1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 #include "dc.h"
28 #include "dc_bios_types.h"
29 #include "core_types.h"
30 #include "core_status.h"
31 #include "resource.h"
32 #include "dm_helpers.h"
33 #include "dce110_timing_generator.h"
34 #include "dce/dce_hwseq.h"
35 #include "gpio_service_interface.h"
36 
37 #include "dce110_compressor.h"
38 
39 #include "bios/bios_parser_helper.h"
40 #include "timing_generator.h"
41 #include "mem_input.h"
42 #include "opp.h"
43 #include "ipp.h"
44 #include "transform.h"
45 #include "stream_encoder.h"
46 #include "link_encoder.h"
47 #include "link_enc_cfg.h"
48 #include "link_hwss.h"
49 #include "dc_link_dp.h"
50 #include "dccg.h"
51 #include "clock_source.h"
52 #include "clk_mgr.h"
53 #include "abm.h"
54 #include "audio.h"
55 #include "reg_helper.h"
56 #include "panel_cntl.h"
57 #include "inc/link_dpcd.h"
58 #include "dpcd_defs.h"
59 /* include DCE11 register header files */
60 #include "dce/dce_11_0_d.h"
61 #include "dce/dce_11_0_sh_mask.h"
62 #include "custom_float.h"
63 
64 #include "atomfirmware.h"
65 
66 #include "dcn10/dcn10_hw_sequencer.h"
67 
68 #include "link/link_dp_trace.h"
69 #include "dce110_hw_sequencer.h"
70 
71 #define GAMMA_HW_POINTS_NUM 256
72 
73 /*
74  * All values are in milliseconds;
75  * For eDP, after power-up/power/down,
76  * 300/500 msec max. delay from LCDVCC to black video generation
77  */
78 #define PANEL_POWER_UP_TIMEOUT 300
79 #define PANEL_POWER_DOWN_TIMEOUT 500
80 #define HPD_CHECK_INTERVAL 10
81 #define OLED_POST_T7_DELAY 100
82 #define OLED_PRE_T11_DELAY 150
83 
84 #define CTX \
85 	hws->ctx
86 
87 #define DC_LOGGER_INIT()
88 
89 #define REG(reg)\
90 	hws->regs->reg
91 
92 #undef FN
93 #define FN(reg_name, field_name) \
94 	hws->shifts->field_name, hws->masks->field_name
95 
96 struct dce110_hw_seq_reg_offsets {
97 	uint32_t crtc;
98 };
99 
100 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
101 {
102 	.crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
103 },
104 {
105 	.crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
106 },
107 {
108 	.crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
109 },
110 {
111 	.crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
112 }
113 };
114 
115 #define HW_REG_BLND(reg, id)\
116 	(reg + reg_offsets[id].blnd)
117 
118 #define HW_REG_CRTC(reg, id)\
119 	(reg + reg_offsets[id].crtc)
120 
121 #define MAX_WATERMARK 0xFFFF
122 #define SAFE_NBP_MARK 0x7FFF
123 
124 /*******************************************************************************
125  * Private definitions
126  ******************************************************************************/
127 /***************************PIPE_CONTROL***********************************/
128 static void dce110_init_pte(struct dc_context *ctx)
129 {
130 	uint32_t addr;
131 	uint32_t value = 0;
132 	uint32_t chunk_int = 0;
133 	uint32_t chunk_mul = 0;
134 
135 	addr = mmUNP_DVMM_PTE_CONTROL;
136 	value = dm_read_reg(ctx, addr);
137 
138 	set_reg_field_value(
139 		value,
140 		0,
141 		DVMM_PTE_CONTROL,
142 		DVMM_USE_SINGLE_PTE);
143 
144 	set_reg_field_value(
145 		value,
146 		1,
147 		DVMM_PTE_CONTROL,
148 		DVMM_PTE_BUFFER_MODE0);
149 
150 	set_reg_field_value(
151 		value,
152 		1,
153 		DVMM_PTE_CONTROL,
154 		DVMM_PTE_BUFFER_MODE1);
155 
156 	dm_write_reg(ctx, addr, value);
157 
158 	addr = mmDVMM_PTE_REQ;
159 	value = dm_read_reg(ctx, addr);
160 
161 	chunk_int = get_reg_field_value(
162 		value,
163 		DVMM_PTE_REQ,
164 		HFLIP_PTEREQ_PER_CHUNK_INT);
165 
166 	chunk_mul = get_reg_field_value(
167 		value,
168 		DVMM_PTE_REQ,
169 		HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
170 
171 	if (chunk_int != 0x4 || chunk_mul != 0x4) {
172 
173 		set_reg_field_value(
174 			value,
175 			255,
176 			DVMM_PTE_REQ,
177 			MAX_PTEREQ_TO_ISSUE);
178 
179 		set_reg_field_value(
180 			value,
181 			4,
182 			DVMM_PTE_REQ,
183 			HFLIP_PTEREQ_PER_CHUNK_INT);
184 
185 		set_reg_field_value(
186 			value,
187 			4,
188 			DVMM_PTE_REQ,
189 			HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
190 
191 		dm_write_reg(ctx, addr, value);
192 	}
193 }
194 /**************************************************************************/
195 
196 static void enable_display_pipe_clock_gating(
197 	struct dc_context *ctx,
198 	bool clock_gating)
199 {
200 	/*TODO*/
201 }
202 
203 static bool dce110_enable_display_power_gating(
204 	struct dc *dc,
205 	uint8_t controller_id,
206 	struct dc_bios *dcb,
207 	enum pipe_gating_control power_gating)
208 {
209 	enum bp_result bp_result = BP_RESULT_OK;
210 	enum bp_pipe_control_action cntl;
211 	struct dc_context *ctx = dc->ctx;
212 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
213 
214 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment))
215 		return true;
216 
217 	if (power_gating == PIPE_GATING_CONTROL_INIT)
218 		cntl = ASIC_PIPE_INIT;
219 	else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
220 		cntl = ASIC_PIPE_ENABLE;
221 	else
222 		cntl = ASIC_PIPE_DISABLE;
223 
224 	if (controller_id == underlay_idx)
225 		controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
226 
227 	if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0){
228 
229 		bp_result = dcb->funcs->enable_disp_power_gating(
230 						dcb, controller_id + 1, cntl);
231 
232 		/* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
233 		 * by default when command table is called
234 		 *
235 		 * Bios parser accepts controller_id = 6 as indicative of
236 		 * underlay pipe in dce110. But we do not support more
237 		 * than 3.
238 		 */
239 		if (controller_id < CONTROLLER_ID_MAX - 1)
240 			dm_write_reg(ctx,
241 				HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
242 				0);
243 	}
244 
245 	if (power_gating != PIPE_GATING_CONTROL_ENABLE)
246 		dce110_init_pte(ctx);
247 
248 	if (bp_result == BP_RESULT_OK)
249 		return true;
250 	else
251 		return false;
252 }
253 
254 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
255 		const struct dc_plane_state *plane_state)
256 {
257 	prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
258 
259 	switch (plane_state->format) {
260 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
261 		prescale_params->scale = 0x2082;
262 		break;
263 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
264 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
265 		prescale_params->scale = 0x2020;
266 		break;
267 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
268 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
269 		prescale_params->scale = 0x2008;
270 		break;
271 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
272 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
273 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
274 		prescale_params->scale = 0x2000;
275 		break;
276 	default:
277 		ASSERT(false);
278 		break;
279 	}
280 }
281 
282 static bool
283 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
284 			       const struct dc_plane_state *plane_state)
285 {
286 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
287 	const struct dc_transfer_func *tf = NULL;
288 	struct ipp_prescale_params prescale_params = { 0 };
289 	bool result = true;
290 
291 	if (ipp == NULL)
292 		return false;
293 
294 	if (plane_state->in_transfer_func)
295 		tf = plane_state->in_transfer_func;
296 
297 	build_prescale_params(&prescale_params, plane_state);
298 	ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
299 
300 	if (plane_state->gamma_correction &&
301 			!plane_state->gamma_correction->is_identity &&
302 			dce_use_lut(plane_state->format))
303 		ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
304 
305 	if (tf == NULL) {
306 		/* Default case if no input transfer function specified */
307 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
308 	} else if (tf->type == TF_TYPE_PREDEFINED) {
309 		switch (tf->tf) {
310 		case TRANSFER_FUNCTION_SRGB:
311 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
312 			break;
313 		case TRANSFER_FUNCTION_BT709:
314 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
315 			break;
316 		case TRANSFER_FUNCTION_LINEAR:
317 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
318 			break;
319 		case TRANSFER_FUNCTION_PQ:
320 		default:
321 			result = false;
322 			break;
323 		}
324 	} else if (tf->type == TF_TYPE_BYPASS) {
325 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
326 	} else {
327 		/*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
328 		result = false;
329 	}
330 
331 	return result;
332 }
333 
334 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
335 				    struct curve_points *arr_points,
336 				    uint32_t hw_points_num)
337 {
338 	struct custom_float_format fmt;
339 
340 	struct pwl_result_data *rgb = rgb_resulted;
341 
342 	uint32_t i = 0;
343 
344 	fmt.exponenta_bits = 6;
345 	fmt.mantissa_bits = 12;
346 	fmt.sign = true;
347 
348 	if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
349 					    &arr_points[0].custom_float_x)) {
350 		BREAK_TO_DEBUGGER();
351 		return false;
352 	}
353 
354 	if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
355 					    &arr_points[0].custom_float_offset)) {
356 		BREAK_TO_DEBUGGER();
357 		return false;
358 	}
359 
360 	if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
361 					    &arr_points[0].custom_float_slope)) {
362 		BREAK_TO_DEBUGGER();
363 		return false;
364 	}
365 
366 	fmt.mantissa_bits = 10;
367 	fmt.sign = false;
368 
369 	if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
370 					    &arr_points[1].custom_float_x)) {
371 		BREAK_TO_DEBUGGER();
372 		return false;
373 	}
374 
375 	if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
376 					    &arr_points[1].custom_float_y)) {
377 		BREAK_TO_DEBUGGER();
378 		return false;
379 	}
380 
381 	if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
382 					    &arr_points[1].custom_float_slope)) {
383 		BREAK_TO_DEBUGGER();
384 		return false;
385 	}
386 
387 	fmt.mantissa_bits = 12;
388 	fmt.sign = true;
389 
390 	while (i != hw_points_num) {
391 		if (!convert_to_custom_float_format(rgb->red, &fmt,
392 						    &rgb->red_reg)) {
393 			BREAK_TO_DEBUGGER();
394 			return false;
395 		}
396 
397 		if (!convert_to_custom_float_format(rgb->green, &fmt,
398 						    &rgb->green_reg)) {
399 			BREAK_TO_DEBUGGER();
400 			return false;
401 		}
402 
403 		if (!convert_to_custom_float_format(rgb->blue, &fmt,
404 						    &rgb->blue_reg)) {
405 			BREAK_TO_DEBUGGER();
406 			return false;
407 		}
408 
409 		if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
410 						    &rgb->delta_red_reg)) {
411 			BREAK_TO_DEBUGGER();
412 			return false;
413 		}
414 
415 		if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
416 						    &rgb->delta_green_reg)) {
417 			BREAK_TO_DEBUGGER();
418 			return false;
419 		}
420 
421 		if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
422 						    &rgb->delta_blue_reg)) {
423 			BREAK_TO_DEBUGGER();
424 			return false;
425 		}
426 
427 		++rgb;
428 		++i;
429 	}
430 
431 	return true;
432 }
433 
434 #define MAX_LOW_POINT      25
435 #define NUMBER_REGIONS     16
436 #define NUMBER_SW_SEGMENTS 16
437 
438 static bool
439 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
440 				      struct pwl_params *regamma_params)
441 {
442 	struct curve_points *arr_points;
443 	struct pwl_result_data *rgb_resulted;
444 	struct pwl_result_data *rgb;
445 	struct pwl_result_data *rgb_plus_1;
446 	struct fixed31_32 y_r;
447 	struct fixed31_32 y_g;
448 	struct fixed31_32 y_b;
449 	struct fixed31_32 y1_min;
450 	struct fixed31_32 y3_max;
451 
452 	int32_t region_start, region_end;
453 	uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
454 
455 	if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
456 		return false;
457 
458 	arr_points = regamma_params->arr_points;
459 	rgb_resulted = regamma_params->rgb_resulted;
460 	hw_points = 0;
461 
462 	memset(regamma_params, 0, sizeof(struct pwl_params));
463 
464 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
465 		/* 16 segments
466 		 * segments are from 2^-11 to 2^5
467 		 */
468 		region_start = -11;
469 		region_end = region_start + NUMBER_REGIONS;
470 
471 		for (i = 0; i < NUMBER_REGIONS; i++)
472 			seg_distr[i] = 4;
473 
474 	} else {
475 		/* 10 segments
476 		 * segment is from 2^-10 to 2^1
477 		 * We include an extra segment for range [2^0, 2^1). This is to
478 		 * ensure that colors with normalized values of 1 don't miss the
479 		 * LUT.
