1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include <linux/delay.h>
27 
28 #include "dm_services.h"
29 #include "dc.h"
30 #include "dc_bios_types.h"
31 #include "core_types.h"
32 #include "core_status.h"
33 #include "resource.h"
34 #include "dm_helpers.h"
35 #include "dce110_hw_sequencer.h"
36 #include "dce110_timing_generator.h"
37 #include "dce/dce_hwseq.h"
38 #include "gpio_service_interface.h"
39 
40 #include "dce110_compressor.h"
41 
42 #include "bios/bios_parser_helper.h"
43 #include "timing_generator.h"
44 #include "mem_input.h"
45 #include "opp.h"
46 #include "ipp.h"
47 #include "transform.h"
48 #include "stream_encoder.h"
49 #include "link_encoder.h"
50 #include "link_hwss.h"
51 #include "clock_source.h"
52 #include "clk_mgr.h"
53 #include "abm.h"
54 #include "audio.h"
55 #include "reg_helper.h"
56 #include "panel_cntl.h"
57 
58 /* include DCE11 register header files */
59 #include "dce/dce_11_0_d.h"
60 #include "dce/dce_11_0_sh_mask.h"
61 #include "custom_float.h"
62 
63 #include "atomfirmware.h"
64 
65 #define GAMMA_HW_POINTS_NUM 256
66 
67 /*
68  * All values are in milliseconds;
69  * For eDP, after power-up/power/down,
70  * 300/500 msec max. delay from LCDVCC to black video generation
71  */
72 #define PANEL_POWER_UP_TIMEOUT 300
73 #define PANEL_POWER_DOWN_TIMEOUT 500
74 #define HPD_CHECK_INTERVAL 10
75 #define OLED_POST_T7_DELAY 100
76 #define OLED_PRE_T11_DELAY 150
77 
78 #define CTX \
79 	hws->ctx
80 
81 #define DC_LOGGER_INIT()
82 
83 #define REG(reg)\
84 	hws->regs->reg
85 
86 #undef FN
87 #define FN(reg_name, field_name) \
88 	hws->shifts->field_name, hws->masks->field_name
89 
90 struct dce110_hw_seq_reg_offsets {
91 	uint32_t crtc;
92 };
93 
94 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
95 {
96 	.crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
97 },
98 {
99 	.crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
100 },
101 {
102 	.crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
103 },
104 {
105 	.crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
106 }
107 };
108 
109 #define HW_REG_BLND(reg, id)\
110 	(reg + reg_offsets[id].blnd)
111 
112 #define HW_REG_CRTC(reg, id)\
113 	(reg + reg_offsets[id].crtc)
114 
115 #define MAX_WATERMARK 0xFFFF
116 #define SAFE_NBP_MARK 0x7FFF
117 
118 /*******************************************************************************
119  * Private definitions
120  ******************************************************************************/
121 /***************************PIPE_CONTROL***********************************/
122 static void dce110_init_pte(struct dc_context *ctx)
123 {
124 	uint32_t addr;
125 	uint32_t value = 0;
126 	uint32_t chunk_int = 0;
127 	uint32_t chunk_mul = 0;
128 
129 	addr = mmUNP_DVMM_PTE_CONTROL;
130 	value = dm_read_reg(ctx, addr);
131 
132 	set_reg_field_value(
133 		value,
134 		0,
135 		DVMM_PTE_CONTROL,
136 		DVMM_USE_SINGLE_PTE);
137 
138 	set_reg_field_value(
139 		value,
140 		1,
141 		DVMM_PTE_CONTROL,
142 		DVMM_PTE_BUFFER_MODE0);
143 
144 	set_reg_field_value(
145 		value,
146 		1,
147 		DVMM_PTE_CONTROL,
148 		DVMM_PTE_BUFFER_MODE1);
149 
150 	dm_write_reg(ctx, addr, value);
151 
152 	addr = mmDVMM_PTE_REQ;
153 	value = dm_read_reg(ctx, addr);
154 
155 	chunk_int = get_reg_field_value(
156 		value,
157 		DVMM_PTE_REQ,
158 		HFLIP_PTEREQ_PER_CHUNK_INT);
159 
160 	chunk_mul = get_reg_field_value(
161 		value,
162 		DVMM_PTE_REQ,
163 		HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
164 
165 	if (chunk_int != 0x4 || chunk_mul != 0x4) {
166 
167 		set_reg_field_value(
168 			value,
169 			255,
170 			DVMM_PTE_REQ,
171 			MAX_PTEREQ_TO_ISSUE);
172 
173 		set_reg_field_value(
174 			value,
175 			4,
176 			DVMM_PTE_REQ,
177 			HFLIP_PTEREQ_PER_CHUNK_INT);
178 
179 		set_reg_field_value(
180 			value,
181 			4,
182 			DVMM_PTE_REQ,
183 			HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
184 
185 		dm_write_reg(ctx, addr, value);
186 	}
187 }
188 /**************************************************************************/
189 
190 static void enable_display_pipe_clock_gating(
191 	struct dc_context *ctx,
192 	bool clock_gating)
193 {
194 	/*TODO*/
195 }
196 
197 static bool dce110_enable_display_power_gating(
198 	struct dc *dc,
199 	uint8_t controller_id,
200 	struct dc_bios *dcb,
201 	enum pipe_gating_control power_gating)
202 {
203 	enum bp_result bp_result = BP_RESULT_OK;
204 	enum bp_pipe_control_action cntl;
205 	struct dc_context *ctx = dc->ctx;
206 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
207 
208 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment))
209 		return true;
210 
211 	if (power_gating == PIPE_GATING_CONTROL_INIT)
212 		cntl = ASIC_PIPE_INIT;
213 	else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
214 		cntl = ASIC_PIPE_ENABLE;
215 	else
216 		cntl = ASIC_PIPE_DISABLE;
217 
218 	if (controller_id == underlay_idx)
219 		controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
220 
221 	if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0){
222 
223 		bp_result = dcb->funcs->enable_disp_power_gating(
224 						dcb, controller_id + 1, cntl);
225 
226 		/* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
227 		 * by default when command table is called
228 		 *
229 		 * Bios parser accepts controller_id = 6 as indicative of
230 		 * underlay pipe in dce110. But we do not support more
231 		 * than 3.
232 		 */
233 		if (controller_id < CONTROLLER_ID_MAX - 1)
234 			dm_write_reg(ctx,
235 				HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
236 				0);
237 	}
238 
239 	if (power_gating != PIPE_GATING_CONTROL_ENABLE)
240 		dce110_init_pte(ctx);
241 
242 	if (bp_result == BP_RESULT_OK)
243 		return true;
244 	else
245 		return false;
246 }
247 
248 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
249 		const struct dc_plane_state *plane_state)
250 {
251 	prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
252 
253 	switch (plane_state->format) {
254 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
255 		prescale_params->scale = 0x2082;
256 		break;
257 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
258 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
259 		prescale_params->scale = 0x2020;
260 		break;
261 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
262 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
263 		prescale_params->scale = 0x2008;
264 		break;
265 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
266 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
267 		prescale_params->scale = 0x2000;
268 		break;
269 	default:
270 		ASSERT(false);
271 		break;
272 	}
273 }
274 
275 static bool
276 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
277 			       const struct dc_plane_state *plane_state)
278 {
279 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
280 	const struct dc_transfer_func *tf = NULL;
281 	struct ipp_prescale_params prescale_params = { 0 };
282 	bool result = true;
283 
284 	if (ipp == NULL)
285 		return false;
286 
287 	if (plane_state->in_transfer_func)
288 		tf = plane_state->in_transfer_func;
289 
290 	build_prescale_params(&prescale_params, plane_state);
291 	ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
292 
293 	if (plane_state->gamma_correction &&
294 			!plane_state->gamma_correction->is_identity &&
295 			dce_use_lut(plane_state->format))
296 		ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
297 
298 	if (tf == NULL) {
299 		/* Default case if no input transfer function specified */
300 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
301 	} else if (tf->type == TF_TYPE_PREDEFINED) {
302 		switch (tf->tf) {
303 		case TRANSFER_FUNCTION_SRGB:
304 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
305 			break;
306 		case TRANSFER_FUNCTION_BT709:
307 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
308 			break;
309 		case TRANSFER_FUNCTION_LINEAR:
310 			ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
311 			break;
312 		case TRANSFER_FUNCTION_PQ:
313 		default:
314 			result = false;
315 			break;
316 		}
317 	} else if (tf->type == TF_TYPE_BYPASS) {
318 		ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
319 	} else {
320 		/*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
321 		result = false;
322 	}
323 
324 	return result;
325 }
326 
327 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
328 				    struct curve_points *arr_points,
329 				    uint32_t hw_points_num)
330 {
331 	struct custom_float_format fmt;
332 
333 	struct pwl_result_data *rgb = rgb_resulted;
334 
335 	uint32_t i = 0;
336 
337 	fmt.exponenta_bits = 6;
338 	fmt.mantissa_bits = 12;
339 	fmt.sign = true;
340 
341 	if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
342 					    &arr_points[0].custom_float_x)) {
343 		BREAK_TO_DEBUGGER();
344 		return false;
345 	}
346 
347 	if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
348 					    &arr_points[0].custom_float_offset)) {
349 		BREAK_TO_DEBUGGER();
350 		return false;
351 	}
352 
353 	if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
354 					    &arr_points[0].custom_float_slope)) {
355 		BREAK_TO_DEBUGGER();
356 		return false;
357 	}
358 
359 	fmt.mantissa_bits = 10;
360 	fmt.sign = false;
361 
362 	if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
363 					    &arr_points[1].custom_float_x)) {
364 		BREAK_TO_DEBUGGER();
365 		return false;
366 	}
367 
368 	if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
369 					    &arr_points[1].custom_float_y)) {
370 		BREAK_TO_DEBUGGER();
371 		return false;
372 	}
373 
374 	if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
375 					    &arr_points[1].custom_float_slope)) {
376 		BREAK_TO_DEBUGGER();
377 		return false;
378 	}
379 
380 	fmt.mantissa_bits = 12;
381 	fmt.sign = true;
382 
383 	while (i != hw_points_num) {
384 		if (!convert_to_custom_float_format(rgb->red, &fmt,
385 						    &rgb->red_reg)) {
386 			BREAK_TO_DEBUGGER();
387 			return false;
388 		}
389 
390 		if (!convert_to_custom_float_format(rgb->green, &fmt,
391 						    &rgb->green_reg)) {
392 			BREAK_TO_DEBUGGER();
393 			return false;
394 		}
395 
396 		if (!convert_to_custom_float_format(rgb->blue, &fmt,
397 						    &rgb->blue_reg)) {
398 			BREAK_TO_DEBUGGER();
399 			return false;
400 		}
401 
402 		if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
403 						    &rgb->delta_red_reg)) {
404 			BREAK_TO_DEBUGGER();
405 			return false;
406 		}
407 
408 		if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
409 						    &rgb->delta_green_reg)) {
410 			BREAK_TO_DEBUGGER();
411 			return false;
412 		}
413 
414 		if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
415 						    &rgb->delta_blue_reg)) {
416 			BREAK_TO_DEBUGGER();
417 			return false;
418 		}
419 
420 		++rgb;
421 		++i;
422 	}
423 
424 	return true;
425 }
426 
427 #define MAX_LOW_POINT      25
428 #define NUMBER_REGIONS     16
429 #define NUMBER_SW_SEGMENTS 16
430 
431 static bool
432 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
433 				      struct pwl_params *regamma_params)
434 {
435 	struct curve_points *arr_points;
436 	struct pwl_result_data *rgb_resulted;
437 	struct pwl_result_data *rgb;
438 	struct pwl_result_data *rgb_plus_1;
439 	struct fixed31_32 y_r;
440 	struct fixed31_32 y_g;
441 	struct fixed31_32 y_b;
442 	struct fixed31_32 y1_min;
443 	struct fixed31_32 y3_max;
444 
445 	int32_t region_start, region_end;
446 	uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
447 
448 	if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
449 		return false;
450 
451 	arr_points = regamma_params->arr_points;
452 	rgb_resulted = regamma_params->rgb_resulted;
453 	hw_points = 0;
454 
455 	memset(regamma_params, 0, sizeof(struct pwl_params));
456 
457 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
458 		/* 16 segments
459 		 * segments are from 2^-11 to 2^5
460 		 */
461 		region_start = -11;
462 		region_end = region_start + NUMBER_REGIONS;
463 
464 		for (i = 0; i < NUMBER_REGIONS; i++)
465 			seg_distr[i] = 4;
466 
467 	} else {
468 		/* 10 segments
469 		 * segment is from 2^-10 to 2^1
470 		 * We include an extra segment for range [2^0, 2^1). This is to
471 		 * ensure that colors with normalized values of 1 don't miss the
472 		 * LUT.
