1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dm_services.h"
27 #include "dc.h"
28 #include "dc_bios_types.h"
29 #include "core_types.h"
30 #include "core_status.h"
31 #include "resource.h"
32 #include "dm_helpers.h"
33 #include "dce110_timing_generator.h"
34 #include "dce/dce_hwseq.h"
35 #include "gpio_service_interface.h"
36
37 #include "dce110_compressor.h"
38
39 #include "bios/bios_parser_helper.h"
40 #include "timing_generator.h"
41 #include "mem_input.h"
42 #include "opp.h"
43 #include "ipp.h"
44 #include "transform.h"
45 #include "stream_encoder.h"
46 #include "link_encoder.h"
47 #include "link_enc_cfg.h"
48 #include "link_hwss.h"
49 #include "link.h"
50 #include "dccg.h"
51 #include "clock_source.h"
52 #include "clk_mgr.h"
53 #include "abm.h"
54 #include "audio.h"
55 #include "reg_helper.h"
56 #include "panel_cntl.h"
57 #include "dpcd_defs.h"
58 /* include DCE11 register header files */
59 #include "dce/dce_11_0_d.h"
60 #include "dce/dce_11_0_sh_mask.h"
61 #include "custom_float.h"
62
63 #include "atomfirmware.h"
64
65 #include "dcn10/dcn10_hw_sequencer.h"
66
67 #include "dce110_hw_sequencer.h"
68
69 #define GAMMA_HW_POINTS_NUM 256
70
71 /*
72 * All values are in milliseconds;
73 * For eDP, after power-up/power/down,
74 * 300/500 msec max. delay from LCDVCC to black video generation
75 */
76 #define PANEL_POWER_UP_TIMEOUT 300
77 #define PANEL_POWER_DOWN_TIMEOUT 500
78 #define HPD_CHECK_INTERVAL 10
79 #define OLED_POST_T7_DELAY 100
80 #define OLED_PRE_T11_DELAY 150
81
82 #define CTX \
83 hws->ctx
84
85 #define DC_LOGGER_INIT()
86
87 #define REG(reg)\
88 hws->regs->reg
89
90 #undef FN
91 #define FN(reg_name, field_name) \
92 hws->shifts->field_name, hws->masks->field_name
93
94 struct dce110_hw_seq_reg_offsets {
95 uint32_t crtc;
96 };
97
98 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
99 {
100 .crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
101 },
102 {
103 .crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
104 },
105 {
106 .crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
107 },
108 {
109 .crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
110 }
111 };
112
113 #define HW_REG_BLND(reg, id)\
114 (reg + reg_offsets[id].blnd)
115
116 #define HW_REG_CRTC(reg, id)\
117 (reg + reg_offsets[id].crtc)
118
119 #define MAX_WATERMARK 0xFFFF
120 #define SAFE_NBP_MARK 0x7FFF
121
122 /*******************************************************************************
123 * Private definitions
124 ******************************************************************************/
125 /***************************PIPE_CONTROL***********************************/
dce110_init_pte(struct dc_context * ctx)126 static void dce110_init_pte(struct dc_context *ctx)
127 {
128 uint32_t addr;
129 uint32_t value = 0;
130 uint32_t chunk_int = 0;
131 uint32_t chunk_mul = 0;
132
133 addr = mmUNP_DVMM_PTE_CONTROL;
134 value = dm_read_reg(ctx, addr);
135
136 set_reg_field_value(
137 value,
138 0,
139 DVMM_PTE_CONTROL,
140 DVMM_USE_SINGLE_PTE);
141
142 set_reg_field_value(
143 value,
144 1,
145 DVMM_PTE_CONTROL,
146 DVMM_PTE_BUFFER_MODE0);
147
148 set_reg_field_value(
149 value,
150 1,
151 DVMM_PTE_CONTROL,
152 DVMM_PTE_BUFFER_MODE1);
153
154 dm_write_reg(ctx, addr, value);
155
156 addr = mmDVMM_PTE_REQ;
157 value = dm_read_reg(ctx, addr);
158
159 chunk_int = get_reg_field_value(
160 value,
161 DVMM_PTE_REQ,
162 HFLIP_PTEREQ_PER_CHUNK_INT);
163
164 chunk_mul = get_reg_field_value(
165 value,
166 DVMM_PTE_REQ,
167 HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
168
169 if (chunk_int != 0x4 || chunk_mul != 0x4) {
170
171 set_reg_field_value(
172 value,
173 255,
174 DVMM_PTE_REQ,
175 MAX_PTEREQ_TO_ISSUE);
176
177 set_reg_field_value(
178 value,
179 4,
180 DVMM_PTE_REQ,
181 HFLIP_PTEREQ_PER_CHUNK_INT);
182
183 set_reg_field_value(
184 value,
185 4,
186 DVMM_PTE_REQ,
187 HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
188
189 dm_write_reg(ctx, addr, value);
190 }
191 }
192 /**************************************************************************/
193
enable_display_pipe_clock_gating(struct dc_context * ctx,bool clock_gating)194 static void enable_display_pipe_clock_gating(
195 struct dc_context *ctx,
196 bool clock_gating)
197 {
198 /*TODO*/
199 }
200
dce110_enable_display_power_gating(struct dc * dc,uint8_t controller_id,struct dc_bios * dcb,enum pipe_gating_control power_gating)201 static bool dce110_enable_display_power_gating(
202 struct dc *dc,
203 uint8_t controller_id,
204 struct dc_bios *dcb,
205 enum pipe_gating_control power_gating)
206 {
207 enum bp_result bp_result = BP_RESULT_OK;
208 enum bp_pipe_control_action cntl;
209 struct dc_context *ctx = dc->ctx;
210 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
211
212 if (power_gating == PIPE_GATING_CONTROL_INIT)
213 cntl = ASIC_PIPE_INIT;
214 else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
215 cntl = ASIC_PIPE_ENABLE;
216 else
217 cntl = ASIC_PIPE_DISABLE;
218
219 if (controller_id == underlay_idx)
220 controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
221
222 if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0) {
223
224 bp_result = dcb->funcs->enable_disp_power_gating(
225 dcb, controller_id + 1, cntl);
226
227 /* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
228 * by default when command table is called
229 *
230 * Bios parser accepts controller_id = 6 as indicative of
231 * underlay pipe in dce110. But we do not support more
232 * than 3.
233 */
234 if (controller_id < CONTROLLER_ID_MAX - 1)
235 dm_write_reg(ctx,
236 HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
237 0);
238 }
239
240 if (power_gating != PIPE_GATING_CONTROL_ENABLE)
241 dce110_init_pte(ctx);
242
243 if (bp_result == BP_RESULT_OK)
244 return true;
245 else
246 return false;
247 }
248
build_prescale_params(struct ipp_prescale_params * prescale_params,const struct dc_plane_state * plane_state)249 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
250 const struct dc_plane_state *plane_state)
251 {
252 prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
253
254 switch (plane_state->format) {
255 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
256 prescale_params->scale = 0x2082;
257 break;
258 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
259 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
260 prescale_params->scale = 0x2020;
261 break;
262 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
263 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
264 prescale_params->scale = 0x2008;
265 break;
266 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
267 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
268 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
269 prescale_params->scale = 0x2000;
270 break;
271 default:
272 ASSERT(false);
273 break;
274 }
275 }
276
277 static bool
dce110_set_input_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_plane_state * plane_state)278 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
279 const struct dc_plane_state *plane_state)
280 {
281 struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
282 const struct dc_transfer_func *tf = NULL;
283 struct ipp_prescale_params prescale_params = { 0 };
284 bool result = true;
285
286 if (ipp == NULL)
287 return false;
288
289 if (plane_state->in_transfer_func)
290 tf = plane_state->in_transfer_func;
291
292 build_prescale_params(&prescale_params, plane_state);
293 ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
294
295 if (plane_state->gamma_correction &&
296 !plane_state->gamma_correction->is_identity &&
297 dce_use_lut(plane_state->format))
298 ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
299
300 if (tf == NULL) {
301 /* Default case if no input transfer function specified */
302 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
303 } else if (tf->type == TF_TYPE_PREDEFINED) {
304 switch (tf->tf) {
305 case TRANSFER_FUNCTION_SRGB:
306 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
307 break;
308 case TRANSFER_FUNCTION_BT709:
309 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
310 break;
311 case TRANSFER_FUNCTION_LINEAR:
312 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
313 break;
314 case TRANSFER_FUNCTION_PQ:
315 default:
316 result = false;
317 break;
318 }
319 } else if (tf->type == TF_TYPE_BYPASS) {
320 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
321 } else {
322 /*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
323 result = false;
324 }
325
326 return result;
327 }
328
convert_to_custom_float(struct pwl_result_data * rgb_resulted,struct curve_points * arr_points,uint32_t hw_points_num)329 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
330 struct curve_points *arr_points,
331 uint32_t hw_points_num)
332 {
333 struct custom_float_format fmt;
334
335 struct pwl_result_data *rgb = rgb_resulted;
336
337 uint32_t i = 0;
338
339 fmt.exponenta_bits = 6;
340 fmt.mantissa_bits = 12;
341 fmt.sign = true;
342
343 if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
344 &arr_points[0].custom_float_x)) {
345 BREAK_TO_DEBUGGER();
346 return false;
347 }
348
349 if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
350 &arr_points[0].custom_float_offset)) {
351 BREAK_TO_DEBUGGER();
352 return false;
353 }
354
355 if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
356 &arr_points[0].custom_float_slope)) {
357 BREAK_TO_DEBUGGER();
358 return false;
359 }
360
361 fmt.mantissa_bits = 10;
362 fmt.sign = false;
363
364 if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
365 &arr_points[1].custom_float_x)) {
366 BREAK_TO_DEBUGGER();
367 return false;
368 }
369
370 if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
371 &arr_points[1].custom_float_y)) {
372 BREAK_TO_DEBUGGER();
373 return false;
374 }
375
376 if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
377 &arr_points[1].custom_float_slope)) {
378 BREAK_TO_DEBUGGER();
379 return false;
380 }
381
382 fmt.mantissa_bits = 12;
383 fmt.sign = true;
384
385 while (i != hw_points_num) {
386 if (!convert_to_custom_float_format(rgb->red, &fmt,
387 &rgb->red_reg)) {
388 BREAK_TO_DEBUGGER();
389 return false;
390 }
391
392 if (!convert_to_custom_float_format(rgb->green, &fmt,
393 &rgb->green_reg)) {
394 BREAK_TO_DEBUGGER();
395 return false;
396 }
397
398 if (!convert_to_custom_float_format(rgb->blue, &fmt,
399 &rgb->blue_reg)) {
400 BREAK_TO_DEBUGGER();
401 return false;
402 }
403
404 if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
405 &rgb->delta_red_reg)) {
406 BREAK_TO_DEBUGGER();
407 return false;
408 }
409
410 if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
411 &rgb->delta_green_reg)) {
412 BREAK_TO_DEBUGGER();
413 return false;
414 }
415
416 if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
417 &rgb->delta_blue_reg)) {
418 BREAK_TO_DEBUGGER();
419 return false;
420 }
421
422 ++rgb;
423 ++i;
424 }
425
426 return true;
427 }
428
429 #define MAX_LOW_POINT 25
430 #define NUMBER_REGIONS 16
431 #define NUMBER_SW_SEGMENTS 16
432
433 static bool
dce110_translate_regamma_to_hw_format(const struct dc_transfer_func * output_tf,struct pwl_params * regamma_params)434 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
435 struct pwl_params *regamma_params)
436 {
437 struct curve_points *arr_points;
438 struct pwl_result_data *rgb_resulted;
439 struct pwl_result_data *rgb;
440 struct pwl_result_data *rgb_plus_1;
441 struct fixed31_32 y_r;
442 struct fixed31_32 y_g;
443 struct fixed31_32 y_b;
444 struct fixed31_32 y1_min;
445 struct fixed31_32 y3_max;
446
447 int32_t region_start, region_end;
448 uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
449
450 if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
451 return false;
452
453 arr_points = regamma_params->arr_points;
454 rgb_resulted = regamma_params->rgb_resulted;
455 hw_points = 0;
456
457 memset(regamma_params, 0, sizeof(struct pwl_params));
458
459 if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
460 /* 16 segments
461 * segments are from 2^-11 to 2^5
462 */
463 region_start = -11;
464 region_end = region_start + NUMBER_REGIONS;
465
466 for (i = 0; i < NUMBER_REGIONS; i++)
467 seg_distr[i] = 4;
468
469 } else {
470 /* 10 segments
471 * segment is from 2^-10 to 2^1
472 * We include an extra segment for range [2^0, 2^1). This is to
473 * ensure that colors with normalized values of 1 don't miss the
474 * LUT.