480 		 */
481 		region_start = -10;
482 		region_end = 1;
483 
484 		seg_distr[0] = 4;
485 		seg_distr[1] = 4;
486 		seg_distr[2] = 4;
487 		seg_distr[3] = 4;
488 		seg_distr[4] = 4;
489 		seg_distr[5] = 4;
490 		seg_distr[6] = 4;
491 		seg_distr[7] = 4;
492 		seg_distr[8] = 4;
493 		seg_distr[9] = 4;
494 		seg_distr[10] = 0;
495 		seg_distr[11] = -1;
496 		seg_distr[12] = -1;
497 		seg_distr[13] = -1;
498 		seg_distr[14] = -1;
499 		seg_distr[15] = -1;
500 	}
501 
502 	for (k = 0; k < 16; k++) {
503 		if (seg_distr[k] != -1)
504 			hw_points += (1 << seg_distr[k]);
505 	}
506 
507 	j = 0;
508 	for (k = 0; k < (region_end - region_start); k++) {
509 		increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
510 		start_index = (region_start + k + MAX_LOW_POINT) *
511 				NUMBER_SW_SEGMENTS;
512 		for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
513 				i += increment) {
514 			if (j == hw_points - 1)
515 				break;
516 			rgb_resulted[j].red = output_tf->tf_pts.red[i];
517 			rgb_resulted[j].green = output_tf->tf_pts.green[i];
518 			rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
519 			j++;
520 		}
521 	}
522 
523 	/* last point */
524 	start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
525 	rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
526 	rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
527 	rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
528 
529 	arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
530 					     dc_fixpt_from_int(region_start));
531 	arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
532 					     dc_fixpt_from_int(region_end));
533 
534 	y_r = rgb_resulted[0].red;
535 	y_g = rgb_resulted[0].green;
536 	y_b = rgb_resulted[0].blue;
537 
538 	y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
539 
540 	arr_points[0].y = y1_min;
541 	arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
542 						 arr_points[0].x);
543 
544 	y_r = rgb_resulted[hw_points - 1].red;
545 	y_g = rgb_resulted[hw_points - 1].green;
546 	y_b = rgb_resulted[hw_points - 1].blue;
547 
548 	/* see comment above, m_arrPoints[1].y should be the Y value for the
549 	 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
550 	 */
551 	y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
552 
553 	arr_points[1].y = y3_max;
554 
555 	arr_points[1].slope = dc_fixpt_zero;
556 
557 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
558 		/* for PQ, we want to have a straight line from last HW X point,
559 		 * and the slope to be such that we hit 1.0 at 10000 nits.
560 		 */
561 		const struct fixed31_32 end_value = dc_fixpt_from_int(125);
562 
563 		arr_points[1].slope = dc_fixpt_div(
564 				dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
565 				dc_fixpt_sub(end_value, arr_points[1].x));
566 	}
567 
568 	regamma_params->hw_points_num = hw_points;
569 
570 	k = 0;
571 	for (i = 1; i < 16; i++) {
572 		if (seg_distr[k] != -1) {
573 			regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
574 			regamma_params->arr_curve_points[i].offset =
575 					regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
576 		}
577 		k++;
578 	}
579 
580 	if (seg_distr[k] != -1)
581 		regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
582 
583 	rgb = rgb_resulted;
584 	rgb_plus_1 = rgb_resulted + 1;
585 
586 	i = 1;
587 
588 	while (i != hw_points + 1) {
589 		if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
590 			rgb_plus_1->red = rgb->red;
591 		if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
592 			rgb_plus_1->green = rgb->green;
593 		if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
594 			rgb_plus_1->blue = rgb->blue;
595 
596 		rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
597 		rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
598 		rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
599 
600 		++rgb_plus_1;
601 		++rgb;
602 		++i;
603 	}
604 
605 	convert_to_custom_float(rgb_resulted, arr_points, hw_points);
606 
607 	return true;
608 }
609 
610 static bool
611 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
612 				const struct dc_stream_state *stream)
613 {
614 	struct transform *xfm = pipe_ctx->plane_res.xfm;
615 
616 	xfm->funcs->opp_power_on_regamma_lut(xfm, true);
617 	xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
618 
619 	if (stream->out_transfer_func &&
620 	    stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
621 	    stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
622 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
623 	} else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
624 							 &xfm->regamma_params)) {
625 		xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
626 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
627 	} else {
628 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
629 	}
630 
631 	xfm->funcs->opp_power_on_regamma_lut(xfm, false);
632 
633 	return true;
634 }
635 
636 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
637 {
638 	bool is_hdmi_tmds;
639 	bool is_dp;
640 
641 	ASSERT(pipe_ctx->stream);
642 
643 	if (pipe_ctx->stream_res.stream_enc == NULL)
644 		return;  /* this is not root pipe */
645 
646 	is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
647 	is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
648 
649 	if (!is_hdmi_tmds && !is_dp)
650 		return;
651 
652 	if (is_hdmi_tmds)
653 		pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
654 			pipe_ctx->stream_res.stream_enc,
655 			&pipe_ctx->stream_res.encoder_info_frame);
656 	else
657 		pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
658 			pipe_ctx->stream_res.stream_enc,
659 			&pipe_ctx->stream_res.encoder_info_frame);
660 }
661 
662 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
663 {
664 	enum dc_lane_count lane_count =
665 		pipe_ctx->stream->link->cur_link_settings.lane_count;
666 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
667 	struct dc_link *link = pipe_ctx->stream->link;
668 	const struct dc *dc = link->dc;
669 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
670 	uint32_t active_total_with_borders;
671 	uint32_t early_control = 0;
672 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
673 
674 	link_hwss->setup_stream_encoder(pipe_ctx);
675 
676 	dc->hwss.update_info_frame(pipe_ctx);
677 
678 	/* enable early control to avoid corruption on DP monitor*/
679 	active_total_with_borders =
680 			timing->h_addressable
681 				+ timing->h_border_left
682 				+ timing->h_border_right;
683 
684 	if (lane_count != 0)
685 		early_control = active_total_with_borders % lane_count;
686 
687 	if (early_control == 0)
688 		early_control = lane_count;
689 
690 	tg->funcs->set_early_control(tg, early_control);
691 
692 	/* enable audio only within mode set */
693 	if (pipe_ctx->stream_res.audio != NULL) {
694 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
695 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc);
696 	}
697 
698 
699 
700 
701 }
702 
703 static enum bp_result link_transmitter_control(
704 		struct dc_bios *bios,
705 	struct bp_transmitter_control *cntl)
706 {
707 	enum bp_result result;
708 
709 	result = bios->funcs->transmitter_control(bios, cntl);
710 
711 	return result;
712 }
713 
714 /*
715  * @brief
716  * eDP only.
717  */
718 void dce110_edp_wait_for_hpd_ready(
719 		struct dc_link *link,
720 		bool power_up)
721 {
722 	struct dc_context *ctx = link->ctx;
723 	struct graphics_object_id connector = link->link_enc->connector;
724 	struct gpio *hpd;
725 	struct dc_sink *sink = link->local_sink;
726 	bool edp_hpd_high = false;
727 	uint32_t time_elapsed = 0;
728 	uint32_t timeout = power_up ?
729 		PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
730 
731 	if (dal_graphics_object_id_get_connector_id(connector)
732 			!= CONNECTOR_ID_EDP) {
733 		BREAK_TO_DEBUGGER();
734 		return;
735 	}
736 
737 	if (!power_up)
738 		/*
739 		 * From KV, we will not HPD low after turning off VCC -
740 		 * instead, we will check the SW timer in power_up().
741 		 */
742 		return;
743 
744 	/*
745 	 * When we power on/off the eDP panel,
746 	 * we need to wait until SENSE bit is high/low.
747 	 */
748 
749 	/* obtain HPD */
750 	/* TODO what to do with this? */
751 	hpd = get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
752 
753 	if (!hpd) {
754 		BREAK_TO_DEBUGGER();
755 		return;
756 	}
757 
758 	if (sink != NULL) {
759 		if (sink->edid_caps.panel_patch.extra_t3_ms > 0) {
760 			int extra_t3_in_ms = sink->edid_caps.panel_patch.extra_t3_ms;
761 
762 			msleep(extra_t3_in_ms);
763 		}
764 	}
765 
766 	dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
767 
768 	/* wait until timeout or panel detected */
769 
770 	do {
771 		uint32_t detected = 0;
772 
773 		dal_gpio_get_value(hpd, &detected);
774 
775 		if (!(detected ^ power_up)) {
776 			edp_hpd_high = true;
777 			break;
778 		}
779 
780 		msleep(HPD_CHECK_INTERVAL);
781 
782 		time_elapsed += HPD_CHECK_INTERVAL;
783 	} while (time_elapsed < timeout);
784 
785 	dal_gpio_close(hpd);
786 
787 	dal_gpio_destroy_irq(&hpd);
788 
789 	if (false == edp_hpd_high) {
790 		DC_LOG_WARNING(
791 				"%s: wait timed out!\n", __func__);
792 	}
793 }
794 
795 void dce110_edp_power_control(
796 		struct dc_link *link,
797 		bool power_up)
798 {
799 	struct dc_context *ctx = link->ctx;
800 	struct bp_transmitter_control cntl = { 0 };
801 	enum bp_result bp_result;
802 	uint8_t panel_instance;
803 
804 
805 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
806 			!= CONNECTOR_ID_EDP) {
807 		BREAK_TO_DEBUGGER();
808 		return;
809 	}
810 
811 	if (!link->panel_cntl)
812 		return;
813 	if (power_up !=
814 		link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
815 
816 		unsigned long long current_ts = dm_get_timestamp(ctx);
817 		unsigned long long time_since_edp_poweroff_ms =
818 				div64_u64(dm_get_elapse_time_in_ns(
819 						ctx,
820 						current_ts,
821 						dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
822 		unsigned long long time_since_edp_poweron_ms =
823 				div64_u64(dm_get_elapse_time_in_ns(
824 						ctx,
825 						current_ts,
826 						dp_trace_get_edp_poweron_timestamp(link)), 1000000);
827 		DC_LOG_HW_RESUME_S3(
828 				"%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
829 				__func__,
830 				power_up,
831 				current_ts,
832 				dp_trace_get_edp_poweroff_timestamp(link),
833 				dp_trace_get_edp_poweron_timestamp(link),
834 				time_since_edp_poweroff_ms,
835 				time_since_edp_poweron_ms);
836 
837 		/* Send VBIOS command to prompt eDP panel power */
838 		if (power_up) {
839 			/* edp requires a min of 500ms from LCDVDD off to on */
840 			unsigned long long remaining_min_edp_poweroff_time_ms = 500;
841 
842 			/* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
843 			if (link->local_sink != NULL)
844 				remaining_min_edp_poweroff_time_ms +=
845 					link->local_sink->edid_caps.panel_patch.extra_t12_ms;
846 
847 			/* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
848 			if (dp_trace_get_edp_poweroff_timestamp(link) != 0) {
849 				if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
850 					remaining_min_edp_poweroff_time_ms =
851 						remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
852 				else
853 					remaining_min_edp_poweroff_time_ms = 0;
854 			}
855 
856 			if (remaining_min_edp_poweroff_time_ms) {
857 				DC_LOG_HW_RESUME_S3(
858 						"%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
859 						__func__, remaining_min_edp_poweroff_time_ms);
860 				msleep(remaining_min_edp_poweroff_time_ms);
861 				DC_LOG_HW_RESUME_S3(
862 						"%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
863 						__func__, remaining_min_edp_poweroff_time_ms);
864 				dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
865 						__func__, remaining_min_edp_poweroff_time_ms);
866 			} else {
867 				DC_LOG_HW_RESUME_S3(
868 						"%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
869 						__func__, remaining_min_edp_poweroff_time_ms);
870 			}
871 		}
872 
873 		DC_LOG_HW_RESUME_S3(
874 				"%s: BEGIN: Panel Power action: %s\n",
875 				__func__, (power_up ? "On":"Off"));
876 
877 		cntl.action = power_up ?
