1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include <linux/delay.h>
27 
28 #include "dm_services.h"
29 #include "dc.h"
30 #include "dc_bios_types.h"
31 #include "core_types.h"
32 #include "core_status.h"
33 #include "resource.h"
34 #include "dm_helpers.h"
35 #include "dce110_timing_generator.h"
36 #include "dce/dce_hwseq.h"
37 #include "gpio_service_interface.h"
38 
39 #include "dce110_compressor.h"
40 
41 #include "bios/bios_parser_helper.h"
42 #include "timing_generator.h"
43 #include "mem_input.h"
44 #include "opp.h"
45 #include "ipp.h"
46 #include "transform.h"
47 #include "stream_encoder.h"
48 #include "link_encoder.h"
49 #include "link_enc_cfg.h"
50 #include "link_hwss.h"
51 #include "dc_link_dp.h"
52 #include "dccg.h"
53 #include "clock_source.h"
54 #include "clk_mgr.h"
55 #include "abm.h"
56 #include "audio.h"
57 #include "reg_helper.h"
58 #include "panel_cntl.h"
59 #include "inc/link_dpcd.h"
60 #include "dpcd_defs.h"
61 /* include DCE11 register header files */
62 #include "dce/dce_11_0_d.h"
63 #include "dce/dce_11_0_sh_mask.h"
64 #include "custom_float.h"
65 
66 #include "atomfirmware.h"
67 
68 #include "dcn10/dcn10_hw_sequencer.h"
69 
70 #include "link/link_dp_trace.h"
71 #include "dce110_hw_sequencer.h"
72 
73 #define GAMMA_HW_POINTS_NUM 256
74 
75 /*
76  * All values are in milliseconds;
77  * For eDP, after power-up/power/down,
78  * 300/500 msec max. delay from LCDVCC to black video generation
79  */
80 #define PANEL_POWER_UP_TIMEOUT 300
81 #define PANEL_POWER_DOWN_TIMEOUT 500
82 #define HPD_CHECK_INTERVAL 10
83 #define OLED_POST_T7_DELAY 100
84 #define OLED_PRE_T11_DELAY 150
85 
86 #define CTX \
87 	hws->ctx
88 
89 #define DC_LOGGER_INIT()
90 
91 #define REG(reg)\
92 	hws->regs->reg
93 
94 #undef FN
95 #define FN(reg_name, field_name) \
96 	hws->shifts->field_name, hws->masks->field_name
97 
98 struct dce110_hw_seq_reg_offsets {
99 	uint32_t crtc;
100 };
101 
102 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
103 {
104 	.crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
105 },
106 {
107 	.crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
108 },
109 {
110 	.crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
111 },
112 {
113 	.crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
114 }
115 };
116 
117 #define HW_REG_BLND(reg, id)\
118 	(reg + reg_offsets[id].blnd)
119 
120 #define HW_REG_CRTC(reg, id)\
121 	(reg + reg_offsets[id].crtc)
122 
123 #define MAX_WATERMARK 0xFFFF
124 #define SAFE_NBP_MARK 0x7FFF
125 
126 /*******************************************************************************
127  * Private definitions
128  ******************************************************************************/
129 /***************************PIPE_CONTROL***********************************/
130 static void dce110_init_pte(struct dc_context *ctx)
131 {
132 	uint32_t addr;
133 	uint32_t value = 0;
134 	uint32_t chunk_int = 0;
135 	uint32_t chunk_mul = 0;
136 
137 	addr = mmUNP_DVMM_PTE_CONTROL;
138 	value = dm_read_reg(ctx, addr);
139 
140 	set_reg_field_value(
141 		value,
142 		0,
143 		DVMM_PTE_CONTROL,
144 		DVMM_USE_SINGLE_PTE);
145 
146 	set_reg_field_value(
147 		value,
148 		1,
149 		DVMM_PTE_CONTROL,
150 		DVMM_PTE_BUFFER_MODE0);
151 
152 	set_reg_field_value(
153 		value,
154 		1,
155 		DVMM_PTE_CONTROL,
156 		DVMM_PTE_BUFFER_MODE1);
157 
158 	dm_write_reg(ctx, addr, value);
159 
160 	addr = mmDVMM_PTE_REQ;
161 	value = dm_read_reg(ctx, addr);
162 
163 	chunk_int = get_reg_field_value(
164 		value,
165 		DVMM_PTE_REQ,
166 		HFLIP_PTEREQ_PER_CHUNK_INT);
167 
168 	chunk_mul = get_reg_field_value(
169 		value,
170 		DVMM_PTE_REQ,
171 		HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
172 
173 	if (chunk_int != 0x4 || chunk_mul != 0x4) {
174 
175 		set_reg_field_value(
176 			value,
177 			255,
178 			DVMM_PTE_REQ,
179 			MAX_PTEREQ_TO_ISSUE);
180 
181 		set_reg_field_value(
182 			value,
183 			4,
184 			DVMM_PTE_REQ,
185 			HFLIP_PTEREQ_PER_CHUNK_INT);
186 
187 		set_reg_field_value(
188 			value,
189 			4,
190 			DVMM_PTE_REQ,
191 			HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
192 
193 		dm_write_reg(ctx, addr, value);
194 	}
195 }
196 /**************************************************************************/
197 
198 static void enable_display_pipe_clock_gating(
199 	struct dc_context *ctx,
200 	bool clock_gating)
201 {
202 	/*TODO*/
203 }
204 
205 static bool dce110_enable_display_power_gating(
206 	struct dc *dc,
207 	uint8_t controller_id,
208 	struct dc_bios *dcb,
209 	enum pipe_gating_control power_gating)
210 {
211 	enum bp_result bp_result = BP_RESULT_OK;
212 	enum bp_pipe_control_action cntl;
213 	struct dc_context *ctx = dc->ctx;
214 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
215 
216 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment))
217 		return true;
218 
219 	if (power_gating == PIPE_GATING_CONTROL_INIT)
220 		cntl = ASIC_PIPE_INIT;
221 	else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
222 		cntl = ASIC_PIPE_ENABLE;
223 	else
224 		cntl = ASIC_PIPE_DISABLE;
225 
226 	if (controller_id == underlay_idx)
227 		controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
228 
229 	if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0){
230 
231 		bp_result = dcb->funcs->enable_disp_power_gating(
232 						dcb, controller_id + 1, cntl);
233 
234 		/* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
235 		 * by default when command table is called
236 		 *
237 		 * Bios parser accepts controller_id = 6 as indicative of
238 		 * underlay pipe in dce110. But we do not support more
239 		 * than 3.
240 		 */
241 		if (controller_id < CONTROLLER_ID_MAX - 1)
242 			dm_write_reg(ctx,
243 				HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
244 				0);
245 	}
246 
247 	if (power_gating != PIPE_GATING_CONTROL_ENABLE)
248 		dce110_init_pte(ctx);
249 
250 	if (bp_result == BP_RESULT_OK)
251 		return true;
252 	else
253 		return false;
254 }
255 
256 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
257 		const struct dc_plane_state *plane_state)
258 {
259 	prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
260 
261 	switch (plane_state->format) {
262 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
263 		prescale_params->scale = 0x2082;
264 		break;
265 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
266 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
267 		prescale_params->scale = 0x2020;
268 		break;
269 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
270 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
271 		prescale_params->scale = 0x2008;
272 		break;
273 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
274 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
275 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
276 		prescale_params->scale = 0x2000;
277 		break;
278 	default:
279 		ASSERT(false);
280 		break;
281 	}
282 }
283 
284 static bool
285 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
286 			       const struct dc_plane_state *plane_state)
287 {
288 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
289 	const struct dc_transfer_func *tf = NULL;
290 	struct ipp_prescale_params prescale_params = { 0 };
291 	bool result = true;
292 
293 	if (ipp == NULL)
294 		return false;
295 
296 	if (plane_state->in_transfer_func)
297 		tf = plane_state->in_transfer_func;
298 
299 	build_prescale_params(&prescale_params, plane_state);
300 	ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
301 
302 	if (plane_state->gamma_correction &&
303 			!plane_state->gamma_correction->is_identity &&
304 			dce_use_lut(plane_state->format))
305 		ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
306 
307 	if (tf == NULL) {
308 		/* Default case if no input transfer function specified */
309 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
310 	} else if (tf->type == TF_TYPE_PREDEFINED) {
311 		switch (tf->tf) {
312 		case TRANSFER_FUNCTION_SRGB:
313 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
314 			break;
315 		case TRANSFER_FUNCTION_BT709:
316 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
317 			break;
318 		case TRANSFER_FUNCTION_LINEAR:
319 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
320 			break;
321 		case TRANSFER_FUNCTION_PQ:
322 		default:
323 			result = false;
324 			break;
325 		}
326 	} else if (tf->type == TF_TYPE_BYPASS) {
327 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
328 	} else {
329 		/*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
330 		result = false;
331 	}
332 
333 	return result;
334 }
335 
336 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
337 				    struct curve_points *arr_points,
338 				    uint32_t hw_points_num)
339 {
340 	struct custom_float_format fmt;
341 
342 	struct pwl_result_data *rgb = rgb_resulted;
343 
344 	uint32_t i = 0;
345 
346 	fmt.exponenta_bits = 6;
347 	fmt.mantissa_bits = 12;
348 	fmt.sign = true;
349 
350 	if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
351 					    &arr_points[0].custom_float_x)) {
352 		BREAK_TO_DEBUGGER();
353 		return false;
354 	}
355 
356 	if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
357 					    &arr_points[0].custom_float_offset)) {
358 		BREAK_TO_DEBUGGER();
359 		return false;
360 	}
361 
362 	if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
363 					    &arr_points[0].custom_float_slope)) {
364 		BREAK_TO_DEBUGGER();
365 		return false;
366 	}
367 
368 	fmt.mantissa_bits = 10;
369 	fmt.sign = false;
370 
371 	if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
372 					    &arr_points[1].custom_float_x)) {
373 		BREAK_TO_DEBUGGER();
374 		return false;
375 	}
376 
377 	if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
378 					    &arr_points[1].custom_float_y)) {
379 		BREAK_TO_DEBUGGER();
380 		return false;
381 	}
382 
383 	if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
384 					    &arr_points[1].custom_float_slope)) {
385 		BREAK_TO_DEBUGGER();
386 		return false;
387 	}
388 
389 	fmt.mantissa_bits = 12;
390 	fmt.sign = true;
391 
392 	while (i != hw_points_num) {
393 		if (!convert_to_custom_float_format(rgb->red, &fmt,
394 						    &rgb->red_reg)) {
395 			BREAK_TO_DEBUGGER();
396 			return false;
397 		}
398 
399 		if (!convert_to_custom_float_format(rgb->green, &fmt,
400 						    &rgb->green_reg)) {
401 			BREAK_TO_DEBUGGER();
402 			return false;
403 		}
404 
405 		if (!convert_to_custom_float_format(rgb->blue, &fmt,
406 						    &rgb->blue_reg)) {
407 			BREAK_TO_DEBUGGER();
408 			return false;
409 		}
410 
411 		if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
412 						    &rgb->delta_red_reg)) {
413 			BREAK_TO_DEBUGGER();
414 			return false;
415 		}
416 
417 		if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
418 						    &rgb->delta_green_reg)) {
419 			BREAK_TO_DEBUGGER();
420 			return false;
421 		}
422 
423 		if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
424 						    &rgb->delta_blue_reg)) {
425 			BREAK_TO_DEBUGGER();
426 			return false;
427 		}
428 
429 		++rgb;
430 		++i;
431 	}
432 
433 	return true;
434 }
435 
436 #define MAX_LOW_POINT      25
437 #define NUMBER_REGIONS     16
438 #define NUMBER_SW_SEGMENTS 16
439 
440 static bool
441 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
442 				      struct pwl_params *regamma_params)
443 {
444 	struct curve_points *arr_points;
445 	struct pwl_result_data *rgb_resulted;
446 	struct pwl_result_data *rgb;
447 	struct pwl_result_data *rgb_plus_1;
448 	struct fixed31_32 y_r;
449 	struct fixed31_32 y_g;
450 	struct fixed31_32 y_b;
451 	struct fixed31_32 y1_min;
452 	struct fixed31_32 y3_max;
453 
454 	int32_t region_start, region_end;
455 	uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
456 
457 	if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
458 		return false;
459 
460 	arr_points = regamma_params->arr_points;
461 	rgb_resulted = regamma_params->rgb_resulted;
462 	hw_points = 0;
463 
464 	memset(regamma_params, 0, sizeof(struct pwl_params));
465 
466 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
467 		/* 16 segments
468 		 * segments are from 2^-11 to 2^5
469 		 */
470 		region_start = -11;
471 		region_end = region_start + NUMBER_REGIONS;
472 
473 		for (i = 0; i < NUMBER_REGIONS; i++)
474 			seg_distr[i] = 4;
475 
476 	} else {
477 		/* 10 segments
478 		 * segment is from 2^-10 to 2^1
479 		 * We include an extra segment for range [2^0, 2^1). This is to
480 		 * ensure that colors with normalized values of 1 don't miss the
481 		 * LUT.
