1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include <linux/slab.h>
27 
28 #include "dm_services.h"
29 
30 #include "resource.h"
31 #include "include/irq_service_interface.h"
32 #include "link_encoder.h"
33 #include "stream_encoder.h"
34 #include "opp.h"
35 #include "timing_generator.h"
36 #include "transform.h"
37 #include "dccg.h"
38 #include "dchubbub.h"
39 #include "dpp.h"
40 #include "core_types.h"
41 #include "set_mode_types.h"
42 #include "virtual/virtual_stream_encoder.h"
43 #include "dpcd_defs.h"
44 
45 #if defined(CONFIG_DRM_AMD_DC_SI)
46 #include "dce60/dce60_resource.h"
47 #endif
48 #include "dce80/dce80_resource.h"
49 #include "dce100/dce100_resource.h"
50 #include "dce110/dce110_resource.h"
51 #include "dce112/dce112_resource.h"
52 #include "dce120/dce120_resource.h"
53 #if defined(CONFIG_DRM_AMD_DC_DCN)
54 #include "dcn10/dcn10_resource.h"
55 #include "dcn20/dcn20_resource.h"
56 #include "dcn21/dcn21_resource.h"
57 #include "dcn30/dcn30_resource.h"
58 #include "dcn301/dcn301_resource.h"
59 #include "dcn302/dcn302_resource.h"
60 #endif
61 
62 #define DC_LOGGER_INIT(logger)
63 
64 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
65 {
66 	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
67 	switch (asic_id.chip_family) {
68 
69 #if defined(CONFIG_DRM_AMD_DC_SI)
70 	case FAMILY_SI:
71 		if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
72 		    ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
73 		    ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
74 			dc_version = DCE_VERSION_6_0;
75 		else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
76 			dc_version = DCE_VERSION_6_4;
77 		else
78 			dc_version = DCE_VERSION_6_1;
79 		break;
80 #endif
81 	case FAMILY_CI:
82 		dc_version = DCE_VERSION_8_0;
83 		break;
84 	case FAMILY_KV:
85 		if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
86 		    ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
87 		    ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
88 			dc_version = DCE_VERSION_8_3;
89 		else
90 			dc_version = DCE_VERSION_8_1;
91 		break;
92 	case FAMILY_CZ:
93 		dc_version = DCE_VERSION_11_0;
94 		break;
95 
96 	case FAMILY_VI:
97 		if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
98 				ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
99 			dc_version = DCE_VERSION_10_0;
100 			break;
101 		}
102 		if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
103 				ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
104 				ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
105 			dc_version = DCE_VERSION_11_2;
106 		}
107 		if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
108 			dc_version = DCE_VERSION_11_22;
109 		break;
110 	case FAMILY_AI:
111 		if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
112 			dc_version = DCE_VERSION_12_1;
113 		else
114 			dc_version = DCE_VERSION_12_0;
115 		break;
116 #if defined(CONFIG_DRM_AMD_DC_DCN)
117 	case FAMILY_RV:
118 		dc_version = DCN_VERSION_1_0;
119 		if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
120 			dc_version = DCN_VERSION_1_01;
121 		if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
122 			dc_version = DCN_VERSION_2_1;
123 		if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
124 			dc_version = DCN_VERSION_2_1;
125 		break;
126 
127 	case FAMILY_NV:
128 		dc_version = DCN_VERSION_2_0;
129 		if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
130 			dc_version = DCN_VERSION_3_0;
131 		if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
132 			dc_version = DCN_VERSION_3_02;
133 		break;
134 
135 	case FAMILY_VGH:
136 		dc_version = DCN_VERSION_3_01;
137 		break;
138 #endif
139 	default:
140 		dc_version = DCE_VERSION_UNKNOWN;
141 		break;
142 	}
143 	return dc_version;
144 }
145 
146 struct resource_pool *dc_create_resource_pool(struct dc  *dc,
147 					      const struct dc_init_data *init_data,
148 					      enum dce_version dc_version)
149 {
150 	struct resource_pool *res_pool = NULL;
151 
152 	switch (dc_version) {
153 #if defined(CONFIG_DRM_AMD_DC_SI)
154 	case DCE_VERSION_6_0:
155 		res_pool = dce60_create_resource_pool(
156 			init_data->num_virtual_links, dc);
157 		break;
158 	case DCE_VERSION_6_1:
159 		res_pool = dce61_create_resource_pool(
160 			init_data->num_virtual_links, dc);