473 		 */
474 		region_start = -10;
475 		region_end = 1;
476 
477 		seg_distr[0] = 4;
478 		seg_distr[1] = 4;
479 		seg_distr[2] = 4;
480 		seg_distr[3] = 4;
481 		seg_distr[4] = 4;
482 		seg_distr[5] = 4;
483 		seg_distr[6] = 4;
484 		seg_distr[7] = 4;
485 		seg_distr[8] = 4;
486 		seg_distr[9] = 4;
487 		seg_distr[10] = 0;
488 		seg_distr[11] = -1;
489 		seg_distr[12] = -1;
490 		seg_distr[13] = -1;
491 		seg_distr[14] = -1;
492 		seg_distr[15] = -1;
493 	}
494 
495 	for (k = 0; k < 16; k++) {
496 		if (seg_distr[k] != -1)
497 			hw_points += (1 << seg_distr[k]);
498 	}
499 
500 	j = 0;
501 	for (k = 0; k < (region_end - region_start); k++) {
502 		increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
503 		start_index = (region_start + k + MAX_LOW_POINT) *
504 				NUMBER_SW_SEGMENTS;
505 		for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
506 				i += increment) {
507 			if (j == hw_points - 1)
508 				break;
509 			rgb_resulted[j].red = output_tf->tf_pts.red[i];
510 			rgb_resulted[j].green = output_tf->tf_pts.green[i];
511 			rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
512 			j++;
513 		}
514 	}
515 
516 	/* last point */
517 	start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
518 	rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
519 	rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
520 	rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
521 
522 	arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
523 					     dc_fixpt_from_int(region_start));
524 	arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
525 					     dc_fixpt_from_int(region_end));
526 
527 	y_r = rgb_resulted[0].red;
528 	y_g = rgb_resulted[0].green;
529 	y_b = rgb_resulted[0].blue;
530 
531 	y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
532 
533 	arr_points[0].y = y1_min;
534 	arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
535 						 arr_points[0].x);
536 
537 	y_r = rgb_resulted[hw_points - 1].red;
538 	y_g = rgb_resulted[hw_points - 1].green;
539 	y_b = rgb_resulted[hw_points - 1].blue;
540 
541 	/* see comment above, m_arrPoints[1].y should be the Y value for the
542 	 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
543 	 */
544 	y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
545 
546 	arr_points[1].y = y3_max;
547 
548 	arr_points[1].slope = dc_fixpt_zero;
549 
550 	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
551 		/* for PQ, we want to have a straight line from last HW X point,
552 		 * and the slope to be such that we hit 1.0 at 10000 nits.
553 		 */
554 		const struct fixed31_32 end_value = dc_fixpt_from_int(125);
555 
556 		arr_points[1].slope = dc_fixpt_div(
557 				dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
558 				dc_fixpt_sub(end_value, arr_points[1].x));
559 	}
560 
561 	regamma_params->hw_points_num = hw_points;
562 
563 	k = 0;
564 	for (i = 1; i < 16; i++) {
565 		if (seg_distr[k] != -1) {
566 			regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
567 			regamma_params->arr_curve_points[i].offset =
568 					regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
569 		}
570 		k++;
571 	}
572 
573 	if (seg_distr[k] != -1)
574 		regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
575 
576 	rgb = rgb_resulted;
577 	rgb_plus_1 = rgb_resulted + 1;
578 
579 	i = 1;
580 
581 	while (i != hw_points + 1) {
582 		if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
583 			rgb_plus_1->red = rgb->red;
584 		if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
585 			rgb_plus_1->green = rgb->green;
586 		if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
587 			rgb_plus_1->blue = rgb->blue;
588 
589 		rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
590 		rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
591 		rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
592 
593 		++rgb_plus_1;
594 		++rgb;
595 		++i;
596 	}
597 
598 	convert_to_custom_float(rgb_resulted, arr_points, hw_points);
599 
600 	return true;
601 }
602 
603 static bool
604 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
605 				const struct dc_stream_state *stream)
606 {
607 	struct transform *xfm = pipe_ctx->plane_res.xfm;
608 
609 	xfm->funcs->opp_power_on_regamma_lut(xfm, true);
610 	xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
611 
612 	if (stream->out_transfer_func &&
613 	    stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
614 	    stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
615 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
616 	} else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
617 							 &xfm->regamma_params)) {
618 		xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
619 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
620 	} else {
621 		xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
622 	}
623 
624 	xfm->funcs->opp_power_on_regamma_lut(xfm, false);
625 
626 	return true;
627 }
628 
629 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
630 {
631 	bool is_hdmi_tmds;
632 	bool is_dp;
633 
634 	ASSERT(pipe_ctx->stream);
635 
636 	if (pipe_ctx->stream_res.stream_enc == NULL)
637 		return;  /* this is not root pipe */
638 
639 	is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
640 	is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
641 
642 	if (!is_hdmi_tmds && !is_dp)
643 		return;
644 
645 	if (is_hdmi_tmds)
646 		pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
647 			pipe_ctx->stream_res.stream_enc,
648 			&pipe_ctx->stream_res.encoder_info_frame);
649 	else
650 		pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
651 			pipe_ctx->stream_res.stream_enc,
652 			&pipe_ctx->stream_res.encoder_info_frame);
653 }
654 
655 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
656 {
657 	enum dc_lane_count lane_count =
658 		pipe_ctx->stream->link->cur_link_settings.lane_count;
659 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
660 	struct dc_link *link = pipe_ctx->stream->link;
661 	const struct dc *dc = link->dc;
662 
663 	uint32_t active_total_with_borders;
664 	uint32_t early_control = 0;
665 	struct timing_generator *tg = pipe_ctx->stream_res.tg;
666 
667 	/* For MST, there are multiply stream go to only one link.
668 	 * connect DIG back_end to front_end while enable_stream and
669 	 * disconnect them during disable_stream
670 	 * BY this, it is logic clean to separate stream and link */
671 	link->link_enc->funcs->connect_dig_be_to_fe(link->link_enc,
672 						    pipe_ctx->stream_res.stream_enc->id, true);
673 
674 	dc->hwss.update_info_frame(pipe_ctx);
675 
676 	/* enable early control to avoid corruption on DP monitor*/
677 	active_total_with_borders =
678 			timing->h_addressable
679 				+ timing->h_border_left
680 				+ timing->h_border_right;
681 
682 	if (lane_count != 0)
683 		early_control = active_total_with_borders % lane_count;
684 
685 	if (early_control == 0)
686 		early_control = lane_count;
687 
688 	tg->funcs->set_early_control(tg, early_control);
689 
690 	/* enable audio only within mode set */
691 	if (pipe_ctx->stream_res.audio != NULL) {
692 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
693 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc);
694 	}
695 
696 
697 
698 
699 }
700 
701 static enum bp_result link_transmitter_control(
702 		struct dc_bios *bios,
703 	struct bp_transmitter_control *cntl)
704 {
705 	enum bp_result result;
706 
707 	result = bios->funcs->transmitter_control(bios, cntl);
708 
709 	return result;
710 }
711 
712 /*
713  * @brief
714  * eDP only.
715  */
716 void dce110_edp_wait_for_hpd_ready(
717 		struct dc_link *link,
718 		bool power_up)
719 {
720 	struct dc_context *ctx = link->ctx;
721 	struct graphics_object_id connector = link->link_enc->connector;
722 	struct gpio *hpd;
723 	struct dc_sink *sink = link->local_sink;
724 	bool edp_hpd_high = false;
725 	uint32_t time_elapsed = 0;
726 	uint32_t timeout = power_up ?
727 		PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
728 
729 	if (dal_graphics_object_id_get_connector_id(connector)
730 			!= CONNECTOR_ID_EDP) {
731 		BREAK_TO_DEBUGGER();
732 		return;
733 	}
734 
735 	if (!power_up)
736 		/*
737 		 * From KV, we will not HPD low after turning off VCC -
738 		 * instead, we will check the SW timer in power_up().
739 		 */
740 		return;
741 
742 	/*
743 	 * When we power on/off the eDP panel,
744 	 * we need to wait until SENSE bit is high/low.
745 	 */
746 
747 	/* obtain HPD */
748 	/* TODO what to do with this? */
749 	hpd = get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
750 
751 	if (!hpd) {
752 		BREAK_TO_DEBUGGER();
753 		return;
754 	}
755 
756 	if (sink != NULL) {
757 		if (sink->edid_caps.panel_patch.extra_t3_ms > 0) {
758 			int extra_t3_in_ms = sink->edid_caps.panel_patch.extra_t3_ms;
759 
760 			msleep(extra_t3_in_ms);
761 		}
762 	}
763 
764 	dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
765 
766 	/* wait until timeout or panel detected */
767 
768 	do {
769 		uint32_t detected = 0;
770 
771 		dal_gpio_get_value(hpd, &detected);
772 
773 		if (!(detected ^ power_up)) {
774 			edp_hpd_high = true;
775 			break;
776 		}
777 
778 		msleep(HPD_CHECK_INTERVAL);
779 
780 		time_elapsed += HPD_CHECK_INTERVAL;
781 	} while (time_elapsed < timeout);
782 
783 	dal_gpio_close(hpd);
784 
785 	dal_gpio_destroy_irq(&hpd);
786 
787 	if (false == edp_hpd_high) {
788 		DC_LOG_ERROR(
789 				"%s: wait timed out!\n", __func__);
790 	}
791 }
792 
793 void dce110_edp_power_control(
794 		struct dc_link *link,
795 		bool power_up)
796 {
797 	struct dc_context *ctx = link->ctx;
798 	struct bp_transmitter_control cntl = { 0 };
799 	enum bp_result bp_result;
800 
801 
802 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
803 			!= CONNECTOR_ID_EDP) {
804 		BREAK_TO_DEBUGGER();
805 		return;
806 	}
807 
808 	if (!link->panel_cntl)
809 		return;
810 
811 	if (power_up !=
812 		link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
813 
814 		unsigned long long current_ts = dm_get_timestamp(ctx);
815 		unsigned long long time_since_edp_poweroff_ms =
816 				div64_u64(dm_get_elapse_time_in_ns(
817 						ctx,
818 						current_ts,
819 						link->link_trace.time_stamp.edp_poweroff), 1000000);
820 		unsigned long long time_since_edp_poweron_ms =
821 				div64_u64(dm_get_elapse_time_in_ns(
822 						ctx,
823 						current_ts,
824 						link->link_trace.time_stamp.edp_poweron), 1000000);
825 		DC_LOG_HW_RESUME_S3(
826 				"%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
827 				__func__,
828 				power_up,
829 				current_ts,
830 				link->link_trace.time_stamp.edp_poweroff,
831 				link->link_trace.time_stamp.edp_poweron,
832 				time_since_edp_poweroff_ms,
833 				time_since_edp_poweron_ms);
834 
835 		/* Send VBIOS command to prompt eDP panel power */
836 		if (power_up) {
837 			/* edp requires a min of 500ms from LCDVDD off to on */
838 			unsigned long long remaining_min_edp_poweroff_time_ms = 500;
839 
840 			/* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
841 			if (link->local_sink != NULL)
842 				remaining_min_edp_poweroff_time_ms +=
843 					link->local_sink->edid_caps.panel_patch.extra_t12_ms;
844 
845 			/* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
846 			if (link->link_trace.time_stamp.edp_poweroff != 0) {
847 				if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
848 					remaining_min_edp_poweroff_time_ms =
849 						remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
850 				else
851 					remaining_min_edp_poweroff_time_ms = 0;
852 			}
853 
854 			if (remaining_min_edp_poweroff_time_ms) {
855 				DC_LOG_HW_RESUME_S3(
856 						"%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
857 						__func__, remaining_min_edp_poweroff_time_ms);
858 				msleep(remaining_min_edp_poweroff_time_ms);
859 				DC_LOG_HW_RESUME_S3(
860 						"%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
861 						__func__, remaining_min_edp_poweroff_time_ms);
862 				dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
863 						__func__, remaining_min_edp_poweroff_time_ms);
864 			} else {
865 				DC_LOG_HW_RESUME_S3(
866 						"%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
867 						__func__, remaining_min_edp_poweroff_time_ms);
868 			}
869 		}
870 
871 		DC_LOG_HW_RESUME_S3(
872 				"%s: BEGIN: Panel Power action: %s\n",
873 				__func__, (power_up ? "On":"Off"));
874 
875 		cntl.action = power_up ?