482 		 */
483 		region_start = -10;
484 		region_end = 1;
485 
486 		seg_distr[0] = 4;
487 		seg_distr[1] = 4;
488 		seg_distr[2] = 4;
489 		seg_distr[3] = 4;
490 		seg_distr[4] = 4;
491 		seg_distr[5] = 4;
492 		seg_distr[6] = 4;
493 		seg_distr[7] = 4;
494 		seg_distr[8] = 4;
495 		seg_distr[9] = 4;
496 		seg_distr[10] = 0;
497 		seg_distr[11] = -1;
498 		seg_distr[12] = -1;
499 		seg_distr[13] = -1;
500 		seg_distr[14] = -1;
501 		seg_distr[15] = -1;
502 	}
503 
504 	for (k = 0; k < 16; k++) {
505 		if (seg_distr[k] != -1)
506 			hw_points += (1 << seg_distr[k]);
507 	}
508 
509 	j = 0;
510 	for (k = 0; k < (region_end - region_start); k++) {
511 		increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
512 		start_index = (region_start + k + MAX_LOW_POINT) *
513 				NUMBER_SW_SEGMENTS;
514 		for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
515 				i += increment) {
516 			if (j == hw_points - 1)
517 				break;
518 			rgb_resulted[j].red = output_tf->tf_pts.red[i];
519 			rgb_resulted[j].green = output_tf->tf_pts.green[i];
520 			rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
521 			j++;
522 		}
523 	}
524 
525 	/* last point */
526 	start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
527 	rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
528 	rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
529 	rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
530 
531 	arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
532 					     dc_fixpt_from_int(region_start));
533 	arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
534 					     dc_fixpt_from_int(region_end));
535 
536 	y_r = rgb_resulted[0].red;
537 	y_g = rgb_resulted[0].green;
538 	y_b = rgb_resulted[0].blue;
539 
540 	y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
541 
542 	arr_points[0].y = y1_min;
543 	arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
544 						 arr_points[0].x);
545 
546 	y_r = rgb_resulted[hw_points - 1].red;
547 	y_g = rgb_resulted[hw_points - 1].green;
548 	y_b = rgb_resulted[hw_points - 1].blue;
549 
550 	/* see comment above, m_arrPoints[1].y should be the Y value for the
551 	 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
552 	 */
553 	y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
554 
555 	arr_points[1].y = y3_max;
556 
557 	arr_points[1].slope = dc_fixpt_zero;
558 
559 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
560 		/* for PQ, we want to have a straight line from last HW X point,
561 		 * and the slope to be such that we hit 1.0 at 10000 nits.
562 		 */
563 		const struct fixed31_32 end_value = dc_fixpt_from_int(125);
564 
565 		arr_points[1].slope = dc_fixpt_div(
566 				dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
567 				dc_fixpt_sub(end_value, arr_points[1].x));
568 	}
569 
570 	regamma_params->hw_points_num = hw_points;
571 
572 	k = 0;
573 	for (i = 1; i < 16; i++) {
574 		if (seg_distr[k] != -1) {
575 			regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
576 			regamma_params->arr_curve_points[i].offset =
577 					regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
578 		}
579 		k++;
580 	}
581 
582 	if (seg_distr[k] != -1)
583 		regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
584 
585 	rgb = rgb_resulted;
586 	rgb_plus_1 = rgb_resulted + 1;
587 
588 	i = 1;
589 
590 	while (i != hw_points + 1) {
591 		if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
592 			rgb_plus_1->red = rgb->red;
593 		if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
594 			rgb_plus_1->green = rgb->green;
595 		if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
596 			rgb_plus_1->blue = rgb->blue;
597 
598 		rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
599 		rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
600 		rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
601 
602 		++rgb_plus_1;
603 		++rgb;
604 		++i;
605 	}
606 
607 	convert_to_custom_float(rgb_resulted, arr_points, hw_points);
608 
609 	return true;
610 }
611 
612 static bool
613 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
614 				const struct dc_stream_state *stream)
615 {
616 	struct transform *xfm = pipe_ctx->plane_res.xfm;
617 
618 	xfm->funcs->opp_power_on_regamma_lut(xfm, true);
619 	xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
620 
621 	if (stream->out_transfer_func &&
622 	    stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
623 	    stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
624 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
625 	} else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
626 							 &xfm->regamma_params)) {
627 		xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
628 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
629 	} else {
630 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
631 	}
632 
633 	xfm->funcs->opp_power_on_regamma_lut(xfm, false);
634 
635 	return true;
636 }
637 
638 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
639 {
640 	bool is_hdmi_tmds;
641 	bool is_dp;
642 
643 	ASSERT(pipe_ctx->stream);
644 
645 	if (pipe_ctx->stream_res.stream_enc == NULL)
646 		return;  /* this is not root pipe */
647 
648 	is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
649 	is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
650 
651 	if (!is_hdmi_tmds && !is_dp)
652 		return;
653 
654 	if (is_hdmi_tmds)
655 		pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
656 			pipe_ctx->stream_res.stream_enc,
657 			&pipe_ctx->stream_res.encoder_info_frame);
658 	else
659 		pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
660 			pipe_ctx->stream_res.stream_enc,
661 			&pipe_ctx->stream_res.encoder_info_frame);
662 }
663 
664 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
665 {
666 	enum dc_lane_count lane_count =
667 		pipe_ctx->stream->link->cur_link_settings.lane_count;
668 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
669 	struct dc_link *link = pipe_ctx->stream->link;
670 	const struct dc *dc = link->dc;
671 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
672 	uint32_t active_total_with_borders;
673 	uint32_t early_control = 0;
674 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
675 
676 	link_hwss->setup_stream_encoder(pipe_ctx);
677 
678 	dc->hwss.update_info_frame(pipe_ctx);
679 
680 	/* enable early control to avoid corruption on DP monitor*/
681 	active_total_with_borders =
682 			timing->h_addressable
683 				+ timing->h_border_left
684 				+ timing->h_border_right;
685 
686 	if (lane_count != 0)
687 		early_control = active_total_with_borders % lane_count;
688 
689 	if (early_control == 0)
690 		early_control = lane_count;
691 
692 	tg->funcs->set_early_control(tg, early_control);
693 
694 	/* enable audio only within mode set */
695 	if (pipe_ctx->stream_res.audio != NULL) {
696 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
697 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc);
698 	}
699 
700 
701 
702 
703 }
704 
705 static enum bp_result link_transmitter_control(
706 		struct dc_bios *bios,
707 	struct bp_transmitter_control *cntl)
708 {
709 	enum bp_result result;
710 
711 	result = bios->funcs->transmitter_control(bios, cntl);
712 
713 	return result;
714 }
715 
716 /*
717  * @brief
718  * eDP only.
719  */
720 void dce110_edp_wait_for_hpd_ready(
721 		struct dc_link *link,
722 		bool power_up)
723 {
724 	struct dc_context *ctx = link->ctx;
725 	struct graphics_object_id connector = link->link_enc->connector;
726 	struct gpio *hpd;
727 	struct dc_sink *sink = link->local_sink;
728 	bool edp_hpd_high = false;
729 	uint32_t time_elapsed = 0;
730 	uint32_t timeout = power_up ?
731 		PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
732 
733 	if (dal_graphics_object_id_get_connector_id(connector)
734 			!= CONNECTOR_ID_EDP) {
735 		BREAK_TO_DEBUGGER();
736 		return;
737 	}
738 
739 	if (!power_up)
740 		/*
741 		 * From KV, we will not HPD low after turning off VCC -
742 		 * instead, we will check the SW timer in power_up().
743 		 */
744 		return;
745 
746 	/*
747 	 * When we power on/off the eDP panel,
748 	 * we need to wait until SENSE bit is high/low.
749 	 */
750 
751 	/* obtain HPD */
752 	/* TODO what to do with this? */
753 	hpd = get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
754 
755 	if (!hpd) {
756 		BREAK_TO_DEBUGGER();
757 		return;
758 	}
759 
760 	if (sink != NULL) {
761 		if (sink->edid_caps.panel_patch.extra_t3_ms > 0) {
762 			int extra_t3_in_ms = sink->edid_caps.panel_patch.extra_t3_ms;
763 
764 			msleep(extra_t3_in_ms);
765 		}
766 	}
767 
768 	dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
769 
770 	/* wait until timeout or panel detected */
771 
772 	do {
773 		uint32_t detected = 0;
774 
775 		dal_gpio_get_value(hpd, &detected);
776 
777 		if (!(detected ^ power_up)) {
778 			edp_hpd_high = true;
779 			break;
780 		}
781 
782 		msleep(HPD_CHECK_INTERVAL);
783 
784 		time_elapsed += HPD_CHECK_INTERVAL;
785 	} while (time_elapsed < timeout);
786 
787 	dal_gpio_close(hpd);
788 
789 	dal_gpio_destroy_irq(&hpd);
790 
791 	if (false == edp_hpd_high) {
792 		DC_LOG_WARNING(
793 				"%s: wait timed out!\n", __func__);
794 	}
795 }
796 
797 void dce110_edp_power_control(
798 		struct dc_link *link,
799 		bool power_up)
800 {
801 	struct dc_context *ctx = link->ctx;
802 	struct bp_transmitter_control cntl = { 0 };
803 	enum bp_result bp_result;
804 	uint8_t panel_instance;
805 
806 
807 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
808 			!= CONNECTOR_ID_EDP) {
809 		BREAK_TO_DEBUGGER();
810 		return;
811 	}
812 
813 	if (!link->panel_cntl)
814 		return;
815 	if (power_up !=
816 		link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
817 
818 		unsigned long long current_ts = dm_get_timestamp(ctx);
819 		unsigned long long time_since_edp_poweroff_ms =
820 				div64_u64(dm_get_elapse_time_in_ns(
821 						ctx,
822 						current_ts,
823 						dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
824 		unsigned long long time_since_edp_poweron_ms =
825 				div64_u64(dm_get_elapse_time_in_ns(
826 						ctx,
827 						current_ts,
828 						dp_trace_get_edp_poweron_timestamp(link)), 1000000);
829 		DC_LOG_HW_RESUME_S3(
830 				"%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
831 				__func__,
832 				power_up,
833 				current_ts,
834 				dp_trace_get_edp_poweroff_timestamp(link),
835 				dp_trace_get_edp_poweron_timestamp(link),
836 				time_since_edp_poweroff_ms,
837 				time_since_edp_poweron_ms);
838 
839 		/* Send VBIOS command to prompt eDP panel power */
840 		if (power_up) {
841 			/* edp requires a min of 500ms from LCDVDD off to on */
842 			unsigned long long remaining_min_edp_poweroff_time_ms = 500;
843 
844 			/* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
845 			if (link->local_sink != NULL)
846 				remaining_min_edp_poweroff_time_ms +=
847 					link->local_sink->edid_caps.panel_patch.extra_t12_ms;
848 
849 			/* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
850 			if (dp_trace_get_edp_poweroff_timestamp(link) != 0) {
851 				if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
852 					remaining_min_edp_poweroff_time_ms =
853 						remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
854 				else
855 					remaining_min_edp_poweroff_time_ms = 0;
856 			}
857 
858 			if (remaining_min_edp_poweroff_time_ms) {
859 				DC_LOG_HW_RESUME_S3(
860 						"%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
861 						__func__, remaining_min_edp_poweroff_time_ms);
862 				msleep(remaining_min_edp_poweroff_time_ms);
863 				DC_LOG_HW_RESUME_S3(
864 						"%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
865 						__func__, remaining_min_edp_poweroff_time_ms);
866 				dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
867 						__func__, remaining_min_edp_poweroff_time_ms);
868 			} else {
869 				DC_LOG_HW_RESUME_S3(
870 						"%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
871 						__func__, remaining_min_edp_poweroff_time_ms);
872 			}
873 		}
874 
875 		DC_LOG_HW_RESUME_S3(
876 				"%s: BEGIN: Panel Power action: %s\n",
877 				__func__, (power_up ? "On":"Off"));
878 
879 		cntl.action = power_up ?