161 		break;
162 	case DCE_VERSION_6_4:
163 		res_pool = dce64_create_resource_pool(
164 			init_data->num_virtual_links, dc);
165 		break;
166 #endif
167 	case DCE_VERSION_8_0:
168 		res_pool = dce80_create_resource_pool(
169 				init_data->num_virtual_links, dc);
170 		break;
171 	case DCE_VERSION_8_1:
172 		res_pool = dce81_create_resource_pool(
173 				init_data->num_virtual_links, dc);
174 		break;
175 	case DCE_VERSION_8_3:
176 		res_pool = dce83_create_resource_pool(
177 				init_data->num_virtual_links, dc);
178 		break;
179 	case DCE_VERSION_10_0:
180 		res_pool = dce100_create_resource_pool(
181 				init_data->num_virtual_links, dc);
182 		break;
183 	case DCE_VERSION_11_0:
184 		res_pool = dce110_create_resource_pool(
185 				init_data->num_virtual_links, dc,
186 				init_data->asic_id);
187 		break;
188 	case DCE_VERSION_11_2:
189 	case DCE_VERSION_11_22:
190 		res_pool = dce112_create_resource_pool(
191 				init_data->num_virtual_links, dc);
192 		break;
193 	case DCE_VERSION_12_0:
194 	case DCE_VERSION_12_1:
195 		res_pool = dce120_create_resource_pool(
196 				init_data->num_virtual_links, dc);
197 		break;
198 
199 #if defined(CONFIG_DRM_AMD_DC_DCN)
200 	case DCN_VERSION_1_0:
201 	case DCN_VERSION_1_01:
202 		res_pool = dcn10_create_resource_pool(init_data, dc);
203 		break;
204 	case DCN_VERSION_2_0:
205 		res_pool = dcn20_create_resource_pool(init_data, dc);
206 		break;
207 	case DCN_VERSION_2_1:
208 		res_pool = dcn21_create_resource_pool(init_data, dc);
209 		break;
210 	case DCN_VERSION_3_0:
211 		res_pool = dcn30_create_resource_pool(init_data, dc);
212 		break;
213 	case DCN_VERSION_3_01:
214 		res_pool = dcn301_create_resource_pool(init_data, dc);
215 		break;
216 	case DCN_VERSION_3_02:
217 		res_pool = dcn302_create_resource_pool(init_data, dc);
218 		break;
219 #endif
220 	default:
221 		break;
222 	}
223 
224 	if (res_pool != NULL) {
225 		if (dc->ctx->dc_bios->fw_info_valid) {
226 			res_pool->ref_clocks.xtalin_clock_inKhz =
227 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
228 			/* initialize with firmware data first, no all
229 			 * ASIC have DCCG SW component. FPGA or
230 			 * simulation need initialization of
231 			 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
232 			 * with xtalin_clock_inKhz
233 			 */
234 			res_pool->ref_clocks.dccg_ref_clock_inKhz =
235 				res_pool->ref_clocks.xtalin_clock_inKhz;
236 			res_pool->ref_clocks.dchub_ref_clock_inKhz =
237 				res_pool->ref_clocks.xtalin_clock_inKhz;
238 		} else
239 			ASSERT_CRITICAL(false);
240 	}
241 
242 	return res_pool;
243 }
244 
245 void dc_destroy_resource_pool(struct dc  *dc)
246 {
247 	if (dc) {
248 		if (dc->res_pool)
249 			dc->res_pool->funcs->destroy(&dc->res_pool);
250 
251 		kfree(dc->hwseq);
252 	}
253 }
254 
255 static void update_num_audio(
256 	const struct resource_straps *straps,
257 	unsigned int *num_audio,
258 	struct audio_support *aud_support)
259 {
260 	aud_support->dp_audio = true;
261 	aud_support->hdmi_audio_native = false;
262 	aud_support->hdmi_audio_on_dongle = false;
263 
264 	if (straps->hdmi_disable == 0) {
265 		if (straps->dc_pinstraps_audio & 0x2) {
266 			aud_support->hdmi_audio_on_dongle = true;
267 			aud_support->hdmi_audio_native = true;
268 		}
269 	}
270 
271 	switch (straps->audio_stream_number) {
272 	case 0: /* multi streams supported */
273 		break;
274 	case 1: /* multi streams not supported */
275 		*num_audio = 1;
276 		break;
277 	default:
278 		DC_ERR("DC: unexpected audio fuse!\n");
279 	}
280 }
281 
282 bool resource_construct(
283 	unsigned int num_virtual_links,
284 	struct dc  *dc,
285 	struct resource_pool *pool,
286 	const struct resource_create_funcs *create_funcs)
287 {
288 	struct dc_context *ctx = dc->ctx;
289 	const struct resource_caps *caps = pool->res_cap;
290 	int i;
291 	unsigned int num_audio = caps->num_audio;
292 	struct resource_straps straps = {0};
293 
294 	if (create_funcs->read_dce_straps)
295 		create_funcs->read_dce_straps(dc->ctx, &straps);
296 
297 	pool->audio_count = 0;
298 	if (create_funcs->create_audio) {
299 		/* find the total number of streams available via the
300 		 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
301 		 * registers (one for each pin) starting from pin 1
302 		 * up to the max number of audio pins.