475 */
476 region_start = -10;
477 region_end = 1;
478
479 seg_distr[0] = 4;
480 seg_distr[1] = 4;
481 seg_distr[2] = 4;
482 seg_distr[3] = 4;
483 seg_distr[4] = 4;
484 seg_distr[5] = 4;
485 seg_distr[6] = 4;
486 seg_distr[7] = 4;
487 seg_distr[8] = 4;
488 seg_distr[9] = 4;
489 seg_distr[10] = 0;
490 seg_distr[11] = -1;
491 seg_distr[12] = -1;
492 seg_distr[13] = -1;
493 seg_distr[14] = -1;
494 seg_distr[15] = -1;
495 }
496
497 for (k = 0; k < 16; k++) {
498 if (seg_distr[k] != -1)
499 hw_points += (1 << seg_distr[k]);
500 }
501
502 j = 0;
503 for (k = 0; k < (region_end - region_start); k++) {
504 increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
505 start_index = (region_start + k + MAX_LOW_POINT) *
506 NUMBER_SW_SEGMENTS;
507 for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
508 i += increment) {
509 if (j == hw_points - 1)
510 break;
511 rgb_resulted[j].red = output_tf->tf_pts.red[i];
512 rgb_resulted[j].green = output_tf->tf_pts.green[i];
513 rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
514 j++;
515 }
516 }
517
518 /* last point */
519 start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
520 rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
521 rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
522 rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
523
524 arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
525 dc_fixpt_from_int(region_start));
526 arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
527 dc_fixpt_from_int(region_end));
528
529 y_r = rgb_resulted[0].red;
530 y_g = rgb_resulted[0].green;
531 y_b = rgb_resulted[0].blue;
532
533 y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
534
535 arr_points[0].y = y1_min;
536 arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
537 arr_points[0].x);
538
539 y_r = rgb_resulted[hw_points - 1].red;
540 y_g = rgb_resulted[hw_points - 1].green;
541 y_b = rgb_resulted[hw_points - 1].blue;
542
543 /* see comment above, m_arrPoints[1].y should be the Y value for the
544 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
545 */
546 y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
547
548 arr_points[1].y = y3_max;
549
550 arr_points[1].slope = dc_fixpt_zero;
551
552 if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
553 /* for PQ, we want to have a straight line from last HW X point,
554 * and the slope to be such that we hit 1.0 at 10000 nits.
555 */
556 const struct fixed31_32 end_value = dc_fixpt_from_int(125);
557
558 arr_points[1].slope = dc_fixpt_div(
559 dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
560 dc_fixpt_sub(end_value, arr_points[1].x));
561 }
562
563 regamma_params->hw_points_num = hw_points;
564
565 k = 0;
566 for (i = 1; i < 16; i++) {
567 if (seg_distr[k] != -1) {
568 regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
569 regamma_params->arr_curve_points[i].offset =
570 regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
571 }
572 k++;
573 }
574
575 if (seg_distr[k] != -1)
576 regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
577
578 rgb = rgb_resulted;
579 rgb_plus_1 = rgb_resulted + 1;
580
581 i = 1;
582
583 while (i != hw_points + 1) {
584 if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
585 rgb_plus_1->red = rgb->red;
586 if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
587 rgb_plus_1->green = rgb->green;
588 if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
589 rgb_plus_1->blue = rgb->blue;
590
591 rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
592 rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
593 rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
594
595 ++rgb_plus_1;
596 ++rgb;
597 ++i;
598 }
599
600 convert_to_custom_float(rgb_resulted, arr_points, hw_points);
601
602 return true;
603 }
604
605 static bool
dce110_set_output_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_stream_state * stream)606 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
607 const struct dc_stream_state *stream)
608 {
609 struct transform *xfm = pipe_ctx->plane_res.xfm;
610
611 xfm->funcs->opp_power_on_regamma_lut(xfm, true);
612 xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
613
614 if (stream->out_transfer_func &&
615 stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
616 stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
617 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
618 } else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
619 &xfm->regamma_params)) {
620 xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
621 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
622 } else {
623 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
624 }
625
626 xfm->funcs->opp_power_on_regamma_lut(xfm, false);
627
628 return true;
629 }
630
dce110_update_info_frame(struct pipe_ctx * pipe_ctx)631 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
632 {
633 bool is_hdmi_tmds;
634 bool is_dp;
635
636 ASSERT(pipe_ctx->stream);
637
638 if (pipe_ctx->stream_res.stream_enc == NULL)
639 return; /* this is not root pipe */
640
641 is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
642 is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
643
644 if (!is_hdmi_tmds && !is_dp)
645 return;
646
647 if (is_hdmi_tmds)
648 pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
649 pipe_ctx->stream_res.stream_enc,
650 &pipe_ctx->stream_res.encoder_info_frame);
651 else {
652 if (pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num)
653 pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num(
654 pipe_ctx->stream_res.stream_enc,
655 &pipe_ctx->stream_res.encoder_info_frame);
656
657 pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
658 pipe_ctx->stream_res.stream_enc,
659 &pipe_ctx->stream_res.encoder_info_frame);
660 }
661 }
662
dce110_enable_stream(struct pipe_ctx * pipe_ctx)663 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
664 {
665 enum dc_lane_count lane_count =
666 pipe_ctx->stream->link->cur_link_settings.lane_count;
667 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
668 struct dc_link *link = pipe_ctx->stream->link;
669 const struct dc *dc = link->dc;
670 const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
671 uint32_t active_total_with_borders;
672 uint32_t early_control = 0;
673 struct timing_generator *tg = pipe_ctx->stream_res.tg;
674
675 link_hwss->setup_stream_encoder(pipe_ctx);
676
677 dc->hwss.update_info_frame(pipe_ctx);
678
679 /* enable early control to avoid corruption on DP monitor*/
680 active_total_with_borders =
681 timing->h_addressable
682 + timing->h_border_left
683 + timing->h_border_right;
684
685 if (lane_count != 0)
686 early_control = active_total_with_borders % lane_count;
687
688 if (early_control == 0)
689 early_control = lane_count;
690
691 tg->funcs->set_early_control(tg, early_control);
692 }
693
link_transmitter_control(struct dc_bios * bios,struct bp_transmitter_control * cntl)694 static enum bp_result link_transmitter_control(
695 struct dc_bios *bios,
696 struct bp_transmitter_control *cntl)
697 {
698 enum bp_result result;
699
700 result = bios->funcs->transmitter_control(bios, cntl);
701
702 return result;
703 }
704
705 /*
706 * @brief
707 * eDP only.
708 */
dce110_edp_wait_for_hpd_ready(struct dc_link * link,bool power_up)709 void dce110_edp_wait_for_hpd_ready(
710 struct dc_link *link,
711 bool power_up)
712 {
713 struct dc_context *ctx = link->ctx;
714 struct graphics_object_id connector = link->link_enc->connector;
715 struct gpio *hpd;
716 bool edp_hpd_high = false;
717 uint32_t time_elapsed = 0;
718 uint32_t timeout = power_up ?
719 PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
720
721 if (dal_graphics_object_id_get_connector_id(connector)
722 != CONNECTOR_ID_EDP) {
723 BREAK_TO_DEBUGGER();
724 return;
725 }
726
727 if (!power_up)
728 /*
729 * From KV, we will not HPD low after turning off VCC -
730 * instead, we will check the SW timer in power_up().
731 */
732 return;
733
734 /*
735 * When we power on/off the eDP panel,
736 * we need to wait until SENSE bit is high/low.
737 */
738
739 /* obtain HPD */
740 /* TODO what to do with this? */
741 hpd = ctx->dc->link_srv->get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
742
743 if (!hpd) {
744 BREAK_TO_DEBUGGER();
745 return;
746 }
747
748 if (link != NULL) {
749 if (link->panel_config.pps.extra_t3_ms > 0) {
750 int extra_t3_in_ms = link->panel_config.pps.extra_t3_ms;
751
752 msleep(extra_t3_in_ms);
753 }
754 }
755
756 dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
757
758 /* wait until timeout or panel detected */
759
760 do {
761 uint32_t detected = 0;
762
763 dal_gpio_get_value(hpd, &detected);
764
765 if (!(detected ^ power_up)) {
766 edp_hpd_high = true;
767 break;
768 }
769
770 msleep(HPD_CHECK_INTERVAL);
771
772 time_elapsed += HPD_CHECK_INTERVAL;
773 } while (time_elapsed < timeout);
774
775 dal_gpio_close(hpd);
776
777 dal_gpio_destroy_irq(&hpd);
778
779 /* ensure that the panel is detected */
780 if (!edp_hpd_high)
781 DC_LOG_DC("%s: wait timed out!\n", __func__);
782 }
783
dce110_edp_power_control(struct dc_link * link,bool power_up)784 void dce110_edp_power_control(
785 struct dc_link *link,
786 bool power_up)
787 {
788 struct dc_context *ctx = link->ctx;
789 struct bp_transmitter_control cntl = { 0 };
790 enum bp_result bp_result;
791 uint8_t pwrseq_instance;
792
793
794 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
795 != CONNECTOR_ID_EDP) {
796 BREAK_TO_DEBUGGER();
797 return;
798 }
799
800 if (!link->panel_cntl)
801 return;
802 if (power_up !=
803 link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
804
805 unsigned long long current_ts = dm_get_timestamp(ctx);
806 unsigned long long time_since_edp_poweroff_ms =
807 div64_u64(dm_get_elapse_time_in_ns(
808 ctx,
809 current_ts,
810 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
811 unsigned long long time_since_edp_poweron_ms =
812 div64_u64(dm_get_elapse_time_in_ns(
813 ctx,
814 current_ts,
815 ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link)), 1000000);
816 DC_LOG_HW_RESUME_S3(
817 "%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
818 __func__,
819 power_up,
820 current_ts,
821 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
822 ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link),
823 time_since_edp_poweroff_ms,
824 time_since_edp_poweron_ms);
825
826 /* Send VBIOS command to prompt eDP panel power */
827 if (power_up) {
828 /* edp requires a min of 500ms from LCDVDD off to on */
829 unsigned long long remaining_min_edp_poweroff_time_ms = 500;
830
831 /* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
832 if (link->local_sink != NULL)
833 remaining_min_edp_poweroff_time_ms +=
834 link->panel_config.pps.extra_t12_ms;
835
836 /* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
837 if (ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
838 if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
839 remaining_min_edp_poweroff_time_ms =
840 remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
841 else
842 remaining_min_edp_poweroff_time_ms = 0;
843 }
844
845 if (remaining_min_edp_poweroff_time_ms) {
846 DC_LOG_HW_RESUME_S3(
847 "%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
848 __func__, remaining_min_edp_poweroff_time_ms);
849 msleep(remaining_min_edp_poweroff_time_ms);
850 DC_LOG_HW_RESUME_S3(
851 "%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
852 __func__, remaining_min_edp_poweroff_time_ms);
853 dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
854 __func__, remaining_min_edp_poweroff_time_ms);
855 } else {
856 DC_LOG_HW_RESUME_S3(
857 "%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
858 __func__, remaining_min_edp_poweroff_time_ms);
859 }
860 }
861
862 DC_LOG_HW_RESUME_S3(
863 "%s: BEGIN: Panel Power action: %s\n",
864 __func__, (power_up ? "On":"Off"));
865
866 cntl.action = power_up ?
867 TRANSMITTER_CONTROL_POWER_ON :
868 TRANSMITTER_CONTROL_POWER_OFF;
869 cntl.transmitter = link->link_enc->transmitter;
870 cntl.connector_obj_id = link->link_enc->connector;
871 cntl.coherent = false;
872 cntl.lanes_number = LANE_COUNT_FOUR;
873 cntl.hpd_sel = link->link_enc->hpd_source;
874 pwrseq_instance = link->panel_cntl->pwrseq_inst;
875
876 if (ctx->dc->ctx->dmub_srv &&
877 ctx->dc->debug.dmub_command_table) {
878
879 if (cntl.action == TRANSMITTER_CONTROL_POWER_ON) {
880 bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
881 LVTMA_CONTROL_POWER_ON,
882 pwrseq_instance, link->link_powered_externally);
883 } else {
884 bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
885 LVTMA_CONTROL_POWER_OFF,
886 pwrseq_instance, link->link_powered_externally);
887 }
888 }
889
890 bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
891
892 DC_LOG_HW_RESUME_S3(
893 "%s: END: Panel Power action: %s bp_result=%u\n",
894 __func__, (power_up ? "On":"Off"),
895 bp_result);
896
897 ctx->dc->link_srv->dp_trace_set_edp_power_timestamp(link, power_up);
898
899 DC_LOG_HW_RESUME_S3(
900 "%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
901 __func__,
902 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
903 ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link));
904
905 if (bp_result != BP_RESULT_OK)
906 DC_LOG_ERROR(
907 "%s: Panel Power bp_result: %d\n",
908 __func__, bp_result);
909 } else {
910 DC_LOG_HW_RESUME_S3(
911 "%s: Skipping Panel Power action: %s\n",
912 __func__, (power_up ? "On":"Off"));
913 }
914 }
915
dce110_edp_wait_for_T12(struct dc_link * link)916 void dce110_edp_wait_for_T12(
917 struct dc_link *link)
918 {
919 struct dc_context *ctx = link->ctx;
920
921 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
922 != CONNECTOR_ID_EDP) {
923 BREAK_TO_DEBUGGER();
924 return;
925 }
926
927 if (!link->panel_cntl)
928 return;
929
930 if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
931 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
932 unsigned int t12_duration = 500; // Default T12 as per spec
933 unsigned long long current_ts = dm_get_timestamp(ctx);
934 unsigned long long time_since_edp_poweroff_ms =
935 div64_u64(dm_get_elapse_time_in_ns(
936 ctx,
937 current_ts,
938 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
939
940 t12_duration += link->panel_config.pps.extra_t12_ms; // Add extra T12
941
942 if (time_since_edp_poweroff_ms < t12_duration)
943 msleep(t12_duration - time_since_edp_poweroff_ms);
944 }
945 }
946 /*todo: cloned in stream enc, fix*/
947 /*
948 * @brief
949 * eDP only. Control the backlight of the eDP panel
950 */
dce110_edp_backlight_control(struct dc_link * link,bool enable)951 void dce110_edp_backlight_control(
952 struct dc_link *link,
953 bool enable)
954 {
955 struct dc_context *ctx = link->ctx;
956 struct bp_transmitter_control cntl = { 0 };
957 uint8_t pwrseq_instance;
958 unsigned int pre_T11_delay = OLED_PRE_T11_DELAY;
959 unsigned int post_T7_delay = OLED_POST_T7_DELAY;
960
961 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
962 != CONNECTOR_ID_EDP) {
963 BREAK_TO_DEBUGGER();
964 return;
965 }
966
967 if (link->panel_cntl && !(link->dpcd_sink_ext_caps.bits.oled ||
968 link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
969 link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)) {
970 bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
971
972 if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
973 DC_LOG_HW_RESUME_S3(
974 "%s: panel already powered up/off. Do nothing.\n",
975 __func__);
976 return;
977 }
978 }
979
980 /* Send VBIOS command to control eDP panel backlight */
981
982 DC_LOG_HW_RESUME_S3(
983 "%s: backlight action: %s\n",
984 __func__, (enable ? "On":"Off"));
985
986 cntl.action = enable ?