880 			TRANSMITTER_CONTROL_POWER_ON :
881 			TRANSMITTER_CONTROL_POWER_OFF;
882 		cntl.transmitter = link->link_enc->transmitter;
883 		cntl.connector_obj_id = link->link_enc->connector;
884 		cntl.coherent = false;
885 		cntl.lanes_number = LANE_COUNT_FOUR;
886 		cntl.hpd_sel = link->link_enc->hpd_source;
887 		panel_instance = link->panel_cntl->inst;
888 
889 		if (ctx->dc->ctx->dmub_srv &&
890 				ctx->dc->debug.dmub_command_table) {
891 			if (cntl.action == TRANSMITTER_CONTROL_POWER_ON)
892 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
893 						LVTMA_CONTROL_POWER_ON,
894 						panel_instance);
895 			else
896 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
897 						LVTMA_CONTROL_POWER_OFF,
898 						panel_instance);
899 		}
900 
901 		bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
902 
903 		DC_LOG_HW_RESUME_S3(
904 				"%s: END: Panel Power action: %s bp_result=%u\n",
905 				__func__, (power_up ? "On":"Off"),
906 				bp_result);
907 
908 		dp_trace_set_edp_power_timestamp(link, power_up);
909 
910 		DC_LOG_HW_RESUME_S3(
911 				"%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
912 				__func__,
913 				dp_trace_get_edp_poweroff_timestamp(link),
914 				dp_trace_get_edp_poweron_timestamp(link));
915 
916 		if (bp_result != BP_RESULT_OK)
917 			DC_LOG_ERROR(
918 					"%s: Panel Power bp_result: %d\n",
919 					__func__, bp_result);
920 	} else {
921 		DC_LOG_HW_RESUME_S3(
922 				"%s: Skipping Panel Power action: %s\n",
923 				__func__, (power_up ? "On":"Off"));
924 	}
925 }
926 
927 void dce110_edp_wait_for_T12(
928 		struct dc_link *link)
929 {
930 	struct dc_context *ctx = link->ctx;
931 
932 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
933 			!= CONNECTOR_ID_EDP) {
934 		BREAK_TO_DEBUGGER();
935 		return;
936 	}
937 
938 	if (!link->panel_cntl)
939 		return;
940 
941 	if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
942 			dp_trace_get_edp_poweroff_timestamp(link) != 0) {
943 		unsigned int t12_duration = 500; // Default T12 as per spec
944 		unsigned long long current_ts = dm_get_timestamp(ctx);
945 		unsigned long long time_since_edp_poweroff_ms =
946 				div64_u64(dm_get_elapse_time_in_ns(
947 						ctx,
948 						current_ts,
949 						dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
950 
951 		t12_duration += link->local_sink->edid_caps.panel_patch.extra_t12_ms; // Add extra T12
952 
953 		if (time_since_edp_poweroff_ms < t12_duration)
954 			msleep(t12_duration - time_since_edp_poweroff_ms);
955 	}
956 }
957 
958 /*todo: cloned in stream enc, fix*/
959 /*
960  * @brief
961  * eDP only. Control the backlight of the eDP panel
962  */
963 void dce110_edp_backlight_control(
964 		struct dc_link *link,
965 		bool enable)
966 {
967 	struct dc_context *ctx = link->ctx;
968 	struct bp_transmitter_control cntl = { 0 };
969 	uint8_t panel_instance;
970 
971 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
972 		!= CONNECTOR_ID_EDP) {
973 		BREAK_TO_DEBUGGER();
974 		return;
975 	}
976 
977 	if (link->panel_cntl) {
978 		bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
979 
980 		if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
981 			DC_LOG_HW_RESUME_S3(
982 				"%s: panel already powered up/off. Do nothing.\n",
983 				__func__);
984 			return;
985 		}
986 	}
987 
988 	/* Send VBIOS command to control eDP panel backlight */
989 
990 	DC_LOG_HW_RESUME_S3(
991 			"%s: backlight action: %s\n",
992 			__func__, (enable ? "On":"Off"));
993 
994 	cntl.action = enable ?
995 		TRANSMITTER_CONTROL_BACKLIGHT_ON :
996 		TRANSMITTER_CONTROL_BACKLIGHT_OFF;
997 
998 	/*cntl.engine_id = ctx->engine;*/
999 	cntl.transmitter = link->link_enc->transmitter;
1000 	cntl.connector_obj_id = link->link_enc->connector;
1001 	/*todo: unhardcode*/
1002 	cntl.lanes_number = LANE_COUNT_FOUR;
1003 	cntl.hpd_sel = link->link_enc->hpd_source;
1004 	cntl.signal = SIGNAL_TYPE_EDP;
1005 
1006 	/* For eDP, the following delays might need to be considered
1007 	 * after link training completed:
1008 	 * idle period - min. accounts for required BS-Idle pattern,
1009 	 * max. allows for source frame synchronization);
1010 	 * 50 msec max. delay from valid video data from source
1011 	 * to video on dislpay or backlight enable.
1012 	 *
1013 	 * Disable the delay for now.
1014 	 * Enable it in the future if necessary.
1015 	 */
1016 	/* dc_service_sleep_in_milliseconds(50); */
1017 		/*edp 1.2*/
1018 	panel_instance = link->panel_cntl->inst;
1019 
1020 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON) {
1021 		if (!link->dc->config.edp_no_power_sequencing)
1022 		/*
1023 		 * Sometimes, DP receiver chip power-controlled externally by an
1024 		 * Embedded Controller could be treated and used as eDP,
1025 		 * if it drives mobile display. In this case,
1026 		 * we shouldn't be doing power-sequencing, hence we can skip
1027 		 * waiting for T7-ready.
1028 		 */
1029 			edp_receiver_ready_T7(link);
1030 		else
1031 			DC_LOG_DC("edp_receiver_ready_T7 skipped\n");
1032 	}
1033 
1034 	if (ctx->dc->ctx->dmub_srv &&
1035 			ctx->dc->debug.dmub_command_table) {
1036 		if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1037 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1038 					LVTMA_CONTROL_LCD_BLON,
1039 					panel_instance);
1040 		else
1041 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1042 					LVTMA_CONTROL_LCD_BLOFF,
1043 					panel_instance);
1044 	}
1045 
1046 	link_transmitter_control(ctx->dc_bios, &cntl);
1047 
1048 	if (enable && link->dpcd_sink_ext_caps.bits.oled)
1049 		msleep(OLED_POST_T7_DELAY);
1050 
1051 	if (link->dpcd_sink_ext_caps.bits.oled ||
1052 		link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1053 		link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1054 		dc_link_backlight_enable_aux(link, enable);
1055 
1056 	/*edp 1.2*/
1057 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF) {
1058 		if (!link->dc->config.edp_no_power_sequencing)
1059 		/*
1060 		 * Sometimes, DP receiver chip power-controlled externally by an
1061 		 * Embedded Controller could be treated and used as eDP,
1062 		 * if it drives mobile display. In this case,
1063 		 * we shouldn't be doing power-sequencing, hence we can skip
1064 		 * waiting for T9-ready.
1065 		 */
1066 			edp_add_delay_for_T9(link);
1067 		else
1068 			DC_LOG_DC("edp_receiver_ready_T9 skipped\n");
1069 	}
1070 
1071 	if (!enable && link->dpcd_sink_ext_caps.bits.oled)
1072 		msleep(OLED_PRE_T11_DELAY);
1073 }
1074 
1075 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1076 {
1077 	/* notify audio driver for audio modes of monitor */
1078 	struct dc *dc;
1079 	struct clk_mgr *clk_mgr;
1080 	unsigned int i, num_audio = 1;
1081 
1082 	if (!pipe_ctx->stream)
1083 		return;
1084 
1085 	dc = pipe_ctx->stream->ctx->dc;
1086 	clk_mgr = dc->clk_mgr;
1087 
1088 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1089 		return;
1090 
1091 	if (pipe_ctx->stream_res.audio) {
1092 		for (i = 0; i < MAX_PIPES; i++) {
1093 			/*current_state not updated yet*/
1094 			if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1095 				num_audio++;
1096 		}
1097 
1098 		pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1099 
1100 		if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
1101 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1102 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1103 		/* un-mute audio */
1104 		/* TODO: audio should be per stream rather than per link */
1105 		if (is_dp_128b_132b_signal(pipe_ctx))
1106 			pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->audio_mute_control(
1107 					pipe_ctx->stream_res.hpo_dp_stream_enc, false);
1108 		else
1109 			pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1110 					pipe_ctx->stream_res.stream_enc, false);
1111 		if (pipe_ctx->stream_res.audio)
1112 			pipe_ctx->stream_res.audio->enabled = true;
1113 	}
1114 
1115 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1116 		dp_source_sequence_trace(pipe_ctx->stream->link, DPCD_SOURCE_SEQ_AFTER_ENABLE_AUDIO_STREAM);
1117 }
1118 
1119 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1120 {
1121 	struct dc *dc;
1122 	struct clk_mgr *clk_mgr;
1123 
1124 	if (!pipe_ctx || !pipe_ctx->stream)
1125 		return;
1126 
1127 	dc = pipe_ctx->stream->ctx->dc;
1128 	clk_mgr = dc->clk_mgr;
1129 
1130 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1131 		return;
1132 
1133 	if (is_dp_128b_132b_signal(pipe_ctx))
1134 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->audio_mute_control(
1135 				pipe_ctx->stream_res.hpo_dp_stream_enc, true);
1136 	else
1137 		pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1138 				pipe_ctx->stream_res.stream_enc, true);
1139 	if (pipe_ctx->stream_res.audio) {
1140 		pipe_ctx->stream_res.audio->enabled = false;
1141 
1142 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
1143 			if (is_dp_128b_132b_signal(pipe_ctx))
1144 				pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_audio_disable(
1145 						pipe_ctx->stream_res.hpo_dp_stream_enc);
1146 			else
1147 				pipe_ctx->stream_res.stream_enc->funcs->dp_audio_disable(
1148 						pipe_ctx->stream_res.stream_enc);
1149 		else
1150 			pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_disable(
1151 					pipe_ctx->stream_res.stream_enc);
1152 
1153 		if (clk_mgr->funcs->enable_pme_wa)
1154 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1155 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1156 
1157 		/* TODO: notify audio driver for if audio modes list changed
1158 		 * add audio mode list change flag */
1159 		/* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1160 		 * stream->stream_engine_id);
1161 		 */
1162 	}
1163 
1164 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1165 		dp_source_sequence_trace(pipe_ctx->stream->link, DPCD_SOURCE_SEQ_AFTER_DISABLE_AUDIO_STREAM);
1166 }
1167 
1168 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1169 {
1170 	struct dc_stream_state *stream = pipe_ctx->stream;
1171 	struct dc_link *link = stream->link;
1172 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1173 	const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
1174 
1175 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1176 		pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1177 			pipe_ctx->stream_res.stream_enc);
1178 		pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1179 			pipe_ctx->stream_res.stream_enc);
1180 	}
1181 
1182 	if (is_dp_128b_132b_signal(pipe_ctx)) {
1183 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->stop_dp_info_packets(
1184 					pipe_ctx->stream_res.hpo_dp_stream_enc);
1185 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal))
1186 		pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1187 			pipe_ctx->stream_res.stream_enc);
1188 
1189 	dc->hwss.disable_audio_stream(pipe_ctx);
1190 
1191 	link_hwss->reset_stream_encoder(pipe_ctx);
1192 
1193 	if (is_dp_128b_132b_signal(pipe_ctx)) {
1194 		/* TODO: This looks like a bug to me as we are disabling HPO IO when
1195 		 * we are just disabling a single HPO stream. Shouldn't we disable HPO
1196 		 * HW control only when HPOs for all streams are disabled?