303 		 * We stop on the first pin where
304 		 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
305 		 */
306 		update_num_audio(&straps, &num_audio, &pool->audio_support);
307 		for (i = 0; i < caps->num_audio; i++) {
308 			struct audio *aud = create_funcs->create_audio(ctx, i);
309 
310 			if (aud == NULL) {
311 				DC_ERR("DC: failed to create audio!\n");
312 				return false;
313 			}
314 			if (!aud->funcs->endpoint_valid(aud)) {
315 				aud->funcs->destroy(&aud);
316 				break;
317 			}
318 			pool->audios[i] = aud;
319 			pool->audio_count++;
320 		}
321 	}
322 
323 	pool->stream_enc_count = 0;
324 	if (create_funcs->create_stream_encoder) {
325 		for (i = 0; i < caps->num_stream_encoder; i++) {
326 			pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
327 			if (pool->stream_enc[i] == NULL)
328 				DC_ERR("DC: failed to create stream_encoder!\n");
329 			pool->stream_enc_count++;
330 		}
331 	}
332 
333 #if defined(CONFIG_DRM_AMD_DC_DCN)
334 	for (i = 0; i < caps->num_mpc_3dlut; i++) {
335 		pool->mpc_lut[i] = dc_create_3dlut_func();
336 		if (pool->mpc_lut[i] == NULL)
337 			DC_ERR("DC: failed to create MPC 3dlut!\n");
338 		pool->mpc_shaper[i] = dc_create_transfer_func();
339 		if (pool->mpc_shaper[i] == NULL)
340 			DC_ERR("DC: failed to create MPC shaper!\n");
341 	}
342 #endif
343 	dc->caps.dynamic_audio = false;
344 	if (pool->audio_count < pool->stream_enc_count) {
345 		dc->caps.dynamic_audio = true;
346 	}
347 	for (i = 0; i < num_virtual_links; i++) {
348 		pool->stream_enc[pool->stream_enc_count] =
349 			virtual_stream_encoder_create(
350 					ctx, ctx->dc_bios);
351 		if (pool->stream_enc[pool->stream_enc_count] == NULL) {
352 			DC_ERR("DC: failed to create stream_encoder!\n");
353 			return false;
354 		}
355 		pool->stream_enc_count++;
356 	}
357 
358 	dc->hwseq = create_funcs->create_hwseq(ctx);
359 
360 	return true;
361 }
362 static int find_matching_clock_source(
363 		const struct resource_pool *pool,
364 		struct clock_source *clock_source)
365 {
366 
367 	int i;
368 
369 	for (i = 0; i < pool->clk_src_count; i++) {
370 		if (pool->clock_sources[i] == clock_source)
371 			return i;
372 	}
373 	return -1;
374 }
375 
376 void resource_unreference_clock_source(
377 		struct resource_context *res_ctx,
378 		const struct resource_pool *pool,
379 		struct clock_source *clock_source)
380 {
381 	int i = find_matching_clock_source(pool, clock_source);
382 
383 	if (i > -1)
384 		res_ctx->clock_source_ref_count[i]--;
385 
386 	if (pool->dp_clock_source == clock_source)
387 		res_ctx->dp_clock_source_ref_count--;
388 }
389 
390 void resource_reference_clock_source(
391 		struct resource_context *res_ctx,
392 		const struct resource_pool *pool,
393 		struct clock_source *clock_source)
394 {
395 	int i = find_matching_clock_source(pool, clock_source);
396 
397 	if (i > -1)
398 		res_ctx->clock_source_ref_count[i]++;
399 
400 	if (pool->dp_clock_source == clock_source)
401 		res_ctx->dp_clock_source_ref_count++;
402 }
403 
404 int resource_get_clock_source_reference(
405 		struct resource_context *res_ctx,
406 		const struct resource_pool *pool,
407 		struct clock_source *clock_source)
408 {
409 	int i = find_matching_clock_source(pool, clock_source);
410 
411 	if (i > -1)
412 		return res_ctx->clock_source_ref_count[i];
413 
414 	if (pool->dp_clock_source == clock_source)
415 		return res_ctx->dp_clock_source_ref_count;
416 
417 	return -1;
418 }
419 
420 bool resource_are_vblanks_synchronizable(
421 	struct dc_stream_state *stream1,
422 	struct dc_stream_state *stream2)
423 {
424 	uint32_t base60_refresh_rates[] = {10, 20, 5};
425 	uint8_t i;
426 	uint8_t rr_count = sizeof(base60_refresh_rates)/sizeof(base60_refresh_rates[0]);
427 	uint64_t frame_time_diff;
428 
429 	if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
430 		stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
431 		dc_is_dp_signal(stream1->signal) &&
432 		dc_is_dp_signal(stream2->signal) &&
433 		false == stream1->has_non_synchronizable_pclk &&
434 		false == stream2->has_non_synchronizable_pclk &&
435 		stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
436 		stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
437 		/* disable refresh rates higher than 60Hz for now */
438 		if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
439 				stream1->timing.v_total > 60)
440 			return false;
441 		if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
442 				stream2->timing.v_total > 60)
443 			return false;
444 		frame_time_diff = (uint64_t)10000 *
445 			stream1->timing.h_total *
446 			stream1->timing.v_total *
447 			stream2->timing.pix_clk_100hz;
448 		frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
449 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
450 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
451 		for (i = 0; i < rr_count; i++) {
452 			int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
453 
454 			if (diff < 0)
455 				diff = -diff;
456 			if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
457 				return true;
458 		}
459 	}
460 	return false;
461 }
462 
463 bool resource_are_streams_timing_synchronizable(
464 	struct dc_stream_state *stream1,
465 	struct dc_stream_state *stream2)
466 {
467 	if (stream1->timing.h_total != stream2->timing.h_total)
468 		return false;
469 
470 	if (stream1->timing.v_total != stream2->timing.v_total)
471 		return false;
472 
473 	if (stream1->timing.h_addressable
474 				!= stream2->timing.h_addressable)
475 		return false;
476 
477 	if (stream1->timing.v_addressable
478 				!= stream2->timing.v_addressable)
479 		return false;
480 
481 	if (stream1->timing.v_front_porch
482 				!= stream2->timing.v_front_porch)
483 		return false;
484 
485 	if (stream1->timing.pix_clk_100hz
486 				!= stream2->timing.pix_clk_100hz)
487 		return false;
488 
489 	if (stream1->clamping.c_depth != stream2->clamping.c_depth)
490 		return false;
491 
492 	if (stream1->phy_pix_clk != stream2->phy_pix_clk
493 			&& (!dc_is_dp_signal(stream1->signal)
494 			|| !dc_is_dp_signal(stream2->signal)))
495 		return false;
496 
497 	if (stream1->view_format != stream2->view_format)
498 		return false;
499 
500 	if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
501 		return false;
502 
503 	return true;
504 }
505 static bool is_dp_and_hdmi_sharable(
506 		struct dc_stream_state *stream1,
507 		struct dc_stream_state *stream2)
508 {
509 	if (stream1->ctx->dc->caps.disable_dp_clk_share)
510 		return false;
511 
512 	if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
513 		stream2->clamping.c_depth != COLOR_DEPTH_888)
514 		return false;
515 
516 	return true;
517 
518 }