987 TRANSMITTER_CONTROL_BACKLIGHT_ON :
988 TRANSMITTER_CONTROL_BACKLIGHT_OFF;
989
990 /*cntl.engine_id = ctx->engine;*/
991 cntl.transmitter = link->link_enc->transmitter;
992 cntl.connector_obj_id = link->link_enc->connector;
993 /*todo: unhardcode*/
994 cntl.lanes_number = LANE_COUNT_FOUR;
995 cntl.hpd_sel = link->link_enc->hpd_source;
996 cntl.signal = SIGNAL_TYPE_EDP;
997
998 /* For eDP, the following delays might need to be considered
999 * after link training completed:
1000 * idle period - min. accounts for required BS-Idle pattern,
1001 * max. allows for source frame synchronization);
1002 * 50 msec max. delay from valid video data from source
1003 * to video on dislpay or backlight enable.
1004 *
1005 * Disable the delay for now.
1006 * Enable it in the future if necessary.
1007 */
1008 /* dc_service_sleep_in_milliseconds(50); */
1009 /*edp 1.2*/
1010 pwrseq_instance = link->panel_cntl->pwrseq_inst;
1011
1012 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON) {
1013 if (!link->dc->config.edp_no_power_sequencing)
1014 /*
1015 * Sometimes, DP receiver chip power-controlled externally by an
1016 * Embedded Controller could be treated and used as eDP,
1017 * if it drives mobile display. In this case,
1018 * we shouldn't be doing power-sequencing, hence we can skip
1019 * waiting for T7-ready.
1020 */
1021 ctx->dc->link_srv->edp_receiver_ready_T7(link);
1022 else
1023 DC_LOG_DC("edp_receiver_ready_T7 skipped\n");
1024 }
1025
1026 /* Setting link_powered_externally will bypass delays in the backlight
1027 * as they are not required if the link is being powered by a different
1028 * source.
1029 */
1030 if (ctx->dc->ctx->dmub_srv &&
1031 ctx->dc->debug.dmub_command_table) {
1032 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1033 ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1034 LVTMA_CONTROL_LCD_BLON,
1035 pwrseq_instance, link->link_powered_externally);
1036 else
1037 ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1038 LVTMA_CONTROL_LCD_BLOFF,
1039 pwrseq_instance, link->link_powered_externally);
1040 }
1041
1042 link_transmitter_control(ctx->dc_bios, &cntl);
1043
1044 if (enable && link->dpcd_sink_ext_caps.bits.oled) {
1045 post_T7_delay += link->panel_config.pps.extra_post_t7_ms;
1046 msleep(post_T7_delay);
1047 }
1048
1049 if (link->dpcd_sink_ext_caps.bits.oled ||
1050 link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1051 link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1052 ctx->dc->link_srv->edp_backlight_enable_aux(link, enable);
1053
1054 /*edp 1.2*/
1055 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF) {
1056 if (!link->dc->config.edp_no_power_sequencing)
1057 /*
1058 * Sometimes, DP receiver chip power-controlled externally by an
1059 * Embedded Controller could be treated and used as eDP,
1060 * if it drives mobile display. In this case,
1061 * we shouldn't be doing power-sequencing, hence we can skip
1062 * waiting for T9-ready.
1063 */
1064 ctx->dc->link_srv->edp_add_delay_for_T9(link);
1065 else
1066 DC_LOG_DC("edp_receiver_ready_T9 skipped\n");
1067 }
1068
1069 if (!enable && link->dpcd_sink_ext_caps.bits.oled) {
1070 pre_T11_delay += link->panel_config.pps.extra_pre_t11_ms;
1071 msleep(pre_T11_delay);
1072 }
1073 }
1074
dce110_enable_audio_stream(struct pipe_ctx * pipe_ctx)1075 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1076 {
1077 /* notify audio driver for audio modes of monitor */
1078 struct dc *dc;
1079 struct clk_mgr *clk_mgr;
1080 unsigned int i, num_audio = 1;
1081 const struct link_hwss *link_hwss;
1082
1083 if (!pipe_ctx->stream)
1084 return;
1085
1086 dc = pipe_ctx->stream->ctx->dc;
1087 clk_mgr = dc->clk_mgr;
1088 link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1089
1090 if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1091 return;
1092
1093 if (pipe_ctx->stream_res.audio) {
1094 for (i = 0; i < MAX_PIPES; i++) {
1095 /*current_state not updated yet*/
1096 if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1097 num_audio++;
1098 }
1099
1100 pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1101
1102 if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
1103 /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1104 clk_mgr->funcs->enable_pme_wa(clk_mgr);
1105
1106 link_hwss->enable_audio_packet(pipe_ctx);
1107
1108 if (pipe_ctx->stream_res.audio)
1109 pipe_ctx->stream_res.audio->enabled = true;
1110 }
1111 }
1112
dce110_disable_audio_stream(struct pipe_ctx * pipe_ctx)1113 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1114 {
1115 struct dc *dc;
1116 struct clk_mgr *clk_mgr;
1117 const struct link_hwss *link_hwss;
1118
1119 if (!pipe_ctx || !pipe_ctx->stream)
1120 return;
1121
1122 dc = pipe_ctx->stream->ctx->dc;
1123 clk_mgr = dc->clk_mgr;
1124 link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1125
1126 if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1127 return;
1128
1129 link_hwss->disable_audio_packet(pipe_ctx);
1130
1131 if (pipe_ctx->stream_res.audio) {
1132 pipe_ctx->stream_res.audio->enabled = false;
1133
1134 if (clk_mgr->funcs->enable_pme_wa)
1135 /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1136 clk_mgr->funcs->enable_pme_wa(clk_mgr);
1137
1138 /* TODO: notify audio driver for if audio modes list changed
1139 * add audio mode list change flag */
1140 /* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1141 * stream->stream_engine_id);
1142 */
1143 }
1144 }
1145
dce110_disable_stream(struct pipe_ctx * pipe_ctx)1146 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1147 {
1148 struct dc_stream_state *stream = pipe_ctx->stream;
1149 struct dc_link *link = stream->link;
1150 struct dc *dc = pipe_ctx->stream->ctx->dc;
1151 const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
1152 struct dccg *dccg = dc->res_pool->dccg;
1153 struct timing_generator *tg = pipe_ctx->stream_res.tg;
1154 struct dtbclk_dto_params dto_params = {0};
1155 int dp_hpo_inst;
1156 struct link_encoder *link_enc = link_enc_cfg_get_link_enc(pipe_ctx->stream->link);
1157 struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;
1158
1159 if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1160 pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1161 pipe_ctx->stream_res.stream_enc);
1162 pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1163 pipe_ctx->stream_res.stream_enc);
1164 }
1165
1166 if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1167 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->stop_dp_info_packets(
1168 pipe_ctx->stream_res.hpo_dp_stream_enc);
1169 } else if (dc_is_dp_signal(pipe_ctx->stream->signal))
1170 pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1171 pipe_ctx->stream_res.stream_enc);
1172
1173 dc->hwss.disable_audio_stream(pipe_ctx);
1174
1175 link_hwss->reset_stream_encoder(pipe_ctx);
1176
1177 if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1178 dto_params.otg_inst = tg->inst;
1179 dto_params.timing = &pipe_ctx->stream->timing;
1180 dp_hpo_inst = pipe_ctx->stream_res.hpo_dp_stream_enc->inst;
1181 if (dccg) {
1182 dccg->funcs->disable_symclk32_se(dccg, dp_hpo_inst);
1183 dccg->funcs->set_dpstreamclk(dccg, REFCLK, tg->inst, dp_hpo_inst);
1184 if (dccg && dccg->funcs->set_dtbclk_dto)
1185 dccg->funcs->set_dtbclk_dto(dccg, &dto_params);
1186 }
1187 } else if (dccg && dccg->funcs->disable_symclk_se) {
1188 dccg->funcs->disable_symclk_se(dccg, stream_enc->stream_enc_inst,
1189 link_enc->transmitter - TRANSMITTER_UNIPHY_A);
1190 }
1191
1192 if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1193 /* TODO: This looks like a bug to me as we are disabling HPO IO when
1194 * we are just disabling a single HPO stream. Shouldn't we disable HPO
1195 * HW control only when HPOs for all streams are disabled?
1196 */
1197 if (pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control)
1198 pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control(
1199 pipe_ctx->stream->ctx->dc->hwseq, false);
1200 }
1201 }
1202
dce110_unblank_stream(struct pipe_ctx * pipe_ctx,struct dc_link_settings * link_settings)1203 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1204 struct dc_link_settings *link_settings)
1205 {
1206 struct encoder_unblank_param params = { { 0 } };
1207 struct dc_stream_state *stream = pipe_ctx->stream;
1208 struct dc_link *link = stream->link;
1209 struct dce_hwseq *hws = link->dc->hwseq;
1210
1211 /* only 3 items below are used by unblank */
1212 params.timing = pipe_ctx->stream->timing;
1213 params.link_settings.link_rate = link_settings->link_rate;
1214
1215 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1216 pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, ¶ms);
1217
1218 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1219 hws->funcs.edp_backlight_control(link, true);
1220 }
1221 }
1222
dce110_blank_stream(struct pipe_ctx * pipe_ctx)1223 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1224 {
1225 struct dc_stream_state *stream = pipe_ctx->stream;
1226 struct dc_link *link = stream->link;
1227 struct dce_hwseq *hws = link->dc->hwseq;
1228
1229 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1230 if (!link->skip_implict_edp_power_control)
1231 hws->funcs.edp_backlight_control(link, false);
1232 link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1233 }
1234
1235 if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1236 /* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1237 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_blank(
1238 pipe_ctx->stream_res.hpo_dp_stream_enc);
1239 } else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1240 pipe_ctx->stream_res.stream_enc->funcs->dp_blank(link, pipe_ctx->stream_res.stream_enc);
1241
1242 if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
1243 /*
1244 * After output is idle pattern some sinks need time to recognize the stream
1245 * has changed or they enter protection state and hang.
1246 */
1247 msleep(60);
1248 } else if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP) {
1249 if (!link->dc->config.edp_no_power_sequencing) {
1250 /*
1251 * Sometimes, DP receiver chip power-controlled externally by an
1252 * Embedded Controller could be treated and used as eDP,
1253 * if it drives mobile display. In this case,
1254 * we shouldn't be doing power-sequencing, hence we can skip
1255 * waiting for T9-ready.