876 			TRANSMITTER_CONTROL_POWER_ON :
877 			TRANSMITTER_CONTROL_POWER_OFF;
878 		cntl.transmitter = link->link_enc->transmitter;
879 		cntl.connector_obj_id = link->link_enc->connector;
880 		cntl.coherent = false;
881 		cntl.lanes_number = LANE_COUNT_FOUR;
882 		cntl.hpd_sel = link->link_enc->hpd_source;
883 
884 		if (ctx->dc->ctx->dmub_srv &&
885 				ctx->dc->debug.dmub_command_table) {
886 			if (cntl.action == TRANSMITTER_CONTROL_POWER_ON)
887 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
888 						LVTMA_CONTROL_POWER_ON);
889 			else
890 				bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
891 						LVTMA_CONTROL_POWER_OFF);
892 		}
893 
894 		bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
895 
896 		DC_LOG_HW_RESUME_S3(
897 				"%s: END: Panel Power action: %s bp_result=%u\n",
898 				__func__, (power_up ? "On":"Off"),
899 				bp_result);
900 
901 		if (!power_up)
902 			/*save driver power off time stamp*/
903 			link->link_trace.time_stamp.edp_poweroff = dm_get_timestamp(ctx);
904 		else
905 			link->link_trace.time_stamp.edp_poweron = dm_get_timestamp(ctx);
906 
907 		DC_LOG_HW_RESUME_S3(
908 				"%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
909 				__func__,
910 				link->link_trace.time_stamp.edp_poweroff,
911 				link->link_trace.time_stamp.edp_poweron);
912 
913 		if (bp_result != BP_RESULT_OK)
914 			DC_LOG_ERROR(
915 					"%s: Panel Power bp_result: %d\n",
916 					__func__, bp_result);
917 	} else {
918 		DC_LOG_HW_RESUME_S3(
919 				"%s: Skipping Panel Power action: %s\n",
920 				__func__, (power_up ? "On":"Off"));
921 	}
922 }
923 
924 void dce110_edp_wait_for_T12(
925 		struct dc_link *link)
926 {
927 	struct dc_context *ctx = link->ctx;
928 
929 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
930 			!= CONNECTOR_ID_EDP) {
931 		BREAK_TO_DEBUGGER();
932 		return;
933 	}
934 
935 	if (!link->panel_cntl)
936 		return;
937 
938 	if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
939 			link->link_trace.time_stamp.edp_poweroff != 0) {
940 		unsigned int t12_duration = 500; // Default T12 as per spec
941 		unsigned long long current_ts = dm_get_timestamp(ctx);
942 		unsigned long long time_since_edp_poweroff_ms =
943 				div64_u64(dm_get_elapse_time_in_ns(
944 						ctx,
945 						current_ts,
946 						link->link_trace.time_stamp.edp_poweroff), 1000000);
947 
948 		t12_duration += link->local_sink->edid_caps.panel_patch.extra_t12_ms; // Add extra T12
949 
950 		if (time_since_edp_poweroff_ms < t12_duration)
951 			msleep(t12_duration - time_since_edp_poweroff_ms);
952 	}
953 }
954 
955 /*todo: cloned in stream enc, fix*/
956 /*
957  * @brief
958  * eDP only. Control the backlight of the eDP panel
959  */
960 void dce110_edp_backlight_control(
961 		struct dc_link *link,
962 		bool enable)
963 {
964 	struct dc_context *ctx = link->ctx;
965 	struct bp_transmitter_control cntl = { 0 };
966 
967 	if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
968 		!= CONNECTOR_ID_EDP) {
969 		BREAK_TO_DEBUGGER();
970 		return;
971 	}
972 
973 	if (link->panel_cntl) {
974 		bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
975 
976 		if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
977 			DC_LOG_HW_RESUME_S3(
978 				"%s: panel already powered up/off. Do nothing.\n",
979 				__func__);
980 			return;
981 		}
982 	}
983 
984 	/* Send VBIOS command to control eDP panel backlight */
985 
986 	DC_LOG_HW_RESUME_S3(
987 			"%s: backlight action: %s\n",
988 			__func__, (enable ? "On":"Off"));
989 
990 	cntl.action = enable ?
991 		TRANSMITTER_CONTROL_BACKLIGHT_ON :
992 		TRANSMITTER_CONTROL_BACKLIGHT_OFF;
993 
994 	/*cntl.engine_id = ctx->engine;*/
995 	cntl.transmitter = link->link_enc->transmitter;
996 	cntl.connector_obj_id = link->link_enc->connector;
997 	/*todo: unhardcode*/
998 	cntl.lanes_number = LANE_COUNT_FOUR;
999 	cntl.hpd_sel = link->link_enc->hpd_source;
1000 	cntl.signal = SIGNAL_TYPE_EDP;
1001 
1002 	/* For eDP, the following delays might need to be considered
1003 	 * after link training completed:
1004 	 * idle period - min. accounts for required BS-Idle pattern,
1005 	 * max. allows for source frame synchronization);
1006 	 * 50 msec max. delay from valid video data from source
1007 	 * to video on dislpay or backlight enable.
1008 	 *
1009 	 * Disable the delay for now.
1010 	 * Enable it in the future if necessary.
1011 	 */
1012 	/* dc_service_sleep_in_milliseconds(50); */
1013 		/*edp 1.2*/
1014 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1015 		edp_receiver_ready_T7(link);
1016 
1017 	if (ctx->dc->ctx->dmub_srv &&
1018 			ctx->dc->debug.dmub_command_table) {
1019 		if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1020 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1021 					LVTMA_CONTROL_LCD_BLON);
1022 		else
1023 			ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1024 					LVTMA_CONTROL_LCD_BLOFF);
1025 	}
1026 
1027 	link_transmitter_control(ctx->dc_bios, &cntl);
1028 
1029 	if (enable && link->dpcd_sink_ext_caps.bits.oled)
1030 		msleep(OLED_POST_T7_DELAY);
1031 
1032 	if (link->dpcd_sink_ext_caps.bits.oled ||
1033 		link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1034 		link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1035 		dc_link_backlight_enable_aux(link, enable);
1036 
1037 	/*edp 1.2*/
1038 	if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF)
1039 		edp_add_delay_for_T9(link);
1040 
1041 	if (!enable && link->dpcd_sink_ext_caps.bits.oled)
1042 		msleep(OLED_PRE_T11_DELAY);
1043 }
1044 
1045 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1046 {
1047 	/* notify audio driver for audio modes of monitor */
1048 	struct dc *dc;
1049 	struct clk_mgr *clk_mgr;
1050 	unsigned int i, num_audio = 1;
1051 
1052 	if (!pipe_ctx->stream)
1053 		return;
1054 
1055 	dc = pipe_ctx->stream->ctx->dc;
1056 	clk_mgr = dc->clk_mgr;
1057 
1058 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1059 		return;
1060 
1061 	if (pipe_ctx->stream_res.audio) {
1062 		for (i = 0; i < MAX_PIPES; i++) {
1063 			/*current_state not updated yet*/
1064 			if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1065 				num_audio++;
1066 		}
1067 
1068 		pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1069 
1070 		if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
1071 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1072 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1073 		/* un-mute audio */
1074 		/* TODO: audio should be per stream rather than per link */
1075 		pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1076 					pipe_ctx->stream_res.stream_enc, false);
1077 		if (pipe_ctx->stream_res.audio)
1078 			pipe_ctx->stream_res.audio->enabled = true;
1079 	}
1080 }
1081 
1082 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1083 {
1084 	struct dc *dc;
1085 	struct clk_mgr *clk_mgr;
1086 
1087 	if (!pipe_ctx || !pipe_ctx->stream)
1088 		return;
1089 
1090 	dc = pipe_ctx->stream->ctx->dc;
1091 	clk_mgr = dc->clk_mgr;
1092 
1093 	if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1094 		return;
1095 
1096 	pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1097 			pipe_ctx->stream_res.stream_enc, true);
1098 	if (pipe_ctx->stream_res.audio) {
1099 		pipe_ctx->stream_res.audio->enabled = false;
1100 
1101 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
1102 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_disable(
1103 					pipe_ctx->stream_res.stream_enc);
1104 		else
1105 			pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_disable(
1106 					pipe_ctx->stream_res.stream_enc);
1107 
1108 		if (clk_mgr->funcs->enable_pme_wa)
1109 			/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1110 			clk_mgr->funcs->enable_pme_wa(clk_mgr);
1111 
1112 		/* TODO: notify audio driver for if audio modes list changed
1113 		 * add audio mode list change flag */
1114 		/* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1115 		 * stream->stream_engine_id);
1116 		 */
1117 	}
1118 }
1119 
1120 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1121 {
1122 	struct dc_stream_state *stream = pipe_ctx->stream;
1123 	struct dc_link *link = stream->link;
1124 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1125 
1126 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1127 		pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1128 			pipe_ctx->stream_res.stream_enc);
1129 		pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1130 			pipe_ctx->stream_res.stream_enc);
1131 	}
1132 
1133 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1134 		pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1135 			pipe_ctx->stream_res.stream_enc);
1136 
1137 	dc->hwss.disable_audio_stream(pipe_ctx);
1138 
1139 	link->link_enc->funcs->connect_dig_be_to_fe(
1140 			link->link_enc,
1141 			pipe_ctx->stream_res.stream_enc->id,
1142 			false);
1143 
1144 }
1145 
1146 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1147 		struct dc_link_settings *link_settings)
1148 {
1149 	struct encoder_unblank_param params = { { 0 } };
1150 	struct dc_stream_state *stream = pipe_ctx->stream;
1151 	struct dc_link *link = stream->link;
1152 	struct dce_hwseq *hws = link->dc->hwseq;
1153 
1154 	/* only 3 items below are used by unblank */
1155 	params.timing = pipe_ctx->stream->timing;
1156 	params.link_settings.link_rate = link_settings->link_rate;
1157 
1158 	if (dc_is_dp_signal(pipe_ctx->stream->signal))
1159 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(pipe_ctx->stream_res.stream_enc, &params);
1160 
1161 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1162 		hws->funcs.edp_backlight_control(link, true);
1163 	}
1164 }
1165 
1166 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1167 {
1168 	struct dc_stream_state *stream = pipe_ctx->stream;
1169 	struct dc_link *link = stream->link;
1170 	struct dce_hwseq *hws = link->dc->hwseq;
1171 
1172 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1173 		hws->funcs.edp_backlight_control(link, false);
1174 		link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1175 	}
1176 
1177 	if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1178 		pipe_ctx->stream_res.stream_enc->funcs->dp_blank(pipe_ctx->stream_res.stream_enc);
1179 
1180 		if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
1181 			/*
1182 			 * After output is idle pattern some sinks need time to recognize the stream
1183 			 * has changed or they enter protection state and hang.