519 
520 static bool is_sharable_clk_src(
521 	const struct pipe_ctx *pipe_with_clk_src,
522 	const struct pipe_ctx *pipe)
523 {
524 	if (pipe_with_clk_src->clock_source == NULL)
525 		return false;
526 
527 	if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
528 		return false;
529 
530 	if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
531 		(dc_is_dp_signal(pipe->stream->signal) &&
532 		!is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
533 				     pipe->stream)))
534 		return false;
535 
536 	if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
537 			&& dc_is_dual_link_signal(pipe->stream->signal))
538 		return false;
539 
540 	if (dc_is_hdmi_signal(pipe->stream->signal)
541 			&& dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
542 		return false;
543 
544 	if (!resource_are_streams_timing_synchronizable(
545 			pipe_with_clk_src->stream, pipe->stream))
546 		return false;
547 
548 	return true;
549 }
550 
551 struct clock_source *resource_find_used_clk_src_for_sharing(
552 					struct resource_context *res_ctx,
553 					struct pipe_ctx *pipe_ctx)
554 {
555 	int i;
556 
557 	for (i = 0; i < MAX_PIPES; i++) {
558 		if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
559 			return res_ctx->pipe_ctx[i].clock_source;
560 	}
561 
562 	return NULL;
563 }
564 
565 static enum pixel_format convert_pixel_format_to_dalsurface(
566 		enum surface_pixel_format surface_pixel_format)
567 {
568 	enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
569 
570 	switch (surface_pixel_format) {
571 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
572 		dal_pixel_format = PIXEL_FORMAT_INDEX8;
573 		break;
574 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
575 		dal_pixel_format = PIXEL_FORMAT_RGB565;
576 		break;
577 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
578 		dal_pixel_format = PIXEL_FORMAT_RGB565;
579 		break;
580 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
581 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
582 		break;
583 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
584 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
585 		break;
586 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
587 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
588 		break;
589 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
590 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
591 		break;
592 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
593 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
594 		break;
595 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
596 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
597 		dal_pixel_format = PIXEL_FORMAT_FP16;
598 		break;
599 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
600 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
601 		dal_pixel_format = PIXEL_FORMAT_420BPP8;
602 		break;
603 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
604 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
605 		dal_pixel_format = PIXEL_FORMAT_420BPP10;
606 		break;
607 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
608 	default:
609 		dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
610 		break;
611 	}
612 	return dal_pixel_format;
613 }
614 
615 static inline void get_vp_scan_direction(
616 	enum dc_rotation_angle rotation,
617 	bool horizontal_mirror,
618 	bool *orthogonal_rotation,
619 	bool *flip_vert_scan_dir,
620 	bool *flip_horz_scan_dir)
621 {
622 	*orthogonal_rotation = false;
623 	*flip_vert_scan_dir = false;
624 	*flip_horz_scan_dir = false;
625 	if (rotation == ROTATION_ANGLE_180) {
626 		*flip_vert_scan_dir = true;
627 		*flip_horz_scan_dir = true;
628 	} else if (rotation == ROTATION_ANGLE_90) {
629 		*orthogonal_rotation = true;
630 		*flip_horz_scan_dir = true;
631 	} else if (rotation == ROTATION_ANGLE_270) {
632 		*orthogonal_rotation = true;
633 		*flip_vert_scan_dir = true;
634 	}
635 
636 	if (horizontal_mirror)
637 		*flip_horz_scan_dir = !*flip_horz_scan_dir;
638 }
639 
640 int get_num_mpc_splits(struct pipe_ctx *pipe)
641 {
642 	int mpc_split_count = 0;
643 	struct pipe_ctx *other_pipe = pipe->bottom_pipe;
644 
645 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
646 		mpc_split_count++;
647 		other_pipe = other_pipe->bottom_pipe;
648 	}
649 	other_pipe = pipe->top_pipe;
650 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
651 		mpc_split_count++;
652 		other_pipe = other_pipe->top_pipe;
653 	}
654 
655 	return mpc_split_count;
656 }
657 
658 int get_num_odm_splits(struct pipe_ctx *pipe)
659 {
660 	int odm_split_count = 0;
661 	struct pipe_ctx *next_pipe = pipe->next_odm_pipe;
662 	while (next_pipe) {
663 		odm_split_count++;
664 		next_pipe = next_pipe->next_odm_pipe;
665 	}
666 	pipe = pipe->prev_odm_pipe;
667 	while (pipe) {
668 		odm_split_count++;
669 		pipe = pipe->prev_odm_pipe;
670 	}
671 	return odm_split_count;
672 }
673 
674 static void calculate_split_count_and_index(struct pipe_ctx *pipe_ctx, int *split_count, int *split_idx)
675 {
676 	*split_count = get_num_odm_splits(pipe_ctx);
677 	*split_idx = 0;
678 	if (*split_count == 0) {
679 		/*Check for mpc split*/
680 		struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
681 
682 		*split_count = get_num_mpc_splits(pipe_ctx);
683 		while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
684 			(*split_idx)++;
685 			split_pipe = split_pipe->top_pipe;
686 		}
687 	} else {
688 		/*Get odm split index*/
689 		struct pipe_ctx *split_pipe = pipe_ctx->prev_odm_pipe;
690 
691 		while (split_pipe) {
692 			(*split_idx)++;
693 			split_pipe = split_pipe->prev_odm_pipe;
694 		}
695 	}
696 }
697 
698 static void calculate_viewport(struct pipe_ctx *pipe_ctx)
699 {
700 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
701 	const struct dc_stream_state *stream = pipe_ctx->stream;
702 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
703 	struct rect surf_src = plane_state->src_rect;
704 	struct rect clip, dest;
705 	int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
706 			|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
707 	int split_count = 0;
708 	int split_idx = 0;
709 	bool orthogonal_rotation, flip_y_start, flip_x_start;
710 
711 	calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
712 
713 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE ||
714 		stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM) {
715 		split_count = 0;
716 		split_idx = 0;
717 	}
718 
719 	/* The actual clip is an intersection between stream
720 	 * source and surface clip
721 	 */
722 	dest = plane_state->dst_rect;
723 	clip.x = stream->src.x > plane_state->clip_rect.x ?