878 			TRANSMITTER_CONTROL_POWER_ON :
879 			TRANSMITTER_CONTROL_POWER_OFF;
880 		cntl.transmitter = link->link_enc->transmitter;
881 		cntl.connector_obj_id = link->link_enc->connector;
882 		cntl.coherent = false;
883 		cntl.lanes_number = LANE_COUNT_FOUR;
884 		cntl.hpd_sel = link->link_enc->hpd_source;
885 		panel_instance = link->panel_cntl->inst;
886 
887 		if (ctx->dc->ctx->dmub_srv &&
888 				ctx->dc->debug.dmub_command_table) {
889 			if (cntl.action == TRANSMITTER_CONTROL_POWER_ON)
890 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
891 						LVTMA_CONTROL_POWER_ON,
892 						panel_instance);
893 			else
894 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
895 						LVTMA_CONTROL_POWER_OFF,
896 						panel_instance);
897 		}
898 
899 		bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
900 
901 		DC_LOG_HW_RESUME_S3(
902 				"%s: END: Panel Power action: %s bp_result=%u\n",
903 				__func__, (power_up ? "On":"Off"),
904 				bp_result);
905 
906 		dp_trace_set_edp_power_timestamp(link, power_up);
907 
908 		DC_LOG_HW_RESUME_S3(
909 				"%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
910 				__func__,
911 				dp_trace_get_edp_poweroff_timestamp(link),
912 				dp_trace_get_edp_poweron_timestamp(link));
913 
914 		if (bp_result != BP_RESULT_OK)
915 			DC_LOG_ERROR(
916 					"%s: Panel Power bp_result: %d\n",
917 					__func__, bp_result);
918 	} else {
919 		DC_LOG_HW_RESUME_S3(
920 				"%s: Skipping Panel Power action: %s\n",
921 				__func__, (power_up ? "On":"Off"));
922 	}
923 }
924 
925 void dce110_edp_wait_for_T12(
926 		struct dc_link *link)
927 {
928 	struct dc_context *ctx = link->ctx;
929 
930 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
931 			!= CONNECTOR_ID_EDP) {
932 		BREAK_TO_DEBUGGER();
933 		return;
934 	}
935 
936 	if (!link->panel_cntl)
937 		return;
938 
939 	if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
940 			dp_trace_get_edp_poweroff_timestamp(link) != 0) {
941 		unsigned int t12_duration = 500; // Default T12 as per spec
942 		unsigned long long current_ts = dm_get_timestamp(ctx);
943 		unsigned long long time_since_edp_poweroff_ms =
944 				div64_u64(dm_get_elapse_time_in_ns(
945 						ctx,
946 						current_ts,
947 						dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
948 
949 		t12_duration += link->local_sink->edid_caps.panel_patch.extra_t12_ms; // Add extra T12
950 
951 		if (time_since_edp_poweroff_ms < t12_duration)
952 			msleep(t12_duration - time_since_edp_poweroff_ms);
953 	}
954 }
955 
956 /*todo: cloned in stream enc, fix*/
957 /*
958  * @brief
959  * eDP only. Control the backlight of the eDP panel
960  */
961 void dce110_edp_backlight_control(
962 		struct dc_link *link,
963 		bool enable)
964 {
965 	struct dc_context *ctx = link->ctx;
966 	struct bp_transmitter_control cntl = { 0 };
967 	uint8_t panel_instance;
968 
969 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
970 		!= CONNECTOR_ID_EDP) {
971 		BREAK_TO_DEBUGGER();
972 		return;
973 	}
974 
975 	if (link->panel_cntl) {
976 		bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
977 
978 		if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
979 			DC_LOG_HW_RESUME_S3(
980 				"%s: panel already powered up/off. Do nothing.\n",
981 				__func__);
982 			return;
983 		}
984 	}
985 
986 	/* Send VBIOS command to control eDP panel backlight */
987 
988 	DC_LOG_HW_RESUME_S3(
989 			"%s: backlight action: %s\n",
990 			__func__, (enable ? "On":"Off"));
991 
992 	cntl.action = enable ?
993 		TRANSMITTER_CONTROL_BACKLIGHT_ON :
994 		TRANSMITTER_CONTROL_BACKLIGHT_OFF;
995 
996 	/*cntl.engine_id = ctx->engine;*/
997 	cntl.transmitter = link->link_enc->transmitter;
998 	cntl.connector_obj_id = link->link_enc->connector;
999 	/*todo: unhardcode*/
1000 	cntl.lanes_number = LANE_COUNT_FOUR;
1001 	cntl.hpd_sel = link->link_enc->hpd_source;
1002 	cntl.signal = SIGNAL_TYPE_EDP;
1003 
1004 	/* For eDP, the following delays might need to be considered
1005 	 * after link training completed:
1006 	 * idle period - min. accounts for required BS-Idle pattern,
1007 	 * max. allows for source frame synchronization);
1008 	 * 50 msec max. delay from valid video data from source
1009 	 * to video on dislpay or backlight enable.
1010 	 *
1011 	 * Disable the delay for now.
1012 	 * Enable it in the future if necessary.
1013 	 */
1014 	/* dc_service_sleep_in_milliseconds(50); */
1015 		/*edp 1.2*/
1016 	panel_instance = link->panel_cntl->inst;
1017 
1018 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON) {
1019 		if (!link->dc->config.edp_no_power_sequencing)
1020 		/*
1021 		 * Sometimes, DP receiver chip power-controlled externally by an
1022 		 * Embedded Controller could be treated and used as eDP,
1023 		 * if it drives mobile display. In this case,
1024 		 * we shouldn't be doing power-sequencing, hence we can skip
1025 		 * waiting for T7-ready.
1026 		 */
1027 			edp_receiver_ready_T7(link);
1028 		else
1029 			DC_LOG_DC("edp_receiver_ready_T7 skipped\n");
1030 	}
1031 
1032 	if (ctx->dc->ctx->dmub_srv &&
1033 			ctx->dc->debug.dmub_command_table) {
1034 		if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1035 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1036 					LVTMA_CONTROL_LCD_BLON,
1037 					panel_instance);
1038 		else
1039 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1040 					LVTMA_CONTROL_LCD_BLOFF,
1041 					panel_instance);
1042 	}
1043 
1044 	link_transmitter_control(ctx->dc_bios, &cntl);
1045 
1046 	if (enable && link->dpcd_sink_ext_caps.bits.oled)
1047 		msleep(OLED_POST_T7_DELAY);
1048 
1049 	if (link->dpcd_sink_ext_caps.bits.oled ||
1050 		link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1051 		link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1052 		dc_link_backlight_enable_aux(link, enable);
1053 
1054 	/*edp 1.2*/
1055 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF) {
1056 		if (!link->dc->config.edp_no_power_sequencing)
1057 		/*
1058 		 * Sometimes, DP receiver chip power-controlled externally by an
1059 		 * Embedded Controller could be treated and used as eDP,
1060 		 * if it drives mobile display. In this case,
1061 		 * we shouldn't be doing power-sequencing, hence we can skip
1062 		 * waiting for T9-ready.
1063 		 */
1064 			edp_add_delay_for_T9(link);
1065 		else
1066 			DC_LOG_DC("edp_receiver_ready_T9 skipped\n");
1067 	}
1068 
1069 	if (!enable && link->dpcd_sink_ext_caps.bits.oled)
1070 		msleep(OLED_PRE_T11_DELAY);
1071 }
1072 
1073 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1074 {
1075 	/* notify audio driver for audio modes of monitor */
1076 	struct dc *dc;
1077 	struct clk_mgr *clk_mgr;
1078 	unsigned int i, num_audio = 1;
1079 
1080 	if (!pipe_ctx->stream)
1081 		return;
1082 
1083 	dc = pipe_ctx->stream->ctx->dc;
1084 	clk_mgr = dc->clk_mgr;
1085 
1086 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1087 		return;
1088 
1089 	if (pipe_ctx->stream_res.audio) {
1090 		for (i = 0; i < MAX_PIPES; i++) {
1091 			/*current_state not updated yet*/
1092 			if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1093 				num_audio++;
1094 		}
1095 
1096 		pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1097 
1098 		if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
1099 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1100 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1101 		/* un-mute audio */
1102 		/* TODO: audio should be per stream rather than per link */
1103 		if (is_dp_128b_132b_signal(pipe_ctx))
1104 			pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->audio_mute_control(
1105 					pipe_ctx->stream_res.hpo_dp_stream_enc, false);
1106 		else
1107 			pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1108 					pipe_ctx->stream_res.stream_enc, false);
1109 		if (pipe_ctx->stream_res.audio)
1110 			pipe_ctx->stream_res.audio->enabled = true;
1111 	}
1112 
1113 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1114 		dp_source_sequence_trace(pipe_ctx->stream->link, DPCD_SOURCE_SEQ_AFTER_ENABLE_AUDIO_STREAM);
1115 }
1116 
1117 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1118 {
1119 	struct dc *dc;
1120 	struct clk_mgr *clk_mgr;
1121 
1122 	if (!pipe_ctx || !pipe_ctx->stream)
1123 		return;
1124 
1125 	dc = pipe_ctx->stream->ctx->dc;
1126 	clk_mgr = dc->clk_mgr;
1127 
1128 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1129 		return;
1130 
1131 	if (is_dp_128b_132b_signal(pipe_ctx))
1132 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->audio_mute_control(
1133 				pipe_ctx->stream_res.hpo_dp_stream_enc, true);
1134 	else
1135 		pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1136 				pipe_ctx->stream_res.stream_enc, true);
1137 	if (pipe_ctx->stream_res.audio) {
1138 		pipe_ctx->stream_res.audio->enabled = false;
1139 
1140 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
1141 			if (is_dp_128b_132b_signal(pipe_ctx))
1142 				pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_audio_disable(
1143 						pipe_ctx->stream_res.hpo_dp_stream_enc);
1144 			else
1145 				pipe_ctx->stream_res.stream_enc->funcs->dp_audio_disable(
1146 						pipe_ctx->stream_res.stream_enc);
1147 		else
1148 			pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_disable(
1149 					pipe_ctx->stream_res.stream_enc);
1150 
1151 		if (clk_mgr->funcs->enable_pme_wa)
1152 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1153 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1154 
1155 		/* TODO: notify audio driver for if audio modes list changed
1156 		 * add audio mode list change flag */
1157 		/* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1158 		 * stream->stream_engine_id);
1159 		 */
1160 	}
1161 
1162 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1163 		dp_source_sequence_trace(pipe_ctx->stream->link, DPCD_SOURCE_SEQ_AFTER_DISABLE_AUDIO_STREAM);
1164 }
1165 
1166 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1167 {
1168 	struct dc_stream_state *stream = pipe_ctx->stream;
1169 	struct dc_link *link = stream->link;
1170 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1171 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
1172 
1173 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1174 		pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1175 			pipe_ctx->stream_res.stream_enc);
1176 		pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1177 			pipe_ctx->stream_res.stream_enc);
1178 	}
1179 
1180 	if (is_dp_128b_132b_signal(pipe_ctx)) {
1181 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->stop_dp_info_packets(
1182 					pipe_ctx->stream_res.hpo_dp_stream_enc);
1183 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal))
1184 		pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1185 			pipe_ctx->stream_res.stream_enc);
1186 
1187 	dc->hwss.disable_audio_stream(pipe_ctx);
1188 
1189 	link_hwss->reset_stream_encoder(pipe_ctx);
1190 
1191 	if (is_dp_128b_132b_signal(pipe_ctx)) {
1192 		/* TODO: This looks like a bug to me as we are disabling HPO IO when
1193 		 * we are just disabling a single HPO stream. Shouldn't we disable HPO
1194 		 * HW control only when HPOs for all streams are disabled?