1184 			 */
1185 			msleep(60);
1186 		} else if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP)
1187 			edp_receiver_ready_T9(link);
1188 	}
1189 
1190 }
1191 
1192 
1193 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1194 {
1195 	if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1196 		pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1197 }
1198 
1199 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1200 {
1201 	switch (crtc_id) {
1202 	case CONTROLLER_ID_D0:
1203 		return DTO_SOURCE_ID0;
1204 	case CONTROLLER_ID_D1:
1205 		return DTO_SOURCE_ID1;
1206 	case CONTROLLER_ID_D2:
1207 		return DTO_SOURCE_ID2;
1208 	case CONTROLLER_ID_D3:
1209 		return DTO_SOURCE_ID3;
1210 	case CONTROLLER_ID_D4:
1211 		return DTO_SOURCE_ID4;
1212 	case CONTROLLER_ID_D5:
1213 		return DTO_SOURCE_ID5;
1214 	default:
1215 		return DTO_SOURCE_UNKNOWN;
1216 	}
1217 }
1218 
1219 static void build_audio_output(
1220 	struct dc_state *state,
1221 	const struct pipe_ctx *pipe_ctx,
1222 	struct audio_output *audio_output)
1223 {
1224 	const struct dc_stream_state *stream = pipe_ctx->stream;
1225 	audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1226 
1227 	audio_output->signal = pipe_ctx->stream->signal;
1228 
1229 	/* audio_crtc_info  */
1230 
1231 	audio_output->crtc_info.h_total =
1232 		stream->timing.h_total;
1233 
1234 	/*
1235 	 * Audio packets are sent during actual CRTC blank physical signal, we
1236 	 * need to specify actual active signal portion
1237 	 */
1238 	audio_output->crtc_info.h_active =
1239 			stream->timing.h_addressable
1240 			+ stream->timing.h_border_left
1241 			+ stream->timing.h_border_right;
1242 
1243 	audio_output->crtc_info.v_active =
1244 			stream->timing.v_addressable
1245 			+ stream->timing.v_border_top
1246 			+ stream->timing.v_border_bottom;
1247 
1248 	audio_output->crtc_info.pixel_repetition = 1;
1249 
1250 	audio_output->crtc_info.interlaced =
1251 			stream->timing.flags.INTERLACE;
1252 
1253 	audio_output->crtc_info.refresh_rate =
1254 		(stream->timing.pix_clk_100hz*100)/
1255 		(stream->timing.h_total*stream->timing.v_total);
1256 
1257 	audio_output->crtc_info.color_depth =
1258 		stream->timing.display_color_depth;
1259 
1260 	audio_output->crtc_info.requested_pixel_clock_100Hz =
1261 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1262 
1263 	audio_output->crtc_info.calculated_pixel_clock_100Hz =
1264 			pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1265 
1266 /*for HDMI, audio ACR is with deep color ratio factor*/
1267 	if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1268 		audio_output->crtc_info.requested_pixel_clock_100Hz ==
1269 				(stream->timing.pix_clk_100hz)) {
1270 		if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1271 			audio_output->crtc_info.requested_pixel_clock_100Hz =
1272 					audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1273 			audio_output->crtc_info.calculated_pixel_clock_100Hz =
1274 					pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1275 
1276 		}
1277 	}
1278 
1279 	if (state->clk_mgr &&
1280 		(pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1281 			pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1282 		audio_output->pll_info.dp_dto_source_clock_in_khz =
1283 				state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1284 						state->clk_mgr);
1285 	}
1286 
1287 	audio_output->pll_info.feed_back_divider =
1288 			pipe_ctx->pll_settings.feedback_divider;
1289 
1290 	audio_output->pll_info.dto_source =
1291 		translate_to_dto_source(
1292 			pipe_ctx->stream_res.tg->inst + 1);
1293 
1294 	/* TODO hard code to enable for now. Need get from stream */
1295 	audio_output->pll_info.ss_enabled = true;
1296 
1297 	audio_output->pll_info.ss_percentage =
1298 			pipe_ctx->pll_settings.ss_percentage;
1299 }
1300 
1301 static void get_surface_visual_confirm_color(const struct pipe_ctx *pipe_ctx,
1302 		struct tg_color *color)
1303 {
1304 	uint32_t color_value = MAX_TG_COLOR_VALUE * (4 - pipe_ctx->stream_res.tg->inst) / 4;
1305 
1306 	switch (pipe_ctx->plane_res.scl_data.format) {
1307 	case PIXEL_FORMAT_ARGB8888:
1308 		/* set boarder color to red */
1309 		color->color_r_cr = color_value;
1310 		break;
1311 
1312 	case PIXEL_FORMAT_ARGB2101010:
1313 		/* set boarder color to blue */
1314 		color->color_b_cb = color_value;
1315 		break;
1316 	case PIXEL_FORMAT_420BPP8:
1317 		/* set boarder color to green */
1318 		color->color_g_y = color_value;
1319 		break;
1320 	case PIXEL_FORMAT_420BPP10:
1321 		/* set boarder color to yellow */
1322 		color->color_g_y = color_value;
1323 		color->color_r_cr = color_value;
1324 		break;
1325 	case PIXEL_FORMAT_FP16:
1326 		/* set boarder color to white */
1327 		color->color_r_cr = color_value;
1328 		color->color_b_cb = color_value;
1329 		color->color_g_y = color_value;
1330 		break;
1331 	default:
1332 		break;
1333 	}
1334 }
1335 
1336 static void program_scaler(const struct dc *dc,
1337 		const struct pipe_ctx *pipe_ctx)
1338 {
1339 	struct tg_color color = {0};
1340 
1341 #if defined(CONFIG_DRM_AMD_DC_DCN)
1342 	/* TOFPGA */
1343 	if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1344 		return;
1345 #endif
1346 
1347 	if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1348 		get_surface_visual_confirm_color(pipe_ctx, &color);
1349 	else
1350 		color_space_to_black_color(dc,
1351 				pipe_ctx->stream->output_color_space,
1352 				&color);
1353 
1354 	pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1355 		pipe_ctx->plane_res.xfm,
1356 		pipe_ctx->plane_res.scl_data.lb_params.depth,
1357 		&pipe_ctx->stream->bit_depth_params);
1358 
1359 	if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1360 		/*
1361 		 * The way 420 is packed, 2 channels carry Y component, 1 channel
1362 		 * alternate between Cb and Cr, so both channels need the pixel
1363 		 * value for Y
1364 		 */
1365 		if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1366 			color.color_r_cr = color.color_g_y;
1367 
1368 		pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1369 				pipe_ctx->stream_res.tg,
1370 				&color);
1371 	}
1372 
1373 	pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1374 		&pipe_ctx->plane_res.scl_data);
1375 }
1376 
1377 static enum dc_status dce110_enable_stream_timing(
1378 		struct pipe_ctx *pipe_ctx,
1379 		struct dc_state *context,
1380 		struct dc *dc)
1381 {
1382 	struct dc_stream_state *stream = pipe_ctx->stream;
1383 	struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1384 			pipe_ctx[pipe_ctx->pipe_idx];
1385 	struct tg_color black_color = {0};
1386 
1387 	if (!pipe_ctx_old->stream) {
1388 
1389 		/* program blank color */
1390 		color_space_to_black_color(dc,
1391 				stream->output_color_space, &black_color);
1392 		pipe_ctx->stream_res.tg->funcs->set_blank_color(
1393 				pipe_ctx->stream_res.tg,
1394 				&black_color);
1395 
1396 		/*
1397 		 * Must blank CRTC after disabling power gating and before any
1398 		 * programming, otherwise CRTC will be hung in bad state
1399 		 */
1400 		pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1401 
1402 		if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1403 				pipe_ctx->clock_source,
1404 				&pipe_ctx->stream_res.pix_clk_params,
1405 				&pipe_ctx->pll_settings)) {
1406 			BREAK_TO_DEBUGGER();
1407 			return DC_ERROR_UNEXPECTED;
1408 		}
1409 
1410 		pipe_ctx->stream_res.tg->funcs->program_timing(
1411 				pipe_ctx->stream_res.tg,
1412 				&stream->timing,
1413 				0,
1414 				0,
1415 				0,
1416 				0,
1417 				pipe_ctx->stream->signal,
1418 				true);
1419 	}
1420 
1421 	if (!pipe_ctx_old->stream) {
1422 		if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1423 				pipe_ctx->stream_res.tg)) {
1424 			BREAK_TO_DEBUGGER();
1425 			return DC_ERROR_UNEXPECTED;
1426 		}
1427 	}
1428 
1429 	return DC_OK;
1430 }
1431 
1432 static enum dc_status apply_single_controller_ctx_to_hw(
1433 		struct pipe_ctx *pipe_ctx,
1434 		struct dc_state *context,
1435 		struct dc *dc)
1436 {
1437 	struct dc_stream_state *stream = pipe_ctx->stream;
1438 	struct drr_params params = {0};
1439 	unsigned int event_triggers = 0;
1440 	struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1441 	struct dce_hwseq *hws = dc->hwseq;
1442 
1443 	if (hws->funcs.disable_stream_gating) {
1444 		hws->funcs.disable_stream_gating(dc, pipe_ctx);
1445 	}
1446 
1447 	if (pipe_ctx->stream_res.audio != NULL) {
1448 		struct audio_output audio_output;
1449 
1450 		build_audio_output(context, pipe_ctx, &audio_output);
1451 
1452 		if (dc_is_dp_signal(pipe_ctx->stream->signal))
1453 			pipe_ctx->stream_res.stream_enc->funcs->dp_audio_setup(
1454 					pipe_ctx->stream_res.stream_enc,
1455 					pipe_ctx->stream_res.audio->inst,
1456 					&pipe_ctx->stream->audio_info);
1457 		else
1458 			pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_setup(
1459 					pipe_ctx->stream_res.stream_enc,
1460 					pipe_ctx->stream_res.audio->inst,
1461 					&pipe_ctx->stream->audio_info,
1462 					&audio_output.crtc_info);
1463 
1464 		pipe_ctx->stream_res.audio->funcs->az_configure(
1465 				pipe_ctx->stream_res.audio,
1466 				pipe_ctx->stream->signal,
1467 				&audio_output.crtc_info,
1468 				&pipe_ctx->stream->audio_info);
1469 	}
1470 
1471 	/*  */
1472 	/* Do not touch stream timing on seamless boot optimization. */
1473 	if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1474 		hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1475 
1476 	if (hws->funcs.setup_vupdate_interrupt)
1477 		hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1478 
1479 	params.vertical_total_min = stream->adjust.v_total_min;
1480 	params.vertical_total_max = stream->adjust.v_total_max;
1481 	if (pipe_ctx->stream_res.tg->funcs->set_drr)
1482 		pipe_ctx->stream_res.tg->funcs->set_drr(
1483 			pipe_ctx->stream_res.tg, &params);
1484 
1485 	// DRR should set trigger event to monitor surface update event
1486 	if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1487 		event_triggers = 0x80;
1488 	/* Event triggers and num frames initialized for DRR, but can be
1489 	 * later updated for PSR use. Note DRR trigger events are generated
1490 	 * regardless of whether num frames met.