724 			stream->src.x : plane_state->clip_rect.x;
725 
726 	clip.width = stream->src.x + stream->src.width <
727 			plane_state->clip_rect.x + plane_state->clip_rect.width ?
728 			stream->src.x + stream->src.width - clip.x :
729 			plane_state->clip_rect.x + plane_state->clip_rect.width - clip.x ;
730 
731 	clip.y = stream->src.y > plane_state->clip_rect.y ?
732 			stream->src.y : plane_state->clip_rect.y;
733 
734 	clip.height = stream->src.y + stream->src.height <
735 			plane_state->clip_rect.y + plane_state->clip_rect.height ?
736 			stream->src.y + stream->src.height - clip.y :
737 			plane_state->clip_rect.y + plane_state->clip_rect.height - clip.y ;
738 
739 	/*
740 	 * Need to calculate how scan origin is shifted in vp space
741 	 * to correctly rotate clip and dst
742 	 */
743 	get_vp_scan_direction(
744 			plane_state->rotation,
745 			plane_state->horizontal_mirror,
746 			&orthogonal_rotation,
747 			&flip_y_start,
748 			&flip_x_start);
749 
750 	if (orthogonal_rotation) {
751 		swap(clip.x, clip.y);
752 		swap(clip.width, clip.height);
753 		swap(dest.x, dest.y);
754 		swap(dest.width, dest.height);
755 	}
756 	if (flip_x_start) {
757 		clip.x = dest.x + dest.width - clip.x - clip.width;
758 		dest.x = 0;
759 	}
760 	if (flip_y_start) {
761 		clip.y = dest.y + dest.height - clip.y - clip.height;
762 		dest.y = 0;
763 	}
764 
765 	/* offset = surf_src.ofs + (clip.ofs - surface->dst_rect.ofs) * scl_ratio
766 	 * num_pixels = clip.num_pix * scl_ratio
767 	 */
768 	data->viewport.x = surf_src.x + (clip.x - dest.x) * surf_src.width / dest.width;
769 	data->viewport.width = clip.width * surf_src.width / dest.width;
770 
771 	data->viewport.y = surf_src.y + (clip.y - dest.y) * surf_src.height / dest.height;
772 	data->viewport.height = clip.height * surf_src.height / dest.height;
773 
774 	/* Handle split */
775 	if (split_count) {
776 		/* extra pixels in the division remainder need to go to pipes after
777 		 * the extra pixel index minus one(epimo) defined here as:
778 		 */
779 		int epimo = 0;
780 
781 		if (orthogonal_rotation) {
782 			if (flip_y_start)
783 				split_idx = split_count - split_idx;
784 
785 			epimo = split_count - data->viewport.height % (split_count + 1);
786 
787 			data->viewport.y += (data->viewport.height / (split_count + 1)) * split_idx;
788 			if (split_idx > epimo)
789 				data->viewport.y += split_idx - epimo - 1;
790 			data->viewport.height = data->viewport.height / (split_count + 1) + (split_idx > epimo ? 1 : 0);
791 		} else {
792 			if (flip_x_start)
793 				split_idx = split_count - split_idx;
794 
795 			epimo = split_count - data->viewport.width % (split_count + 1);
796 
797 			data->viewport.x += (data->viewport.width / (split_count + 1)) * split_idx;
798 			if (split_idx > epimo)
799 				data->viewport.x += split_idx - epimo - 1;
800 			data->viewport.width = data->viewport.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
801 		}
802 	}
803 
804 	/* Round down, compensate in init */
805 	data->viewport_c.x = data->viewport.x / vpc_div;
806 	data->viewport_c.y = data->viewport.y / vpc_div;
807 	data->inits.h_c = (data->viewport.x % vpc_div) != 0 ? dc_fixpt_half : dc_fixpt_zero;
808 	data->inits.v_c = (data->viewport.y % vpc_div) != 0 ? dc_fixpt_half : dc_fixpt_zero;
809 
810 	/* Round up, assume original video size always even dimensions */
811 	data->viewport_c.width = (data->viewport.width + vpc_div - 1) / vpc_div;
812 	data->viewport_c.height = (data->viewport.height + vpc_div - 1) / vpc_div;
813 
814 	data->viewport_unadjusted = data->viewport;
815 	data->viewport_c_unadjusted = data->viewport_c;
816 }
817 
818 static void calculate_recout(struct pipe_ctx *pipe_ctx)
819 {
820 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
821 	const struct dc_stream_state *stream = pipe_ctx->stream;
822 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
823 	struct rect surf_clip = plane_state->clip_rect;
824 	bool pri_split_tb = pipe_ctx->bottom_pipe &&
825 			pipe_ctx->bottom_pipe->plane_state == pipe_ctx->plane_state &&
826 			stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
827 	bool sec_split_tb = pipe_ctx->top_pipe &&
828 			pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state &&
829 			stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
830 	int split_count = 0;
831 	int split_idx = 0;
832 
833 	calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
834 
835 	/*
836 	 * Only the leftmost ODM pipe should be offset by a nonzero distance
837 	 */
838 	if (!pipe_ctx->prev_odm_pipe) {
839 		data->recout.x = stream->dst.x;
840 		if (stream->src.x < surf_clip.x)
841 			data->recout.x += (surf_clip.x - stream->src.x) * stream->dst.width
842 						/ stream->src.width;
843 
844 	} else
845 		data->recout.x = 0;
846 
847 	if (stream->src.x > surf_clip.x)
848 		surf_clip.width -= stream->src.x - surf_clip.x;