1195 		 */
1196 		if (pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control)
1197 			pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control(
1198 					pipe_ctx->stream->ctx->dc->hwseq, false);
1199 	}
1200 }
1201 
1202 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1203 		struct dc_link_settings *link_settings)
1204 {
1205 	struct encoder_unblank_param params = { { 0 } };
1206 	struct dc_stream_state *stream = pipe_ctx->stream;
1207 	struct dc_link *link = stream->link;
1208 	struct dce_hwseq *hws = link->dc->hwseq;
1209 
1210 	/* only 3 items below are used by unblank */
1211 	params.timing = pipe_ctx->stream->timing;
1212 	params.link_settings.link_rate = link_settings->link_rate;
1213 
1214 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1215 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
1216 
1217 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1218 		hws->funcs.edp_backlight_control(link, true);
1219 	}
1220 }
1221 
1222 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1223 {
1224 	struct dc_stream_state *stream = pipe_ctx->stream;
1225 	struct dc_link *link = stream->link;
1226 	struct dce_hwseq *hws = link->dc->hwseq;
1227 
1228 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1229 		hws->funcs.edp_backlight_control(link, false);
1230 		link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1231 	}
1232 
1233 	if (is_dp_128b_132b_signal(pipe_ctx)) {
1234 		/* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1235 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_blank(
1236 				pipe_ctx->stream_res.hpo_dp_stream_enc);
1237 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1238 		pipe_ctx->stream_res.stream_enc->funcs->dp_blank(link, pipe_ctx->stream_res.stream_enc);
1239 
1240 		if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
1241 			/*
1242 			 * After output is idle pattern some sinks need time to recognize the stream
1243 			 * has changed or they enter protection state and hang.
1244 			 */
1245 			msleep(60);
1246 		} else if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP) {
1247 			if (!link->dc->config.edp_no_power_sequencing) {
1248 				/*
1249 				 * Sometimes, DP receiver chip power-controlled externally by an
1250 				 * Embedded Controller could be treated and used as eDP,
1251 				 * if it drives mobile display. In this case,
1252 				 * we shouldn't be doing power-sequencing, hence we can skip
1253 				 * waiting for T9-ready.
1254 				 */
1255 				edp_receiver_ready_T9(link);
1256 			}
1257 		}
1258 	}
1259 
1260 }
1261 
1262 
1263 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1264 {
1265 	if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1266 		pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1267 }
1268 
1269 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1270 {
1271 	switch (crtc_id) {
1272 	case CONTROLLER_ID_D0:
1273 		return DTO_SOURCE_ID0;
1274 	case CONTROLLER_ID_D1:
1275 		return DTO_SOURCE_ID1;
1276 	case CONTROLLER_ID_D2:
1277 		return DTO_SOURCE_ID2;
1278 	case CONTROLLER_ID_D3:
1279 		return DTO_SOURCE_ID3;
1280 	case CONTROLLER_ID_D4:
1281 		return DTO_SOURCE_ID4;
1282 	case CONTROLLER_ID_D5:
1283 		return DTO_SOURCE_ID5;
1284 	default:
1285 		return DTO_SOURCE_UNKNOWN;
1286 	}
1287 }
1288 
1289 static void build_audio_output(
1290 	struct dc_state *state,
1291 	const struct pipe_ctx *pipe_ctx,
1292 	struct audio_output *audio_output)
1293 {
1294 	const struct dc_stream_state *stream = pipe_ctx->stream;
1295 	audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1296 
1297 	audio_output->signal = pipe_ctx->stream->signal;
1298 
1299 	/* audio_crtc_info  */
1300 
1301 	audio_output->crtc_info.h_total =
1302 		stream->timing.h_total;
1303 
1304 	/*
1305 	 * Audio packets are sent during actual CRTC blank physical signal, we
1306 	 * need to specify actual active signal portion
1307 	 */
1308 	audio_output->crtc_info.h_active =
1309 			stream->timing.h_addressable
1310 			+ stream->timing.h_border_left
1311 			+ stream->timing.h_border_right;
1312 
1313 	audio_output->crtc_info.v_active =
1314 			stream->timing.v_addressable
1315 			+ stream->timing.v_border_top
1316 			+ stream->timing.v_border_bottom;
1317 
1318 	audio_output->crtc_info.pixel_repetition = 1;
1319 
1320 	audio_output->crtc_info.interlaced =
1321 			stream->timing.flags.INTERLACE;
1322 
1323 	audio_output->crtc_info.refresh_rate =
1324 		(stream->timing.pix_clk_100hz*100)/
1325 		(stream->timing.h_total*stream->timing.v_total);
1326 
1327 	audio_output->crtc_info.color_depth =
1328 		stream->timing.display_color_depth;
1329 
1330 	audio_output->crtc_info.requested_pixel_clock_100Hz =
1331 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1332 
1333 	audio_output->crtc_info.calculated_pixel_clock_100Hz =
1334 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1335 
1336 /*for HDMI, audio ACR is with deep color ratio factor*/
1337 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1338 		audio_output->crtc_info.requested_pixel_clock_100Hz ==
1339 				(stream->timing.pix_clk_100hz)) {
1340 		if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1341 			audio_output->crtc_info.requested_pixel_clock_100Hz =
1342 					audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1343 			audio_output->crtc_info.calculated_pixel_clock_100Hz =
1344 					pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1345 
1346 		}
1347 	}
1348 
1349 	if (state->clk_mgr &&
1350 		(pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1351 			pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1352 		audio_output->pll_info.dp_dto_source_clock_in_khz =
1353 				state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1354 						state->clk_mgr);
1355 	}
1356 
1357 	audio_output->pll_info.feed_back_divider =
1358 			pipe_ctx->pll_settings.feedback_divider;
1359 
1360 	audio_output->pll_info.dto_source =
1361 		translate_to_dto_source(
1362 			pipe_ctx->stream_res.tg->inst + 1);
1363 
1364 	/* TODO hard code to enable for now. Need get from stream */
1365 	audio_output->pll_info.ss_enabled = true;
1366 
1367 	audio_output->pll_info.ss_percentage =
1368 			pipe_ctx->pll_settings.ss_percentage;
1369 }
1370 
1371 static void program_scaler(const struct dc *dc,
1372 		const struct pipe_ctx *pipe_ctx)
1373 {
1374 	struct tg_color color = {0};
1375 
1376 	/* TOFPGA */
1377 	if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1378 		return;
1379 
1380 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1381 		get_surface_visual_confirm_color(pipe_ctx, &color);
1382 	else
1383 		color_space_to_black_color(dc,
1384 				pipe_ctx->stream->output_color_space,
1385 				&color);
1386 
1387 	pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1388 		pipe_ctx->plane_res.xfm,
1389 		pipe_ctx->plane_res.scl_data.lb_params.depth,
1390 		&pipe_ctx->stream->bit_depth_params);
1391 
1392 	if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1393 		/*
1394 		 * The way 420 is packed, 2 channels carry Y component, 1 channel
1395 		 * alternate between Cb and Cr, so both channels need the pixel
1396 		 * value for Y
1397 		 */
1398 		if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1399 			color.color_r_cr = color.color_g_y;
1400 
1401 		pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1402 				pipe_ctx->stream_res.tg,
1403 				&color);
1404 	}
1405 
1406 	pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1407 		&pipe_ctx->plane_res.scl_data);
1408 }
1409 
1410 static enum dc_status dce110_enable_stream_timing(
1411 		struct pipe_ctx *pipe_ctx,
1412 		struct dc_state *context,
1413 		struct dc *dc)
1414 {
1415 	struct dc_stream_state *stream = pipe_ctx->stream;
1416 	struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1417 			pipe_ctx[pipe_ctx->pipe_idx];
1418 	struct tg_color black_color = {0};
1419 
1420 	if (!pipe_ctx_old->stream) {
1421 
1422 		/* program blank color */
1423 		color_space_to_black_color(dc,
1424 				stream->output_color_space, &black_color);
1425 		pipe_ctx->stream_res.tg->funcs->set_blank_color(
1426 				pipe_ctx->stream_res.tg,
1427 				&black_color);
1428 
1429 		/*
1430 		 * Must blank CRTC after disabling power gating and before any
1431 		 * programming, otherwise CRTC will be hung in bad state
1432 		 */
1433 		pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1434 
1435 		if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1436 				pipe_ctx->clock_source,
1437 				&pipe_ctx->stream_res.pix_clk_params,
1438 				dp_get_link_encoding_format(&pipe_ctx->link_config.dp_link_settings),
1439 				&pipe_ctx->pll_settings)) {
1440 			BREAK_TO_DEBUGGER();
1441 			return DC_ERROR_UNEXPECTED;
1442 		}
1443 
1444 		pipe_ctx->stream_res.tg->funcs->program_timing(
1445 				pipe_ctx->stream_res.tg,
1446 				&stream->timing,
1447 				0,
1448 				0,
1449 				0,
1450 				0,
1451 				pipe_ctx->stream->signal,
1452 				true);
1453 	}
1454 
1455 	if (!pipe_ctx_old->stream) {
1456 		if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1457 				pipe_ctx->stream_res.tg)) {
1458 			BREAK_TO_DEBUGGER();
1459 			return DC_ERROR_UNEXPECTED;
1460 		}
1461 	}
1462 
1463 	return DC_OK;
1464 }
1465 
1466 static enum dc_status apply_single_controller_ctx_to_hw(
1467 		struct pipe_ctx *pipe_ctx,
1468 		struct dc_state *context,
1469 		struct dc *dc)
1470 {
1471 	struct dc_stream_state *stream = pipe_ctx->stream;
1472 	struct dc_link *link = stream->link;
1473 	struct drr_params params = {0};
1474 	unsigned int event_triggers = 0;
1475 	struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1476 	struct dce_hwseq *hws = dc->hwseq;
1477 
1478 	if (hws->funcs.disable_stream_gating) {
1479 		hws->funcs.disable_stream_gating(dc, pipe_ctx);
1480 	}
1481 
1482 	if (pipe_ctx->stream_res.audio != NULL) {
1483 		struct audio_output audio_output;
1484 
1485 		build_audio_output(context, pipe_ctx, &audio_output);
1486 
1487 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
1488 			if (is_dp_128b_132b_signal(pipe_ctx))
1489 				pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_audio_setup(
1490 						pipe_ctx->stream_res.hpo_dp_stream_enc,
1491 						pipe_ctx->stream_res.audio->inst,
1492 						&pipe_ctx->stream->audio_info);
1493 			else
1494 				pipe_ctx->stream_res.stream_enc->funcs->dp_audio_setup(
1495 						pipe_ctx->stream_res.stream_enc,
1496 						pipe_ctx->stream_res.audio->inst,
1497 						&pipe_ctx->stream->audio_info);
1498 		else
1499 			pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_setup(
1500 					pipe_ctx->stream_res.stream_enc,
1501 					pipe_ctx->stream_res.audio->inst,
1502 					&pipe_ctx->stream->audio_info,
1503 					&audio_output.crtc_info);
1504 
1505 		pipe_ctx->stream_res.audio->funcs->az_configure(
1506 				pipe_ctx->stream_res.audio,
1507 				pipe_ctx->stream->signal,
1508 				&audio_output.crtc_info,
1509 				&pipe_ctx->stream->audio_info);
1510 	}
1511 
1512 	/* make sure no pipes syncd to the pipe being enabled */
1513 	if (!pipe_ctx->stream->apply_seamless_boot_optimization && dc->config.use_pipe_ctx_sync_logic)
1514 		check_syncd_pipes_for_disabled_master_pipe(dc, context, pipe_ctx->pipe_idx);
1515 
1516 	pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1517 		pipe_ctx->stream_res.opp,
1518 		&stream->bit_depth_params,
1519 		&stream->clamping);
1520 
1521 	pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1522 			pipe_ctx->stream_res.opp,
1523 			COLOR_SPACE_YCBCR601,
1524 			stream->timing.display_color_depth,
1525 			stream->signal);
1526 
1527 	while (odm_pipe) {
1528 		odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1529 				odm_pipe->stream_res.opp,
1530 				COLOR_SPACE_YCBCR601,
1531 				stream->timing.display_color_depth,
1532 				stream->signal);
1533 
1534 		odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1535 				odm_pipe->stream_res.opp,
1536 				&stream->bit_depth_params,
1537 				&stream->clamping);
1538 		odm_pipe = odm_pipe->next_odm_pipe;
1539 	}
1540 
1541 	/* DCN3.1 FPGA Workaround
1542 	 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1543 	 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1544 	 * function core_link_enable_stream
1545 	 */
1546 	if (!(hws->wa.dp_hpo_and_otg_sequence && is_dp_128b_132b_signal(pipe_ctx)))
1547 		/*  */
1548 		/* Do not touch stream timing on seamless boot optimization. */
1549 		if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1550 			hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1551 
1552 	if (hws->funcs.setup_vupdate_interrupt)
1553 		hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1554 
1555 	params.vertical_total_min = stream->adjust.v_total_min;
1556 	params.vertical_total_max = stream->adjust.v_total_max;
1557 	if (pipe_ctx->stream_res.tg->funcs->set_drr)
1558 		pipe_ctx->stream_res.tg->funcs->set_drr(
1559 			pipe_ctx->stream_res.tg, &params);
1560 
1561 	// DRR should set trigger event to monitor surface update event
1562 	if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1563 		event_triggers = 0x80;
1564 	/* Event triggers and num frames initialized for DRR, but can be
1565 	 * later updated for PSR use. Note DRR trigger events are generated
1566 	 * regardless of whether num frames met.