1197 		 */
1198 		if (pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control)
1199 			pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control(
1200 					pipe_ctx->stream->ctx->dc->hwseq, false);
1201 	}
1202 }
1203 
1204 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1205 		struct dc_link_settings *link_settings)
1206 {
1207 	struct encoder_unblank_param params = { { 0 } };
1208 	struct dc_stream_state *stream = pipe_ctx->stream;
1209 	struct dc_link *link = stream->link;
1210 	struct dce_hwseq *hws = link->dc->hwseq;
1211 
1212 	/* only 3 items below are used by unblank */
1213 	params.timing = pipe_ctx->stream->timing;
1214 	params.link_settings.link_rate = link_settings->link_rate;
1215 
1216 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1217 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
1218 
1219 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1220 		hws->funcs.edp_backlight_control(link, true);
1221 	}
1222 }
1223 
1224 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1225 {
1226 	struct dc_stream_state *stream = pipe_ctx->stream;
1227 	struct dc_link *link = stream->link;
1228 	struct dce_hwseq *hws = link->dc->hwseq;
1229 
1230 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1231 		hws->funcs.edp_backlight_control(link, false);
1232 		link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1233 	}
1234 
1235 	if (is_dp_128b_132b_signal(pipe_ctx)) {
1236 		/* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1237 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_blank(
1238 				pipe_ctx->stream_res.hpo_dp_stream_enc);
1239 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1240 		pipe_ctx->stream_res.stream_enc->funcs->dp_blank(link, pipe_ctx->stream_res.stream_enc);
1241 
1242 		if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
1243 			/*
1244 			 * After output is idle pattern some sinks need time to recognize the stream
1245 			 * has changed or they enter protection state and hang.
1246 			 */
1247 			msleep(60);
1248 		} else if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP)
1249 			edp_receiver_ready_T9(link);
1250 	}
1251 
1252 }
1253 
1254 
1255 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1256 {
1257 	if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1258 		pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1259 }
1260 
1261 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1262 {
1263 	switch (crtc_id) {
1264 	case CONTROLLER_ID_D0:
1265 		return DTO_SOURCE_ID0;
1266 	case CONTROLLER_ID_D1:
1267 		return DTO_SOURCE_ID1;
1268 	case CONTROLLER_ID_D2:
1269 		return DTO_SOURCE_ID2;
1270 	case CONTROLLER_ID_D3:
1271 		return DTO_SOURCE_ID3;
1272 	case CONTROLLER_ID_D4:
1273 		return DTO_SOURCE_ID4;
1274 	case CONTROLLER_ID_D5:
1275 		return DTO_SOURCE_ID5;
1276 	default:
1277 		return DTO_SOURCE_UNKNOWN;
1278 	}
1279 }
1280 
1281 static void build_audio_output(
1282 	struct dc_state *state,
1283 	const struct pipe_ctx *pipe_ctx,
1284 	struct audio_output *audio_output)
1285 {
1286 	const struct dc_stream_state *stream = pipe_ctx->stream;
1287 	audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1288 
1289 	audio_output->signal = pipe_ctx->stream->signal;
1290 
1291 	/* audio_crtc_info  */
1292 
1293 	audio_output->crtc_info.h_total =
1294 		stream->timing.h_total;
1295 
1296 	/*
1297 	 * Audio packets are sent during actual CRTC blank physical signal, we
1298 	 * need to specify actual active signal portion
1299 	 */
1300 	audio_output->crtc_info.h_active =
1301 			stream->timing.h_addressable
1302 			+ stream->timing.h_border_left
1303 			+ stream->timing.h_border_right;
1304 
1305 	audio_output->crtc_info.v_active =
1306 			stream->timing.v_addressable
1307 			+ stream->timing.v_border_top
1308 			+ stream->timing.v_border_bottom;
1309 
1310 	audio_output->crtc_info.pixel_repetition = 1;
1311 
1312 	audio_output->crtc_info.interlaced =
1313 			stream->timing.flags.INTERLACE;
1314 
1315 	audio_output->crtc_info.refresh_rate =
1316 		(stream->timing.pix_clk_100hz*100)/
1317 		(stream->timing.h_total*stream->timing.v_total);
1318 
1319 	audio_output->crtc_info.color_depth =
1320 		stream->timing.display_color_depth;
1321 
1322 	audio_output->crtc_info.requested_pixel_clock_100Hz =
1323 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1324 
1325 	audio_output->crtc_info.calculated_pixel_clock_100Hz =
1326 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1327 
1328 /*for HDMI, audio ACR is with deep color ratio factor*/
1329 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1330 		audio_output->crtc_info.requested_pixel_clock_100Hz ==
1331 				(stream->timing.pix_clk_100hz)) {
1332 		if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1333 			audio_output->crtc_info.requested_pixel_clock_100Hz =
1334 					audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1335 			audio_output->crtc_info.calculated_pixel_clock_100Hz =
1336 					pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1337 
1338 		}
1339 	}
1340 
1341 	if (state->clk_mgr &&
1342 		(pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1343 			pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1344 		audio_output->pll_info.dp_dto_source_clock_in_khz =
1345 				state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1346 						state->clk_mgr);
1347 	}
1348 
1349 	audio_output->pll_info.feed_back_divider =
1350 			pipe_ctx->pll_settings.feedback_divider;
1351 
1352 	audio_output->pll_info.dto_source =
1353 		translate_to_dto_source(
1354 			pipe_ctx->stream_res.tg->inst + 1);
1355 
1356 	/* TODO hard code to enable for now. Need get from stream */
1357 	audio_output->pll_info.ss_enabled = true;
1358 
1359 	audio_output->pll_info.ss_percentage =
1360 			pipe_ctx->pll_settings.ss_percentage;
1361 }
1362 
1363 static void program_scaler(const struct dc *dc,
1364 		const struct pipe_ctx *pipe_ctx)
1365 {
1366 	struct tg_color color = {0};
1367 
1368 	/* TOFPGA */
1369 	if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1370 		return;
1371 
1372 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1373 		get_surface_visual_confirm_color(pipe_ctx, &color);
1374 	else
1375 		color_space_to_black_color(dc,
1376 				pipe_ctx->stream->output_color_space,
1377 				&color);
1378 
1379 	pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1380 		pipe_ctx->plane_res.xfm,
1381 		pipe_ctx->plane_res.scl_data.lb_params.depth,
1382 		&pipe_ctx->stream->bit_depth_params);
1383 
1384 	if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1385 		/*
1386 		 * The way 420 is packed, 2 channels carry Y component, 1 channel
1387 		 * alternate between Cb and Cr, so both channels need the pixel
1388 		 * value for Y
1389 		 */
1390 		if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1391 			color.color_r_cr = color.color_g_y;
1392 
1393 		pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1394 				pipe_ctx->stream_res.tg,
1395 				&color);
1396 	}
1397 
1398 	pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1399 		&pipe_ctx->plane_res.scl_data);
1400 }
1401 
1402 static enum dc_status dce110_enable_stream_timing(
1403 		struct pipe_ctx *pipe_ctx,
1404 		struct dc_state *context,
1405 		struct dc *dc)
1406 {
1407 	struct dc_stream_state *stream = pipe_ctx->stream;
1408 	struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1409 			pipe_ctx[pipe_ctx->pipe_idx];
1410 	struct tg_color black_color = {0};
1411 
1412 	if (!pipe_ctx_old->stream) {
1413 
1414 		/* program blank color */
1415 		color_space_to_black_color(dc,
1416 				stream->output_color_space, &black_color);
1417 		pipe_ctx->stream_res.tg->funcs->set_blank_color(
1418 				pipe_ctx->stream_res.tg,
1419 				&black_color);
1420 
1421 		/*
1422 		 * Must blank CRTC after disabling power gating and before any
1423 		 * programming, otherwise CRTC will be hung in bad state
1424 		 */
1425 		pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1426 
1427 		if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1428 				pipe_ctx->clock_source,
1429 				&pipe_ctx->stream_res.pix_clk_params,
1430 				&pipe_ctx->pll_settings)) {
1431 			BREAK_TO_DEBUGGER();
1432 			return DC_ERROR_UNEXPECTED;
1433 		}
1434 
1435 		pipe_ctx->stream_res.tg->funcs->program_timing(
1436 				pipe_ctx->stream_res.tg,
1437 				&stream->timing,
1438 				0,
1439 				0,
1440 				0,
1441 				0,
1442 				pipe_ctx->stream->signal,
1443 				true);
1444 	}
1445 
1446 	if (!pipe_ctx_old->stream) {
1447 		if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1448 				pipe_ctx->stream_res.tg)) {
1449 			BREAK_TO_DEBUGGER();
1450 			return DC_ERROR_UNEXPECTED;
1451 		}
1452 	}
1453 
1454 	return DC_OK;
1455 }
1456 
1457 static enum dc_status apply_single_controller_ctx_to_hw(
1458 		struct pipe_ctx *pipe_ctx,
1459 		struct dc_state *context,
1460 		struct dc *dc)
1461 {
1462 	struct dc_stream_state *stream = pipe_ctx->stream;
1463 	struct dc_link *link = stream->link;
1464 	struct drr_params params = {0};
1465 	unsigned int event_triggers = 0;
1466 	struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1467 	struct dce_hwseq *hws = dc->hwseq;
1468 
1469 	if (hws->funcs.disable_stream_gating) {
1470 		hws->funcs.disable_stream_gating(dc, pipe_ctx);
1471 	}
1472 
1473 	if (pipe_ctx->stream_res.audio != NULL) {
1474 		struct audio_output audio_output;
1475 
1476 		build_audio_output(context, pipe_ctx, &audio_output);
1477 
1478 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
1479 			if (is_dp_128b_132b_signal(pipe_ctx))
1480 				pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_audio_setup(
1481 						pipe_ctx->stream_res.hpo_dp_stream_enc,
1482 						pipe_ctx->stream_res.audio->inst,
1483 						&pipe_ctx->stream->audio_info);
1484 			else
1485 				pipe_ctx->stream_res.stream_enc->funcs->dp_audio_setup(
1486 						pipe_ctx->stream_res.stream_enc,
1487 						pipe_ctx->stream_res.audio->inst,
1488 						&pipe_ctx->stream->audio_info);
1489 		else
1490 			pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_setup(
1491 					pipe_ctx->stream_res.stream_enc,
1492 					pipe_ctx->stream_res.audio->inst,
1493 					&pipe_ctx->stream->audio_info,
1494 					&audio_output.crtc_info);
1495 
1496 		pipe_ctx->stream_res.audio->funcs->az_configure(
1497 				pipe_ctx->stream_res.audio,
1498 				pipe_ctx->stream->signal,
1499 				&audio_output.crtc_info,
1500 				&pipe_ctx->stream->audio_info);
1501 	}
1502 
1503 	/* make sure no pipes syncd to the pipe being enabled */
1504 	if (!pipe_ctx->stream->apply_seamless_boot_optimization && dc->config.use_pipe_ctx_sync_logic)
1505 		check_syncd_pipes_for_disabled_master_pipe(dc, context, pipe_ctx->pipe_idx);
1506 
1507 	pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1508 		pipe_ctx->stream_res.opp,
1509 		&stream->bit_depth_params,
1510 		&stream->clamping);
1511 
1512 	pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1513 			pipe_ctx->stream_res.opp,
1514 			COLOR_SPACE_YCBCR601,
1515 			stream->timing.display_color_depth,
1516 			stream->signal);
1517 
1518 	while (odm_pipe) {
1519 		odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1520 				odm_pipe->stream_res.opp,
1521 				COLOR_SPACE_YCBCR601,
1522 				stream->timing.display_color_depth,
1523 				stream->signal);
1524 
1525 		odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1526 				odm_pipe->stream_res.opp,
1527 				&stream->bit_depth_params,
1528 				&stream->clamping);
1529 		odm_pipe = odm_pipe->next_odm_pipe;
1530 	}
1531 
1532 	/* DCN3.1 FPGA Workaround
1533 	 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1534 	 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1535 	 * function core_link_enable_stream
1536 	 */
1537 	if (!(hws->wa.dp_hpo_and_otg_sequence && is_dp_128b_132b_signal(pipe_ctx)))
1538 		/*  */
1539 		/* Do not touch stream timing on seamless boot optimization. */
1540 		if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1541 			hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1542 
1543 	if (hws->funcs.setup_vupdate_interrupt)
1544 		hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1545 
1546 	params.vertical_total_min = stream->adjust.v_total_min;
1547 	params.vertical_total_max = stream->adjust.v_total_max;
1548 	if (pipe_ctx->stream_res.tg->funcs->set_drr)
1549 		pipe_ctx->stream_res.tg->funcs->set_drr(
1550 			pipe_ctx->stream_res.tg, &params);
1551 
1552 	// DRR should set trigger event to monitor surface update event
1553 	if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1554 		event_triggers = 0x80;
1555 	/* Event triggers and num frames initialized for DRR, but can be
1556 	 * later updated for PSR use. Note DRR trigger events are generated
1557 	 * regardless of whether num frames met.