849 	data->recout.width = surf_clip.width * stream->dst.width / stream->src.width;
850 	if (data->recout.width + data->recout.x > stream->dst.x + stream->dst.width)
851 		data->recout.width = stream->dst.x + stream->dst.width - data->recout.x;
852 
853 	data->recout.y = stream->dst.y;
854 	if (stream->src.y < surf_clip.y)
855 		data->recout.y += (surf_clip.y - stream->src.y) * stream->dst.height
856 						/ stream->src.height;
857 	else if (stream->src.y > surf_clip.y)
858 		surf_clip.height -= stream->src.y - surf_clip.y;
859 
860 	data->recout.height = surf_clip.height * stream->dst.height / stream->src.height;
861 	if (data->recout.height + data->recout.y > stream->dst.y + stream->dst.height)
862 		data->recout.height = stream->dst.y + stream->dst.height - data->recout.y;
863 
864 	/* Handle h & v split, handle rotation using viewport */
865 	if (sec_split_tb) {
866 		data->recout.y += data->recout.height / 2;
867 		/* Floor primary pipe, ceil 2ndary pipe */
868 		data->recout.height = (data->recout.height + 1) / 2;
869 	} else if (pri_split_tb)
870 		data->recout.height /= 2;
871 	else if (split_count) {
872 		/* extra pixels in the division remainder need to go to pipes after
873 		 * the extra pixel index minus one(epimo) defined here as:
874 		 */
875 		int epimo = split_count - data->recout.width % (split_count + 1);
876 
877 		/*no recout offset due to odm */
878 		if (!pipe_ctx->next_odm_pipe && !pipe_ctx->prev_odm_pipe) {
879 			data->recout.x += (data->recout.width / (split_count + 1)) * split_idx;
880 			if (split_idx > epimo)
881 				data->recout.x += split_idx - epimo - 1;
882 		}
883 		data->recout.width = data->recout.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
884 	}
885 }
886 
887 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
888 {
889 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
890 	const struct dc_stream_state *stream = pipe_ctx->stream;
891 	struct rect surf_src = plane_state->src_rect;
892 	const int in_w = stream->src.width;
893 	const int in_h = stream->src.height;
894 	const int out_w = stream->dst.width;
895 	const int out_h = stream->dst.height;
896 
897 	/*Swap surf_src height and width since scaling ratios are in recout rotation*/
898 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
899 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
900 		swap(surf_src.height, surf_src.width);
901 
902 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
903 					surf_src.width,
904 					plane_state->dst_rect.width);
905 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
906 					surf_src.height,
907 					plane_state->dst_rect.height);
908 
909 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
910 		pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
911 	else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
912 		pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
913 
914 	pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
915 		pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
916 	pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
917 		pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
918 
919 	pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
920 	pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
921 
922 	if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
923 			|| pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
924 		pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
925 		pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
926 	}
927 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
928 			pipe_ctx->plane_res.scl_data.ratios.horz, 19);
929 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
930 			pipe_ctx->plane_res.scl_data.ratios.vert, 19);
931 	pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
932 			pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
933 	pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
934 			pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
935 }
936 
937 static inline void adjust_vp_and_init_for_seamless_clip(
938 		bool flip_scan_dir,
939 		int recout_skip,
940 		int src_size,
941 		int taps,
942 		struct fixed31_32 ratio,
943 		struct fixed31_32 *init,
944 		int *vp_offset,
945 		int *vp_size)
946 {
947 	if (!flip_scan_dir) {
948 		/* Adjust for viewport end clip-off */
949 		if ((*vp_offset + *vp_size) < src_size) {
950 			int vp_clip = src_size - *vp_size - *vp_offset;
951 			int int_part = dc_fixpt_floor(dc_fixpt_sub(*init, ratio));
952 
953 			int_part = int_part > 0 ? int_part : 0;
954 			*vp_size += int_part < vp_clip ? int_part : vp_clip;
955 		}
956 
957 		/* Adjust for non-0 viewport offset */
958 		if (*vp_offset) {
959 			int int_part;
960 
961 			*init = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_skip));
962 			int_part = dc_fixpt_floor(*init) - *vp_offset;
963 			if (int_part < taps) {
964 				int int_adj = *vp_offset >= (taps - int_part) ?