1567 	 */
1568 	if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1569 		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1570 				pipe_ctx->stream_res.tg, event_triggers, 2);
1571 
1572 	if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1573 		pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1574 			pipe_ctx->stream_res.stream_enc,
1575 			pipe_ctx->stream_res.tg->inst);
1576 
1577 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1578 		dp_source_sequence_trace(link, DPCD_SOURCE_SEQ_AFTER_CONNECT_DIG_FE_OTG);
1579 
1580 	if (!stream->dpms_off)
1581 		core_link_enable_stream(context, pipe_ctx);
1582 
1583 	/* DCN3.1 FPGA Workaround
1584 	 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1585 	 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1586 	 * function core_link_enable_stream
1587 	 */
1588 	if (hws->wa.dp_hpo_and_otg_sequence && is_dp_128b_132b_signal(pipe_ctx)) {
1589 		if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1590 			hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1591 	}
1592 
1593 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
1594 
1595 	pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1596 
1597 	return DC_OK;
1598 }
1599 
1600 /******************************************************************************/
1601 
1602 static void power_down_encoders(struct dc *dc)
1603 {
1604 	int i;
1605 
1606 	for (i = 0; i < dc->link_count; i++) {
1607 		enum signal_type signal = dc->links[i]->connector_signal;
1608 
1609 		dc_link_blank_dp_stream(dc->links[i], false);
1610 
1611 		if (signal != SIGNAL_TYPE_EDP)
1612 			signal = SIGNAL_TYPE_NONE;
1613 
1614 		if (dc->links[i]->ep_type == DISPLAY_ENDPOINT_PHY)
1615 			dc->links[i]->link_enc->funcs->disable_output(
1616 					dc->links[i]->link_enc, signal);
1617 
1618 		dc->links[i]->link_status.link_active = false;
1619 		memset(&dc->links[i]->cur_link_settings, 0,
1620 				sizeof(dc->links[i]->cur_link_settings));
1621 	}
1622 }
1623 
1624 static void power_down_controllers(struct dc *dc)
1625 {
1626 	int i;
1627 
1628 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1629 		dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1630 				dc->res_pool->timing_generators[i]);
1631 	}
1632 }
1633 
1634 static void power_down_clock_sources(struct dc *dc)
1635 {
1636 	int i;
1637 
1638 	if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1639 		dc->res_pool->dp_clock_source) == false)
1640 		dm_error("Failed to power down pll! (dp clk src)\n");
1641 
1642 	for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1643 		if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1644 				dc->res_pool->clock_sources[i]) == false)
1645 			dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1646 	}
1647 }
1648 
1649 static void power_down_all_hw_blocks(struct dc *dc)
1650 {
1651 	power_down_encoders(dc);
1652 
1653 	power_down_controllers(dc);
1654 
1655 	power_down_clock_sources(dc);
1656 
1657 	if (dc->fbc_compressor)
1658 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1659 }
1660 
1661 static void disable_vga_and_power_gate_all_controllers(
1662 		struct dc *dc)
1663 {
1664 	int i;
1665 	struct timing_generator *tg;
1666 	struct dc_context *ctx = dc->ctx;
1667 
1668 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1669 		tg = dc->res_pool->timing_generators[i];
1670 
1671 		if (tg->funcs->disable_vga)
1672 			tg->funcs->disable_vga(tg);
1673 	}
1674 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1675 		/* Enable CLOCK gating for each pipe BEFORE controller
1676 		 * powergating. */
1677 		enable_display_pipe_clock_gating(ctx,
1678 				true);
1679 
1680 		dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1681 		dc->hwss.disable_plane(dc,
1682 			&dc->current_state->res_ctx.pipe_ctx[i]);
1683 	}
1684 }
1685 
1686 
1687 static void get_edp_streams(struct dc_state *context,
1688 		struct dc_stream_state **edp_streams,
1689 		int *edp_stream_num)
1690 {
1691 	int i;
1692 
1693 	*edp_stream_num = 0;
1694 	for (i = 0; i < context->stream_count; i++) {
1695 		if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
1696 			edp_streams[*edp_stream_num] = context->streams[i];
1697 			if (++(*edp_stream_num) == MAX_NUM_EDP)
1698 				return;
1699 		}
1700 	}
1701 }
1702 
1703 static void get_edp_links_with_sink(
1704 		struct dc *dc,
1705 		struct dc_link **edp_links_with_sink,
1706 		int *edp_with_sink_num)
1707 {
1708 	int i;
1709 
1710 	/* check if there is an eDP panel not in use */
1711 	*edp_with_sink_num = 0;
1712 	for (i = 0; i < dc->link_count; i++) {
1713 		if (dc->links[i]->local_sink &&
1714 			dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1715 			edp_links_with_sink[*edp_with_sink_num] = dc->links[i];
1716 			if (++(*edp_with_sink_num) == MAX_NUM_EDP)
1717 				return;
1718 		}
1719 	}
1720 }
1721 
1722 /*
1723  * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1724  *  1. Power down all DC HW blocks
1725  *  2. Disable VGA engine on all controllers
1726  *  3. Enable power gating for controller
1727  *  4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1728  */
1729 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1730 {
1731 	struct dc_link *edp_links_with_sink[MAX_NUM_EDP];
1732 	struct dc_link *edp_links[MAX_NUM_EDP];
1733 	struct dc_stream_state *edp_streams[MAX_NUM_EDP];
1734 	struct dc_link *edp_link_with_sink = NULL;
1735 	struct dc_link *edp_link = NULL;
1736 	struct dce_hwseq *hws = dc->hwseq;
1737 	int edp_with_sink_num;
1738 	int edp_num;
1739 	int edp_stream_num;
1740 	int i;
1741 	bool can_apply_edp_fast_boot = false;
1742 	bool can_apply_seamless_boot = false;
1743 	bool keep_edp_vdd_on = false;
1744 	DC_LOGGER_INIT();
1745 
1746 
1747 	get_edp_links_with_sink(dc, edp_links_with_sink, &edp_with_sink_num);
1748 	get_edp_links(dc, edp_links, &edp_num);
1749 
1750 	if (hws->funcs.init_pipes)
1751 		hws->funcs.init_pipes(dc, context);
1752 
1753 	get_edp_streams(context, edp_streams, &edp_stream_num);
1754 
1755 	// Check fastboot support, disable on DCE8 because of blank screens
1756 	if (edp_num && edp_stream_num && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1757 		    dc->ctx->dce_version != DCE_VERSION_8_1 &&
1758 		    dc->ctx->dce_version != DCE_VERSION_8_3) {
1759 		for (i = 0; i < edp_num; i++) {
1760 			edp_link = edp_links[i];
1761 			if (edp_link != edp_streams[0]->link)
1762 				continue;
1763 			// enable fastboot if backend is enabled on eDP
1764 			if (edp_link->link_enc->funcs->is_dig_enabled &&
1765 			    edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
1766 			    edp_link->link_status.link_active) {
1767 				struct dc_stream_state *edp_stream = edp_streams[0];
1768 
1769 				can_apply_edp_fast_boot = dc_validate_boot_timing(dc,
1770 					edp_stream->sink, &edp_stream->timing);
1771 				edp_stream->apply_edp_fast_boot_optimization = can_apply_edp_fast_boot;
1772 				if (can_apply_edp_fast_boot)
1773 					DC_LOG_EVENT_LINK_TRAINING("eDP fast boot disabled to optimize link rate\n");
1774 
1775 				break;
1776 			}
1777 		}
1778 		// We are trying to enable eDP, don't power down VDD
1779 		if (can_apply_edp_fast_boot)
1780 			keep_edp_vdd_on = true;
1781 	}
1782 
1783 	// Check seamless boot support
1784 	for (i = 0; i < context->stream_count; i++) {
1785 		if (context->streams[i]->apply_seamless_boot_optimization) {
1786 			can_apply_seamless_boot = true;
1787 			break;
1788 		}
1789 	}
1790 
1791 	/* eDP should not have stream in resume from S4 and so even with VBios post
1792 	 * it should get turned off
1793 	 */
1794 	if (edp_with_sink_num)
1795 		edp_link_with_sink = edp_links_with_sink[0];
1796 
1797 	if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1798 		if (edp_link_with_sink && !keep_edp_vdd_on) {
1799 			/*turn off backlight before DP_blank and encoder powered down*/
1800 			hws->funcs.edp_backlight_control(edp_link_with_sink, false);
1801 		}
1802 		/*resume from S3, no vbios posting, no need to power down again*/
1803 		power_down_all_hw_blocks(dc);
1804 		disable_vga_and_power_gate_all_controllers(dc);
1805 		if (edp_link_with_sink && !keep_edp_vdd_on)
1806 			dc->hwss.edp_power_control(edp_link_with_sink, false);
1807 	}
1808 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 1);
1809 }
1810 
1811 static uint32_t compute_pstate_blackout_duration(
1812 	struct bw_fixed blackout_duration,
1813 	const struct dc_stream_state *stream)
1814 {
1815 	uint32_t total_dest_line_time_ns;
1816 	uint32_t pstate_blackout_duration_ns;
1817 
1818 	pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1819 
1820 	total_dest_line_time_ns = 1000000UL *
1821 		(stream->timing.h_total * 10) /
1822 		stream->timing.pix_clk_100hz +
1823 		pstate_blackout_duration_ns;
1824 
1825 	return total_dest_line_time_ns;
1826 }
1827 
1828 static void dce110_set_displaymarks(
1829 	const struct dc *dc,
1830 	struct dc_state *context)
1831 {
1832 	uint8_t i, num_pipes;
1833 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1834 
1835 	for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1836 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1837 		uint32_t total_dest_line_time_ns;
1838 
1839 		if (pipe_ctx->stream == NULL)
1840 			continue;
1841 
1842 		total_dest_line_time_ns = compute_pstate_blackout_duration(
1843 			dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1844 		pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1845 			pipe_ctx->plane_res.mi,
1846 			context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1847 			context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1848 			context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
1849 			context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1850 			total_dest_line_time_ns);
1851 		if (i == underlay_idx) {
1852 			num_pipes++;
1853 			pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1854 				pipe_ctx->plane_res.mi,
1855 				context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1856 				context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1857 				context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1858 				total_dest_line_time_ns);
1859 		}
1860 		num_pipes++;
1861 	}
1862 }
1863 
1864 void dce110_set_safe_displaymarks(
1865 		struct resource_context *res_ctx,
1866 		const struct resource_pool *pool)
1867 {
1868 	int i;
1869 	int underlay_idx = pool->underlay_pipe_index;
1870 	struct dce_watermarks max_marks = {
1871 		MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1872 	struct dce_watermarks nbp_marks = {
1873 		SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1874 	struct dce_watermarks min_marks = { 0, 0, 0, 0};
1875 
1876 	for (i = 0; i < MAX_PIPES; i++) {
1877 		if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1878 			continue;
1879 
1880 		res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1881 				res_ctx->pipe_ctx[i].plane_res.mi,
1882 				nbp_marks,
1883 				max_marks,
1884 				min_marks,
1885 				max_marks,
1886 				MAX_WATERMARK);
1887 
1888 		if (i == underlay_idx)
1889 			res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1890 				res_ctx->pipe_ctx[i].plane_res.mi,
1891 				nbp_marks,
1892 				max_marks,
1893 				max_marks,
1894 				MAX_WATERMARK);
1895 
1896 	}
1897 }
1898 
1899 /*******************************************************************************
1900  * Public functions
1901  ******************************************************************************/
1902 
1903 static void set_drr(struct pipe_ctx **pipe_ctx,
1904 		int num_pipes, struct dc_crtc_timing_adjust adjust)
1905 {
1906 	int i = 0;
1907 	struct drr_params params = {0};
1908 	// DRR should set trigger event to monitor surface update event
1909 	unsigned int event_triggers = 0x80;
1910 	// Note DRR trigger events are generated regardless of whether num frames met.