1491 	 */
1492 	if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1493 		pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1494 				pipe_ctx->stream_res.tg, event_triggers, 2);
1495 
1496 	if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1497 		pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1498 			pipe_ctx->stream_res.stream_enc,
1499 			pipe_ctx->stream_res.tg->inst);
1500 
1501 	pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1502 			pipe_ctx->stream_res.opp,
1503 			COLOR_SPACE_YCBCR601,
1504 			stream->timing.display_color_depth,
1505 			stream->signal);
1506 
1507 	pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1508 		pipe_ctx->stream_res.opp,
1509 		&stream->bit_depth_params,
1510 		&stream->clamping);
1511 	while (odm_pipe) {
1512 		odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1513 				odm_pipe->stream_res.opp,
1514 				COLOR_SPACE_YCBCR601,
1515 				stream->timing.display_color_depth,
1516 				stream->signal);
1517 
1518 		odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1519 				odm_pipe->stream_res.opp,
1520 				&stream->bit_depth_params,
1521 				&stream->clamping);
1522 		odm_pipe = odm_pipe->next_odm_pipe;
1523 	}
1524 
1525 	if (!stream->dpms_off)
1526 		core_link_enable_stream(context, pipe_ctx);
1527 
1528 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
1529 
1530 	pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1531 
1532 	return DC_OK;
1533 }
1534 
1535 /******************************************************************************/
1536 
1537 static void power_down_encoders(struct dc *dc)
1538 {
1539 	int i;
1540 
1541 	/* do not know BIOS back-front mapping, simply blank all. It will not
1542 	 * hurt for non-DP
1543 	 */
1544 	for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1545 		dc->res_pool->stream_enc[i]->funcs->dp_blank(
1546 					dc->res_pool->stream_enc[i]);
1547 	}
1548 
1549 	for (i = 0; i < dc->link_count; i++) {
1550 		enum signal_type signal = dc->links[i]->connector_signal;
1551 
1552 		if ((signal == SIGNAL_TYPE_EDP) ||
1553 			(signal == SIGNAL_TYPE_DISPLAY_PORT))
1554 			if (!dc->links[i]->wa_flags.dp_keep_receiver_powered)
1555 				dp_receiver_power_ctrl(dc->links[i], false);
1556 
1557 		if (signal != SIGNAL_TYPE_EDP)
1558 			signal = SIGNAL_TYPE_NONE;
1559 
1560 		dc->links[i]->link_enc->funcs->disable_output(
1561 				dc->links[i]->link_enc, signal);
1562 
1563 		dc->links[i]->link_status.link_active = false;
1564 		memset(&dc->links[i]->cur_link_settings, 0,
1565 				sizeof(dc->links[i]->cur_link_settings));
1566 	}
1567 }
1568 
1569 static void power_down_controllers(struct dc *dc)
1570 {
1571 	int i;
1572 
1573 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1574 		dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1575 				dc->res_pool->timing_generators[i]);
1576 	}
1577 }
1578 
1579 static void power_down_clock_sources(struct dc *dc)
1580 {
1581 	int i;
1582 
1583 	if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1584 		dc->res_pool->dp_clock_source) == false)
1585 		dm_error("Failed to power down pll! (dp clk src)\n");
1586 
1587 	for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1588 		if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1589 				dc->res_pool->clock_sources[i]) == false)
1590 			dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1591 	}
1592 }
1593 
1594 static void power_down_all_hw_blocks(struct dc *dc)
1595 {
1596 	power_down_encoders(dc);
1597 
1598 	power_down_controllers(dc);
1599 
1600 	power_down_clock_sources(dc);
1601 
1602 	if (dc->fbc_compressor)
1603 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1604 }
1605 
1606 static void disable_vga_and_power_gate_all_controllers(
1607 		struct dc *dc)
1608 {
1609 	int i;
1610 	struct timing_generator *tg;
1611 	struct dc_context *ctx = dc->ctx;
1612 
1613 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1614 		tg = dc->res_pool->timing_generators[i];
1615 
1616 		if (tg->funcs->disable_vga)
1617 			tg->funcs->disable_vga(tg);
1618 	}
1619 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1620 		/* Enable CLOCK gating for each pipe BEFORE controller
1621 		 * powergating. */
1622 		enable_display_pipe_clock_gating(ctx,
1623 				true);
1624 
1625 		dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1626 		dc->hwss.disable_plane(dc,
1627 			&dc->current_state->res_ctx.pipe_ctx[i]);
1628 	}
1629 }
1630 
1631 
1632 static struct dc_stream_state *get_edp_stream(struct dc_state *context)
1633 {
1634 	int i;
1635 
1636 	for (i = 0; i < context->stream_count; i++) {
1637 		if (context->streams[i]->signal == SIGNAL_TYPE_EDP)
1638 			return context->streams[i];
1639 	}
1640 	return NULL;
1641 }
1642 
1643 static struct dc_link *get_edp_link_with_sink(
1644 		struct dc *dc,
1645 		struct dc_state *context)
1646 {
1647 	int i;
1648 	struct dc_link *link = NULL;
1649 
1650 	/* check if there is an eDP panel not in use */
1651 	for (i = 0; i < dc->link_count; i++) {
1652 		if (dc->links[i]->local_sink &&
1653 			dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1654 			link = dc->links[i];
1655 			break;
1656 		}
1657 	}
1658 
1659 	return link;
1660 }
1661 
1662 /*
1663  * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1664  *  1. Power down all DC HW blocks
1665  *  2. Disable VGA engine on all controllers
1666  *  3. Enable power gating for controller
1667  *  4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1668  */
1669 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1670 {
1671 	int i;
1672 	struct dc_link *edp_link_with_sink = get_edp_link_with_sink(dc, context);
1673 	struct dc_link *edp_link = get_edp_link(dc);
1674 	struct dc_stream_state *edp_stream = NULL;
1675 	bool can_apply_edp_fast_boot = false;
1676 	bool can_apply_seamless_boot = false;
1677 	bool keep_edp_vdd_on = false;
1678 	struct dce_hwseq *hws = dc->hwseq;
1679 
1680 	if (hws->funcs.init_pipes)
1681 		hws->funcs.init_pipes(dc, context);
1682 
1683 	edp_stream = get_edp_stream(context);
1684 
1685 	// Check fastboot support, disable on DCE8 because of blank screens
1686 	if (edp_link && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1687 		    dc->ctx->dce_version != DCE_VERSION_8_1 &&
1688 		    dc->ctx->dce_version != DCE_VERSION_8_3) {
1689 
1690 		// enable fastboot if backend is enabled on eDP
1691 		if (edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc)) {
1692 			/* Set optimization flag on eDP stream*/
1693 			if (edp_stream && edp_link->link_status.link_active) {
1694 				edp_stream->apply_edp_fast_boot_optimization = true;
1695 				can_apply_edp_fast_boot = true;
1696 			}
1697 		}
1698 
1699 		// We are trying to enable eDP, don't power down VDD
1700 		if (edp_stream)
1701 			keep_edp_vdd_on = true;
1702 	}
1703 
1704 	// Check seamless boot support
1705 	for (i = 0; i < context->stream_count; i++) {
1706 		if (context->streams[i]->apply_seamless_boot_optimization) {
1707 			can_apply_seamless_boot = true;
1708 			break;
1709 		}
1710 	}
1711 
1712 	/* eDP should not have stream in resume from S4 and so even with VBios post
1713 	 * it should get turned off
1714 	 */
1715 	if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1716 		if (edp_link_with_sink && !keep_edp_vdd_on) {
1717 			/*turn off backlight before DP_blank and encoder powered down*/
1718 			hws->funcs.edp_backlight_control(edp_link_with_sink, false);
1719 		}
1720 		/*resume from S3, no vbios posting, no need to power down again*/
1721 		power_down_all_hw_blocks(dc);
1722 		disable_vga_and_power_gate_all_controllers(dc);
1723 		if (edp_link_with_sink && !keep_edp_vdd_on)
1724 			dc->hwss.edp_power_control(edp_link_with_sink, false);
1725 	}
1726 	bios_set_scratch_acc_mode_change(dc->ctx->dc_bios);
1727 }
1728 
1729 static uint32_t compute_pstate_blackout_duration(
1730 	struct bw_fixed blackout_duration,
1731 	const struct dc_stream_state *stream)
1732 {
1733 	uint32_t total_dest_line_time_ns;
1734 	uint32_t pstate_blackout_duration_ns;
1735 
1736 	pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1737 
1738 	total_dest_line_time_ns = 1000000UL *
1739 		(stream->timing.h_total * 10) /
1740 		stream->timing.pix_clk_100hz +
1741 		pstate_blackout_duration_ns;
1742 
1743 	return total_dest_line_time_ns;
1744 }
1745 
1746 static void dce110_set_displaymarks(
1747 	const struct dc *dc,
1748 	struct dc_state *context)
1749 {
1750 	uint8_t i, num_pipes;
1751 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1752 
1753 	for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1754 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1755 		uint32_t total_dest_line_time_ns;
1756 
1757 		if (pipe_ctx->stream == NULL)
1758 			continue;
1759 
1760 		total_dest_line_time_ns = compute_pstate_blackout_duration(
1761 			dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1762 		pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1763 			pipe_ctx->plane_res.mi,
1764 			context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1765 			context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1766 			context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
1767 			context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1768 			total_dest_line_time_ns);
1769 		if (i == underlay_idx) {
1770 			num_pipes++;
1771 			pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1772 				pipe_ctx->plane_res.mi,
1773 				context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1774 				context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1775 				context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1776 				total_dest_line_time_ns);
1777 		}
1778 		num_pipes++;
1779 	}
1780 }
1781 
1782 void dce110_set_safe_displaymarks(
1783 		struct resource_context *res_ctx,
1784 		const struct resource_pool *pool)
1785 {
1786 	int i;
1787 	int underlay_idx = pool->underlay_pipe_index;
1788 	struct dce_watermarks max_marks = {
1789 		MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1790 	struct dce_watermarks nbp_marks = {
1791 		SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1792 	struct dce_watermarks min_marks = { 0, 0, 0, 0};
1793 
1794 	for (i = 0; i < MAX_PIPES; i++) {
1795 		if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1796 			continue;
1797 
1798 		res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1799 				res_ctx->pipe_ctx[i].plane_res.mi,
1800 				nbp_marks,
1801 				max_marks,
1802 				min_marks,
1803 				max_marks,
1804 				MAX_WATERMARK);
1805 
1806 		if (i == underlay_idx)
1807 			res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1808 				res_ctx->pipe_ctx[i].plane_res.mi,
1809 				nbp_marks,
1810 				max_marks,
1811 				max_marks,
1812 				MAX_WATERMARK);
1813 
1814 	}
1815 }
1816 
1817 /*******************************************************************************
1818  * Public functions
1819  ******************************************************************************/
1820 
1821 static void set_drr(struct pipe_ctx **pipe_ctx,
1822 		int num_pipes, unsigned int vmin, unsigned int vmax,
1823 		unsigned int vmid, unsigned int vmid_frame_number)
1824 {
1825 	int i = 0;
1826 	struct drr_params params = {0};
1827 	// DRR should set trigger event to monitor surface update event
1828 	unsigned int event_triggers = 0x80;
1829 	// Note DRR trigger events are generated regardless of whether num frames met.
1830 	unsigned int num_frames = 2;
1831 
1832 	params.vertical_total_max = vmax;
1833 	params.vertical_total_min = vmin;
1834 
1835 	/* TODO: If multiple pipes are to be supported, you need
1836 	 * some GSL stuff. Static screen triggers may be programmed differently
1837 	 * as well.