965 							(taps - int_part) : *vp_offset;
966 				*vp_offset -= int_adj;
967 				*vp_size += int_adj;
968 				int_part += int_adj;
969 			} else if (int_part > taps) {
970 				*vp_offset += int_part - taps;
971 				*vp_size -= int_part - taps;
972 				int_part = taps;
973 			}
974 			init->value &= 0xffffffff;
975 			*init = dc_fixpt_add_int(*init, int_part);
976 		}
977 	} else {
978 		/* Adjust for non-0 viewport offset */
979 		if (*vp_offset) {
980 			int int_part = dc_fixpt_floor(dc_fixpt_sub(*init, ratio));
981 
982 			int_part = int_part > 0 ? int_part : 0;
983 			*vp_size += int_part < *vp_offset ? int_part : *vp_offset;
984 			*vp_offset -= int_part < *vp_offset ? int_part : *vp_offset;
985 		}
986 
987 		/* Adjust for viewport end clip-off */
988 		if ((*vp_offset + *vp_size) < src_size) {
989 			int int_part;
990 			int end_offset = src_size - *vp_offset - *vp_size;
991 
992 			/*
993 			 * this is init if vp had no offset, keep in mind this is from the
994 			 * right side of vp due to scan direction
995 			 */
996 			*init = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_skip));
997 			/*
998 			 * this is the difference between first pixel of viewport available to read
999 			 * and init position, takning into account scan direction
1000 			 */
1001 			int_part = dc_fixpt_floor(*init) - end_offset;
1002 			if (int_part < taps) {
1003 				int int_adj = end_offset >= (taps - int_part) ?
1004 							(taps - int_part) : end_offset;
1005 				*vp_size += int_adj;
1006 				int_part += int_adj;
1007 			} else if (int_part > taps) {
1008 				*vp_size += int_part - taps;
1009 				int_part = taps;
1010 			}
1011 			init->value &= 0xffffffff;
1012 			*init = dc_fixpt_add_int(*init, int_part);
1013 		}
1014 	}
1015 }
1016 
1017 static void calculate_inits_and_adj_vp(struct pipe_ctx *pipe_ctx)
1018 {
1019 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1020 	const struct dc_stream_state *stream = pipe_ctx->stream;
1021 	struct pipe_ctx *odm_pipe = pipe_ctx;
1022 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
1023 	struct rect src = pipe_ctx->plane_state->src_rect;
1024 	int recout_skip_h, recout_skip_v, surf_size_h, surf_size_v;
1025 	int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
1026 			|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
1027 	bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
1028 	int odm_idx = 0;
1029 
1030 	/*
1031 	 * Need to calculate the scan direction for viewport to make adjustments
1032 	 */
1033 	get_vp_scan_direction(
1034 			plane_state->rotation,
1035 			plane_state->horizontal_mirror,
1036 			&orthogonal_rotation,
1037 			&flip_vert_scan_dir,
1038 			&flip_horz_scan_dir);
1039 
1040 	/* Calculate src rect rotation adjusted to recout space */
1041 	surf_size_h = src.x + src.width;
1042 	surf_size_v = src.y + src.height;
1043 	if (flip_horz_scan_dir)
1044 		src.x = 0;
1045 	if (flip_vert_scan_dir)
1046 		src.y = 0;
1047 	if (orthogonal_rotation) {
1048 		swap(src.x, src.y);
1049 		swap(src.width, src.height);
1050 	}
1051 
1052 	/*modified recout_skip_h calculation due to odm having no recout offset*/
1053 	while (odm_pipe->prev_odm_pipe) {
1054 		odm_idx++;
1055 		odm_pipe = odm_pipe->prev_odm_pipe;
1056 	}
1057 	/*odm_pipe is the leftmost pipe in the ODM group*/
1058 	recout_skip_h = odm_idx * data->recout.width;
1059 
1060 	/* Recout matching initial vp offset = recout_offset - (stream dst offset +
1061 	 *			((surf dst offset - stream src offset) * 1/ stream scaling ratio)
1062 	 *			- (surf surf_src offset * 1/ full scl ratio))
1063 	 */
1064 	recout_skip_h += odm_pipe->plane_res.scl_data.recout.x
1065 				- (stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
1066 					* stream->dst.width / stream->src.width -
1067 					src.x * plane_state->dst_rect.width / src.width
1068 					* stream->dst.width / stream->src.width);
1069 
1070 
1071 	recout_skip_v = data->recout.y - (stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
1072 					* stream->dst.height / stream->src.height -
1073 					src.y * plane_state->dst_rect.height / src.height
1074 					* stream->dst.height / stream->src.height);
1075 	if (orthogonal_rotation)
1076 		swap(recout_skip_h, recout_skip_v);
1077 	/*
1078 	 * Init calculated according to formula:
1079 	 * 	init = (scaling_ratio + number_of_taps + 1) / 2
1080 	 * 	init_bot = init + scaling_ratio