1558 	 */
1559 	if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1560 		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1561 				pipe_ctx->stream_res.tg, event_triggers, 2);
1562 
1563 	if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1564 		pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1565 			pipe_ctx->stream_res.stream_enc,
1566 			pipe_ctx->stream_res.tg->inst);
1567 
1568 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1569 		dp_source_sequence_trace(link, DPCD_SOURCE_SEQ_AFTER_CONNECT_DIG_FE_OTG);
1570 
1571 	if (!stream->dpms_off)
1572 		core_link_enable_stream(context, pipe_ctx);
1573 
1574 	/* DCN3.1 FPGA Workaround
1575 	 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1576 	 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1577 	 * function core_link_enable_stream
1578 	 */
1579 	if (hws->wa.dp_hpo_and_otg_sequence && is_dp_128b_132b_signal(pipe_ctx)) {
1580 		if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1581 			hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1582 	}
1583 
1584 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
1585 
1586 	pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1587 
1588 	return DC_OK;
1589 }
1590 
1591 /******************************************************************************/
1592 
1593 static void power_down_encoders(struct dc *dc)
1594 {
1595 	int i;
1596 
1597 	for (i = 0; i < dc->link_count; i++) {
1598 		enum signal_type signal = dc->links[i]->connector_signal;
1599 
1600 		dc_link_blank_dp_stream(dc->links[i], false);
1601 
1602 		if (signal != SIGNAL_TYPE_EDP)
1603 			signal = SIGNAL_TYPE_NONE;
1604 
1605 		if (dc->links[i]->ep_type == DISPLAY_ENDPOINT_PHY)
1606 			dc->links[i]->link_enc->funcs->disable_output(
1607 					dc->links[i]->link_enc, signal);
1608 
1609 		dc->links[i]->link_status.link_active = false;
1610 		memset(&dc->links[i]->cur_link_settings, 0,
1611 				sizeof(dc->links[i]->cur_link_settings));
1612 	}
1613 }
1614 
1615 static void power_down_controllers(struct dc *dc)
1616 {
1617 	int i;
1618 
1619 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1620 		dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1621 				dc->res_pool->timing_generators[i]);
1622 	}
1623 }
1624 
1625 static void power_down_clock_sources(struct dc *dc)
1626 {
1627 	int i;
1628 
1629 	if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1630 		dc->res_pool->dp_clock_source) == false)
1631 		dm_error("Failed to power down pll! (dp clk src)\n");
1632 
1633 	for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1634 		if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1635 				dc->res_pool->clock_sources[i]) == false)
1636 			dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1637 	}
1638 }
1639 
1640 static void power_down_all_hw_blocks(struct dc *dc)
1641 {
1642 	power_down_encoders(dc);
1643 
1644 	power_down_controllers(dc);
1645 
1646 	power_down_clock_sources(dc);
1647 
1648 	if (dc->fbc_compressor)
1649 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1650 }
1651 
1652 static void disable_vga_and_power_gate_all_controllers(
1653 		struct dc *dc)
1654 {
1655 	int i;
1656 	struct timing_generator *tg;
1657 	struct dc_context *ctx = dc->ctx;
1658 
1659 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1660 		tg = dc->res_pool->timing_generators[i];
1661 
1662 		if (tg->funcs->disable_vga)
1663 			tg->funcs->disable_vga(tg);
1664 	}
1665 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1666 		/* Enable CLOCK gating for each pipe BEFORE controller
1667 		 * powergating. */
1668 		enable_display_pipe_clock_gating(ctx,
1669 				true);
1670 
1671 		dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1672 		dc->hwss.disable_plane(dc,
1673 			&dc->current_state->res_ctx.pipe_ctx[i]);
1674 	}
1675 }
1676 
1677 
1678 static void get_edp_streams(struct dc_state *context,
1679 		struct dc_stream_state **edp_streams,
1680 		int *edp_stream_num)
1681 {
1682 	int i;
1683 
1684 	*edp_stream_num = 0;
1685 	for (i = 0; i < context->stream_count; i++) {
1686 		if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
1687 			edp_streams[*edp_stream_num] = context->streams[i];
1688 			if (++(*edp_stream_num) == MAX_NUM_EDP)
1689 				return;
1690 		}
1691 	}
1692 }
1693 
1694 static void get_edp_links_with_sink(
1695 		struct dc *dc,
1696 		struct dc_link **edp_links_with_sink,
1697 		int *edp_with_sink_num)
1698 {
1699 	int i;
1700 
1701 	/* check if there is an eDP panel not in use */
1702 	*edp_with_sink_num = 0;
1703 	for (i = 0; i < dc->link_count; i++) {
1704 		if (dc->links[i]->local_sink &&
1705 			dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1706 			edp_links_with_sink[*edp_with_sink_num] = dc->links[i];
1707 			if (++(*edp_with_sink_num) == MAX_NUM_EDP)
1708 				return;
1709 		}
1710 	}
1711 }
1712 
1713 /*
1714  * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1715  *  1. Power down all DC HW blocks
1716  *  2. Disable VGA engine on all controllers
1717  *  3. Enable power gating for controller
1718  *  4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1719  */
1720 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1721 {
1722 	struct dc_link *edp_links_with_sink[MAX_NUM_EDP];
1723 	struct dc_link *edp_links[MAX_NUM_EDP];
1724 	struct dc_stream_state *edp_streams[MAX_NUM_EDP];
1725 	struct dc_link *edp_link_with_sink = NULL;
1726 	struct dc_link *edp_link = NULL;
1727 	struct dce_hwseq *hws = dc->hwseq;
1728 	int edp_with_sink_num;
1729 	int edp_num;
1730 	int edp_stream_num;
1731 	int i;
1732 	bool can_apply_edp_fast_boot = false;
1733 	bool can_apply_seamless_boot = false;
1734 	bool keep_edp_vdd_on = false;
1735 	DC_LOGGER_INIT();
1736 
1737 
1738 	get_edp_links_with_sink(dc, edp_links_with_sink, &edp_with_sink_num);
1739 	get_edp_links(dc, edp_links, &edp_num);
1740 
1741 	if (hws->funcs.init_pipes)
1742 		hws->funcs.init_pipes(dc, context);
1743 
1744 	get_edp_streams(context, edp_streams, &edp_stream_num);
1745 
1746 	// Check fastboot support, disable on DCE8 because of blank screens
1747 	if (edp_num && edp_stream_num && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1748 		    dc->ctx->dce_version != DCE_VERSION_8_1 &&
1749 		    dc->ctx->dce_version != DCE_VERSION_8_3) {
1750 		for (i = 0; i < edp_num; i++) {
1751 			edp_link = edp_links[i];
1752 			if (edp_link != edp_streams[0]->link)
1753 				continue;
1754 			// enable fastboot if backend is enabled on eDP
1755 			if (edp_link->link_enc->funcs->is_dig_enabled &&
1756 			    edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
1757 			    edp_link->link_status.link_active) {
1758 				struct dc_stream_state *edp_stream = edp_streams[0];
1759 
1760 				can_apply_edp_fast_boot = dc_validate_boot_timing(dc,
1761 					edp_stream->sink, &edp_stream->timing);
1762 				edp_stream->apply_edp_fast_boot_optimization = can_apply_edp_fast_boot;
1763 				if (can_apply_edp_fast_boot)
1764 					DC_LOG_EVENT_LINK_TRAINING("eDP fast boot disabled to optimize link rate\n");
1765 
1766 				break;
1767 			}
1768 		}
1769 
1770 		/*
1771 		 * TO-DO: So far the code logic below only addresses single eDP case.
1772 		 * For dual eDP case, there are a few things that need to be
1773 		 * implemented first:
1774 		 *
1775 		 * 1. Change the fastboot logic above, so eDP link[0 or 1]'s
1776 		 * stream[0 or 1] will all be checked.
1777 		 *
1778 		 * 2. Change keep_edp_vdd_on to an array, and maintain keep_edp_vdd_on
1779 		 * for each eDP.
1780 		 *
1781 		 * Once above 2 things are completed, we can then change the logic below
1782 		 * correspondingly, so dual eDP case will be fully covered.
1783 		 */
1784 
1785 		// We are trying to enable eDP, don't power down VDD if eDP stream is existing
1786 		if ((edp_stream_num == 1 && edp_streams[0] != NULL) || can_apply_edp_fast_boot) {
1787 			keep_edp_vdd_on = true;
1788 			DC_LOG_EVENT_LINK_TRAINING("Keep eDP Vdd on\n");
1789 		} else {
1790 			DC_LOG_EVENT_LINK_TRAINING("No eDP stream enabled, turn eDP Vdd off\n");
1791 		}
1792 	}
1793 
1794 	// Check seamless boot support
1795 	for (i = 0; i < context->stream_count; i++) {
1796 		if (context->streams[i]->apply_seamless_boot_optimization) {
1797 			can_apply_seamless_boot = true;
1798 			break;
1799 		}
1800 	}
1801 
1802 	/* eDP should not have stream in resume from S4 and so even with VBios post
1803 	 * it should get turned off
1804 	 */
1805 	if (edp_with_sink_num)
1806 		edp_link_with_sink = edp_links_with_sink[0];
1807 
1808 	if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1809 		if (edp_link_with_sink && !keep_edp_vdd_on) {
1810 			/*turn off backlight before DP_blank and encoder powered down*/
1811 			hws->funcs.edp_backlight_control(edp_link_with_sink, false);
1812 		}
1813 		/*resume from S3, no vbios posting, no need to power down again*/
1814 		power_down_all_hw_blocks(dc);
1815 		disable_vga_and_power_gate_all_controllers(dc);
1816 		if (edp_link_with_sink && !keep_edp_vdd_on)
1817 			dc->hwss.edp_power_control(edp_link_with_sink, false);
1818 	}
1819 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 1);
1820 }
1821 
1822 static uint32_t compute_pstate_blackout_duration(
1823 	struct bw_fixed blackout_duration,
1824 	const struct dc_stream_state *stream)
1825 {
1826 	uint32_t total_dest_line_time_ns;
1827 	uint32_t pstate_blackout_duration_ns;
1828 
1829 	pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1830 
1831 	total_dest_line_time_ns = 1000000UL *
1832 		(stream->timing.h_total * 10) /
1833 		stream->timing.pix_clk_100hz +
1834 		pstate_blackout_duration_ns;
1835 
1836 	return total_dest_line_time_ns;
1837 }
1838 
1839 static void dce110_set_displaymarks(
1840 	const struct dc *dc,
1841 	struct dc_state *context)
1842 {
1843 	uint8_t i, num_pipes;
1844 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1845 
1846 	for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1847 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1848 		uint32_t total_dest_line_time_ns;
1849 
1850 		if (pipe_ctx->stream == NULL)
1851 			continue;
1852 
1853 		total_dest_line_time_ns = compute_pstate_blackout_duration(
1854 			dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1855 		pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1856 			pipe_ctx->plane_res.mi,
1857 			context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1858 			context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1859 			context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
1860 			context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1861 			total_dest_line_time_ns);
1862 		if (i == underlay_idx) {
1863 			num_pipes++;
1864 			pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1865 				pipe_ctx->plane_res.mi,
1866 				context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1867 				context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1868 				context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1869 				total_dest_line_time_ns);
1870 		}
1871 		num_pipes++;
1872 	}
1873 }
1874 
1875 void dce110_set_safe_displaymarks(
1876 		struct resource_context *res_ctx,
1877 		const struct resource_pool *pool)
1878 {
1879 	int i;
1880 	int underlay_idx = pool->underlay_pipe_index;
1881 	struct dce_watermarks max_marks = {
1882 		MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1883 	struct dce_watermarks nbp_marks = {
1884 		SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1885 	struct dce_watermarks min_marks = { 0, 0, 0, 0};
1886 
1887 	for (i = 0; i < MAX_PIPES; i++) {
1888 		if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1889 			continue;
1890 
1891 		res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1892 				res_ctx->pipe_ctx[i].plane_res.mi,
1893 				nbp_marks,
1894 				max_marks,
1895 				min_marks,
1896 				max_marks,
1897 				MAX_WATERMARK);
1898 
1899 		if (i == underlay_idx)
1900 			res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1901 				res_ctx->pipe_ctx[i].plane_res.mi,
1902 				nbp_marks,
1903 				max_marks,
1904 				max_marks,
1905 				MAX_WATERMARK);
1906 
1907 	}
1908 }
1909 
1910 /*******************************************************************************
1911  * Public functions
1912  ******************************************************************************/
1913 
1914 static void set_drr(struct pipe_ctx **pipe_ctx,
1915 		int num_pipes, struct dc_crtc_timing_adjust adjust)
1916 {
1917 	int i = 0;
1918 	struct drr_params params = {0};
1919 	// DRR should set trigger event to monitor surface update event
1920 	unsigned int event_triggers = 0x80;
1921 	// Note DRR trigger events are generated regardless of whether num frames met.