1838 	 */
1839 	for (i = 0; i < num_pipes; i++) {
1840 		pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1841 			pipe_ctx[i]->stream_res.tg, &params);
1842 
1843 		if (vmax != 0 && vmin != 0)
1844 			pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1845 					pipe_ctx[i]->stream_res.tg,
1846 					event_triggers, num_frames);
1847 	}
1848 }
1849 
1850 static void get_position(struct pipe_ctx **pipe_ctx,
1851 		int num_pipes,
1852 		struct crtc_position *position)
1853 {
1854 	int i = 0;
1855 
1856 	/* TODO: handle pipes > 1
1857 	 */
1858 	for (i = 0; i < num_pipes; i++)
1859 		pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1860 }
1861 
1862 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1863 		int num_pipes, const struct dc_static_screen_params *params)
1864 {
1865 	unsigned int i;
1866 	unsigned int triggers = 0;
1867 
1868 	if (params->triggers.overlay_update)
1869 		triggers |= 0x100;
1870 	if (params->triggers.surface_update)
1871 		triggers |= 0x80;
1872 	if (params->triggers.cursor_update)
1873 		triggers |= 0x2;
1874 	if (params->triggers.force_trigger)
1875 		triggers |= 0x1;
1876 
1877 	if (num_pipes) {
1878 		struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
1879 
1880 		if (dc->fbc_compressor)
1881 			triggers |= 0x84;
1882 	}
1883 
1884 	for (i = 0; i < num_pipes; i++)
1885 		pipe_ctx[i]->stream_res.tg->funcs->
1886 			set_static_screen_control(pipe_ctx[i]->stream_res.tg,
1887 					triggers, params->num_frames);
1888 }
1889 
1890 /*
1891  *  Check if FBC can be enabled
1892  */
1893 static bool should_enable_fbc(struct dc *dc,
1894 		struct dc_state *context,
1895 		uint32_t *pipe_idx)
1896 {
1897 	uint32_t i;
1898 	struct pipe_ctx *pipe_ctx = NULL;
1899 	struct resource_context *res_ctx = &context->res_ctx;
1900 	unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1901 
1902 
1903 	ASSERT(dc->fbc_compressor);
1904 
1905 	/* FBC memory should be allocated */
1906 	if (!dc->ctx->fbc_gpu_addr)
1907 		return false;
1908 
1909 	/* Only supports single display */
1910 	if (context->stream_count != 1)
1911 		return false;
1912 
1913 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1914 		if (res_ctx->pipe_ctx[i].stream) {
1915 
1916 			pipe_ctx = &res_ctx->pipe_ctx[i];
1917 
1918 			if (!pipe_ctx)
1919 				continue;
1920 
1921 			/* fbc not applicable on underlay pipe */
1922 			if (pipe_ctx->pipe_idx != underlay_idx) {
1923 				*pipe_idx = i;
1924 				break;
1925 			}
1926 		}
1927 	}
1928 
1929 	if (i == dc->res_pool->pipe_count)
1930 		return false;
1931 
1932 	if (!pipe_ctx->stream->link)
1933 		return false;
1934 
1935 	/* Only supports eDP */
1936 	if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
1937 		return false;
1938 
1939 	/* PSR should not be enabled */
1940 	if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
1941 		return false;
1942 
1943 	/* Nothing to compress */
1944 	if (!pipe_ctx->plane_state)
1945 		return false;
1946 
1947 	/* Only for non-linear tiling */
1948 	if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
1949 		return false;
1950 
1951 	return true;
1952 }
1953 
1954 /*
1955  *  Enable FBC
1956  */
1957 static void enable_fbc(
1958 		struct dc *dc,
1959 		struct dc_state *context)
1960 {
1961 	uint32_t pipe_idx = 0;
1962 
1963 	if (should_enable_fbc(dc, context, &pipe_idx)) {
1964 		/* Program GRPH COMPRESSED ADDRESS and PITCH */
1965 		struct compr_addr_and_pitch_params params = {0, 0, 0};
1966 		struct compressor *compr = dc->fbc_compressor;
1967 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
1968 
1969 		params.source_view_width = pipe_ctx->stream->timing.h_addressable;
1970 		params.source_view_height = pipe_ctx->stream->timing.v_addressable;
1971 		params.inst = pipe_ctx->stream_res.tg->inst;
1972 		compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
1973 
1974 		compr->funcs->surface_address_and_pitch(compr, &params);
1975 		compr->funcs->set_fbc_invalidation_triggers(compr, 1);
1976 
1977 		compr->funcs->enable_fbc(compr, &params);
1978 	}
1979 }
1980 
1981 static void dce110_reset_hw_ctx_wrap(
1982 		struct dc *dc,
1983 		struct dc_state *context)
1984 {
1985 	int i;
1986 
1987 	/* Reset old context */
1988 	/* look up the targets that have been removed since last commit */
1989 	for (i = 0; i < MAX_PIPES; i++) {
1990 		struct pipe_ctx *pipe_ctx_old =
1991 			&dc->current_state->res_ctx.pipe_ctx[i];
1992 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1993 
1994 		/* Note: We need to disable output if clock sources change,
1995 		 * since bios does optimization and doesn't apply if changing
1996 		 * PHY when not already disabled.
1997 		 */
1998 
1999 		/* Skip underlay pipe since it will be handled in commit surface*/
2000 		if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
2001 			continue;
2002 
2003 		if (!pipe_ctx->stream ||
2004 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2005 			struct clock_source *old_clk = pipe_ctx_old->clock_source;
2006 
2007 			/* Disable if new stream is null. O/w, if stream is
2008 			 * disabled already, no need to disable again.
2009 			 */
2010 			if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
2011 				core_link_disable_stream(pipe_ctx_old);
2012 
2013 				/* free acquired resources*/
2014 				if (pipe_ctx_old->stream_res.audio) {
2015 					/*disable az_endpoint*/
2016 					pipe_ctx_old->stream_res.audio->funcs->
2017 							az_disable(pipe_ctx_old->stream_res.audio);
2018 
2019 					/*free audio*/
2020 					if (dc->caps.dynamic_audio == true) {
2021 						/*we have to dynamic arbitrate the audio endpoints*/
2022 						/*we free the resource, need reset is_audio_acquired*/
2023 						update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2024 								pipe_ctx_old->stream_res.audio, false);
2025 						pipe_ctx_old->stream_res.audio = NULL;
2026 					}
2027 				}
2028 			}
2029 
2030 			pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
2031 			if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
2032 				dm_error("DC: failed to blank crtc!\n");
2033 				BREAK_TO_DEBUGGER();
2034 			}
2035 			pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2036 			pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2037 					pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2038 
2039 			if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2040 										dc->res_pool,
2041 										old_clk))
2042 				old_clk->funcs->cs_power_down(old_clk);
2043 
2044 			dc->hwss.disable_plane(dc, pipe_ctx_old);
2045 
2046 			pipe_ctx_old->stream = NULL;
2047 		}
2048 	}
2049 }
2050 
2051 static void dce110_setup_audio_dto(
2052 		struct dc *dc,
2053 		struct dc_state *context)
2054 {
2055 	int i;
2056 
2057 	/* program audio wall clock. use HDMI as clock source if HDMI
2058 	 * audio active. Otherwise, use DP as clock source
2059 	 * first, loop to find any HDMI audio, if not, loop find DP audio
2060 	 */
2061 	/* Setup audio rate clock source */
2062 	/* Issue:
2063 	* Audio lag happened on DP monitor when unplug a HDMI monitor
2064 	*
2065 	* Cause:
2066 	* In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2067 	* is set to either dto0 or dto1, audio should work fine.
2068 	* In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2069 	* set to dto0 will cause audio lag.
2070 	*
2071 	* Solution:
2072 	* Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2073 	* find first available pipe with audio, setup audio wall DTO per topology
2074 	* instead of per pipe.
2075 	*/
2076 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2077 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2078 
2079 		if (pipe_ctx->stream == NULL)
2080 			continue;
2081 
2082 		if (pipe_ctx->top_pipe)
2083 			continue;
2084 		if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2085 			continue;
2086 		if (pipe_ctx->stream_res.audio != NULL) {
2087 			struct audio_output audio_output;
2088 
2089 			build_audio_output(context, pipe_ctx, &audio_output);
2090 
2091 			pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2092 				pipe_ctx->stream_res.audio,
2093 				pipe_ctx->stream->signal,
2094 				&audio_output.crtc_info,
2095 				&audio_output.pll_info);
2096 			break;
2097 		}
2098 	}
2099 
2100 	/* no HDMI audio is found, try DP audio */
2101 	if (i == dc->res_pool->pipe_count) {
2102 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
2103 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2104 
2105 			if (pipe_ctx->stream == NULL)
2106 				continue;
2107 
2108 			if (pipe_ctx->top_pipe)
2109 				continue;
2110 
2111 			if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2112 				continue;
2113 
2114 			if (pipe_ctx->stream_res.audio != NULL) {
2115 				struct audio_output audio_output;
2116 
2117 				build_audio_output(context, pipe_ctx, &audio_output);
2118 
2119 				pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2120 					pipe_ctx->stream_res.audio,
2121 					pipe_ctx->stream->signal,
2122 					&audio_output.crtc_info,
2123 					&audio_output.pll_info);
2124 				break;
2125 			}
2126 		}
2127 	}
2128 }
2129 
2130 enum dc_status dce110_apply_ctx_to_hw(
2131 		struct dc *dc,
2132 		struct dc_state *context)
2133 {
2134 	struct dce_hwseq *hws = dc->hwseq;
2135 	struct dc_bios *dcb = dc->ctx->dc_bios;
2136 	enum dc_status status;
2137 	int i;
2138 
2139 	/* Reset old context */
2140 	/* look up the targets that have been removed since last commit */
2141 	hws->funcs.reset_hw_ctx_wrap(dc, context);
2142 
2143 	/* Skip applying if no targets */
2144 	if (context->stream_count <= 0)
2145 		return DC_OK;
2146 
2147 	/* Apply new context */
2148 	dcb->funcs->set_scratch_critical_state(dcb, true);
2149 
2150 	/* below is for real asic only */
2151 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2152 		struct pipe_ctx *pipe_ctx_old =
2153 					&dc->current_state->res_ctx.pipe_ctx[i];
2154 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2155 
2156 		if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2157 			continue;
2158 
2159 		if (pipe_ctx->stream == pipe_ctx_old->stream) {
2160 			if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2161 				dce_crtc_switch_to_clk_src(dc->hwseq,
2162 						pipe_ctx->clock_source, i);
2163 			continue;
2164 		}
2165 
2166 		hws->funcs.enable_display_power_gating(
2167 				dc, i, dc->ctx->dc_bios,
2168 				PIPE_GATING_CONTROL_DISABLE);
2169 	}
2170 
2171 	if (dc->fbc_compressor)
2172 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2173 
2174 	dce110_setup_audio_dto(dc, context);
2175 
2176 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2177 		struct pipe_ctx *pipe_ctx_old =
2178 					&dc->current_state->res_ctx.pipe_ctx[i];
2179 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2180 
2181 		if (pipe_ctx->stream == NULL)
2182 			continue;
2183 
2184 		if (pipe_ctx->stream == pipe_ctx_old->stream &&
2185 			pipe_ctx->stream->link->link_state_valid) {
2186 			continue;
2187 		}
2188 
2189 		if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2190 			continue;
2191 
2192 		if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2193 			continue;
2194 
2195 		status = apply_single_controller_ctx_to_hw(
2196 				pipe_ctx,
2197 				context,
2198 				dc);
2199 
2200 		if (DC_OK != status)
2201 			return status;
2202 	}
2203 
2204 	if (dc->fbc_compressor)
2205 		enable_fbc(dc, dc->current_state);
2206 
2207 	dcb->funcs->set_scratch_critical_state(dcb, false);
2208 
2209 	return DC_OK;
2210 }
2211 
2212 /*******************************************************************************
2213  * Front End programming
2214  ******************************************************************************/
2215 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2216 {
2217 	struct default_adjustment default_adjust = { 0 };
2218 
2219 	default_adjust.force_hw_default = false;
2220 	default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2221 	default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2222 	default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2223 	default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2224 
2225 	/* display color depth */
2226 	default_adjust.color_depth =
2227 		pipe_ctx->stream->timing.display_color_depth;
2228 
2229 	/* Lb color depth */
2230 	default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2231 
2232 	pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2233 					pipe_ctx->plane_res.xfm, &default_adjust);
2234 }
2235 
2236 
2237 /*******************************************************************************