1256 */
1257 link->dc->link_srv->edp_receiver_ready_T9(link);
1258 }
1259 }
1260 }
1261
1262 }
1263
1264
dce110_set_avmute(struct pipe_ctx * pipe_ctx,bool enable)1265 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1266 {
1267 if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1268 pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1269 }
1270
translate_to_dto_source(enum controller_id crtc_id)1271 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1272 {
1273 switch (crtc_id) {
1274 case CONTROLLER_ID_D0:
1275 return DTO_SOURCE_ID0;
1276 case CONTROLLER_ID_D1:
1277 return DTO_SOURCE_ID1;
1278 case CONTROLLER_ID_D2:
1279 return DTO_SOURCE_ID2;
1280 case CONTROLLER_ID_D3:
1281 return DTO_SOURCE_ID3;
1282 case CONTROLLER_ID_D4:
1283 return DTO_SOURCE_ID4;
1284 case CONTROLLER_ID_D5:
1285 return DTO_SOURCE_ID5;
1286 default:
1287 return DTO_SOURCE_UNKNOWN;
1288 }
1289 }
1290
build_audio_output(struct dc_state * state,const struct pipe_ctx * pipe_ctx,struct audio_output * audio_output)1291 static void build_audio_output(
1292 struct dc_state *state,
1293 const struct pipe_ctx *pipe_ctx,
1294 struct audio_output *audio_output)
1295 {
1296 const struct dc_stream_state *stream = pipe_ctx->stream;
1297 audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1298
1299 audio_output->signal = pipe_ctx->stream->signal;
1300
1301 /* audio_crtc_info */
1302
1303 audio_output->crtc_info.h_total =
1304 stream->timing.h_total;
1305
1306 /*
1307 * Audio packets are sent during actual CRTC blank physical signal, we
1308 * need to specify actual active signal portion
1309 */
1310 audio_output->crtc_info.h_active =
1311 stream->timing.h_addressable
1312 + stream->timing.h_border_left
1313 + stream->timing.h_border_right;
1314
1315 audio_output->crtc_info.v_active =
1316 stream->timing.v_addressable
1317 + stream->timing.v_border_top
1318 + stream->timing.v_border_bottom;
1319
1320 audio_output->crtc_info.pixel_repetition = 1;
1321
1322 audio_output->crtc_info.interlaced =
1323 stream->timing.flags.INTERLACE;
1324
1325 audio_output->crtc_info.refresh_rate =
1326 (stream->timing.pix_clk_100hz*100)/
1327 (stream->timing.h_total*stream->timing.v_total);
1328
1329 audio_output->crtc_info.color_depth =
1330 stream->timing.display_color_depth;
1331
1332 audio_output->crtc_info.requested_pixel_clock_100Hz =
1333 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1334
1335 audio_output->crtc_info.calculated_pixel_clock_100Hz =
1336 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1337
1338 /*for HDMI, audio ACR is with deep color ratio factor*/
1339 if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1340 audio_output->crtc_info.requested_pixel_clock_100Hz ==
1341 (stream->timing.pix_clk_100hz)) {
1342 if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1343 audio_output->crtc_info.requested_pixel_clock_100Hz =
1344 audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1345 audio_output->crtc_info.calculated_pixel_clock_100Hz =
1346 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1347
1348 }
1349 }
1350
1351 if (state->clk_mgr &&
1352 (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1353 pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1354 audio_output->pll_info.dp_dto_source_clock_in_khz =
1355 state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1356 state->clk_mgr);
1357 }
1358
1359 audio_output->pll_info.feed_back_divider =
1360 pipe_ctx->pll_settings.feedback_divider;
1361
1362 audio_output->pll_info.dto_source =
1363 translate_to_dto_source(
1364 pipe_ctx->stream_res.tg->inst + 1);
1365
1366 /* TODO hard code to enable for now. Need get from stream */
1367 audio_output->pll_info.ss_enabled = true;
1368
1369 audio_output->pll_info.ss_percentage =
1370 pipe_ctx->pll_settings.ss_percentage;
1371 }
1372
program_scaler(const struct dc * dc,const struct pipe_ctx * pipe_ctx)1373 static void program_scaler(const struct dc *dc,
1374 const struct pipe_ctx *pipe_ctx)
1375 {
1376 struct tg_color color = {0};
1377
1378 /* TOFPGA */
1379 if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1380 return;
1381
1382 if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1383 get_surface_visual_confirm_color(pipe_ctx, &color);
1384 else
1385 color_space_to_black_color(dc,
1386 pipe_ctx->stream->output_color_space,
1387 &color);
1388
1389 pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1390 pipe_ctx->plane_res.xfm,
1391 pipe_ctx->plane_res.scl_data.lb_params.depth,
1392 &pipe_ctx->stream->bit_depth_params);
1393
1394 if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1395 /*
1396 * The way 420 is packed, 2 channels carry Y component, 1 channel
1397 * alternate between Cb and Cr, so both channels need the pixel
1398 * value for Y
1399 */
1400 if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1401 color.color_r_cr = color.color_g_y;
1402
1403 pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1404 pipe_ctx->stream_res.tg,
1405 &color);
1406 }
1407
1408 pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1409 &pipe_ctx->plane_res.scl_data);
1410 }
1411
dce110_enable_stream_timing(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1412 static enum dc_status dce110_enable_stream_timing(
1413 struct pipe_ctx *pipe_ctx,
1414 struct dc_state *context,
1415 struct dc *dc)
1416 {
1417 struct dc_stream_state *stream = pipe_ctx->stream;
1418 struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1419 pipe_ctx[pipe_ctx->pipe_idx];
1420 struct tg_color black_color = {0};
1421
1422 if (!pipe_ctx_old->stream) {
1423
1424 /* program blank color */
1425 color_space_to_black_color(dc,
1426 stream->output_color_space, &black_color);
1427 pipe_ctx->stream_res.tg->funcs->set_blank_color(
1428 pipe_ctx->stream_res.tg,
1429 &black_color);
1430
1431 /*
1432 * Must blank CRTC after disabling power gating and before any
1433 * programming, otherwise CRTC will be hung in bad state
1434 */
1435 pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1436
1437 if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1438 pipe_ctx->clock_source,
1439 &pipe_ctx->stream_res.pix_clk_params,
1440 dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings),
1441 &pipe_ctx->pll_settings)) {
1442 BREAK_TO_DEBUGGER();
1443 return DC_ERROR_UNEXPECTED;
1444 }
1445
1446 if (dc_is_hdmi_tmds_signal(stream->signal)) {
1447 stream->link->phy_state.symclk_ref_cnts.otg = 1;
1448 if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
1449 stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
1450 else
1451 stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
1452 }
1453
1454 pipe_ctx->stream_res.tg->funcs->program_timing(
1455 pipe_ctx->stream_res.tg,
1456 &stream->timing,
1457 0,
1458 0,
1459 0,
1460 0,
1461 pipe_ctx->stream->signal,
1462 true);
1463 }
1464
1465 if (!pipe_ctx_old->stream) {
1466 if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1467 pipe_ctx->stream_res.tg)) {
1468 BREAK_TO_DEBUGGER();
1469 return DC_ERROR_UNEXPECTED;
1470 }
1471 }
1472
1473 return DC_OK;
1474 }
1475
apply_single_controller_ctx_to_hw(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1476 static enum dc_status apply_single_controller_ctx_to_hw(
1477 struct pipe_ctx *pipe_ctx,
1478 struct dc_state *context,
1479 struct dc *dc)
1480 {
1481 struct dc_stream_state *stream = pipe_ctx->stream;
1482 struct dc_link *link = stream->link;
1483 struct drr_params params = {0};
1484 unsigned int event_triggers = 0;
1485 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1486 struct dce_hwseq *hws = dc->hwseq;
1487 const struct link_hwss *link_hwss = get_link_hwss(
1488 link, &pipe_ctx->link_res);
1489
1490
1491 if (hws->funcs.disable_stream_gating) {
1492 hws->funcs.disable_stream_gating(dc, pipe_ctx);
1493 }
1494
1495 if (pipe_ctx->stream_res.audio != NULL) {
1496 struct audio_output audio_output;
1497
1498 build_audio_output(context, pipe_ctx, &audio_output);
1499
1500 link_hwss->setup_audio_output(pipe_ctx, &audio_output,
1501 pipe_ctx->stream_res.audio->inst);
1502
1503 pipe_ctx->stream_res.audio->funcs->az_configure(
1504 pipe_ctx->stream_res.audio,
1505 pipe_ctx->stream->signal,
1506 &audio_output.crtc_info,
1507 &pipe_ctx->stream->audio_info);
1508 }
1509
1510 /* make sure no pipes syncd to the pipe being enabled */
1511 if (!pipe_ctx->stream->apply_seamless_boot_optimization && dc->config.use_pipe_ctx_sync_logic)
1512 check_syncd_pipes_for_disabled_master_pipe(dc, context, pipe_ctx->pipe_idx);
1513
1514 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1515 pipe_ctx->stream_res.opp,
1516 &stream->bit_depth_params,
1517 &stream->clamping);
1518
1519 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1520 pipe_ctx->stream_res.opp,
1521 COLOR_SPACE_YCBCR601,
1522 stream->timing.display_color_depth,
1523 stream->signal);
1524
1525 while (odm_pipe) {
1526 odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1527 odm_pipe->stream_res.opp,
1528 COLOR_SPACE_YCBCR601,
1529 stream->timing.display_color_depth,
1530 stream->signal);
1531
1532 odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1533 odm_pipe->stream_res.opp,
1534 &stream->bit_depth_params,
1535 &stream->clamping);
1536 odm_pipe = odm_pipe->next_odm_pipe;
1537 }
1538
1539 /* DCN3.1 FPGA Workaround
1540 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1541 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1542 * function core_link_enable_stream
1543 */
1544 if (!(hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)))
1545 /* */
1546 /* Do not touch stream timing on seamless boot optimization. */
1547 if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1548 hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1549
1550 if (hws->funcs.setup_vupdate_interrupt)
1551 hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1552
1553 params.vertical_total_min = stream->adjust.v_total_min;
1554 params.vertical_total_max = stream->adjust.v_total_max;
1555 if (pipe_ctx->stream_res.tg->funcs->set_drr)
1556 pipe_ctx->stream_res.tg->funcs->set_drr(
1557 pipe_ctx->stream_res.tg, ¶ms);
1558
1559 // DRR should set trigger event to monitor surface update event
1560 if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1561 event_triggers = 0x80;
1562 /* Event triggers and num frames initialized for DRR, but can be
1563 * later updated for PSR use. Note DRR trigger events are generated
1564 * regardless of whether num frames met.
1565 */
1566 if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1567 pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1568 pipe_ctx->stream_res.tg, event_triggers, 2);
1569
1570 if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1571 pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1572 pipe_ctx->stream_res.stream_enc,
1573 pipe_ctx->stream_res.tg->inst);
1574
1575 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1576 dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_CONNECT_DIG_FE_OTG);
1577
1578 if (!stream->dpms_off)
1579 dc->link_srv->set_dpms_on(context, pipe_ctx);
1580
1581 /* DCN3.1 FPGA Workaround
1582 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1583 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1584 * function core_link_enable_stream
1585 */
1586 if (hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1587 if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1588 hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1589 }
1590
1591 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
1592
1593 /* Phantom and main stream share the same link (because the stream
1594 * is constructed with the same sink). Make sure not to override
1595 * and link programming on the main.