1911 	unsigned int num_frames = 2;
1912 
1913 	params.vertical_total_max = adjust.v_total_max;
1914 	params.vertical_total_min = adjust.v_total_min;
1915 
1916 	/* TODO: If multiple pipes are to be supported, you need
1917 	 * some GSL stuff. Static screen triggers may be programmed differently
1918 	 * as well.
1919 	 */
1920 	for (i = 0; i < num_pipes; i++) {
1921 		pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1922 			pipe_ctx[i]->stream_res.tg, &params);
1923 
1924 		if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
1925 			pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1926 					pipe_ctx[i]->stream_res.tg,
1927 					event_triggers, num_frames);
1928 	}
1929 }
1930 
1931 static void get_position(struct pipe_ctx **pipe_ctx,
1932 		int num_pipes,
1933 		struct crtc_position *position)
1934 {
1935 	int i = 0;
1936 
1937 	/* TODO: handle pipes > 1
1938 	 */
1939 	for (i = 0; i < num_pipes; i++)
1940 		pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1941 }
1942 
1943 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1944 		int num_pipes, const struct dc_static_screen_params *params)
1945 {
1946 	unsigned int i;
1947 	unsigned int triggers = 0;
1948 
1949 	if (params->triggers.overlay_update)
1950 		triggers |= 0x100;
1951 	if (params->triggers.surface_update)
1952 		triggers |= 0x80;
1953 	if (params->triggers.cursor_update)
1954 		triggers |= 0x2;
1955 	if (params->triggers.force_trigger)
1956 		triggers |= 0x1;
1957 
1958 	if (num_pipes) {
1959 		struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
1960 
1961 		if (dc->fbc_compressor)
1962 			triggers |= 0x84;
1963 	}
1964 
1965 	for (i = 0; i < num_pipes; i++)
1966 		pipe_ctx[i]->stream_res.tg->funcs->
1967 			set_static_screen_control(pipe_ctx[i]->stream_res.tg,
1968 					triggers, params->num_frames);
1969 }
1970 
1971 /*
1972  *  Check if FBC can be enabled
1973  */
1974 static bool should_enable_fbc(struct dc *dc,
1975 		struct dc_state *context,
1976 		uint32_t *pipe_idx)
1977 {
1978 	uint32_t i;
1979 	struct pipe_ctx *pipe_ctx = NULL;
1980 	struct resource_context *res_ctx = &context->res_ctx;
1981 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1982 
1983 
1984 	ASSERT(dc->fbc_compressor);
1985 
1986 	/* FBC memory should be allocated */
1987 	if (!dc->ctx->fbc_gpu_addr)
1988 		return false;
1989 
1990 	/* Only supports single display */
1991 	if (context->stream_count != 1)
1992 		return false;
1993 
1994 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1995 		if (res_ctx->pipe_ctx[i].stream) {
1996 
1997 			pipe_ctx = &res_ctx->pipe_ctx[i];
1998 
1999 			if (!pipe_ctx)
2000 				continue;
2001 
2002 			/* fbc not applicable on underlay pipe */
2003 			if (pipe_ctx->pipe_idx != underlay_idx) {
2004 				*pipe_idx = i;
2005 				break;
2006 			}
2007 		}
2008 	}
2009 
2010 	if (i == dc->res_pool->pipe_count)
2011 		return false;
2012 
2013 	if (!pipe_ctx->stream->link)
2014 		return false;
2015 
2016 	/* Only supports eDP */
2017 	if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
2018 		return false;
2019 
2020 	/* PSR should not be enabled */
2021 	if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
2022 		return false;
2023 
2024 	/* Nothing to compress */
2025 	if (!pipe_ctx->plane_state)
2026 		return false;
2027 
2028 	/* Only for non-linear tiling */
2029 	if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
2030 		return false;
2031 
2032 	return true;
2033 }
2034 
2035 /*
2036  *  Enable FBC
2037  */
2038 static void enable_fbc(
2039 		struct dc *dc,
2040 		struct dc_state *context)
2041 {
2042 	uint32_t pipe_idx = 0;
2043 
2044 	if (should_enable_fbc(dc, context, &pipe_idx)) {
2045 		/* Program GRPH COMPRESSED ADDRESS and PITCH */
2046 		struct compr_addr_and_pitch_params params = {0, 0, 0};
2047 		struct compressor *compr = dc->fbc_compressor;
2048 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2049 
2050 		params.source_view_width = pipe_ctx->stream->timing.h_addressable;
2051 		params.source_view_height = pipe_ctx->stream->timing.v_addressable;
2052 		params.inst = pipe_ctx->stream_res.tg->inst;
2053 		compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
2054 
2055 		compr->funcs->surface_address_and_pitch(compr, &params);
2056 		compr->funcs->set_fbc_invalidation_triggers(compr, 1);
2057 
2058 		compr->funcs->enable_fbc(compr, &params);
2059 	}
2060 }
2061 
2062 static void dce110_reset_hw_ctx_wrap(
2063 		struct dc *dc,
2064 		struct dc_state *context)
2065 {
2066 	int i;
2067 
2068 	/* Reset old context */
2069 	/* look up the targets that have been removed since last commit */
2070 	for (i = 0; i < MAX_PIPES; i++) {
2071 		struct pipe_ctx *pipe_ctx_old =
2072 			&dc->current_state->res_ctx.pipe_ctx[i];
2073 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2074 
2075 		/* Note: We need to disable output if clock sources change,
2076 		 * since bios does optimization and doesn't apply if changing
2077 		 * PHY when not already disabled.
2078 		 */
2079 
2080 		/* Skip underlay pipe since it will be handled in commit surface*/
2081 		if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
2082 			continue;
2083 
2084 		if (!pipe_ctx->stream ||
2085 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2086 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
2087 
2088 			/* Disable if new stream is null. O/w, if stream is
2089 			 * disabled already, no need to disable again.
2090 			 */
2091 			if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
2092 				core_link_disable_stream(pipe_ctx_old);
2093 
2094 				/* free acquired resources*/
2095 				if (pipe_ctx_old->stream_res.audio) {
2096 					/*disable az_endpoint*/
2097 					pipe_ctx_old->stream_res.audio->funcs->
2098 							az_disable(pipe_ctx_old->stream_res.audio);
2099 
2100 					/*free audio*/
2101 					if (dc->caps.dynamic_audio == true) {
2102 						/*we have to dynamic arbitrate the audio endpoints*/
2103 						/*we free the resource, need reset is_audio_acquired*/
2104 						update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2105 								pipe_ctx_old->stream_res.audio, false);
2106 						pipe_ctx_old->stream_res.audio = NULL;
2107 					}
2108 				}
2109 			}
2110 
2111 			pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
2112 			if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
2113 				dm_error("DC: failed to blank crtc!\n");
2114 				BREAK_TO_DEBUGGER();
2115 			}
2116 			pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2117 			pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2118 					pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2119 
2120 			if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2121 										dc->res_pool,
2122 										old_clk))
2123 				old_clk->funcs->cs_power_down(old_clk);
2124 
2125 			dc->hwss.disable_plane(dc, pipe_ctx_old);
2126 
2127 			pipe_ctx_old->stream = NULL;
2128 		}
2129 	}
2130 }
2131 
2132 static void dce110_setup_audio_dto(
2133 		struct dc *dc,
2134 		struct dc_state *context)
2135 {
2136 	int i;
2137 
2138 	/* program audio wall clock. use HDMI as clock source if HDMI
2139 	 * audio active. Otherwise, use DP as clock source
2140 	 * first, loop to find any HDMI audio, if not, loop find DP audio
2141 	 */
2142 	/* Setup audio rate clock source */
2143 	/* Issue:
2144 	* Audio lag happened on DP monitor when unplug a HDMI monitor
2145 	*
2146 	* Cause:
2147 	* In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2148 	* is set to either dto0 or dto1, audio should work fine.
2149 	* In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2150 	* set to dto0 will cause audio lag.
2151 	*
2152 	* Solution:
2153 	* Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2154 	* find first available pipe with audio, setup audio wall DTO per topology
2155 	* instead of per pipe.
2156 	*/
2157 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2158 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2159 
2160 		if (pipe_ctx->stream == NULL)
2161 			continue;
2162 
2163 		if (pipe_ctx->top_pipe)
2164 			continue;
2165 		if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2166 			continue;
2167 		if (pipe_ctx->stream_res.audio != NULL) {
2168 			struct audio_output audio_output;
2169 
2170 			build_audio_output(context, pipe_ctx, &audio_output);
2171 
2172 			if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->set_audio_dtbclk_dto) {
2173 				struct dtbclk_dto_params dto_params = {0};
2174 
2175 				dc->res_pool->dccg->funcs->set_audio_dtbclk_dto(
2176 					dc->res_pool->dccg, &dto_params);
2177 
2178 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2179 						pipe_ctx->stream_res.audio,
2180 						pipe_ctx->stream->signal,
2181 						&audio_output.crtc_info,
2182 						&audio_output.pll_info);
2183 			} else
2184 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2185 					pipe_ctx->stream_res.audio,
2186 					pipe_ctx->stream->signal,
2187 					&audio_output.crtc_info,
2188 					&audio_output.pll_info);
2189 			break;
2190 		}
2191 	}
2192 
2193 	/* no HDMI audio is found, try DP audio */
2194 	if (i == dc->res_pool->pipe_count) {
2195 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2196 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2197 
2198 			if (pipe_ctx->stream == NULL)
2199 				continue;
2200 
2201 			if (pipe_ctx->top_pipe)
2202 				continue;
2203 
2204 			if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2205 				continue;
2206 
2207 			if (pipe_ctx->stream_res.audio != NULL) {
2208 				struct audio_output audio_output;
2209 
2210 				build_audio_output(context, pipe_ctx, &audio_output);
2211 
2212 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2213 					pipe_ctx->stream_res.audio,
2214 					pipe_ctx->stream->signal,
2215 					&audio_output.crtc_info,
2216 					&audio_output.pll_info);
2217 				break;
2218 			}
2219 		}
2220 	}
2221 }
2222 
2223 enum dc_status dce110_apply_ctx_to_hw(
2224 		struct dc *dc,
2225 		struct dc_state *context)
2226 {
2227 	struct dce_hwseq *hws = dc->hwseq;
2228 	struct dc_bios *dcb = dc->ctx->dc_bios;
2229 	enum dc_status status;
2230 	int i;
2231 
2232 	/* reset syncd pipes from disabled pipes */
2233 	if (dc->config.use_pipe_ctx_sync_logic)
2234 		reset_syncd_pipes_from_disabled_pipes(dc, context);
2235 
2236 	/* Reset old context */
2237 	/* look up the targets that have been removed since last commit */
2238 	hws->funcs.reset_hw_ctx_wrap(dc, context);
2239 
2240 	/* Skip applying if no targets */
2241 	if (context->stream_count <= 0)
2242 		return DC_OK;
2243 
2244 	/* Apply new context */
2245 	dcb->funcs->set_scratch_critical_state(dcb, true);
2246 
2247 	/* below is for real asic only */
2248 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2249 		struct pipe_ctx *pipe_ctx_old =
2250 					&dc->current_state->res_ctx.pipe_ctx[i];
2251 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2252 
2253 		if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2254 			continue;
2255 
2256 		if (pipe_ctx->stream == pipe_ctx_old->stream) {
2257 			if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2258 				dce_crtc_switch_to_clk_src(dc->hwseq,
2259 						pipe_ctx->clock_source, i);
2260 			continue;
2261 		}
2262 
2263 		hws->funcs.enable_display_power_gating(
2264 				dc, i, dc->ctx->dc_bios,
2265 				PIPE_GATING_CONTROL_DISABLE);
2266 	}
2267 
2268 	if (dc->fbc_compressor)
2269 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2270 
2271 	dce110_setup_audio_dto(dc, context);
2272 
2273 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2274 		struct pipe_ctx *pipe_ctx_old =
2275 					&dc->current_state->res_ctx.pipe_ctx[i];
2276 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2277 
2278 		if (pipe_ctx->stream == NULL)
2279 			continue;
2280 
2281 		if (pipe_ctx->stream == pipe_ctx_old->stream &&
2282 			pipe_ctx->stream->link->link_state_valid) {
2283 			continue;
2284 		}
2285 
2286 		if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2287 			continue;
2288 
2289 		if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2290 			continue;
2291 
2292 		status = apply_single_controller_ctx_to_hw(
2293 				pipe_ctx,
2294 				context,
2295 				dc);
2296 
2297 		if (DC_OK != status)
2298 			return status;
2299 	}
2300 
2301 	if (dc->fbc_compressor)
2302 		enable_fbc(dc, dc->current_state);
2303 
2304 	dcb->funcs->set_scratch_critical_state(dcb, false);
2305 
2306 	return DC_OK;
2307 }
2308 
2309 /*******************************************************************************
2310  * Front End programming
2311  ******************************************************************************/
2312 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2313 {
2314 	struct default_adjustment default_adjust = { 0 };
2315 
2316 	default_adjust.force_hw_default = false;