2238  * In order to turn on/off specific surface we will program
2239  * Blender + CRTC
2240  *
2241  * In case that we have two surfaces and they have a different visibility
2242  * we can't turn off the CRTC since it will turn off the entire display
2243  *
2244  * |----------------------------------------------- |
2245  * |bottom pipe|curr pipe  |              |         |
2246  * |Surface    |Surface    | Blender      |  CRCT   |
2247  * |visibility |visibility | Configuration|         |
2248  * |------------------------------------------------|
2249  * |   off     |    off    | CURRENT_PIPE | blank   |
2250  * |   off     |    on     | CURRENT_PIPE | unblank |
2251  * |   on      |    off    | OTHER_PIPE   | unblank |
2252  * |   on      |    on     | BLENDING     | unblank |
2253  * -------------------------------------------------|
2254  *
2255  ******************************************************************************/
2256 static void program_surface_visibility(const struct dc *dc,
2257 		struct pipe_ctx *pipe_ctx)
2258 {
2259 	enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2260 	bool blank_target = false;
2261 
2262 	if (pipe_ctx->bottom_pipe) {
2263 
2264 		/* For now we are supporting only two pipes */
2265 		ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2266 
2267 		if (pipe_ctx->bottom_pipe->plane_state->visible) {
2268 			if (pipe_ctx->plane_state->visible)
2269 				blender_mode = BLND_MODE_BLENDING;
2270 			else
2271 				blender_mode = BLND_MODE_OTHER_PIPE;
2272 
2273 		} else if (!pipe_ctx->plane_state->visible)
2274 			blank_target = true;
2275 
2276 	} else if (!pipe_ctx->plane_state->visible)
2277 		blank_target = true;
2278 
2279 	dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2280 	pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2281 
2282 }
2283 
2284 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2285 {
2286 	int i = 0;
2287 	struct xfm_grph_csc_adjustment adjust;
2288 	memset(&adjust, 0, sizeof(adjust));
2289 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2290 
2291 
2292 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2293 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2294 
2295 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2296 			adjust.temperature_matrix[i] =
2297 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2298 	}
2299 
2300 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2301 }
2302 static void update_plane_addr(const struct dc *dc,
2303 		struct pipe_ctx *pipe_ctx)
2304 {
2305 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2306 
2307 	if (plane_state == NULL)
2308 		return;
2309 
2310 	pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2311 			pipe_ctx->plane_res.mi,
2312 			&plane_state->address,
2313 			plane_state->flip_immediate);
2314 
2315 	plane_state->status.requested_address = plane_state->address;
2316 }
2317 
2318 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2319 {
2320 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2321 
2322 	if (plane_state == NULL)
2323 		return;
2324 
2325 	plane_state->status.is_flip_pending =
2326 			pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2327 					pipe_ctx->plane_res.mi);
2328 
2329 	if (plane_state->status.is_flip_pending && !plane_state->visible)
2330 		pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2331 
2332 	plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2333 	if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2334 			pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2335 		plane_state->status.is_right_eye =\
2336 				!pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2337 	}
2338 }
2339 
2340 void dce110_power_down(struct dc *dc)
2341 {
2342 	power_down_all_hw_blocks(dc);
2343 	disable_vga_and_power_gate_all_controllers(dc);
2344 }
2345 
2346 static bool wait_for_reset_trigger_to_occur(
2347 	struct dc_context *dc_ctx,
2348 	struct timing_generator *tg)
2349 {
2350 	bool rc = false;
2351 
2352 	/* To avoid endless loop we wait at most
2353 	 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2354 	const uint32_t frames_to_wait_on_triggered_reset = 10;
2355 	uint32_t i;
2356 
2357 	for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2358 
2359 		if (!tg->funcs->is_counter_moving(tg)) {
2360 			DC_ERROR("TG counter is not moving!\n");
2361 			break;
2362 		}
2363 
2364 		if (tg->funcs->did_triggered_reset_occur(tg)) {
2365 			rc = true;
2366 			/* usually occurs at i=1 */
2367 			DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2368 					i);
2369 			break;
2370 		}
2371 
2372 		/* Wait for one frame. */
2373 		tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2374 		tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2375 	}
2376 
2377 	if (false == rc)
2378 		DC_ERROR("GSL: Timeout on reset trigger!\n");
2379 
2380 	return rc;
2381 }
2382 
2383 /* Enable timing synchronization for a group of Timing Generators. */
2384 static void dce110_enable_timing_synchronization(
2385 		struct dc *dc,
2386 		int group_index,
2387 		int group_size,
2388 		struct pipe_ctx *grouped_pipes[])
2389 {
2390 	struct dc_context *dc_ctx = dc->ctx;
2391 	struct dcp_gsl_params gsl_params = { 0 };
2392 	int i;
2393 
2394 	DC_SYNC_INFO("GSL: Setting-up...\n");
2395 
2396 	/* Designate a single TG in the group as a master.
2397 	 * Since HW doesn't care which one, we always assign
2398 	 * the 1st one in the group. */
2399 	gsl_params.gsl_group = 0;
2400 	gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2401 
2402 	for (i = 0; i < group_size; i++)
2403 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2404 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2405 
2406 	/* Reset slave controllers on master VSync */
2407 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2408 
2409 	for (i = 1 /* skip the master */; i < group_size; i++)
2410 		grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2411 				grouped_pipes[i]->stream_res.tg,
2412 				gsl_params.gsl_group);
2413 
2414 	for (i = 1 /* skip the master */; i < group_size; i++) {
2415 		DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2416 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2417 		grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2418 				grouped_pipes[i]->stream_res.tg);
2419 	}
2420 
2421 	/* GSL Vblank synchronization is a one time sync mechanism, assumption
2422 	 * is that the sync'ed displays will not drift out of sync over time*/
2423 	DC_SYNC_INFO("GSL: Restoring register states.\n");
2424 	for (i = 0; i < group_size; i++)
2425 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2426 
2427 	DC_SYNC_INFO("GSL: Set-up complete.\n");
2428 }
2429 
2430 static void dce110_enable_per_frame_crtc_position_reset(
2431 		struct dc *dc,
2432 		int group_size,
2433 		struct pipe_ctx *grouped_pipes[])
2434 {
2435 	struct dc_context *dc_ctx = dc->ctx;
2436 	struct dcp_gsl_params gsl_params = { 0 };
2437 	int i;
2438 
2439 	gsl_params.gsl_group = 0;
2440 	gsl_params.gsl_master = 0;
2441 
2442 	for (i = 0; i < group_size; i++)
2443 		grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2444 					grouped_pipes[i]->stream_res.tg, &gsl_params);
2445 
2446 	DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2447 
2448 	for (i = 1; i < group_size; i++)
2449 		grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2450 				grouped_pipes[i]->stream_res.tg,
2451 				gsl_params.gsl_master,
2452 				&grouped_pipes[i]->stream->triggered_crtc_reset);
2453 
2454 	DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2455 	for (i = 1; i < group_size; i++)
2456 		wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2457 
2458 	for (i = 0; i < group_size; i++)
2459 		grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2460 
2461 }
2462 
2463 static void init_pipes(struct dc *dc, struct dc_state *context)
2464 {
2465 	// Do nothing
2466 }
2467 
2468 static void init_hw(struct dc *dc)
2469 {
2470 	int i;
2471 	struct dc_bios *bp;
2472 	struct transform *xfm;
2473 	struct abm *abm;
2474 	struct dmcu *dmcu;
2475 	struct dce_hwseq *hws = dc->hwseq;
2476 	uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2477 
2478 	bp = dc->ctx->dc_bios;
2479 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2480 		xfm = dc->res_pool->transforms[i];
2481 		xfm->funcs->transform_reset(xfm);
2482 
2483 		hws->funcs.enable_display_power_gating(
2484 				dc, i, bp,
2485 				PIPE_GATING_CONTROL_INIT);
2486 		hws->funcs.enable_display_power_gating(
2487 				dc, i, bp,
2488 				PIPE_GATING_CONTROL_DISABLE);
2489 		hws->funcs.enable_display_pipe_clock_gating(
2490 			dc->ctx,
2491 			true);
2492 	}
2493 
2494 	dce_clock_gating_power_up(dc->hwseq, false);
2495 	/***************************************/
2496 
2497 	for (i = 0; i < dc->link_count; i++) {
2498 		/****************************************/
2499 		/* Power up AND update implementation according to the
2500 		 * required signal (which may be different from the
2501 		 * default signal on connector). */
2502 		struct dc_link *link = dc->links[i];
2503 
2504 		link->link_enc->funcs->hw_init(link->link_enc);
2505 	}
2506 
2507 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2508 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
2509 
2510 		tg->funcs->disable_vga(tg);
2511 
2512 		/* Blank controller using driver code instead of
2513 		 * command table. */
2514 		tg->funcs->set_blank(tg, true);
2515 		hwss_wait_for_blank_complete(tg);
2516 	}
2517 
2518 	for (i = 0; i < dc->res_pool->audio_count; i++) {
2519 		struct audio *audio = dc->res_pool->audios[i];
2520 		audio->funcs->hw_init(audio);
2521 	}
2522 
2523 	for (i = 0; i < dc->link_count; i++) {
2524 		struct dc_link *link = dc->links[i];
2525 
2526 		if (link->panel_cntl)
2527 			backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2528 	}
2529 
2530 	abm = dc->res_pool->abm;
2531 	if (abm != NULL)
2532 		abm->funcs->abm_init(abm, backlight);
2533 
2534 	dmcu = dc->res_pool->dmcu;
2535 	if (dmcu != NULL && abm != NULL)
2536 		abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2537 
2538 	if (dc->fbc_compressor)
2539 		dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2540 
2541 }
2542 
2543 
2544 void dce110_prepare_bandwidth(
2545 		struct dc *dc,
2546 		struct dc_state *context)
2547 {
2548 	struct clk_mgr *dccg = dc->clk_mgr;
2549 
2550 	dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2551 
2552 	dccg->funcs->update_clocks(
2553 			dccg,
2554 			context,
2555 			false);
2556 }
2557 
2558 void dce110_optimize_bandwidth(
2559 		struct dc *dc,
2560 		struct dc_state *context)
2561 {
2562 	struct clk_mgr *dccg = dc->clk_mgr;
2563 
2564 	dce110_set_displaymarks(dc, context);
2565 
2566 	dccg->funcs->update_clocks(
2567 			dccg,
2568 			context,
2569 			true);
2570 }
2571 
2572 static void dce110_program_front_end_for_pipe(
2573 		struct dc *dc, struct pipe_ctx *pipe_ctx)
2574 {
2575 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2576 	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2577 	struct xfm_grph_csc_adjustment adjust;
2578 	struct out_csc_color_matrix tbl_entry;
2579 	unsigned int i;
2580 	struct dce_hwseq *hws = dc->hwseq;
2581 
2582 	DC_LOGGER_INIT();
2583 	memset(&tbl_entry, 0, sizeof(tbl_entry));
2584 
2585 	memset(&adjust, 0, sizeof(adjust));
2586 	adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2587 
2588 	dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2589 
2590 	set_default_colors(pipe_ctx);
2591 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2592 			== true) {
2593 		tbl_entry.color_space =
2594 			pipe_ctx->stream->output_color_space;
2595 
2596 		for (i = 0; i < 12; i++)
2597 			tbl_entry.regval[i] =
2598 			pipe_ctx->stream->csc_color_matrix.matrix[i];
2599 
2600 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2601 				(pipe_ctx->plane_res.xfm, &tbl_entry);
2602 	}
2603 
2604 	if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2605 		adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2606 
2607 		for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2608 			adjust.temperature_matrix[i] =
2609 				pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2610 	}
2611 
2612 	pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2613 
2614 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
2615 
2616 	program_scaler(dc, pipe_ctx);
2617 
2618 	mi->funcs->mem_input_program_surface_config(
2619 			mi,
2620 			plane_state->format,
2621 			&plane_state->tiling_info,