1596 */
1597 if (pipe_ctx->stream->mall_stream_config.type != SUBVP_PHANTOM) {
1598 pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1599 pipe_ctx->stream->link->replay_settings.replay_feature_enabled = false;
1600 }
1601 return DC_OK;
1602 }
1603
1604 /******************************************************************************/
1605
power_down_encoders(struct dc * dc)1606 static void power_down_encoders(struct dc *dc)
1607 {
1608 int i;
1609
1610 for (i = 0; i < dc->link_count; i++) {
1611 enum signal_type signal = dc->links[i]->connector_signal;
1612
1613 dc->link_srv->blank_dp_stream(dc->links[i], false);
1614
1615 if (signal != SIGNAL_TYPE_EDP)
1616 signal = SIGNAL_TYPE_NONE;
1617
1618 if (dc->links[i]->ep_type == DISPLAY_ENDPOINT_PHY)
1619 dc->links[i]->link_enc->funcs->disable_output(
1620 dc->links[i]->link_enc, signal);
1621
1622 dc->links[i]->link_status.link_active = false;
1623 memset(&dc->links[i]->cur_link_settings, 0,
1624 sizeof(dc->links[i]->cur_link_settings));
1625 }
1626 }
1627
power_down_controllers(struct dc * dc)1628 static void power_down_controllers(struct dc *dc)
1629 {
1630 int i;
1631
1632 for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1633 dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1634 dc->res_pool->timing_generators[i]);
1635 }
1636 }
1637
power_down_clock_sources(struct dc * dc)1638 static void power_down_clock_sources(struct dc *dc)
1639 {
1640 int i;
1641
1642 if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1643 dc->res_pool->dp_clock_source) == false)
1644 dm_error("Failed to power down pll! (dp clk src)\n");
1645
1646 for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1647 if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1648 dc->res_pool->clock_sources[i]) == false)
1649 dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1650 }
1651 }
1652
power_down_all_hw_blocks(struct dc * dc)1653 static void power_down_all_hw_blocks(struct dc *dc)
1654 {
1655 power_down_encoders(dc);
1656
1657 power_down_controllers(dc);
1658
1659 power_down_clock_sources(dc);
1660
1661 if (dc->fbc_compressor)
1662 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1663 }
1664
disable_vga_and_power_gate_all_controllers(struct dc * dc)1665 static void disable_vga_and_power_gate_all_controllers(
1666 struct dc *dc)
1667 {
1668 int i;
1669 struct timing_generator *tg;
1670 struct dc_context *ctx = dc->ctx;
1671
1672 for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1673 tg = dc->res_pool->timing_generators[i];
1674
1675 if (tg->funcs->disable_vga)
1676 tg->funcs->disable_vga(tg);
1677 }
1678 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1679 /* Enable CLOCK gating for each pipe BEFORE controller
1680 * powergating. */
1681 enable_display_pipe_clock_gating(ctx,
1682 true);
1683
1684 dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1685 dc->hwss.disable_plane(dc,
1686 &dc->current_state->res_ctx.pipe_ctx[i]);
1687 }
1688 }
1689
1690
get_edp_streams(struct dc_state * context,struct dc_stream_state ** edp_streams,int * edp_stream_num)1691 static void get_edp_streams(struct dc_state *context,
1692 struct dc_stream_state **edp_streams,
1693 int *edp_stream_num)
1694 {
1695 int i;
1696
1697 *edp_stream_num = 0;
1698 for (i = 0; i < context->stream_count; i++) {
1699 if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
1700 edp_streams[*edp_stream_num] = context->streams[i];
1701 if (++(*edp_stream_num) == MAX_NUM_EDP)
1702 return;
1703 }
1704 }
1705 }
1706
get_edp_links_with_sink(struct dc * dc,struct dc_link ** edp_links_with_sink,int * edp_with_sink_num)1707 static void get_edp_links_with_sink(
1708 struct dc *dc,
1709 struct dc_link **edp_links_with_sink,
1710 int *edp_with_sink_num)
1711 {
1712 int i;
1713
1714 /* check if there is an eDP panel not in use */
1715 *edp_with_sink_num = 0;
1716 for (i = 0; i < dc->link_count; i++) {
1717 if (dc->links[i]->local_sink &&
1718 dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1719 edp_links_with_sink[*edp_with_sink_num] = dc->links[i];
1720 if (++(*edp_with_sink_num) == MAX_NUM_EDP)
1721 return;
1722 }
1723 }
1724 }
1725
1726 /*
1727 * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1728 * 1. Power down all DC HW blocks
1729 * 2. Disable VGA engine on all controllers
1730 * 3. Enable power gating for controller
1731 * 4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1732 */
dce110_enable_accelerated_mode(struct dc * dc,struct dc_state * context)1733 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1734 {
1735 struct dc_link *edp_links_with_sink[MAX_NUM_EDP];
1736 struct dc_link *edp_links[MAX_NUM_EDP];
1737 struct dc_stream_state *edp_streams[MAX_NUM_EDP];
1738 struct dc_link *edp_link_with_sink = NULL;
1739 struct dc_link *edp_link = NULL;
1740 struct dce_hwseq *hws = dc->hwseq;
1741 int edp_with_sink_num;
1742 int edp_num;
1743 int edp_stream_num;
1744 int i;
1745 bool can_apply_edp_fast_boot = false;
1746 bool can_apply_seamless_boot = false;
1747 bool keep_edp_vdd_on = false;
1748 DC_LOGGER_INIT();
1749
1750
1751 get_edp_links_with_sink(dc, edp_links_with_sink, &edp_with_sink_num);
1752 dc_get_edp_links(dc, edp_links, &edp_num);
1753
1754 if (hws->funcs.init_pipes)
1755 hws->funcs.init_pipes(dc, context);
1756
1757 get_edp_streams(context, edp_streams, &edp_stream_num);
1758
1759 // Check fastboot support, disable on DCE8 because of blank screens
1760 if (edp_num && edp_stream_num && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1761 dc->ctx->dce_version != DCE_VERSION_8_1 &&
1762 dc->ctx->dce_version != DCE_VERSION_8_3) {
1763 for (i = 0; i < edp_num; i++) {
1764 edp_link = edp_links[i];
1765 if (edp_link != edp_streams[0]->link)
1766 continue;
1767 // enable fastboot if backend is enabled on eDP
1768 if (edp_link->link_enc->funcs->is_dig_enabled &&
1769 edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
1770 edp_link->link_status.link_active) {
1771 struct dc_stream_state *edp_stream = edp_streams[0];
1772
1773 can_apply_edp_fast_boot = dc_validate_boot_timing(dc,
1774 edp_stream->sink, &edp_stream->timing);
1775 edp_stream->apply_edp_fast_boot_optimization = can_apply_edp_fast_boot;
1776 if (can_apply_edp_fast_boot)
1777 DC_LOG_EVENT_LINK_TRAINING("eDP fast boot disabled to optimize link rate\n");
1778
1779 break;
1780 }
1781 }
1782 // We are trying to enable eDP, don't power down VDD
1783 if (can_apply_edp_fast_boot)
1784 keep_edp_vdd_on = true;
1785 }
1786
1787 // Check seamless boot support
1788 for (i = 0; i < context->stream_count; i++) {
1789 if (context->streams[i]->apply_seamless_boot_optimization) {
1790 can_apply_seamless_boot = true;
1791 break;
1792 }
1793 }
1794
1795 /* eDP should not have stream in resume from S4 and so even with VBios post
1796 * it should get turned off
1797 */
1798 if (edp_with_sink_num)
1799 edp_link_with_sink = edp_links_with_sink[0];
1800
1801 if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1802 if (edp_link_with_sink && !keep_edp_vdd_on) {
1803 /*turn off backlight before DP_blank and encoder powered down*/
1804 hws->funcs.edp_backlight_control(edp_link_with_sink, false);
1805 }
1806 /*resume from S3, no vbios posting, no need to power down again*/
1807 clk_mgr_exit_optimized_pwr_state(dc, dc->clk_mgr);
1808
1809 power_down_all_hw_blocks(dc);
1810 disable_vga_and_power_gate_all_controllers(dc);
1811 if (edp_link_with_sink && !keep_edp_vdd_on)
1812 dc->hwss.edp_power_control(edp_link_with_sink, false);
1813 clk_mgr_optimize_pwr_state(dc, dc->clk_mgr);
1814 }
1815 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 1);
1816 }
1817
compute_pstate_blackout_duration(struct bw_fixed blackout_duration,const struct dc_stream_state * stream)1818 static uint32_t compute_pstate_blackout_duration(
1819 struct bw_fixed blackout_duration,
1820 const struct dc_stream_state *stream)
1821 {
1822 uint32_t total_dest_line_time_ns;
1823 uint32_t pstate_blackout_duration_ns;
1824
1825 pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1826
1827 total_dest_line_time_ns = 1000000UL *
1828 (stream->timing.h_total * 10) /
1829 stream->timing.pix_clk_100hz +
1830 pstate_blackout_duration_ns;
1831
1832 return total_dest_line_time_ns;
1833 }
1834
dce110_set_displaymarks(const struct dc * dc,struct dc_state * context)1835 static void dce110_set_displaymarks(
1836 const struct dc *dc,
1837 struct dc_state *context)
1838 {
1839 uint8_t i, num_pipes;
1840 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1841
1842 for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1843 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1844 uint32_t total_dest_line_time_ns;
1845
1846 if (pipe_ctx->stream == NULL)
1847 continue;
1848
1849 total_dest_line_time_ns = compute_pstate_blackout_duration(
1850 dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1851 pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1852 pipe_ctx->plane_res.mi,
1853 context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1854 context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1855 context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
1856 context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1857 total_dest_line_time_ns);
1858 if (i == underlay_idx) {
1859 num_pipes++;
1860 pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1861 pipe_ctx->plane_res.mi,
1862 context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1863 context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1864 context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1865 total_dest_line_time_ns);
1866 }
1867 num_pipes++;
1868 }
1869 }
1870
dce110_set_safe_displaymarks(struct resource_context * res_ctx,const struct resource_pool * pool)1871 void dce110_set_safe_displaymarks(
1872 struct resource_context *res_ctx,
1873 const struct resource_pool *pool)
1874 {
1875 int i;
1876 int underlay_idx = pool->underlay_pipe_index;
1877 struct dce_watermarks max_marks = {
1878 MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1879 struct dce_watermarks nbp_marks = {
1880 SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1881 struct dce_watermarks min_marks = { 0, 0, 0, 0};
1882
1883 for (i = 0; i < MAX_PIPES; i++) {
1884 if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1885 continue;
1886
1887 res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1888 res_ctx->pipe_ctx[i].plane_res.mi,
1889 nbp_marks,
1890 max_marks,
1891 min_marks,
1892 max_marks,
1893 MAX_WATERMARK);
1894
1895 if (i == underlay_idx)
1896 res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1897 res_ctx->pipe_ctx[i].plane_res.mi,
1898 nbp_marks,
1899 max_marks,
1900 max_marks,
1901 MAX_WATERMARK);
1902
1903 }
1904 }
1905
1906 /*******************************************************************************
1907 * Public functions
1908 ******************************************************************************/
1909
set_drr(struct pipe_ctx ** pipe_ctx,int num_pipes,struct dc_crtc_timing_adjust adjust)1910 static void set_drr(struct pipe_ctx **pipe_ctx,
1911 int num_pipes, struct dc_crtc_timing_adjust adjust)
1912 {
1913 int i = 0;
1914 struct drr_params params = {0};
1915 // DRR should set trigger event to monitor surface update event
1916 unsigned int event_triggers = 0x80;
1917 // Note DRR trigger events are generated regardless of whether num frames met.
1918 unsigned int num_frames = 2;
1919
1920 params.vertical_total_max = adjust.v_total_max;
1921 params.vertical_total_min = adjust.v_total_min;
1922
1923 /* TODO: If multiple pipes are to be supported, you need
1924 * some GSL stuff. Static screen triggers may be programmed differently
1925 * as well.
1926 */
1927 for (i = 0; i < num_pipes; i++) {
1928 pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1929 pipe_ctx[i]->stream_res.tg, ¶ms);
1930
1931 if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
1932 pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1933 pipe_ctx[i]->stream_res.tg,
1934 event_triggers, num_frames);
1935 }
1936 }
1937
get_position(struct pipe_ctx ** pipe_ctx,int num_pipes,struct crtc_position * position)1938 static void get_position(struct pipe_ctx **pipe_ctx,
1939 int num_pipes,
1940 struct crtc_position *position)
1941 {
1942 int i = 0;
1943
1944 /* TODO: handle pipes > 1
1945 */
1946 for (i = 0; i < num_pipes; i++)
1947 pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1948 }
1949
set_static_screen_control(struct pipe_ctx ** pipe_ctx,int num_pipes,const struct dc_static_screen_params * params)1950 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1951 int num_pipes, const struct dc_static_screen_params *params)
1952 {
1953 unsigned int i;
1954 unsigned int triggers = 0;
1955
1956 if (params->triggers.overlay_update)
1957 triggers |= 0x100;
1958 if (params->triggers.surface_update)
1959 triggers |= 0x80;
1960 if (params->triggers.cursor_update)
1961 triggers |= 0x2;
1962 if (params->triggers.force_trigger)
1963 triggers |= 0x1;
1964
1965 if (num_pipes) {
1966 struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
1967
1968 if (dc->fbc_compressor)
1969 triggers |= 0x84;
1970 }
1971
1972 for (i = 0; i < num_pipes; i++)
1973 pipe_ctx[i]->stream_res.tg->funcs->
1974 set_static_screen_control(pipe_ctx[i]->stream_res.tg,
1975 triggers, params->num_frames);
1976 }
1977
1978 /*
1979 * Check if FBC can be enabled
1980 */
should_enable_fbc(struct dc * dc,struct dc_state * context,uint32_t * pipe_idx)1981 static bool should_enable_fbc(struct dc *dc,
1982 struct dc_state *context,
1983 uint32_t *pipe_idx)
1984 {
1985 uint32_t i;
1986 struct pipe_ctx *pipe_ctx = NULL;
1987 struct resource_context *res_ctx = &context->res_ctx;
1988 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1989
1990
1991 ASSERT(dc->fbc_compressor);
1992
1993 /* FBC memory should be allocated */
1994 if (!dc->ctx->fbc_gpu_addr)
1995 return false;
1996
1997 /* Only supports single display */
1998 if (context->stream_count != 1)
1999 return false;
2000
2001 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2002 if (res_ctx->pipe_ctx[i].stream) {
2003
2004 pipe_ctx = &res_ctx->pipe_ctx[i];
2005
2006 if (!pipe_ctx)
2007 continue;
2008
2009 /* fbc not applicable on underlay pipe */
2010 if (pipe_ctx->pipe_idx != underlay_idx) {
2011 *pipe_idx = i;
2012 break;
2013 }
2014 }
2015 }
2016
2017 if (i == dc->res_pool->pipe_count)
2018 return false;
2019
2020 if (!pipe_ctx->stream->link)
2021 return false;
2022
2023 /* Only supports eDP */
2024 if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
2025 return false;
2026
2027 /* PSR should not be enabled */
2028 if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
2029 return false;
2030
2031 /* Replay should not be enabled */
2032 if (pipe_ctx->stream->link->replay_settings.replay_feature_enabled)
2033 return false;
2034
2035 /* Nothing to compress */
2036 if (!pipe_ctx->plane_state)
2037 return false;
2038
2039 /* Only for non-linear tiling */
2040 if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
2041 return false;
2042
2043 return true;
2044 }
2045
2046 /*
2047 * Enable FBC
2048 */
enable_fbc(struct dc * dc,struct dc_state * context)2049 static void enable_fbc(
2050 struct dc *dc,
2051 struct dc_state *context)
2052 {
2053 uint32_t pipe_idx = 0;
2054
2055 if (should_enable_fbc(dc, context, &pipe_idx)) {
2056 /* Program GRPH COMPRESSED ADDRESS and PITCH */
2057 struct compr_addr_and_pitch_params params = {0, 0, 0};
2058 struct compressor *compr = dc->fbc_compressor;
2059 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2060
2061 params.source_view_width = pipe_ctx->stream->timing.h_addressable;
2062 params.source_view_height = pipe_ctx->stream->timing.v_addressable;
2063 params.inst = pipe_ctx->stream_res.tg->inst;
2064 compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
2065
2066 compr->funcs->surface_address_and_pitch(compr, ¶ms);
2067 compr->funcs->set_fbc_invalidation_triggers(compr, 1);
2068
2069 compr->funcs->enable_fbc(compr, ¶ms);
2070 }
2071 }
2072
dce110_reset_hw_ctx_wrap(struct dc * dc,struct dc_state * context)2073 static void dce110_reset_hw_ctx_wrap(
2074 struct dc *dc,
2075 struct dc_state *context)
2076 {
2077 int i;
2078
2079 /* Reset old context */
2080 /* look up the targets that have been removed since last commit */
2081 for (i = 0; i < MAX_PIPES; i++) {
2082 struct pipe_ctx *pipe_ctx_old =
2083 &dc->current_state->res_ctx.pipe_ctx[i];
2084 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2085
2086 /* Note: We need to disable output if clock sources change,
2087 * since bios does optimization and doesn't apply if changing
2088 * PHY when not already disabled.