2317 	default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2318 	default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2319 	default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2320 	default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2321 
2322 	/* display color depth */
2323 	default_adjust.color_depth =
2324 		pipe_ctx->stream->timing.display_color_depth;
2325 
2326 	/* Lb color depth */
2327 	default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2328 
2329 	pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2330 					pipe_ctx->plane_res.xfm, &default_adjust);
2331 }
2332 
2333 
2334 /*******************************************************************************
2335  * In order to turn on/off specific surface we will program
2336  * Blender + CRTC
2337  *
2338  * In case that we have two surfaces and they have a different visibility
2339  * we can't turn off the CRTC since it will turn off the entire display
2340  *
2341  * |----------------------------------------------- |
2342  * |bottom pipe|curr pipe  |              |         |
2343  * |Surface    |Surface    | Blender      |  CRCT   |
2344  * |visibility |visibility | Configuration|         |
2345  * |------------------------------------------------|
2346  * |   off     |    off    | CURRENT_PIPE | blank   |
2347  * |   off     |    on     | CURRENT_PIPE | unblank |
2348  * |   on      |    off    | OTHER_PIPE   | unblank |
2349  * |   on      |    on     | BLENDING     | unblank |
2350  * -------------------------------------------------|
2351  *
2352  ******************************************************************************/
2353 static void program_surface_visibility(const struct dc *dc,
2354 		struct pipe_ctx *pipe_ctx)
2355 {
2356 	enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2357 	bool blank_target = false;
2358 
2359 	if (pipe_ctx->bottom_pipe) {
2360 
2361 		/* For now we are supporting only two pipes */
2362 		ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2363 
2364 		if (pipe_ctx->bottom_pipe->plane_state->visible) {
2365 			if (pipe_ctx->plane_state->visible)
2366 				blender_mode = BLND_MODE_BLENDING;
2367 			else
2368 				blender_mode = BLND_MODE_OTHER_PIPE;
2369 
2370 		} else if (!pipe_ctx->plane_state->visible)
2371 			blank_target = true;
2372 
2373 	} else if (!pipe_ctx->plane_state->visible)
2374 		blank_target = true;
2375 
2376 	dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2377 	pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2378 
2379 }
2380 
2381 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2382 {
2383 	int i = 0;
2384 	struct xfm_grph_csc_adjustment adjust;
2385 	memset(&adjust, 0, sizeof(adjust));
2386 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2387 
2388 
2389 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2390 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2391 
2392 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2393 			adjust.temperature_matrix[i] =
2394 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2395 	}
2396 
2397 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2398 }
2399 static void update_plane_addr(const struct dc *dc,
2400 		struct pipe_ctx *pipe_ctx)
2401 {
2402 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2403 
2404 	if (plane_state == NULL)
2405 		return;
2406 
2407 	pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2408 			pipe_ctx->plane_res.mi,
2409 			&plane_state->address,
2410 			plane_state->flip_immediate);
2411 
2412 	plane_state->status.requested_address = plane_state->address;
2413 }
2414 
2415 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2416 {
2417 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2418 
2419 	if (plane_state == NULL)
2420 		return;
2421 
2422 	plane_state->status.is_flip_pending =
2423 			pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2424 					pipe_ctx->plane_res.mi);
2425 
2426 	if (plane_state->status.is_flip_pending && !plane_state->visible)
2427 		pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2428 
2429 	plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2430 	if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2431 			pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2432 		plane_state->status.is_right_eye =\
2433 				!pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2434 	}
2435 }
2436 
2437 void dce110_power_down(struct dc *dc)
2438 {
2439 	power_down_all_hw_blocks(dc);
2440 	disable_vga_and_power_gate_all_controllers(dc);
2441 }
2442 
2443 static bool wait_for_reset_trigger_to_occur(
2444 	struct dc_context *dc_ctx,
2445 	struct timing_generator *tg)
2446 {
2447 	bool rc = false;
2448 
2449 	/* To avoid endless loop we wait at most
2450 	 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2451 	const uint32_t frames_to_wait_on_triggered_reset = 10;
2452 	uint32_t i;
2453 
2454 	for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2455 
2456 		if (!tg->funcs->is_counter_moving(tg)) {
2457 			DC_ERROR("TG counter is not moving!\n");
2458 			break;
2459 		}
2460 
2461 		if (tg->funcs->did_triggered_reset_occur(tg)) {
2462 			rc = true;
2463 			/* usually occurs at i=1 */
2464 			DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2465 					i);
2466 			break;
2467 		}
2468 
2469 		/* Wait for one frame. */
2470 		tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2471 		tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2472 	}
2473 
2474 	if (false == rc)
2475 		DC_ERROR("GSL: Timeout on reset trigger!\n");
2476 
2477 	return rc;
2478 }
2479 
2480 /* Enable timing synchronization for a group of Timing Generators. */
2481 static void dce110_enable_timing_synchronization(
2482 		struct dc *dc,
2483 		int group_index,
2484 		int group_size,
2485 		struct pipe_ctx *grouped_pipes[])
2486 {
2487 	struct dc_context *dc_ctx = dc->ctx;
2488 	struct dcp_gsl_params gsl_params = { 0 };
2489 	int i;
2490 
2491 	DC_SYNC_INFO("GSL: Setting-up...\n");
2492 
2493 	/* Designate a single TG in the group as a master.
2494 	 * Since HW doesn't care which one, we always assign
2495 	 * the 1st one in the group. */
2496 	gsl_params.gsl_group = 0;
2497 	gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2498 
2499 	for (i = 0; i < group_size; i++)
2500 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2501 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2502 
2503 	/* Reset slave controllers on master VSync */
2504 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2505 
2506 	for (i = 1 /* skip the master */; i < group_size; i++)
2507 		grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2508 				grouped_pipes[i]->stream_res.tg,
2509 				gsl_params.gsl_group);
2510 
2511 	for (i = 1 /* skip the master */; i < group_size; i++) {
2512 		DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2513 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2514 		grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2515 				grouped_pipes[i]->stream_res.tg);
2516 	}
2517 
2518 	/* GSL Vblank synchronization is a one time sync mechanism, assumption
2519 	 * is that the sync'ed displays will not drift out of sync over time*/
2520 	DC_SYNC_INFO("GSL: Restoring register states.\n");
2521 	for (i = 0; i < group_size; i++)
2522 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2523 
2524 	DC_SYNC_INFO("GSL: Set-up complete.\n");
2525 }
2526 
2527 static void dce110_enable_per_frame_crtc_position_reset(
2528 		struct dc *dc,
2529 		int group_size,
2530 		struct pipe_ctx *grouped_pipes[])
2531 {
2532 	struct dc_context *dc_ctx = dc->ctx;
2533 	struct dcp_gsl_params gsl_params = { 0 };
2534 	int i;
2535 
2536 	gsl_params.gsl_group = 0;
2537 	gsl_params.gsl_master = 0;
2538 
2539 	for (i = 0; i < group_size; i++)
2540 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2541 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2542 
2543 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2544 
2545 	for (i = 1; i < group_size; i++)
2546 		grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2547 				grouped_pipes[i]->stream_res.tg,
2548 				gsl_params.gsl_master,
2549 				&grouped_pipes[i]->stream->triggered_crtc_reset);
2550 
2551 	DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2552 	for (i = 1; i < group_size; i++)
2553 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2554 
2555 	for (i = 0; i < group_size; i++)
2556 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2557 
2558 }
2559 
2560 static void init_pipes(struct dc *dc, struct dc_state *context)
2561 {
2562 	// Do nothing
2563 }
2564 
2565 static void init_hw(struct dc *dc)
2566 {
2567 	int i;
2568 	struct dc_bios *bp;
2569 	struct transform *xfm;
2570 	struct abm *abm;
2571 	struct dmcu *dmcu;
2572 	struct dce_hwseq *hws = dc->hwseq;
2573 	uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2574 
2575 	bp = dc->ctx->dc_bios;
2576 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2577 		xfm = dc->res_pool->transforms[i];
2578 		xfm->funcs->transform_reset(xfm);
2579 
2580 		hws->funcs.enable_display_power_gating(
2581 				dc, i, bp,
2582 				PIPE_GATING_CONTROL_INIT);
2583 		hws->funcs.enable_display_power_gating(
2584 				dc, i, bp,
2585 				PIPE_GATING_CONTROL_DISABLE);
2586 		hws->funcs.enable_display_pipe_clock_gating(
2587 			dc->ctx,
2588 			true);
2589 	}
2590 
2591 	dce_clock_gating_power_up(dc->hwseq, false);
2592 	/***************************************/
2593 
2594 	for (i = 0; i < dc->link_count; i++) {
2595 		/****************************************/
2596 		/* Power up AND update implementation according to the
2597 		 * required signal (which may be different from the
2598 		 * default signal on connector). */
2599 		struct dc_link *link = dc->links[i];
2600 
2601 		link->link_enc->funcs->hw_init(link->link_enc);
2602 	}
2603 
2604 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2605 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2606 
2607 		tg->funcs->disable_vga(tg);
2608 
2609 		/* Blank controller using driver code instead of
2610 		 * command table. */
2611 		tg->funcs->set_blank(tg, true);
2612 		hwss_wait_for_blank_complete(tg);
2613 	}
2614 
2615 	for (i = 0; i < dc->res_pool->audio_count; i++) {
2616 		struct audio *audio = dc->res_pool->audios[i];
2617 		audio->funcs->hw_init(audio);
2618 	}
2619 
2620 	for (i = 0; i < dc->link_count; i++) {
2621 		struct dc_link *link = dc->links[i];
2622 
2623 		if (link->panel_cntl)
2624 			backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2625 	}
2626 
2627 	abm = dc->res_pool->abm;
2628 	if (abm != NULL)
2629 		abm->funcs->abm_init(abm, backlight);
2630 
2631 	dmcu = dc->res_pool->dmcu;
2632 	if (dmcu != NULL && abm != NULL)
2633 		abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2634 
2635 	if (dc->fbc_compressor)
2636 		dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2637 
2638 }
2639 
2640 
2641 void dce110_prepare_bandwidth(
2642 		struct dc *dc,
2643 		struct dc_state *context)
2644 {
2645 	struct clk_mgr *dccg = dc->clk_mgr;
2646 
2647 	dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2648 
2649 	dccg->funcs->update_clocks(
2650 			dccg,
2651 			context,
2652 			false);
2653 }
2654 
2655 void dce110_optimize_bandwidth(
2656 		struct dc *dc,
2657 		struct dc_state *context)
2658 {
2659 	struct clk_mgr *dccg = dc->clk_mgr;
2660 
2661 	dce110_set_displaymarks(dc, context);
2662 
2663 	dccg->funcs->update_clocks(
2664 			dccg,
2665 			context,
2666 			true);
2667 }
2668 
2669 static void dce110_program_front_end_for_pipe(
2670 		struct dc *dc, struct pipe_ctx *pipe_ctx)
2671 {
2672 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2673 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2674 	struct xfm_grph_csc_adjustment adjust;
2675 	struct out_csc_color_matrix tbl_entry;
2676 	unsigned int i;
2677 	struct dce_hwseq *hws = dc->hwseq;
2678 
2679 	DC_LOGGER_INIT();
2680 	memset(&tbl_entry, 0, sizeof(tbl_entry));
2681 
2682 	memset(&adjust, 0, sizeof(adjust));
2683 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2684 
2685 	dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2686 
2687 	set_default_colors(pipe_ctx);
2688 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2689 			== true) {
2690 		tbl_entry.color_space =
2691 			pipe_ctx->stream->output_color_space;
2692 
2693 		for (i = 0; i < 12; i++)
2694 			tbl_entry.regval[i] =
2695 			pipe_ctx->stream->csc_color_matrix.matrix[i];
2696 
2697 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2698 				(pipe_ctx->plane_res.xfm, &tbl_entry);
2699 	}
2700 
2701 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2702 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2703 
2704 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2705 			adjust.temperature_matrix[i] =