2622 			&plane_state->plane_size,
2623 			plane_state->rotation,
2624 			NULL,
2625 			false);
2626 	if (mi->funcs->set_blank)
2627 		mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2628 
2629 	if (dc->config.gpu_vm_support)
2630 		mi->funcs->mem_input_program_pte_vm(
2631 				pipe_ctx->plane_res.mi,
2632 				plane_state->format,
2633 				&plane_state->tiling_info,
2634 				plane_state->rotation);
2635 
2636 	/* Moved programming gamma from dc to hwss */
2637 	if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2638 			pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2639 			pipe_ctx->plane_state->update_flags.bits.gamma_change)
2640 		hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2641 
2642 	if (pipe_ctx->plane_state->update_flags.bits.full_update)
2643 		hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2644 
2645 	DC_LOG_SURFACE(
2646 			"Pipe:%d %p: addr hi:0x%x, "
2647 			"addr low:0x%x, "
2648 			"src: %d, %d, %d,"
2649 			" %d; dst: %d, %d, %d, %d;"
2650 			"clip: %d, %d, %d, %d\n",
2651 			pipe_ctx->pipe_idx,
2652 			(void *) pipe_ctx->plane_state,
2653 			pipe_ctx->plane_state->address.grph.addr.high_part,
2654 			pipe_ctx->plane_state->address.grph.addr.low_part,
2655 			pipe_ctx->plane_state->src_rect.x,
2656 			pipe_ctx->plane_state->src_rect.y,
2657 			pipe_ctx->plane_state->src_rect.width,
2658 			pipe_ctx->plane_state->src_rect.height,
2659 			pipe_ctx->plane_state->dst_rect.x,
2660 			pipe_ctx->plane_state->dst_rect.y,
2661 			pipe_ctx->plane_state->dst_rect.width,
2662 			pipe_ctx->plane_state->dst_rect.height,
2663 			pipe_ctx->plane_state->clip_rect.x,
2664 			pipe_ctx->plane_state->clip_rect.y,
2665 			pipe_ctx->plane_state->clip_rect.width,
2666 			pipe_ctx->plane_state->clip_rect.height);
2667 
2668 	DC_LOG_SURFACE(
2669 			"Pipe %d: width, height, x, y\n"
2670 			"viewport:%d, %d, %d, %d\n"
2671 			"recout:  %d, %d, %d, %d\n",
2672 			pipe_ctx->pipe_idx,
2673 			pipe_ctx->plane_res.scl_data.viewport.width,
2674 			pipe_ctx->plane_res.scl_data.viewport.height,
2675 			pipe_ctx->plane_res.scl_data.viewport.x,
2676 			pipe_ctx->plane_res.scl_data.viewport.y,
2677 			pipe_ctx->plane_res.scl_data.recout.width,
2678 			pipe_ctx->plane_res.scl_data.recout.height,
2679 			pipe_ctx->plane_res.scl_data.recout.x,
2680 			pipe_ctx->plane_res.scl_data.recout.y);
2681 }
2682 
2683 static void dce110_apply_ctx_for_surface(
2684 		struct dc *dc,
2685 		const struct dc_stream_state *stream,
2686 		int num_planes,
2687 		struct dc_state *context)
2688 {
2689 	int i;
2690 
2691 	if (num_planes == 0)
2692 		return;
2693 
2694 	if (dc->fbc_compressor)
2695 		dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2696 
2697 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2698 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2699 
2700 		if (pipe_ctx->stream != stream)
2701 			continue;
2702 
2703 		/* Need to allocate mem before program front end for Fiji */
2704 		pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2705 				pipe_ctx->plane_res.mi,
2706 				pipe_ctx->stream->timing.h_total,
2707 				pipe_ctx->stream->timing.v_total,
2708 				pipe_ctx->stream->timing.pix_clk_100hz / 10,
2709 				context->stream_count);
2710 
2711 		dce110_program_front_end_for_pipe(dc, pipe_ctx);
2712 
2713 		dc->hwss.update_plane_addr(dc, pipe_ctx);
2714 
2715 		program_surface_visibility(dc, pipe_ctx);
2716 
2717 	}
2718 
2719 	if (dc->fbc_compressor)
2720 		enable_fbc(dc, context);
2721 }
2722 
2723 static void dce110_post_unlock_program_front_end(
2724 		struct dc *dc,
2725 		struct dc_state *context)
2726 {
2727 }
2728 
2729 static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
2730 {
2731 	struct dce_hwseq *hws = dc->hwseq;
2732 	int fe_idx = pipe_ctx->plane_res.mi ?
2733 		pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2734 
2735 	/* Do not power down fe when stream is active on dce*/
2736 	if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2737 		return;
2738 
2739 	hws->funcs.enable_display_power_gating(
2740 		dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2741 
2742 	dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2743 				dc->res_pool->transforms[fe_idx]);
2744 }
2745 
2746 static void dce110_wait_for_mpcc_disconnect(
2747 		struct dc *dc,
2748 		struct resource_pool *res_pool,
2749 		struct pipe_ctx *pipe_ctx)
2750 {
2751 	/* do nothing*/
2752 }
2753 
2754 static void program_output_csc(struct dc *dc,
2755 		struct pipe_ctx *pipe_ctx,
2756 		enum dc_color_space colorspace,
2757 		uint16_t *matrix,
2758 		int opp_id)
2759 {
2760 	int i;
2761 	struct out_csc_color_matrix tbl_entry;
2762 
2763 	if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2764 		enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
2765 
2766 		for (i = 0; i < 12; i++)
2767 			tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2768 
2769 		tbl_entry.color_space = color_space;
2770 
2771 		pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
2772 				pipe_ctx->plane_res.xfm, &tbl_entry);
2773 	}
2774 }
2775 
2776 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2777 {
2778 	struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2779 	struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2780 	struct mem_input *mi = pipe_ctx->plane_res.mi;
2781 	struct dc_cursor_mi_param param = {
2782 		.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
2783 		.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
2784 		.viewport = pipe_ctx->plane_res.scl_data.viewport,
2785 		.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2786 		.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2787 		.rotation = pipe_ctx->plane_state->rotation,
2788 		.mirror = pipe_ctx->plane_state->horizontal_mirror
2789 	};
2790 
2791 	/**
2792 	 * If the cursor's source viewport is clipped then we need to
2793 	 * translate the cursor to appear in the correct position on
2794 	 * the screen.
2795 	 *
2796 	 * This translation isn't affected by scaling so it needs to be
2797 	 * done *after* we adjust the position for the scale factor.
2798 	 *
2799 	 * This is only done by opt-in for now since there are still
2800 	 * some usecases like tiled display that might enable the
2801 	 * cursor on both streams while expecting dc to clip it.
2802 	 */
2803 	if (pos_cpy.translate_by_source) {
2804 		pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
2805 		pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
2806 	}
2807 
2808 	if (pipe_ctx->plane_state->address.type
2809 			== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2810 		pos_cpy.enable = false;
2811 
2812 	if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2813 		pos_cpy.enable = false;
2814 
2815 	if (ipp->funcs->ipp_cursor_set_position)
2816 		ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
2817 	if (mi->funcs->set_cursor_position)
2818 		mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
2819 }
2820 
2821 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2822 {
2823 	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2824 
2825 	if (pipe_ctx->plane_res.ipp &&
2826 	    pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2827 		pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2828 				pipe_ctx->plane_res.ipp, attributes);
2829 
2830 	if (pipe_ctx->plane_res.mi &&
2831 	    pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2832 		pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2833 				pipe_ctx->plane_res.mi, attributes);
2834 
2835 	if (pipe_ctx->plane_res.xfm &&
2836 	    pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2837 		pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2838 				pipe_ctx->plane_res.xfm, attributes);
2839 }
2840 
2841 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
2842 		uint32_t backlight_pwm_u16_16,
2843 		uint32_t frame_ramp)
2844 {
2845 	struct dc_link *link = pipe_ctx->stream->link;
2846 	struct dc  *dc = link->ctx->dc;
2847 	struct abm *abm = pipe_ctx->stream_res.abm;
2848 	struct panel_cntl *panel_cntl = link->panel_cntl;
2849 	struct dmcu *dmcu = dc->res_pool->dmcu;
2850 	bool fw_set_brightness = true;
2851 	/* DMCU -1 for all controller id values,
2852 	 * therefore +1 here
2853 	 */
2854 	uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
2855 
2856 	if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
2857 		return false;
2858 
2859 	if (dmcu)
2860 		fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
2861 
2862 	if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
2863 		panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
2864 	else
2865 		abm->funcs->set_backlight_level_pwm(
2866 				abm,
2867 				backlight_pwm_u16_16,
2868 				frame_ramp,
2869 				controller_id,
2870 				link->panel_cntl->inst);
2871 
2872 	return true;
2873 }
2874 
2875 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
2876 {
2877 	struct abm *abm = pipe_ctx->stream_res.abm;
2878 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2879 
2880 	if (abm)
2881 		abm->funcs->set_abm_immediate_disable(abm,
2882 				pipe_ctx->stream->link->panel_cntl->inst);
2883 
2884 	if (panel_cntl)
2885 		panel_cntl->funcs->store_backlight_level(panel_cntl);
2886 }
2887 
2888 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
2889 {
2890 	struct abm *abm = pipe_ctx->stream_res.abm;
2891 	struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
2892 	uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
2893 
2894 	if (abm && panel_cntl)
2895 		abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
2896 }
2897 
2898 static const struct hw_sequencer_funcs dce110_funcs = {
2899 	.program_gamut_remap = program_gamut_remap,
2900 	.program_output_csc = program_output_csc,
2901 	.init_hw = init_hw,
2902 	.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
2903 	.apply_ctx_for_surface = dce110_apply_ctx_for_surface,
2904 	.post_unlock_program_front_end = dce110_post_unlock_program_front_end,
2905 	.update_plane_addr = update_plane_addr,
2906 	.update_pending_status = dce110_update_pending_status,
2907 	.enable_accelerated_mode = dce110_enable_accelerated_mode,
2908 	.enable_timing_synchronization = dce110_enable_timing_synchronization,
2909 	.enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
2910 	.update_info_frame = dce110_update_info_frame,
2911 	.enable_stream = dce110_enable_stream,
2912 	.disable_stream = dce110_disable_stream,
2913 	.unblank_stream = dce110_unblank_stream,
2914 	.blank_stream = dce110_blank_stream,
2915 	.enable_audio_stream = dce110_enable_audio_stream,
2916 	.disable_audio_stream = dce110_disable_audio_stream,
2917 	.disable_plane = dce110_power_down_fe,
2918 	.pipe_control_lock = dce_pipe_control_lock,
2919 	.interdependent_update_lock = NULL,
2920 	.cursor_lock = dce_pipe_control_lock,
2921 	.prepare_bandwidth = dce110_prepare_bandwidth,
2922 	.optimize_bandwidth = dce110_optimize_bandwidth,
2923 	.set_drr = set_drr,
2924 	.get_position = get_position,
2925 	.set_static_screen_control = set_static_screen_control,
2926 	.setup_stereo = NULL,
2927 	.set_avmute = dce110_set_avmute,
2928 	.wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
2929 	.edp_backlight_control = dce110_edp_backlight_control,
2930 	.edp_power_control = dce110_edp_power_control,
2931 	.edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
2932 	.set_cursor_position = dce110_set_cursor_position,
2933 	.set_cursor_attribute = dce110_set_cursor_attribute,
2934 	.set_backlight_level = dce110_set_backlight_level,
2935 	.set_abm_immediate_disable = dce110_set_abm_immediate_disable,
2936 	.set_pipe = dce110_set_pipe,
2937 };
2938 
2939 static const struct hwseq_private_funcs dce110_private_funcs = {
2940 	.init_pipes = init_pipes,
2941 	.update_plane_addr = update_plane_addr,
2942 	.set_input_transfer_func = dce110_set_input_transfer_func,
2943 	.set_output_transfer_func = dce110_set_output_transfer_func,
2944 	.power_down = dce110_power_down,
2945 	.enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
2946 	.enable_display_power_gating = dce110_enable_display_power_gating,
2947 	.reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
2948 	.enable_stream_timing = dce110_enable_stream_timing,
2949 	.disable_stream_gating = NULL,
2950 	.enable_stream_gating = NULL,
2951 	.edp_backlight_control = dce110_edp_backlight_control,
2952 };
2953 
2954 void dce110_hw_sequencer_construct(struct dc *dc)
2955 {
2956 	dc->hwss = dce110_funcs;
2957 	dc->hwseq->funcs = dce110_private_funcs;
2958 }
2959 
2960