2089 */
2090
2091 /* Skip underlay pipe since it will be handled in commit surface*/
2092 if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
2093 continue;
2094
2095 if (!pipe_ctx->stream ||
2096 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2097 struct clock_source *old_clk = pipe_ctx_old->clock_source;
2098
2099 /* Disable if new stream is null. O/w, if stream is
2100 * disabled already, no need to disable again.
2101 */
2102 if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
2103 dc->link_srv->set_dpms_off(pipe_ctx_old);
2104
2105 /* free acquired resources*/
2106 if (pipe_ctx_old->stream_res.audio) {
2107 /*disable az_endpoint*/
2108 pipe_ctx_old->stream_res.audio->funcs->
2109 az_disable(pipe_ctx_old->stream_res.audio);
2110
2111 /*free audio*/
2112 if (dc->caps.dynamic_audio == true) {
2113 /*we have to dynamic arbitrate the audio endpoints*/
2114 /*we free the resource, need reset is_audio_acquired*/
2115 update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2116 pipe_ctx_old->stream_res.audio, false);
2117 pipe_ctx_old->stream_res.audio = NULL;
2118 }
2119 }
2120 }
2121
2122 pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
2123 if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
2124 dm_error("DC: failed to blank crtc!\n");
2125 BREAK_TO_DEBUGGER();
2126 }
2127 pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2128 if (dc_is_hdmi_tmds_signal(pipe_ctx_old->stream->signal))
2129 pipe_ctx_old->stream->link->phy_state.symclk_ref_cnts.otg = 0;
2130 pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2131 pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2132
2133 if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2134 dc->res_pool,
2135 old_clk))
2136 old_clk->funcs->cs_power_down(old_clk);
2137
2138 dc->hwss.disable_plane(dc, pipe_ctx_old);
2139
2140 pipe_ctx_old->stream = NULL;
2141 }
2142 }
2143 }
2144
dce110_setup_audio_dto(struct dc * dc,struct dc_state * context)2145 static void dce110_setup_audio_dto(
2146 struct dc *dc,
2147 struct dc_state *context)
2148 {
2149 int i;
2150
2151 /* program audio wall clock. use HDMI as clock source if HDMI
2152 * audio active. Otherwise, use DP as clock source
2153 * first, loop to find any HDMI audio, if not, loop find DP audio
2154 */
2155 /* Setup audio rate clock source */
2156 /* Issue:
2157 * Audio lag happened on DP monitor when unplug a HDMI monitor
2158 *
2159 * Cause:
2160 * In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2161 * is set to either dto0 or dto1, audio should work fine.
2162 * In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2163 * set to dto0 will cause audio lag.
2164 *
2165 * Solution:
2166 * Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2167 * find first available pipe with audio, setup audio wall DTO per topology
2168 * instead of per pipe.
2169 */
2170 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2171 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2172
2173 if (pipe_ctx->stream == NULL)
2174 continue;
2175
2176 if (pipe_ctx->top_pipe)
2177 continue;
2178 if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2179 continue;
2180 if (pipe_ctx->stream_res.audio != NULL) {
2181 struct audio_output audio_output;
2182
2183 build_audio_output(context, pipe_ctx, &audio_output);
2184
2185 if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->set_audio_dtbclk_dto) {
2186 struct dtbclk_dto_params dto_params = {0};
2187
2188 dc->res_pool->dccg->funcs->set_audio_dtbclk_dto(
2189 dc->res_pool->dccg, &dto_params);
2190
2191 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2192 pipe_ctx->stream_res.audio,
2193 pipe_ctx->stream->signal,
2194 &audio_output.crtc_info,
2195 &audio_output.pll_info);
2196 } else
2197 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2198 pipe_ctx->stream_res.audio,
2199 pipe_ctx->stream->signal,
2200 &audio_output.crtc_info,
2201 &audio_output.pll_info);
2202 break;
2203 }
2204 }
2205
2206 /* no HDMI audio is found, try DP audio */
2207 if (i == dc->res_pool->pipe_count) {
2208 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2209 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2210
2211 if (pipe_ctx->stream == NULL)
2212 continue;
2213
2214 if (pipe_ctx->top_pipe)
2215 continue;
2216
2217 if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2218 continue;
2219
2220 if (pipe_ctx->stream_res.audio != NULL) {
2221 struct audio_output audio_output;
2222
2223 build_audio_output(context, pipe_ctx, &audio_output);
2224
2225 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2226 pipe_ctx->stream_res.audio,
2227 pipe_ctx->stream->signal,
2228 &audio_output.crtc_info,
2229 &audio_output.pll_info);
2230 break;
2231 }
2232 }
2233 }
2234 }
2235
dce110_apply_ctx_to_hw(struct dc * dc,struct dc_state * context)2236 enum dc_status dce110_apply_ctx_to_hw(
2237 struct dc *dc,
2238 struct dc_state *context)
2239 {
2240 struct dce_hwseq *hws = dc->hwseq;
2241 struct dc_bios *dcb = dc->ctx->dc_bios;
2242 enum dc_status status;
2243 int i;
2244
2245 /* reset syncd pipes from disabled pipes */
2246 if (dc->config.use_pipe_ctx_sync_logic)
2247 reset_syncd_pipes_from_disabled_pipes(dc, context);
2248
2249 /* Reset old context */
2250 /* look up the targets that have been removed since last commit */
2251 hws->funcs.reset_hw_ctx_wrap(dc, context);
2252
2253 /* Skip applying if no targets */
2254 if (context->stream_count <= 0)
2255 return DC_OK;
2256
2257 /* Apply new context */
2258 dcb->funcs->set_scratch_critical_state(dcb, true);
2259
2260 /* below is for real asic only */
2261 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2262 struct pipe_ctx *pipe_ctx_old =
2263 &dc->current_state->res_ctx.pipe_ctx[i];
2264 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2265
2266 if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2267 continue;
2268
2269 if (pipe_ctx->stream == pipe_ctx_old->stream) {
2270 if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2271 dce_crtc_switch_to_clk_src(dc->hwseq,
2272 pipe_ctx->clock_source, i);
2273 continue;
2274 }
2275
2276 hws->funcs.enable_display_power_gating(
2277 dc, i, dc->ctx->dc_bios,
2278 PIPE_GATING_CONTROL_DISABLE);
2279 }
2280
2281 if (dc->fbc_compressor)
2282 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2283
2284 dce110_setup_audio_dto(dc, context);
2285
2286 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2287 struct pipe_ctx *pipe_ctx_old =
2288 &dc->current_state->res_ctx.pipe_ctx[i];
2289 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2290
2291 if (pipe_ctx->stream == NULL)
2292 continue;
2293
2294 if (pipe_ctx->stream == pipe_ctx_old->stream &&
2295 pipe_ctx->stream->link->link_state_valid) {
2296 continue;
2297 }
2298
2299 if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2300 continue;
2301
2302 if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2303 continue;
2304
2305 status = apply_single_controller_ctx_to_hw(
2306 pipe_ctx,
2307 context,
2308 dc);
2309
2310 if (DC_OK != status)
2311 return status;
2312
2313 #ifdef CONFIG_DRM_AMD_DC_FP
2314 if (hws->funcs.resync_fifo_dccg_dio)
2315 hws->funcs.resync_fifo_dccg_dio(hws, dc, context);
2316 #endif
2317 }
2318
2319 if (dc->fbc_compressor)
2320 enable_fbc(dc, dc->current_state);
2321
2322 dcb->funcs->set_scratch_critical_state(dcb, false);
2323
2324 return DC_OK;
2325 }
2326
2327 /*******************************************************************************
2328 * Front End programming
2329 ******************************************************************************/
set_default_colors(struct pipe_ctx * pipe_ctx)2330 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2331 {
2332 struct default_adjustment default_adjust = { 0 };
2333
2334 default_adjust.force_hw_default = false;
2335 default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2336 default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2337 default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2338 default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2339
2340 /* display color depth */
2341 default_adjust.color_depth =
2342 pipe_ctx->stream->timing.display_color_depth;
2343
2344 /* Lb color depth */
2345 default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2346
2347 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2348 pipe_ctx->plane_res.xfm, &default_adjust);
2349 }
2350
2351
2352 /*******************************************************************************
2353 * In order to turn on/off specific surface we will program
2354 * Blender + CRTC
2355 *
2356 * In case that we have two surfaces and they have a different visibility
2357 * we can't turn off the CRTC since it will turn off the entire display
2358 *
2359 * |----------------------------------------------- |
2360 * |bottom pipe|curr pipe | | |
2361 * |Surface |Surface | Blender | CRCT |
2362 * |visibility |visibility | Configuration| |
2363 * |------------------------------------------------|
2364 * | off | off | CURRENT_PIPE | blank |
2365 * | off | on | CURRENT_PIPE | unblank |
2366 * | on | off | OTHER_PIPE | unblank |
2367 * | on | on | BLENDING | unblank |
2368 * -------------------------------------------------|
2369 *
2370 ******************************************************************************/
program_surface_visibility(const struct dc * dc,struct pipe_ctx * pipe_ctx)2371 static void program_surface_visibility(const struct dc *dc,
2372 struct pipe_ctx *pipe_ctx)
2373 {
2374 enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2375 bool blank_target = false;
2376
2377 if (pipe_ctx->bottom_pipe) {
2378
2379 /* For now we are supporting only two pipes */
2380 ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2381
2382 if (pipe_ctx->bottom_pipe->plane_state->visible) {
2383 if (pipe_ctx->plane_state->visible)
2384 blender_mode = BLND_MODE_BLENDING;
2385 else
2386 blender_mode = BLND_MODE_OTHER_PIPE;
2387
2388 } else if (!pipe_ctx->plane_state->visible)
2389 blank_target = true;
2390
2391 } else if (!pipe_ctx->plane_state->visible)
2392 blank_target = true;
2393
2394 dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2395 pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2396
2397 }
2398
program_gamut_remap(struct pipe_ctx * pipe_ctx)2399 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2400 {
2401 int i = 0;
2402 struct xfm_grph_csc_adjustment adjust;
2403 memset(&adjust, 0, sizeof(adjust));
2404 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2405
2406
2407 if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2408 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2409
2410 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2411 adjust.temperature_matrix[i] =
2412 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2413 }
2414
2415 pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2416 }
update_plane_addr(const struct dc * dc,struct pipe_ctx * pipe_ctx)2417 static void update_plane_addr(const struct dc *dc,
2418 struct pipe_ctx *pipe_ctx)
2419 {
2420 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2421
2422 if (plane_state == NULL)
2423 return;
2424
2425 pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2426 pipe_ctx->plane_res.mi,
2427 &plane_state->address,
2428 plane_state->flip_immediate);
2429
2430 plane_state->status.requested_address = plane_state->address;
2431 }
2432
dce110_update_pending_status(struct pipe_ctx * pipe_ctx)2433 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2434 {
2435 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2436
2437 if (plane_state == NULL)
2438 return;
2439
2440 plane_state->status.is_flip_pending =
2441 pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2442 pipe_ctx->plane_res.mi);
2443
2444 if (plane_state->status.is_flip_pending && !plane_state->visible)
2445 pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2446
2447 plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2448 if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2449 pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2450 plane_state->status.is_right_eye =\
2451 !pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2452 }
2453 }
2454
dce110_power_down(struct dc * dc)2455 void dce110_power_down(struct dc *dc)
2456 {
2457 power_down_all_hw_blocks(dc);
2458 disable_vga_and_power_gate_all_controllers(dc);
2459 }
2460
wait_for_reset_trigger_to_occur(struct dc_context * dc_ctx,struct timing_generator * tg)2461 static bool wait_for_reset_trigger_to_occur(
2462 struct dc_context *dc_ctx,
2463 struct timing_generator *tg)
2464 {
2465 bool rc = false;
2466
2467 /* To avoid endless loop we wait at most
2468 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2469 const uint32_t frames_to_wait_on_triggered_reset = 10;
2470 uint32_t i;
2471
2472 for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2473
2474 if (!tg->funcs->is_counter_moving(tg)) {
2475 DC_ERROR("TG counter is not moving!\n");
2476 break;
2477 }
2478
2479 if (tg->funcs->did_triggered_reset_occur(tg)) {
2480 rc = true;
2481 /* usually occurs at i=1 */
2482 DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2483 i);
2484 break;
2485 }
2486
2487 /* Wait for one frame. */
2488 tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2489 tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2490 }
2491
2492 if (false == rc)
2493 DC_ERROR("GSL: Timeout on reset trigger!\n");
2494
2495 return rc;
2496 }
2497
2498 /* Enable timing synchronization for a group of Timing Generators. */
dce110_enable_timing_synchronization(struct dc * dc,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2499 static void dce110_enable_timing_synchronization(
2500 struct dc *dc,
2501 int group_index,
2502 int group_size,
2503 struct pipe_ctx *grouped_pipes[])
2504 {
2505 struct dc_context *dc_ctx = dc->ctx;
2506 struct dcp_gsl_params gsl_params = { 0 };
2507 int i;
2508
2509 DC_SYNC_INFO("GSL: Setting-up...\n");
2510
2511 /* Designate a single TG in the group as a master.