2706 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2707 	}
2708 
2709 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2710 
2711 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
2712 
2713 	program_scaler(dc, pipe_ctx);
2714 
2715 	mi->funcs->mem_input_program_surface_config(
2716 			mi,
2717 			plane_state->format,
2718 			&plane_state->tiling_info,
2719 			&plane_state->plane_size,
2720 			plane_state->rotation,
2721 			NULL,
2722 			false);
2723 	if (mi->funcs->set_blank)
2724 		mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2725 
2726 	if (dc->config.gpu_vm_support)
2727 		mi->funcs->mem_input_program_pte_vm(
2728 				pipe_ctx->plane_res.mi,
2729 				plane_state->format,
2730 				&plane_state->tiling_info,
2731 				plane_state->rotation);
2732 
2733 	/* Moved programming gamma from dc to hwss */
2734 	if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2735 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2736 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
2737 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2738 
2739 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
2740 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2741 
2742 	DC_LOG_SURFACE(
2743 			"Pipe:%d %p: addr hi:0x%x, "
2744 			"addr low:0x%x, "
2745 			"src: %d, %d, %d,"
2746 			" %d; dst: %d, %d, %d, %d;"
2747 			"clip: %d, %d, %d, %d\n",
2748 			pipe_ctx->pipe_idx,
2749 			(void *) pipe_ctx->plane_state,
2750 			pipe_ctx->plane_state->address.grph.addr.high_part,
2751 			pipe_ctx->plane_state->address.grph.addr.low_part,
2752 			pipe_ctx->plane_state->src_rect.x,
2753 			pipe_ctx->plane_state->src_rect.y,
2754 			pipe_ctx->plane_state->src_rect.width,
2755 			pipe_ctx->plane_state->src_rect.height,
2756 			pipe_ctx->plane_state->dst_rect.x,
2757 			pipe_ctx->plane_state->dst_rect.y,
2758 			pipe_ctx->plane_state->dst_rect.width,
2759 			pipe_ctx->plane_state->dst_rect.height,
2760 			pipe_ctx->plane_state->clip_rect.x,
2761 			pipe_ctx->plane_state->clip_rect.y,
2762 			pipe_ctx->plane_state->clip_rect.width,
2763 			pipe_ctx->plane_state->clip_rect.height);
2764 
2765 	DC_LOG_SURFACE(
2766 			"Pipe %d: width, height, x, y\n"
2767 			"viewport:%d, %d, %d, %d\n"
2768 			"recout:  %d, %d, %d, %d\n",
2769 			pipe_ctx->pipe_idx,
2770 			pipe_ctx->plane_res.scl_data.viewport.width,
2771 			pipe_ctx->plane_res.scl_data.viewport.height,
2772 			pipe_ctx->plane_res.scl_data.viewport.x,
2773 			pipe_ctx->plane_res.scl_data.viewport.y,
2774 			pipe_ctx->plane_res.scl_data.recout.width,
2775 			pipe_ctx->plane_res.scl_data.recout.height,
2776 			pipe_ctx->plane_res.scl_data.recout.x,
2777 			pipe_ctx->plane_res.scl_data.recout.y);
2778 }
2779 
2780 static void dce110_apply_ctx_for_surface(
2781 		struct dc *dc,
2782 		const struct dc_stream_state *stream,
2783 		int num_planes,
2784 		struct dc_state *context)
2785 {
2786 	int i;
2787 
2788 	if (num_planes == 0)
2789 		return;
2790 
2791 	if (dc->fbc_compressor)
2792 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2793 
2794 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2795 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2796 
2797 		if (pipe_ctx->stream != stream)
2798 			continue;
2799 
2800 		/* Need to allocate mem before program front end for Fiji */
2801 		pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2802 				pipe_ctx->plane_res.mi,
2803 				pipe_ctx->stream->timing.h_total,
2804 				pipe_ctx->stream->timing.v_total,
2805 				pipe_ctx->stream->timing.pix_clk_100hz / 10,
2806 				context->stream_count);
2807 
2808 		dce110_program_front_end_for_pipe(dc, pipe_ctx);
2809 
2810 		dc->hwss.update_plane_addr(dc, pipe_ctx);
2811 
2812 		program_surface_visibility(dc, pipe_ctx);
2813 
2814 	}
2815 
2816 	if (dc->fbc_compressor)
2817 		enable_fbc(dc, context);
2818 }
2819 
2820 static void dce110_post_unlock_program_front_end(
2821 		struct dc *dc,
2822 		struct dc_state *context)
2823 {
2824 }
2825 
2826 static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
2827 {
2828 	struct dce_hwseq *hws = dc->hwseq;
2829 	int fe_idx = pipe_ctx->plane_res.mi ?
2830 		pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2831 
2832 	/* Do not power down fe when stream is active on dce*/
2833 	if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2834 		return;
2835 
2836 	hws->funcs.enable_display_power_gating(
2837 		dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2838 
2839 	dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2840 				dc->res_pool->transforms[fe_idx]);
2841 }
2842 
2843 static void dce110_wait_for_mpcc_disconnect(
2844 		struct dc *dc,
2845 		struct resource_pool *res_pool,
2846 		struct pipe_ctx *pipe_ctx)
2847 {
2848 	/* do nothing*/
2849 }
2850 
2851 static void program_output_csc(struct dc *dc,
2852 		struct pipe_ctx *pipe_ctx,
2853 		enum dc_color_space colorspace,
2854 		uint16_t *matrix,
2855 		int opp_id)
2856 {
2857 	int i;
2858 	struct out_csc_color_matrix tbl_entry;
2859 
2860 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2861 		enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
2862 
2863 		for (i = 0; i < 12; i++)
2864 			tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2865 
2866 		tbl_entry.color_space = color_space;
2867 
2868 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
2869 				pipe_ctx->plane_res.xfm, &tbl_entry);
2870 	}
2871 }
2872 
2873 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2874 {
2875 	struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2876 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2877 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2878 	struct dc_cursor_mi_param param = {
2879 		.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
2880 		.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
2881 		.viewport = pipe_ctx->plane_res.scl_data.viewport,
2882 		.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2883 		.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2884 		.rotation = pipe_ctx->plane_state->rotation,
2885 		.mirror = pipe_ctx->plane_state->horizontal_mirror
2886 	};
2887 
2888 	/**
2889 	 * If the cursor's source viewport is clipped then we need to
2890 	 * translate the cursor to appear in the correct position on
2891 	 * the screen.
2892 	 *
2893 	 * This translation isn't affected by scaling so it needs to be
2894 	 * done *after* we adjust the position for the scale factor.
2895 	 *
2896 	 * This is only done by opt-in for now since there are still
2897 	 * some usecases like tiled display that might enable the
2898 	 * cursor on both streams while expecting dc to clip it.
2899 	 */
2900 	if (pos_cpy.translate_by_source) {
2901 		pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
2902 		pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
2903 	}
2904 
2905 	if (pipe_ctx->plane_state->address.type
2906 			== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2907 		pos_cpy.enable = false;
2908 
2909 	if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2910 		pos_cpy.enable = false;
2911 
2912 	if (ipp->funcs->ipp_cursor_set_position)
2913 		ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
2914 	if (mi->funcs->set_cursor_position)
2915 		mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
2916 }
2917 
2918 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2919 {
2920 	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2921 
2922 	if (pipe_ctx->plane_res.ipp &&
2923 	    pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2924 		pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2925 				pipe_ctx->plane_res.ipp, attributes);
2926 
2927 	if (pipe_ctx->plane_res.mi &&
2928 	    pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2929 		pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2930 				pipe_ctx->plane_res.mi, attributes);
2931 
2932 	if (pipe_ctx->plane_res.xfm &&
2933 	    pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2934 		pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2935 				pipe_ctx->plane_res.xfm, attributes);
2936 }
2937 
2938 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
2939 		uint32_t backlight_pwm_u16_16,
2940 		uint32_t frame_ramp)
2941 {
2942 	struct dc_link *link = pipe_ctx->stream->link;
2943 	struct dc  *dc = link->ctx->dc;
2944 	struct abm *abm = pipe_ctx->stream_res.abm;
2945 	struct panel_cntl *panel_cntl = link->panel_cntl;
2946 	struct dmcu *dmcu = dc->res_pool->dmcu;
2947 	bool fw_set_brightness = true;
2948 	/* DMCU -1 for all controller id values,
2949 	 * therefore +1 here
2950 	 */
2951 	uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
2952 
2953 	if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
2954 		return false;
2955 
2956 	if (dmcu)
2957 		fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
2958 
2959 	if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
2960 		panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
2961 	else
2962 		abm->funcs->set_backlight_level_pwm(
2963 				abm,
2964 				backlight_pwm_u16_16,
2965 				frame_ramp,
2966 				controller_id,
2967 				link->panel_cntl->inst);
2968 
2969 	return true;
2970 }
2971 
2972 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
2973 {
2974 	struct abm *abm = pipe_ctx->stream_res.abm;
2975 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2976 
2977 	if (abm)
2978 		abm->funcs->set_abm_immediate_disable(abm,
2979 				pipe_ctx->stream->link->panel_cntl->inst);
2980 
2981 	if (panel_cntl)
2982 		panel_cntl->funcs->store_backlight_level(panel_cntl);
2983 }
2984 
2985 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
2986 {
2987 	struct abm *abm = pipe_ctx->stream_res.abm;
2988 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2989 	uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
2990 
2991 	if (abm && panel_cntl)
2992 		abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
2993 }
2994 
2995 static const struct hw_sequencer_funcs dce110_funcs = {
2996 	.program_gamut_remap = program_gamut_remap,
2997 	.program_output_csc = program_output_csc,
2998 	.init_hw = init_hw,
2999 	.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
3000 	.apply_ctx_for_surface = dce110_apply_ctx_for_surface,
3001 	.post_unlock_program_front_end = dce110_post_unlock_program_front_end,
3002 	.update_plane_addr = update_plane_addr,
3003 	.update_pending_status = dce110_update_pending_status,
3004 	.enable_accelerated_mode = dce110_enable_accelerated_mode,
3005 	.enable_timing_synchronization = dce110_enable_timing_synchronization,
3006 	.enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
3007 	.update_info_frame = dce110_update_info_frame,
3008 	.enable_stream = dce110_enable_stream,
3009 	.disable_stream = dce110_disable_stream,
3010 	.unblank_stream = dce110_unblank_stream,
3011 	.blank_stream = dce110_blank_stream,
3012 	.enable_audio_stream = dce110_enable_audio_stream,
3013 	.disable_audio_stream = dce110_disable_audio_stream,
3014 	.disable_plane = dce110_power_down_fe,
3015 	.pipe_control_lock = dce_pipe_control_lock,
3016 	.interdependent_update_lock = NULL,
3017 	.cursor_lock = dce_pipe_control_lock,
3018 	.prepare_bandwidth = dce110_prepare_bandwidth,
3019 	.optimize_bandwidth = dce110_optimize_bandwidth,
3020 	.set_drr = set_drr,
3021 	.get_position = get_position,
3022 	.set_static_screen_control = set_static_screen_control,
3023 	.setup_stereo = NULL,
3024 	.set_avmute = dce110_set_avmute,
3025 	.wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
3026 	.edp_backlight_control = dce110_edp_backlight_control,
3027 	.edp_power_control = dce110_edp_power_control,
3028 	.edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
3029 	.set_cursor_position = dce110_set_cursor_position,
3030 	.set_cursor_attribute = dce110_set_cursor_attribute,
3031 	.set_backlight_level = dce110_set_backlight_level,
3032 	.set_abm_immediate_disable = dce110_set_abm_immediate_disable,
3033 	.set_pipe = dce110_set_pipe,
3034 };
3035 
3036 static const struct hwseq_private_funcs dce110_private_funcs = {
3037 	.init_pipes = init_pipes,
3038 	.update_plane_addr = update_plane_addr,
3039 	.set_input_transfer_func = dce110_set_input_transfer_func,
3040 	.set_output_transfer_func = dce110_set_output_transfer_func,
3041 	.power_down = dce110_power_down,
3042 	.enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
3043 	.enable_display_power_gating = dce110_enable_display_power_gating,
3044 	.reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
3045 	.enable_stream_timing = dce110_enable_stream_timing,
3046 	.disable_stream_gating = NULL,
3047 	.enable_stream_gating = NULL,
3048 	.edp_backlight_control = dce110_edp_backlight_control,
3049 };
3050 
3051 void dce110_hw_sequencer_construct(struct dc *dc)
3052 {
3053 	dc->hwss = dce110_funcs;
3054 	dc->hwseq->funcs = dce110_private_funcs;
3055 }
3056 
3057