set_avmute,
2843 	.wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
2844 	.edp_power_control = dce110_edp_power_control,
2845 	.edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
2846 	.set_cursor_position = dce110_set_cursor_position,
2847 	.set_cursor_attribute = dce110_set_cursor_attribute,
2848 	.set_backlight_level = dce110_set_backlight_level,
2849 	.set_abm_immediate_disable = dce110_set_abm_immediate_disable,
2850 	.set_pipe = dce110_set_pipe,
2851 };
2852 
2853 static const struct hwseq_private_funcs dce110_private_funcs = {
2854 	.init_pipes = init_pipes,
2855 	.update_plane_addr = update_plane_addr,
2856 	.set_input_transfer_func = dce110_set_input_transfer_func,
2857 	.set_output_transfer_func = dce110_set_output_transfer_func,
2858 	.power_down = dce110_power_down,
2859 	.enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
2860 	.enable_display_power_gating = dce110_enable_display_power_gating,
2861 	.reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
2862 	.enable_stream_timing = dce110_enable_stream_timing,
2863 	.disable_stream_gating = NULL,
2864 	.enable_stream_gating = NULL,
2865 	.edp_backlight_control = dce110_edp_backlight_control,
2866 };
2867 
2868 void dce110_hw_sequencer_construct(struct dc *dc)
2869 {
2870 	dc->hwss = dce110_funcs;
2871 	dc->hwseq->funcs = dce110_private_funcs;
2872 }
2873 
2874