2512 * Since HW doesn't care which one, we always assign
2513 * the 1st one in the group. */
2514 gsl_params.gsl_group = 0;
2515 gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2516
2517 for (i = 0; i < group_size; i++)
2518 grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2519 grouped_pipes[i]->stream_res.tg, &gsl_params);
2520
2521 /* Reset slave controllers on master VSync */
2522 DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2523
2524 for (i = 1 /* skip the master */; i < group_size; i++)
2525 grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2526 grouped_pipes[i]->stream_res.tg,
2527 gsl_params.gsl_group);
2528
2529 for (i = 1 /* skip the master */; i < group_size; i++) {
2530 DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2531 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2532 grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2533 grouped_pipes[i]->stream_res.tg);
2534 }
2535
2536 /* GSL Vblank synchronization is a one time sync mechanism, assumption
2537 * is that the sync'ed displays will not drift out of sync over time*/
2538 DC_SYNC_INFO("GSL: Restoring register states.\n");
2539 for (i = 0; i < group_size; i++)
2540 grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2541
2542 DC_SYNC_INFO("GSL: Set-up complete.\n");
2543 }
2544
dce110_enable_per_frame_crtc_position_reset(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2545 static void dce110_enable_per_frame_crtc_position_reset(
2546 struct dc *dc,
2547 int group_size,
2548 struct pipe_ctx *grouped_pipes[])
2549 {
2550 struct dc_context *dc_ctx = dc->ctx;
2551 struct dcp_gsl_params gsl_params = { 0 };
2552 int i;
2553
2554 gsl_params.gsl_group = 0;
2555 gsl_params.gsl_master = 0;
2556
2557 for (i = 0; i < group_size; i++)
2558 grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2559 grouped_pipes[i]->stream_res.tg, &gsl_params);
2560
2561 DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2562
2563 for (i = 1; i < group_size; i++)
2564 grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2565 grouped_pipes[i]->stream_res.tg,
2566 gsl_params.gsl_master,
2567 &grouped_pipes[i]->stream->triggered_crtc_reset);
2568
2569 DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2570 for (i = 1; i < group_size; i++)
2571 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2572
2573 for (i = 0; i < group_size; i++)
2574 grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2575
2576 }
2577
init_pipes(struct dc * dc,struct dc_state * context)2578 static void init_pipes(struct dc *dc, struct dc_state *context)
2579 {
2580 // Do nothing
2581 }
2582
init_hw(struct dc * dc)2583 static void init_hw(struct dc *dc)
2584 {
2585 int i;
2586 struct dc_bios *bp;
2587 struct transform *xfm;
2588 struct abm *abm;
2589 struct dmcu *dmcu;
2590 struct dce_hwseq *hws = dc->hwseq;
2591 uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2592
2593 bp = dc->ctx->dc_bios;
2594 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2595 xfm = dc->res_pool->transforms[i];
2596 xfm->funcs->transform_reset(xfm);
2597
2598 hws->funcs.enable_display_power_gating(
2599 dc, i, bp,
2600 PIPE_GATING_CONTROL_INIT);
2601 hws->funcs.enable_display_power_gating(
2602 dc, i, bp,
2603 PIPE_GATING_CONTROL_DISABLE);
2604 hws->funcs.enable_display_pipe_clock_gating(
2605 dc->ctx,
2606 true);
2607 }
2608
2609 dce_clock_gating_power_up(dc->hwseq, false);
2610 /***************************************/
2611
2612 for (i = 0; i < dc->link_count; i++) {
2613 /****************************************/
2614 /* Power up AND update implementation according to the
2615 * required signal (which may be different from the
2616 * default signal on connector). */
2617 struct dc_link *link = dc->links[i];
2618
2619 link->link_enc->funcs->hw_init(link->link_enc);
2620 }
2621
2622 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2623 struct timing_generator *tg = dc->res_pool->timing_generators[i];
2624
2625 tg->funcs->disable_vga(tg);
2626
2627 /* Blank controller using driver code instead of
2628 * command table. */
2629 tg->funcs->set_blank(tg, true);
2630 hwss_wait_for_blank_complete(tg);
2631 }
2632
2633 for (i = 0; i < dc->res_pool->audio_count; i++) {
2634 struct audio *audio = dc->res_pool->audios[i];
2635 audio->funcs->hw_init(audio);
2636 }
2637
2638 for (i = 0; i < dc->link_count; i++) {
2639 struct dc_link *link = dc->links[i];
2640
2641 if (link->panel_cntl)
2642 backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2643 }
2644
2645 abm = dc->res_pool->abm;
2646 if (abm != NULL)
2647 abm->funcs->abm_init(abm, backlight);
2648
2649 dmcu = dc->res_pool->dmcu;
2650 if (dmcu != NULL && abm != NULL)
2651 abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2652
2653 if (dc->fbc_compressor)
2654 dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2655
2656 }
2657
2658
dce110_prepare_bandwidth(struct dc * dc,struct dc_state * context)2659 void dce110_prepare_bandwidth(
2660 struct dc *dc,
2661 struct dc_state *context)
2662 {
2663 struct clk_mgr *dccg = dc->clk_mgr;
2664
2665 dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2666 if (dccg)
2667 dccg->funcs->update_clocks(
2668 dccg,
2669 context,
2670 false);
2671 }
2672
dce110_optimize_bandwidth(struct dc * dc,struct dc_state * context)2673 void dce110_optimize_bandwidth(
2674 struct dc *dc,
2675 struct dc_state *context)
2676 {
2677 struct clk_mgr *dccg = dc->clk_mgr;
2678
2679 dce110_set_displaymarks(dc, context);
2680
2681 if (dccg)
2682 dccg->funcs->update_clocks(
2683 dccg,
2684 context,
2685 true);
2686 }
2687
dce110_program_front_end_for_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx)2688 static void dce110_program_front_end_for_pipe(
2689 struct dc *dc, struct pipe_ctx *pipe_ctx)
2690 {
2691 struct mem_input *mi = pipe_ctx->plane_res.mi;
2692 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2693 struct xfm_grph_csc_adjustment adjust;
2694 struct out_csc_color_matrix tbl_entry;
2695 unsigned int i;
2696 struct dce_hwseq *hws = dc->hwseq;
2697
2698 DC_LOGGER_INIT();
2699 memset(&tbl_entry, 0, sizeof(tbl_entry));
2700
2701 memset(&adjust, 0, sizeof(adjust));
2702 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2703
2704 dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2705
2706 set_default_colors(pipe_ctx);
2707 if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2708 == true) {
2709 tbl_entry.color_space =
2710 pipe_ctx->stream->output_color_space;
2711
2712 for (i = 0; i < 12; i++)
2713 tbl_entry.regval[i] =
2714 pipe_ctx->stream->csc_color_matrix.matrix[i];
2715
2716 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2717 (pipe_ctx->plane_res.xfm, &tbl_entry);
2718 }
2719
2720 if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2721 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2722
2723 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2724 adjust.temperature_matrix[i] =
2725 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2726 }
2727
2728 pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2729
2730 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
2731
2732 program_scaler(dc, pipe_ctx);
2733
2734 mi->funcs->mem_input_program_surface_config(
2735 mi,
2736 plane_state->format,
2737 &plane_state->tiling_info,
2738 &plane_state->plane_size,
2739 plane_state->rotation,
2740 NULL,
2741 false);
2742 if (mi->funcs->set_blank)
2743 mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2744
2745 if (dc->config.gpu_vm_support)
2746 mi->funcs->mem_input_program_pte_vm(
2747 pipe_ctx->plane_res.mi,
2748 plane_state->format,
2749 &plane_state->tiling_info,
2750 plane_state->rotation);
2751
2752 /* Moved programming gamma from dc to hwss */
2753 if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2754 pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2755 pipe_ctx->plane_state->update_flags.bits.gamma_change)
2756 hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2757
2758 if (pipe_ctx->plane_state->update_flags.bits.full_update)
2759 hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2760
2761 DC_LOG_SURFACE(
2762 "Pipe:%d %p: addr hi:0x%x, "
2763 "addr low:0x%x, "
2764 "src: %d, %d, %d,"
2765 " %d; dst: %d, %d, %d, %d;"
2766 "clip: %d, %d, %d, %d\n",
2767 pipe_ctx->pipe_idx,
2768 (void *) pipe_ctx->plane_state,
2769 pipe_ctx->plane_state->address.grph.addr.high_part,
2770 pipe_ctx->plane_state->address.grph.addr.low_part,
2771 pipe_ctx->plane_state->src_rect.x,
2772 pipe_ctx->plane_state->src_rect.y,
2773 pipe_ctx->plane_state->src_rect.width,
2774 pipe_ctx->plane_state->src_rect.height,
2775 pipe_ctx->plane_state->dst_rect.x,
2776 pipe_ctx->plane_state->dst_rect.y,
2777 pipe_ctx->plane_state->dst_rect.width,
2778 pipe_ctx->plane_state->dst_rect.height,
2779 pipe_ctx->plane_state->clip_rect.x,
2780 pipe_ctx->plane_state->clip_rect.y,
2781 pipe_ctx->plane_state->clip_rect.width,
2782 pipe_ctx->plane_state->clip_rect.height);
2783
2784 DC_LOG_SURFACE(
2785 "Pipe %d: width, height, x, y\n"
2786 "viewport:%d, %d, %d, %d\n"
2787 "recout: %d, %d, %d, %d\n",
2788 pipe_ctx->pipe_idx,
2789 pipe_ctx->plane_res.scl_data.viewport.width,
2790 pipe_ctx->plane_res.scl_data.viewport.height,
2791 pipe_ctx->plane_res.scl_data.viewport.x,
2792 pipe_ctx->plane_res.scl_data.viewport.y,
2793 pipe_ctx->plane_res.scl_data.recout.width,
2794 pipe_ctx->plane_res.scl_data.recout.height,
2795 pipe_ctx->plane_res.scl_data.recout.x,
2796 pipe_ctx->plane_res.scl_data.recout.y);
2797 }
2798
dce110_apply_ctx_for_surface(struct dc * dc,const struct dc_stream_state * stream,int num_planes,struct dc_state * context)2799 static void dce110_apply_ctx_for_surface(
2800 struct dc *dc,
2801 const struct dc_stream_state *stream,
2802 int num_planes,
2803 struct dc_state *context)
2804 {
2805 int i;
2806
2807 if (num_planes == 0)
2808 return;
2809
2810 if (dc->fbc_compressor)
2811 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2812
2813 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2814 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2815
2816 if (pipe_ctx->stream != stream)
2817 continue;
2818
2819 /* Need to allocate mem before program front end for Fiji */
2820 pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2821 pipe_ctx->plane_res.mi,
2822 pipe_ctx->stream->timing.h_total,
2823 pipe_ctx->stream->timing.v_total,
2824 pipe_ctx->stream->timing.pix_clk_100hz / 10,
2825 context->stream_count);
2826
2827 dce110_program_front_end_for_pipe(dc, pipe_ctx);
2828
2829 dc->hwss.update_plane_addr(dc, pipe_ctx);
2830
2831 program_surface_visibility(dc, pipe_ctx);
2832
2833 }
2834
2835 if (dc->fbc_compressor)
2836 enable_fbc(dc, context);
2837 }
2838
dce110_post_unlock_program_front_end(struct dc * dc,struct dc_state * context)2839 static void dce110_post_unlock_program_front_end(
2840 struct dc *dc,
2841 struct dc_state *context)
2842 {
2843 }
2844
dce110_power_down_fe(struct dc * dc,struct pipe_ctx * pipe_ctx)2845 static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
2846 {
2847 struct dce_hwseq *hws = dc->hwseq;
2848 int fe_idx = pipe_ctx->plane_res.mi ?