1922 	unsigned int num_frames = 2;
1923 
1924 	params.vertical_total_max = adjust.v_total_max;
1925 	params.vertical_total_min = adjust.v_total_min;
1926 
1927 	/* TODO: If multiple pipes are to be supported, you need
1928 	 * some GSL stuff. Static screen triggers may be programmed differently
1929 	 * as well.
1930 	 */
1931 	for (i = 0; i < num_pipes; i++) {
1932 		pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1933 			pipe_ctx[i]->stream_res.tg, &params);
1934 
1935 		if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
1936 			pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1937 					pipe_ctx[i]->stream_res.tg,
1938 					event_triggers, num_frames);
1939 	}
1940 }
1941 
1942 static void get_position(struct pipe_ctx **pipe_ctx,
1943 		int num_pipes,
1944 		struct crtc_position *position)
1945 {
1946 	int i = 0;
1947 
1948 	/* TODO: handle pipes > 1
1949 	 */
1950 	for (i = 0; i < num_pipes; i++)
1951 		pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1952 }
1953 
1954 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1955 		int num_pipes, const struct dc_static_screen_params *params)
1956 {
1957 	unsigned int i;
1958 	unsigned int triggers = 0;
1959 
1960 	if (params->triggers.overlay_update)
1961 		triggers |= 0x100;
1962 	if (params->triggers.surface_update)
1963 		triggers |= 0x80;
1964 	if (params->triggers.cursor_update)
1965 		triggers |= 0x2;
1966 	if (params->triggers.force_trigger)
1967 		triggers |= 0x1;
1968 
1969 	if (num_pipes) {
1970 		struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
1971 
1972 		if (dc->fbc_compressor)
1973 			triggers |= 0x84;
1974 	}
1975 
1976 	for (i = 0; i < num_pipes; i++)
1977 		pipe_ctx[i]->stream_res.tg->funcs->
1978 			set_static_screen_control(pipe_ctx[i]->stream_res.tg,
1979 					triggers, params->num_frames);
1980 }
1981 
1982 /*
1983  *  Check if FBC can be enabled
1984  */
1985 static bool should_enable_fbc(struct dc *dc,
1986 		struct dc_state *context,
1987 		uint32_t *pipe_idx)
1988 {
1989 	uint32_t i;
1990 	struct pipe_ctx *pipe_ctx = NULL;
1991 	struct resource_context *res_ctx = &context->res_ctx;
1992 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1993 
1994 
1995 	ASSERT(dc->fbc_compressor);
1996 
1997 	/* FBC memory should be allocated */
1998 	if (!dc->ctx->fbc_gpu_addr)
1999 		return false;
2000 
2001 	/* Only supports single display */
2002 	if (context->stream_count != 1)
2003 		return false;
2004 
2005 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2006 		if (res_ctx->pipe_ctx[i].stream) {
2007 
2008 			pipe_ctx = &res_ctx->pipe_ctx[i];
2009 
2010 			if (!pipe_ctx)
2011 				continue;
2012 
2013 			/* fbc not applicable on underlay pipe */
2014 			if (pipe_ctx->pipe_idx != underlay_idx) {
2015 				*pipe_idx = i;
2016 				break;
2017 			}
2018 		}
2019 	}
2020 
2021 	if (i == dc->res_pool->pipe_count)
2022 		return false;
2023 
2024 	if (!pipe_ctx->stream->link)
2025 		return false;
2026 
2027 	/* Only supports eDP */
2028 	if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
2029 		return false;
2030 
2031 	/* PSR should not be enabled */
2032 	if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
2033 		return false;
2034 
2035 	/* Nothing to compress */
2036 	if (!pipe_ctx->plane_state)
2037 		return false;
2038 
2039 	/* Only for non-linear tiling */
2040 	if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
2041 		return false;
2042 
2043 	return true;
2044 }
2045 
2046 /*
2047  *  Enable FBC
2048  */
2049 static void enable_fbc(
2050 		struct dc *dc,
2051 		struct dc_state *context)
2052 {
2053 	uint32_t pipe_idx = 0;
2054 
2055 	if (should_enable_fbc(dc, context, &pipe_idx)) {
2056 		/* Program GRPH COMPRESSED ADDRESS and PITCH */
2057 		struct compr_addr_and_pitch_params params = {0, 0, 0};
2058 		struct compressor *compr = dc->fbc_compressor;
2059 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2060 
2061 		params.source_view_width = pipe_ctx->stream->timing.h_addressable;
2062 		params.source_view_height = pipe_ctx->stream->timing.v_addressable;
2063 		params.inst = pipe_ctx->stream_res.tg->inst;
2064 		compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
2065 
2066 		compr->funcs->surface_address_and_pitch(compr, &params);
2067 		compr->funcs->set_fbc_invalidation_triggers(compr, 1);
2068 
2069 		compr->funcs->enable_fbc(compr, &params);
2070 	}
2071 }
2072 
2073 static void dce110_reset_hw_ctx_wrap(
2074 		struct dc *dc,
2075 		struct dc_state *context)
2076 {
2077 	int i;
2078 
2079 	/* Reset old context */
2080 	/* look up the targets that have been removed since last commit */
2081 	for (i = 0; i < MAX_PIPES; i++) {
2082 		struct pipe_ctx *pipe_ctx_old =
2083 			&dc->current_state->res_ctx.pipe_ctx[i];
2084 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2085 
2086 		/* Note: We need to disable output if clock sources change,
2087 		 * since bios does optimization and doesn't apply if changing
2088 		 * PHY when not already disabled.
2089 		 */
2090 
2091 		/* Skip underlay pipe since it will be handled in commit surface*/
2092 		if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
2093 			continue;
2094 
2095 		if (!pipe_ctx->stream ||
2096 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2097 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
2098 
2099 			/* Disable if new stream is null. O/w, if stream is
2100 			 * disabled already, no need to disable again.
2101 			 */
2102 			if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
2103 				core_link_disable_stream(pipe_ctx_old);
2104 
2105 				/* free acquired resources*/
2106 				if (pipe_ctx_old->stream_res.audio) {
2107 					/*disable az_endpoint*/
2108 					pipe_ctx_old->stream_res.audio->funcs->
2109 							az_disable(pipe_ctx_old->stream_res.audio);
2110 
2111 					/*free audio*/
2112 					if (dc->caps.dynamic_audio == true) {
2113 						/*we have to dynamic arbitrate the audio endpoints*/
2114 						/*we free the resource, need reset is_audio_acquired*/
2115 						update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2116 								pipe_ctx_old->stream_res.audio, false);
2117 						pipe_ctx_old->stream_res.audio = NULL;
2118 					}
2119 				}
2120 			}
2121 
2122 			pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
2123 			if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
2124 				dm_error("DC: failed to blank crtc!\n");
2125 				BREAK_TO_DEBUGGER();
2126 			}
2127 			pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2128 			pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2129 					pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2130 
2131 			if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2132 										dc->res_pool,
2133 										old_clk))
2134 				old_clk->funcs->cs_power_down(old_clk);
2135 
2136 			dc->hwss.disable_plane(dc, pipe_ctx_old);
2137 
2138 			pipe_ctx_old->stream = NULL;
2139 		}
2140 	}
2141 }
2142 
2143 static void dce110_setup_audio_dto(
2144 		struct dc *dc,
2145 		struct dc_state *context)
2146 {
2147 	int i;
2148 
2149 	/* program audio wall clock. use HDMI as clock source if HDMI
2150 	 * audio active. Otherwise, use DP as clock source
2151 	 * first, loop to find any HDMI audio, if not, loop find DP audio
2152 	 */
2153 	/* Setup audio rate clock source */
2154 	/* Issue:
2155 	* Audio lag happened on DP monitor when unplug a HDMI monitor
2156 	*
2157 	* Cause:
2158 	* In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2159 	* is set to either dto0 or dto1, audio should work fine.
2160 	* In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2161 	* set to dto0 will cause audio lag.
2162 	*
2163 	* Solution:
2164 	* Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2165 	* find first available pipe with audio, setup audio wall DTO per topology
2166 	* instead of per pipe.
2167 	*/
2168 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2169 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2170 
2171 		if (pipe_ctx->stream == NULL)
2172 			continue;
2173 
2174 		if (pipe_ctx->top_pipe)
2175 			continue;
2176 		if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2177 			continue;
2178 		if (pipe_ctx->stream_res.audio != NULL) {
2179 			struct audio_output audio_output;
2180 
2181 			build_audio_output(context, pipe_ctx, &audio_output);
2182 
2183 			if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->set_audio_dtbclk_dto) {
2184 				/* disable audio DTBCLK DTO */
2185 				dc->res_pool->dccg->funcs->set_audio_dtbclk_dto(
2186 					dc->res_pool->dccg, 0);
2187 
2188 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2189 						pipe_ctx->stream_res.audio,
2190 						pipe_ctx->stream->signal,
2191 						&audio_output.crtc_info,
2192 						&audio_output.pll_info);
2193 			} else
2194 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2195 					pipe_ctx->stream_res.audio,
2196 					pipe_ctx->stream->signal,
2197 					&audio_output.crtc_info,
2198 					&audio_output.pll_info);
2199 			break;
2200 		}
2201 	}
2202 
2203 	/* no HDMI audio is found, try DP audio */
2204 	if (i == dc->res_pool->pipe_count) {
2205 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2206 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2207 
2208 			if (pipe_ctx->stream == NULL)
2209 				continue;
2210 
2211 			if (pipe_ctx->top_pipe)
2212 				continue;
2213 
2214 			if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2215 				continue;
2216 
2217 			if (pipe_ctx->stream_res.audio != NULL) {
2218 				struct audio_output audio_output;
2219 
2220 				build_audio_output(context, pipe_ctx, &audio_output);
2221 
2222 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2223 					pipe_ctx->stream_res.audio,
2224 					pipe_ctx->stream->signal,
2225 					&audio_output.crtc_info,
2226 					&audio_output.pll_info);
2227 				break;
2228 			}
2229 		}
2230 	}
2231 }
2232 
2233 enum dc_status dce110_apply_ctx_to_hw(
2234 		struct dc *dc,
2235 		struct dc_state *context)
2236 {
2237 	struct dce_hwseq *hws = dc->hwseq;
2238 	struct dc_bios *dcb = dc->ctx->dc_bios;
2239 	enum dc_status status;
2240 	int i;
2241 
2242 	/* reset syncd pipes from disabled pipes */
2243 	if (dc->config.use_pipe_ctx_sync_logic)
2244 		reset_syncd_pipes_from_disabled_pipes(dc, context);
2245 
2246 	/* Reset old context */
2247 	/* look up the targets that have been removed since last commit */
2248 	hws->funcs.reset_hw_ctx_wrap(dc, context);
2249 
2250 	/* Skip applying if no targets */
2251 	if (context->stream_count <= 0)
2252 		return DC_OK;
2253 
2254 	/* Apply new context */
2255 	dcb->funcs->set_scratch_critical_state(dcb, true);
2256 
2257 	/* below is for real asic only */
2258 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2259 		struct pipe_ctx *pipe_ctx_old =
2260 					&dc->current_state->res_ctx.pipe_ctx[i];
2261 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2262 
2263 		if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2264 			continue;
2265 
2266 		if (pipe_ctx->stream == pipe_ctx_old->stream) {
2267 			if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2268 				dce_crtc_switch_to_clk_src(dc->hwseq,
2269 						pipe_ctx->clock_source, i);
2270 			continue;
2271 		}
2272 
2273 		hws->funcs.enable_display_power_gating(
2274 				dc, i, dc->ctx->dc_bios,
2275 				PIPE_GATING_CONTROL_DISABLE);
2276 	}
2277 
2278 	if (dc->fbc_compressor)
2279 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2280 
2281 	dce110_setup_audio_dto(dc, context);
2282 
2283 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2284 		struct pipe_ctx *pipe_ctx_old =
2285 					&dc->current_state->res_ctx.pipe_ctx[i];
2286 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2287 
2288 		if (pipe_ctx->stream == NULL)
2289 			continue;
2290 
2291 		if (pipe_ctx->stream == pipe_ctx_old->stream &&
2292 			pipe_ctx->stream->link->link_state_valid) {
2293 			continue;
2294 		}
2295 
2296 		if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2297 			continue;
2298 
2299 		if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2300 			continue;
2301 
2302 		status = apply_single_controller_ctx_to_hw(
2303 				pipe_ctx,
2304 				context,
2305 				dc);
2306 
2307 		if (DC_OK != status)
2308 			return status;
2309 	}
2310 
2311 	if (dc->fbc_compressor)
2312 		enable_fbc(dc, dc->current_state);
2313 
2314 	dcb->funcs->set_scratch_critical_state(dcb, false);
2315 
2316 	return DC_OK;
2317 }
2318 
2319 /*******************************************************************************
2320  * Front End programming
2321  ******************************************************************************/
2322 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2323 {
2324 	struct default_adjustment default_adjust = { 0 };
2325 
2326 	default_adjust.force_hw_default = false;
2327 	default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2328 	default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2329 	default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2330 	default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2331 
2332 	/* display color depth */
2333 	default_adjust.color_depth =
2334 		pipe_ctx->stream->timing.display_color_depth;
2335 
2336 	/* Lb color depth */
2337 	default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2338 
2339 	pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2340 					pipe_ctx->plane_res.xfm, &default_adjust);
2341 }
2342 
2343 
2344 /*******************************************************************************
2345  * In order to turn on/off specific surface we will program
2346  * Blender + CRTC
2347  *
2348  * In case that we have two surfaces and they have a different visibility
2349  * we can't turn off the CRTC since it will turn off the entire display
2350  *
2351  * |----------------------------------------------- |
2352  * |bottom pipe|curr pipe  |              |         |
2353  * |Surface    |Surface    | Blender      |  CRCT   |
2354  * |visibility |visibility | Configuration|         |
2355  * |------------------------------------------------|
2356  * |   off     |    off    | CURRENT_PIPE | blank   |
2357  * |   off     |    on     | CURRENT_PIPE | unblank |
2358  * |   on      |    off    | OTHER_PIPE   | unblank |
2359  * |   on      |    on     | BLENDING     | unblank |
2360  * -------------------------------------------------|
2361  *
2362  ******************************************************************************/
2363 static void program_surface_visibility(const struct dc *dc,
2364 		struct pipe_ctx *pipe_ctx)
2365 {
2366 	enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2367 	bool blank_target = false;
2368 
2369 	if (pipe_ctx->bottom_pipe) {
2370 
2371 		/* For now we are supporting only two pipes */
2372 		ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2373 
2374 		if (pipe_ctx->bottom_pipe->plane_state->visible) {
2375 			if (pipe_ctx->plane_state->visible)
2376 				blender_mode = BLND_MODE_BLENDING;
2377 			else
2378 				blender_mode = BLND_MODE_OTHER_PIPE;
2379 
2380 		} else if (!pipe_ctx->plane_state->visible)
2381 			blank_target = true;
2382 
2383 	} else if (!pipe_ctx->plane_state->visible)
2384 		blank_target = true;
2385 
2386 	dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2387 	pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2388 
2389 }
2390 
2391 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2392 {
2393 	int i = 0;
2394 	struct xfm_grph_csc_adjustment adjust;
2395 	memset(&adjust, 0, sizeof(adjust));
2396 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2397 
2398 
2399 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2400 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2401 
2402 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2403 			adjust.temperature_matrix[i] =
2404 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2405 	}
2406 
2407 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2408 }
2409 static void update_plane_addr(const struct dc *dc,
2410 		struct pipe_ctx *pipe_ctx)
2411 {
2412 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2413 
2414 	if (plane_state == NULL)
2415 		return;
2416 
2417 	pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2418 			pipe_ctx->plane_res.mi,
2419 			&plane_state->address,
2420 			plane_state->flip_immediate);
2421 
2422 	plane_state->status.requested_address = plane_state->address;
2423 }
2424 
2425 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2426 {
2427 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2428 
2429 	if (plane_state == NULL)
2430 		return;
2431 
2432 	plane_state->status.is_flip_pending =
2433 			pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2434 					pipe_ctx->plane_res.mi);
2435 
2436 	if (plane_state->status.is_flip_pending && !plane_state->visible)
2437 		pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2438 
2439 	plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2440 	if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2441 			pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2442 		plane_state->status.is_right_eye =\
2443 				!pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2444 	}
2445 }
2446 
2447 void dce110_power_down(struct dc *dc)
2448 {
2449 	power_down_all_hw_blocks(dc);
2450 	disable_vga_and_power_gate_all_controllers(dc);
2451 }
2452 
2453 static bool wait_for_reset_trigger_to_occur(
2454 	struct dc_context *dc_ctx,
2455 	struct timing_generator *tg)
2456 {
2457 	bool rc = false;
2458 
2459 	/* To avoid endless loop we wait at most
2460 	 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2461 	const uint32_t frames_to_wait_on_triggered_reset = 10;
2462 	uint32_t i;
2463 
2464 	for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2465 
2466 		if (!tg->funcs->is_counter_moving(tg)) {
2467 			DC_ERROR("TG counter is not moving!\n");
2468 			break;
2469 		}
2470 
2471 		if (tg->funcs->did_triggered_reset_occur(tg)) {
2472 			rc = true;
2473 			/* usually occurs at i=1 */
2474 			DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2475 					i);
2476 			break;
2477 		}
2478 
2479 		/* Wait for one frame. */
2480 		tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2481 		tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2482 	}
2483 
2484 	if (false == rc)
2485 		DC_ERROR("GSL: Timeout on reset trigger!\n");
2486 
2487 	return rc;
2488 }
2489 
2490 /* Enable timing synchronization for a group of Timing Generators. */
2491 static void dce110_enable_timing_synchronization(
2492 		struct dc *dc,
2493 		int group_index,
2494 		int group_size,
2495 		struct pipe_ctx *grouped_pipes[])
2496 {
2497 	struct dc_context *dc_ctx = dc->ctx;
2498 	struct dcp_gsl_params gsl_params = { 0 };
2499 	int i;
2500 
2501 	DC_SYNC_INFO("GSL: Setting-up...\n");
2502 
2503 	/* Designate a single TG in the group as a master.
2504 	 * Since HW doesn't care which one, we always assign
2505 	 * the 1st one in the group. */
2506 	gsl_params.gsl_group = 0;
2507 	gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2508 
2509 	for (i = 0; i < group_size; i++)
2510 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2511 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2512 
2513 	/* Reset slave controllers on master VSync */
2514 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2515 
2516 	for (i = 1 /* skip the master */; i < group_size; i++)
2517 		grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2518 				grouped_pipes[i]->stream_res.tg,
2519 				gsl_params.gsl_group);
2520 
2521 	for (i = 1 /* skip the master */; i < group_size; i++) {
2522 		DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2523 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2524 		grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2525 				grouped_pipes[i]->stream_res.tg);
2526 	}
2527 
2528 	/* GSL Vblank synchronization is a one time sync mechanism, assumption
2529 	 * is that the sync'ed displays will not drift out of sync over time*/
2530 	DC_SYNC_INFO("GSL: Restoring register states.\n");
2531 	for (i = 0; i < group_size; i++)
2532 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2533 
2534 	DC_SYNC_INFO("GSL: Set-up complete.\n");
2535 }
2536 
2537 static void dce110_enable_per_frame_crtc_position_reset(
2538 		struct dc *dc,
2539 		int group_size,
2540 		struct pipe_ctx *grouped_pipes[])
2541 {
2542 	struct dc_context *dc_ctx = dc->ctx;
2543 	struct dcp_gsl_params gsl_params = { 0 };
2544 	int i;
2545 
2546 	gsl_params.gsl_group = 0;
2547 	gsl_params.gsl_master = 0;
2548 
2549 	for (i = 0; i < group_size; i++)
2550 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2551 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2552 
2553 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2554 
2555 	for (i = 1; i < group_size; i++)
2556 		grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2557 				grouped_pipes[i]->stream_res.tg,
2558 				gsl_params.gsl_master,
2559 				&grouped_pipes[i]->stream->triggered_crtc_reset);
2560 
2561 	DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2562 	for (i = 1; i < group_size; i++)
2563 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2564 
2565 	for (i = 0; i < group_size; i++)
2566 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2567 
2568 }
2569 
2570 static void init_pipes(struct dc *dc, struct dc_state *context)
2571 {
2572 	// Do nothing
2573 }
2574 
2575 static void init_hw(struct dc *dc)
2576 {
2577 	int i;
2578 	struct dc_bios *bp;
2579 	struct transform *xfm;
2580 	struct abm *abm;
2581 	struct dmcu *dmcu;
2582 	struct dce_hwseq *hws = dc->hwseq;
2583 	uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2584 
2585 	bp = dc->ctx->dc_bios;
2586 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2587 		xfm = dc->res_pool->transforms[i];
2588 		xfm->funcs->transform_reset(xfm);
2589 
2590 		hws->funcs.enable_display_power_gating(
2591 				dc, i, bp,
2592 				PIPE_GATING_CONTROL_INIT);
2593 		hws->funcs.enable_display_power_gating(
2594 				dc, i, bp,
2595 				PIPE_GATING_CONTROL_DISABLE);
2596 		hws->funcs.enable_display_pipe_clock_gating(
2597 			dc->ctx,
2598 			true);
2599 	}
2600 
2601 	dce_clock_gating_power_up(dc->hwseq, false);
2602 	/***************************************/
2603 
2604 	for (i = 0; i < dc->link_count; i++) {
2605 		/****************************************/
2606 		/* Power up AND update implementation according to the
2607 		 * required signal (which may be different from the
2608 		 * default signal on connector). */
2609 		struct dc_link *link = dc->links[i];
2610 
2611 		link->link_enc->funcs->hw_init(link->link_enc);
2612 	}
2613 
2614 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2615 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2616 
2617 		tg->funcs->disable_vga(tg);
2618 
2619 		/* Blank controller using driver code instead of
2620 		 * command table. */
2621 		tg->funcs->set_blank(tg, true);
2622 		hwss_wait_for_blank_complete(tg);
2623 	}
2624 
2625 	for (i = 0; i < dc->res_pool->audio_count; i++) {
2626 		struct audio *audio = dc->res_pool->audios[i];
2627 		audio->funcs->hw_init(audio);
2628 	}
2629 
2630 	for (i = 0; i < dc->link_count; i++) {
2631 		struct dc_link *link = dc->links[i];
2632 
2633 		if (link->panel_cntl)
2634 			backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2635 	}
2636 
2637 	abm = dc->res_pool->abm;
2638 	if (abm != NULL)
2639 		abm->funcs->abm_init(abm, backlight);
2640 
2641 	dmcu = dc->res_pool->dmcu;
2642 	if (dmcu != NULL && abm != NULL)
2643 		abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2644 
2645 	if (dc->fbc_compressor)
2646 		dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2647 
2648 }
2649 
2650 
2651 void dce110_prepare_bandwidth(
2652 		struct dc *dc,
2653 		struct dc_state *context)
2654 {
2655 	struct clk_mgr *dccg = dc->clk_mgr;
2656 
2657 	dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2658 
2659 	dccg->funcs->update_clocks(
2660 			dccg,
2661 			context,
2662 			false);
2663 }
2664 
2665 void dce110_optimize_bandwidth(
2666 		struct dc *dc,
2667 		struct dc_state *context)
2668 {
2669 	struct clk_mgr *dccg = dc->clk_mgr;
2670 
2671 	dce110_set_displaymarks(dc, context);
2672 
2673 	dccg->funcs->update_clocks(
2674 			dccg,
2675 			context,
2676 			true);
2677 }
2678 
2679 static void dce110_program_front_end_for_pipe(
2680 		struct dc *dc, struct pipe_ctx *pipe_ctx)
2681 {
2682 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2683 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2684 	struct xfm_grph_csc_adjustment adjust;
2685 	struct out_csc_color_matrix tbl_entry;
2686 	unsigned int i;
2687 	struct dce_hwseq *hws = dc->hwseq;
2688 
2689 	DC_LOGGER_INIT();
2690 	memset(&tbl_entry, 0, sizeof(tbl_entry));
2691 
2692 	memset(&adjust, 0, sizeof(adjust));
2693 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2694 
2695 	dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2696 
2697 	set_default_colors(pipe_ctx);
2698 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2699 			== true) {
2700 		tbl_entry.color_space =
2701 			pipe_ctx->stream->output_color_space;
2702 
2703 		for (i = 0; i < 12; i++)
2704 			tbl_entry.regval[i] =
2705 			pipe_ctx->stream->csc_color_matrix.matrix[i];
2706 
2707 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2708 				(pipe_ctx->plane_res.xfm, &tbl_entry);
2709 	}
2710 
2711 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2712 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2713 
2714 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2715 			adjust.temperature_matrix[i] =
2716 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2717 	}