2849 pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2850
2851 /* Do not power down fe when stream is active on dce*/
2852 if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2853 return;
2854
2855 hws->funcs.enable_display_power_gating(
2856 dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2857
2858 dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2859 dc->res_pool->transforms[fe_idx]);
2860 }
2861
dce110_wait_for_mpcc_disconnect(struct dc * dc,struct resource_pool * res_pool,struct pipe_ctx * pipe_ctx)2862 static void dce110_wait_for_mpcc_disconnect(
2863 struct dc *dc,
2864 struct resource_pool *res_pool,
2865 struct pipe_ctx *pipe_ctx)
2866 {
2867 /* do nothing*/
2868 }
2869
program_output_csc(struct dc * dc,struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace,uint16_t * matrix,int opp_id)2870 static void program_output_csc(struct dc *dc,
2871 struct pipe_ctx *pipe_ctx,
2872 enum dc_color_space colorspace,
2873 uint16_t *matrix,
2874 int opp_id)
2875 {
2876 int i;
2877 struct out_csc_color_matrix tbl_entry;
2878
2879 if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2880 enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
2881
2882 for (i = 0; i < 12; i++)
2883 tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2884
2885 tbl_entry.color_space = color_space;
2886
2887 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
2888 pipe_ctx->plane_res.xfm, &tbl_entry);
2889 }
2890 }
2891
dce110_set_cursor_position(struct pipe_ctx * pipe_ctx)2892 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2893 {
2894 struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2895 struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2896 struct mem_input *mi = pipe_ctx->plane_res.mi;
2897 struct dc_cursor_mi_param param = {
2898 .pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
2899 .ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
2900 .viewport = pipe_ctx->plane_res.scl_data.viewport,
2901 .h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2902 .v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2903 .rotation = pipe_ctx->plane_state->rotation,
2904 .mirror = pipe_ctx->plane_state->horizontal_mirror
2905 };
2906
2907 /**
2908 * If the cursor's source viewport is clipped then we need to
2909 * translate the cursor to appear in the correct position on
2910 * the screen.
2911 *
2912 * This translation isn't affected by scaling so it needs to be
2913 * done *after* we adjust the position for the scale factor.
2914 *
2915 * This is only done by opt-in for now since there are still
2916 * some usecases like tiled display that might enable the
2917 * cursor on both streams while expecting dc to clip it.
2918 */
2919 if (pos_cpy.translate_by_source) {
2920 pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
2921 pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
2922 }
2923
2924 if (pipe_ctx->plane_state->address.type
2925 == PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2926 pos_cpy.enable = false;
2927
2928 if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2929 pos_cpy.enable = false;
2930
2931 if (ipp->funcs->ipp_cursor_set_position)
2932 ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, ¶m);
2933 if (mi->funcs->set_cursor_position)
2934 mi->funcs->set_cursor_position(mi, &pos_cpy, ¶m);
2935 }
2936
dce110_set_cursor_attribute(struct pipe_ctx * pipe_ctx)2937 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2938 {
2939 struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2940
2941 if (pipe_ctx->plane_res.ipp &&
2942 pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2943 pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2944 pipe_ctx->plane_res.ipp, attributes);
2945
2946 if (pipe_ctx->plane_res.mi &&
2947 pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2948 pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2949 pipe_ctx->plane_res.mi, attributes);
2950
2951 if (pipe_ctx->plane_res.xfm &&
2952 pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2953 pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2954 pipe_ctx->plane_res.xfm, attributes);
2955 }
2956
dce110_set_backlight_level(struct pipe_ctx * pipe_ctx,uint32_t backlight_pwm_u16_16,uint32_t frame_ramp)2957 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
2958 uint32_t backlight_pwm_u16_16,
2959 uint32_t frame_ramp)
2960 {
2961 struct dc_link *link = pipe_ctx->stream->link;
2962 struct dc *dc = link->ctx->dc;
2963 struct abm *abm = pipe_ctx->stream_res.abm;
2964 struct panel_cntl *panel_cntl = link->panel_cntl;
2965 struct dmcu *dmcu = dc->res_pool->dmcu;
2966 bool fw_set_brightness = true;
2967 /* DMCU -1 for all controller id values,
2968 * therefore +1 here
2969 */
2970 uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
2971
2972 if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
2973 return false;
2974
2975 if (dmcu)
2976 fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
2977
2978 if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
2979 panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
2980 else
2981 abm->funcs->set_backlight_level_pwm(
2982 abm,
2983 backlight_pwm_u16_16,
2984 frame_ramp,
2985 controller_id,
2986 link->panel_cntl->inst);
2987
2988 return true;
2989 }
2990
dce110_set_abm_immediate_disable(struct pipe_ctx * pipe_ctx)2991 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
2992 {
2993 struct abm *abm = pipe_ctx->stream_res.abm;
2994 struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2995
2996 if (abm)
2997 abm->funcs->set_abm_immediate_disable(abm,
2998 pipe_ctx->stream->link->panel_cntl->inst);
2999
3000 if (panel_cntl)
3001 panel_cntl->funcs->store_backlight_level(panel_cntl);
3002 }
3003
dce110_set_pipe(struct pipe_ctx * pipe_ctx)3004 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
3005 {
3006 struct abm *abm = pipe_ctx->stream_res.abm;
3007 struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3008 uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
3009
3010 if (abm && panel_cntl)
3011 abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
3012 }
3013
dce110_enable_lvds_link_output(struct dc_link * link,const struct link_resource * link_res,enum clock_source_id clock_source,uint32_t pixel_clock)3014 void dce110_enable_lvds_link_output(struct dc_link *link,
3015 const struct link_resource *link_res,
3016 enum clock_source_id clock_source,
3017 uint32_t pixel_clock)
3018 {
3019 link->link_enc->funcs->enable_lvds_output(
3020 link->link_enc,
3021 clock_source,
3022 pixel_clock);
3023 link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3024 }
3025
dce110_enable_tmds_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal,enum clock_source_id clock_source,enum dc_color_depth color_depth,uint32_t pixel_clock)3026 void dce110_enable_tmds_link_output(struct dc_link *link,
3027 const struct link_resource *link_res,
3028 enum signal_type signal,
3029 enum clock_source_id clock_source,
3030 enum dc_color_depth color_depth,
3031 uint32_t pixel_clock)
3032 {
3033 link->link_enc->funcs->enable_tmds_output(
3034 link->link_enc,
3035 clock_source,
3036 color_depth,
3037 signal,
3038 pixel_clock);
3039 link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3040 }
3041
dce110_enable_dp_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal,enum clock_source_id clock_source,const struct dc_link_settings * link_settings)3042 void dce110_enable_dp_link_output(
3043 struct dc_link *link,
3044 const struct link_resource *link_res,
3045 enum signal_type signal,
3046 enum clock_source_id clock_source,
3047 const struct dc_link_settings *link_settings)
3048 {
3049 struct dc *dc = link->ctx->dc;
3050 struct dmcu *dmcu = dc->res_pool->dmcu;
3051 struct pipe_ctx *pipes =
3052 link->dc->current_state->res_ctx.pipe_ctx;
3053 struct clock_source *dp_cs =
3054 link->dc->res_pool->dp_clock_source;
3055 const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3056 unsigned int i;
3057
3058 /*
3059 * Add the logic to extract BOTH power up and power down sequences
3060 * from enable/disable link output and only call edp panel control
3061 * in enable_link_dp and disable_link_dp once.
3062 */
3063 if (link->connector_signal == SIGNAL_TYPE_EDP) {
3064 link->dc->hwss.edp_wait_for_hpd_ready(link, true);
3065 }
3066
3067 /* If the current pixel clock source is not DTO(happens after
3068 * switching from HDMI passive dongle to DP on the same connector),
3069 * switch the pixel clock source to DTO.
3070 */
3071
3072 for (i = 0; i < MAX_PIPES; i++) {
3073 if (pipes[i].stream != NULL &&
3074 pipes[i].stream->link == link) {
3075 if (pipes[i].clock_source != NULL &&
3076 pipes[i].clock_source->id != CLOCK_SOURCE_ID_DP_DTO) {
3077 pipes[i].clock_source = dp_cs;
3078 pipes[i].stream_res.pix_clk_params.requested_pix_clk_100hz =
3079 pipes[i].stream->timing.pix_clk_100hz;
3080 pipes[i].clock_source->funcs->program_pix_clk(
3081 pipes[i].clock_source,
3082 &pipes[i].stream_res.pix_clk_params,
3083 dc->link_srv->dp_get_encoding_format(link_settings),
3084 &pipes[i].pll_settings);
3085 }
3086 }
3087 }
3088
3089 if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_8b_10b_ENCODING) {
3090 if (dc->clk_mgr->funcs->notify_link_rate_change)
3091 dc->clk_mgr->funcs->notify_link_rate_change(dc->clk_mgr, link);
3092 }
3093
3094 if (dmcu != NULL && dmcu->funcs->lock_phy)
3095 dmcu->funcs->lock_phy(dmcu);
3096
3097 if (link_hwss->ext.enable_dp_link_output)
3098 link_hwss->ext.enable_dp_link_output(link, link_res, signal,
3099 clock_source, link_settings);
3100
3101 link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3102
3103 if (dmcu != NULL && dmcu->funcs->unlock_phy)
3104 dmcu->funcs->unlock_phy(dmcu);
3105
3106 dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_ENABLE_LINK_PHY);
3107 }
3108
dce110_disable_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal)3109 void dce110_disable_link_output(struct dc_link *link,
3110 const struct link_resource *link_res,
3111 enum signal_type signal)
3112 {
3113 struct dc *dc = link->ctx->dc;
3114 const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3115 struct dmcu *dmcu = dc->res_pool->dmcu;
3116
3117 if (signal == SIGNAL_TYPE_EDP &&
3118 link->dc->hwss.edp_backlight_control)
3119 link->dc->hwss.edp_backlight_control(link, false);
3120 else if (dmcu != NULL && dmcu->funcs->lock_phy)
3121 dmcu->funcs->lock_phy(dmcu);
3122
3123 link_hwss->disable_link_output(link, link_res, signal);
3124 link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
3125 /*
3126 * Add the logic to extract BOTH power up and power down sequences
3127 * from enable/disable link output and only call edp panel control
3128 * in enable_link_dp and disable_link_dp once.
3129 */
3130 if (dmcu != NULL && dmcu->funcs->lock_phy)
3131 dmcu->funcs->unlock_phy(dmcu);
3132 dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_DISABLE_LINK_PHY);
3133 }
3134
3135 static const struct hw_sequencer_funcs dce110_funcs = {
3136 .program_gamut_remap = program_gamut_remap,
3137 .program_output_csc = program_output_csc,
3138 .init_hw = init_hw,
3139 .apply_ctx_to_hw = dce110_apply_ctx_to_hw,
3140 .apply_ctx_for_surface = dce110_apply_ctx_for_surface,
3141 .post_unlock_program_front_end = dce110_post_unlock_program_front_end,
3142 .update_plane_addr = update_plane_addr,
3143 .update_pending_status = dce110_update_pending_status,
3144 .enable_accelerated_mode = dce110_enable_accelerated_mode,
3145 .enable_timing_synchronization = dce110_enable_timing_synchronization,
3146 .enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
3147 .update_info_frame = dce110_update_info_frame,
3148 .enable_stream = dce110_enable_stream,
3149 .disable_stream = dce110_disable_stream,
3150 .unblank_stream = dce110_unblank_stream,
3151 .blank_stream = dce110_blank_stream,
3152 .enable_audio_stream = dce110_enable_audio_stream,
3153 .disable_audio_stream = dce110_disable_audio_stream,
3154 .disable_plane = dce110_power_down_fe,
3155 .pipe_control_lock = dce_pipe_control_lock,
3156 .interdependent_update_lock = NULL,
3157 .cursor_lock = dce_pipe_control_lock,
3158 .prepare_bandwidth = dce110_prepare_bandwidth,
3159 .optimize_bandwidth = dce110_optimize_bandwidth,
3160 .set_drr = set_drr,
3161 .get_position = get_position,
3162 .set_static_screen_control = set_static_screen_control,
3163 .setup_stereo = NULL,
3164 .set_avmute = dce110_set_avmute,
3165 .wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
3166 .edp_backlight_control = dce110_edp_backlight_control,
3167 .edp_power_control = dce110_edp_power_control,
3168 .edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
3169 .set_cursor_position = dce110_set_cursor_position,
3170 .set_cursor_attribute = dce110_set_cursor_attribute,
3171 .set_backlight_level = dce110_set_backlight_level,
3172 .set_abm_immediate_disable = dce110_set_abm_immediate_disable,
3173 .set_pipe = dce110_set_pipe,
3174 .enable_lvds_link_output = dce110_enable_lvds_link_output,
3175 .enable_tmds_link_output = dce110_enable_tmds_link_output,
3176 .enable_dp_link_output = dce110_enable_dp_link_output,
3177 .disable_link_output = dce110_disable_link_output,
3178 };
3179
3180 static const struct hwseq_private_funcs dce110_private_funcs = {
3181 .init_pipes = init_pipes,
3182 .update_plane_addr = update_plane_addr,
3183 .set_input_transfer_func = dce110_set_input_transfer_func,
3184 .set_output_transfer_func = dce110_set_output_transfer_func,
3185 .power_down = dce110_power_down,
3186 .enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
3187 .enable_display_power_gating = dce110_enable_display_power_gating,
3188 .reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
3189 .enable_stream_timing = dce110_enable_stream_timing,
3190 .disable_stream_gating = NULL,
3191 .enable_stream_gating = NULL,
3192 .edp_backlight_control = dce110_edp_backlight_control,
3193 };
3194
dce110_hw_sequencer_construct(struct dc * dc)3195 void dce110_hw_sequencer_construct(struct dc *dc)
3196 {
3197 dc->hwss = dce110_funcs;
3198 dc->hwseq->funcs = dce110_private_funcs;
3199 }
3200
3201