2718 
2719 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2720 
2721 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
2722 
2723 	program_scaler(dc, pipe_ctx);
2724 
2725 	mi->funcs->mem_input_program_surface_config(
2726 			mi,
2727 			plane_state->format,
2728 			&plane_state->tiling_info,
2729 			&plane_state->plane_size,
2730 			plane_state->rotation,
2731 			NULL,
2732 			false);
2733 	if (mi->funcs->set_blank)
2734 		mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2735 
2736 	if (dc->config.gpu_vm_support)
2737 		mi->funcs->mem_input_program_pte_vm(
2738 				pipe_ctx->plane_res.mi,
2739 				plane_state->format,
2740 				&plane_state->tiling_info,
2741 				plane_state->rotation);
2742 
2743 	/* Moved programming gamma from dc to hwss */
2744 	if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2745 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2746 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
2747 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2748 
2749 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
2750 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2751 
2752 	DC_LOG_SURFACE(
2753 			"Pipe:%d %p: addr hi:0x%x, "
2754 			"addr low:0x%x, "
2755 			"src: %d, %d, %d,"
2756 			" %d; dst: %d, %d, %d, %d;"
2757 			"clip: %d, %d, %d, %d\n",
2758 			pipe_ctx->pipe_idx,
2759 			(void *) pipe_ctx->plane_state,
2760 			pipe_ctx->plane_state->address.grph.addr.high_part,
2761 			pipe_ctx->plane_state->address.grph.addr.low_part,
2762 			pipe_ctx->plane_state->src_rect.x,
2763 			pipe_ctx->plane_state->src_rect.y,
2764 			pipe_ctx->plane_state->src_rect.width,
2765 			pipe_ctx->plane_state->src_rect.height,
2766 			pipe_ctx->plane_state->dst_rect.x,
2767 			pipe_ctx->plane_state->dst_rect.y,
2768 			pipe_ctx->plane_state->dst_rect.width,
2769 			pipe_ctx->plane_state->dst_rect.height,
2770 			pipe_ctx->plane_state->clip_rect.x,
2771 			pipe_ctx->plane_state->clip_rect.y,
2772 			pipe_ctx->plane_state->clip_rect.width,
2773 			pipe_ctx->plane_state->clip_rect.height);
2774 
2775 	DC_LOG_SURFACE(
2776 			"Pipe %d: width, height, x, y\n"
2777 			"viewport:%d, %d, %d, %d\n"
2778 			"recout:  %d, %d, %d, %d\n",
2779 			pipe_ctx->pipe_idx,
2780 			pipe_ctx->plane_res.scl_data.viewport.width,
2781 			pipe_ctx->plane_res.scl_data.viewport.height,
2782 			pipe_ctx->plane_res.scl_data.viewport.x,
2783 			pipe_ctx->plane_res.scl_data.viewport.y,
2784 			pipe_ctx->plane_res.scl_data.recout.width,
2785 			pipe_ctx->plane_res.scl_data.recout.height,
2786 			pipe_ctx->plane_res.scl_data.recout.x,
2787 			pipe_ctx->plane_res.scl_data.recout.y);
2788 }
2789 
2790 static void dce110_apply_ctx_for_surface(
2791 		struct dc *dc,
2792 		const struct dc_stream_state *stream,
2793 		int num_planes,
2794 		struct dc_state *context)
2795 {
2796 	int i;
2797 
2798 	if (num_planes == 0)
2799 		return;
2800 
2801 	if (dc->fbc_compressor)
2802 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2803 
2804 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2805 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2806 
2807 		if (pipe_ctx->stream != stream)
2808 			continue;
2809 
2810 		/* Need to allocate mem before program front end for Fiji */
2811 		pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2812 				pipe_ctx->plane_res.mi,
2813 				pipe_ctx->stream->timing.h_total,
2814 				pipe_ctx->stream->timing.v_total,
2815 				pipe_ctx->stream->timing.pix_clk_100hz / 10,
2816 				context->stream_count);
2817 
2818 		dce110_program_front_end_for_pipe(dc, pipe_ctx);
2819 
2820 		dc->hwss.update_plane_addr(dc, pipe_ctx);
2821 
2822 		program_surface_visibility(dc, pipe_ctx);
2823 
2824 	}
2825 
2826 	if (dc->fbc_compressor)
2827 		enable_fbc(dc, context);
2828 }
2829 
2830 static void dce110_post_unlock_program_front_end(
2831 		struct dc *dc,
2832 		struct dc_state *context)
2833 {
2834 }
2835 
2836 static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
2837 {
2838 	struct dce_hwseq *hws = dc->hwseq;
2839 	int fe_idx = pipe_ctx->plane_res.mi ?
2840 		pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2841 
2842 	/* Do not power down fe when stream is active on dce*/
2843 	if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2844 		return;
2845 
2846 	hws->funcs.enable_display_power_gating(
2847 		dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2848 
2849 	dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2850 				dc->res_pool->transforms[fe_idx]);
2851 }
2852 
2853 static void dce110_wait_for_mpcc_disconnect(
2854 		struct dc *dc,
2855 		struct resource_pool *res_pool,
2856 		struct pipe_ctx *pipe_ctx)
2857 {
2858 	/* do nothing*/
2859 }
2860 
2861 static void program_output_csc(struct dc *dc,
2862 		struct pipe_ctx *pipe_ctx,
2863 		enum dc_color_space colorspace,
2864 		uint16_t *matrix,
2865 		int opp_id)
2866 {
2867 	int i;
2868 	struct out_csc_color_matrix tbl_entry;
2869 
2870 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2871 		enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
2872 
2873 		for (i = 0; i < 12; i++)
2874 			tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2875 
2876 		tbl_entry.color_space = color_space;
2877 
2878 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
2879 				pipe_ctx->plane_res.xfm, &tbl_entry);
2880 	}
2881 }
2882 
2883 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2884 {
2885 	struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2886 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2887 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2888 	struct dc_cursor_mi_param param = {
2889 		.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
2890 		.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
2891 		.viewport = pipe_ctx->plane_res.scl_data.viewport,
2892 		.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2893 		.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2894 		.rotation = pipe_ctx->plane_state->rotation,
2895 		.mirror = pipe_ctx->plane_state->horizontal_mirror
2896 	};
2897 
2898 	/**
2899 	 * If the cursor's source viewport is clipped then we need to
2900 	 * translate the cursor to appear in the correct position on
2901 	 * the screen.
2902 	 *
2903 	 * This translation isn't affected by scaling so it needs to be
2904 	 * done *after* we adjust the position for the scale factor.
2905 	 *
2906 	 * This is only done by opt-in for now since there are still
2907 	 * some usecases like tiled display that might enable the
2908 	 * cursor on both streams while expecting dc to clip it.
2909 	 */
2910 	if (pos_cpy.translate_by_source) {
2911 		pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
2912 		pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
2913 	}
2914 
2915 	if (pipe_ctx->plane_state->address.type
2916 			== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2917 		pos_cpy.enable = false;
2918 
2919 	if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2920 		pos_cpy.enable = false;
2921 
2922 	if (ipp->funcs->ipp_cursor_set_position)
2923 		ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
2924 	if (mi->funcs->set_cursor_position)
2925 		mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
2926 }
2927 
2928 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2929 {
2930 	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2931 
2932 	if (pipe_ctx->plane_res.ipp &&
2933 	    pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2934 		pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2935 				pipe_ctx->plane_res.ipp, attributes);
2936 
2937 	if (pipe_ctx->plane_res.mi &&
2938 	    pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2939 		pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2940 				pipe_ctx->plane_res.mi, attributes);
2941 
2942 	if (pipe_ctx->plane_res.xfm &&
2943 	    pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2944 		pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2945 				pipe_ctx->plane_res.xfm, attributes);
2946 }
2947 
2948 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
2949 		uint32_t backlight_pwm_u16_16,
2950 		uint32_t frame_ramp)
2951 {
2952 	struct dc_link *link = pipe_ctx->stream->link;
2953 	struct dc  *dc = link->ctx->dc;
2954 	struct abm *abm = pipe_ctx->stream_res.abm;
2955 	struct panel_cntl *panel_cntl = link->panel_cntl;
2956 	struct dmcu *dmcu = dc->res_pool->dmcu;
2957 	bool fw_set_brightness = true;
2958 	/* DMCU -1 for all controller id values,
2959 	 * therefore +1 here
2960 	 */
2961 	uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
2962 
2963 	if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
2964 		return false;
2965 
2966 	if (dmcu)
2967 		fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
2968 
2969 	if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
2970 		panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
2971 	else
2972 		abm->funcs->set_backlight_level_pwm(
2973 				abm,
2974 				backlight_pwm_u16_16,
2975 				frame_ramp,
2976 				controller_id,
2977 				link->panel_cntl->inst);
2978 
2979 	return true;
2980 }
2981 
2982 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
2983 {
2984 	struct abm *abm = pipe_ctx->stream_res.abm;
2985 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2986 
2987 	if (abm)
2988 		abm->funcs->set_abm_immediate_disable(abm,
2989 				pipe_ctx->stream->link->panel_cntl->inst);
2990 
2991 	if (panel_cntl)
2992 		panel_cntl->funcs->store_backlight_level(panel_cntl);
2993 }
2994 
2995 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
2996 {
2997 	struct abm *abm = pipe_ctx->stream_res.abm;
2998 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2999 	uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
3000 
3001 	if (abm && panel_cntl)
3002 		abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
3003 }
3004 
3005 static const struct hw_sequencer_funcs dce110_funcs = {
3006 	.program_gamut_remap = program_gamut_remap,
3007 	.program_output_csc = program_output_csc,
3008 	.init_hw = init_hw,
3009 	.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
3010 	.apply_ctx_for_surface = dce110_apply_ctx_for_surface,
3011 	.post_unlock_program_front_end = dce110_post_unlock_program_front_end,
3012 	.update_plane_addr = update_plane_addr,
3013 	.update_pending_status = dce110_update_pending_status,
3014 	.enable_accelerated_mode = dce110_enable_accelerated_mode,
3015 	.enable_timing_synchronization = dce110_enable_timing_synchronization,
3016 	.enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
3017 	.update_info_frame = dce110_update_info_frame,
3018 	.enable_stream = dce110_enable_stream,
3019 	.disable_stream = dce110_disable_stream,
3020 	.unblank_stream = dce110_unblank_stream,
3021 	.blank_stream = dce110_blank_stream,
3022 	.enable_audio_stream = dce110_enable_audio_stream,
3023 	.disable_audio_stream = dce110_disable_audio_stream,
3024 	.disable_plane = dce110_power_down_fe,
3025 	.pipe_control_lock = dce_pipe_control_lock,
3026 	.interdependent_update_lock = NULL,
3027 	.cursor_lock = dce_pipe_control_lock,
3028 	.prepare_bandwidth = dce110_prepare_bandwidth,
3029 	.optimize_bandwidth = dce110_optimize_bandwidth,
3030 	.set_drr = set_drr,
3031 	.get_position = get_position,
3032 	.set_static_screen_control = set_static_screen_control,
3033 	.setup_stereo = NULL,
3034 	.set_avmute = dce110_set_avmute,
3035 	.wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
3036 	.edp_backlight_control = dce110_edp_backlight_control,
3037 	.edp_power_control = dce110_edp_power_control,
3038 	.edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
3039 	.set_cursor_position = dce110_set_cursor_position,
3040 	.set_cursor_attribute = dce110_set_cursor_attribute,
3041 	.set_backlight_level = dce110_set_backlight_level,
3042 	.set_abm_immediate_disable = dce110_set_abm_immediate_disable,
3043 	.set_pipe = dce110_set_pipe,
3044 };
3045 
3046 static const struct hwseq_private_funcs dce110_private_funcs = {
3047 	.init_pipes = init_pipes,
3048 	.update_plane_addr = update_plane_addr,
3049 	.set_input_transfer_func = dce110_set_input_transfer_func,
3050 	.set_output_transfer_func = dce110_set_output_transfer_func,
3051 	.power_down = dce110_power_down,
3052 	.enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
3053 	.enable_display_power_gating = dce110_enable_display_power_gating,
3054 	.reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
3055 	.enable_stream_timing = dce110_enable_stream_timing,
3056 	.disable_stream_gating = NULL,
3057 	.enable_stream_gating = NULL,
3058 	.edp_backlight_control = dce110_edp_backlight_control,
3059 };
3060 
3061 void dce110_hw_sequencer_construct(struct dc *dc)
3062 {
3063 	dc->hwss = dce110_funcs;
3064 	dc->hwseq->funcs = dce110_private_funcs;
3065 }
3066 
3067