1081 	 * 	init_c = init + truncated_vp_c_offset(from calculate viewport)
1082 	 */
1083 	data->inits.h = dc_fixpt_truncate(dc_fixpt_div_int(
1084 			dc_fixpt_add_int(data->ratios.horz, data->taps.h_taps + 1), 2), 19);
1085 
1086 	data->inits.h_c = dc_fixpt_truncate(dc_fixpt_add(data->inits.h_c, dc_fixpt_div_int(
1087 			dc_fixpt_add_int(data->ratios.horz_c, data->taps.h_taps_c + 1), 2)), 19);
1088 
1089 	data->inits.v = dc_fixpt_truncate(dc_fixpt_div_int(
1090 			dc_fixpt_add_int(data->ratios.vert, data->taps.v_taps + 1), 2), 19);
1091 
1092 	data->inits.v_c = dc_fixpt_truncate(dc_fixpt_add(data->inits.v_c, dc_fixpt_div_int(
1093 			dc_fixpt_add_int(data->ratios.vert_c, data->taps.v_taps_c + 1), 2)), 19);
1094 
1095 	/*
1096 	 * Taps, inits and scaling ratios are in recout space need to rotate
1097 	 * to viewport rotation before adjustment
1098 	 */
1099 	adjust_vp_and_init_for_seamless_clip(
1100 			flip_horz_scan_dir,
1101 			recout_skip_h,
1102 			surf_size_h,
1103 			orthogonal_rotation ? data->taps.v_taps : data->taps.h_taps,
1104 			orthogonal_rotation ? data->ratios.vert : data->ratios.horz,
1105 			orthogonal_rotation ? &data->inits.v : &data->inits.h,
1106 			&data->viewport.x,
1107 			&data->viewport.width);
1108 	adjust_vp_and_init_for_seamless_clip(
1109 			flip_horz_scan_dir,
1110 			recout_skip_h,
1111 			surf_size_h / vpc_div,
1112 			orthogonal_rotation ? data->taps.v_taps_c : data->taps.h_taps_c,
1113 			orthogonal_rotation ? data->ratios.vert_c : data->ratios.horz_c,
1114 			orthogonal_rotation ? &data->inits.v_c : &data->inits.h_c,
1115 			&data->viewport_c.x,
1116 			&data->viewport_c.width);
1117 	adjust_vp_and_init_for_seamless_clip(
1118 			flip_vert_scan_dir,
1119 			recout_skip_v,
1120 			surf_size_v,
1121 			orthogonal_rotation ? data->taps.h_taps : data->taps.v_taps,
1122 			orthogonal_rotation ? data->ratios.horz : data->ratios.vert,
1123 			orthogonal_rotation ? &data->inits.h : &data->inits.v,
1124 			&data->viewport.y,
1125 			&data->viewport.height);
1126 	adjust_vp_and_init_for_seamless_clip(
1127 			flip_vert_scan_dir,
1128 			recout_skip_v,
1129 			surf_size_v / vpc_div,
1130 			orthogonal_rotation ? data->taps.h_taps_c : data->taps.v_taps_c,
1131 			orthogonal_rotation ? data->ratios.horz_c : data->ratios.vert_c,
1132 			orthogonal_rotation ? &data->inits.h_c : &data->inits.v_c,
1133 			&data->viewport_c.y,
1134 			&data->viewport_c.height);
1135 
1136 	/* Interlaced inits based on final vert inits */
1137 	data->inits.v_bot = dc_fixpt_add(data->inits.v, data->ratios.vert);
1138 	data->inits.v_c_bot = dc_fixpt_add(data->inits.v_c, data->ratios.vert_c);
1139 
1140 }
1141 
1142 /*
1143  * When handling 270 rotation in mixed SLS mode, we have
1144  * stream->timing.h_border_left that is non zero.  If we are doing
1145  * pipe-splitting, this h_border_left value gets added to recout.x and when it
1146  * calls calculate_inits_and_adj_vp() and
1147  * adjust_vp_and_init_for_seamless_clip(), it can cause viewport.height for a
1148  * pipe to be incorrect.
1149  *
1150  * To fix this, instead of using stream->timing.h_border_left, we can use
1151  * stream->dst.x to represent the border instead.  So we will set h_border_left
1152  * to 0 and shift the appropriate amount in stream->dst.x.  We will then
1153  * perform all calculations in resource_build_scaling_params() based on this
1154  * and then restore the h_border_left and stream->dst.x to their original
1155  * values.
1156  *
1157  * shift_border_left_to_dst() will shift the amount of h_border_left to
1158  * stream->dst.x and set h_border_left to 0.  restore_border_left_from_dst()
1159  * will restore h_border_left and stream->dst.x back to their original values
1160  * We also need to make sure pipe_ctx->plane_res.scl_data.h_active uses the
1161  * original h_border_left value in its calculation.
1162  */
1163 static int shift_border_left_to_dst(struct pipe_ctx *pipe_ctx)
1164 {
1165 	int store_h_border_left = pipe_ctx->stream->timing.h_border_left;
1166 
1167 	if (store_h_border_left) {
1168 		pipe_ctx->stream->timing.h_border_left = 0;
1169 		pipe_ctx->stream->dst.x += store_h_border_left;
1170 	}
1171 	return store_h_border_left;
1172 }
1173 
1174 static void restore_border_left_from_dst(struct pipe_ctx *pipe_ctx,
1175 					 int store_h_border_left)
1176 {
1177 	pipe_ctx->stream->dst.x -= store_h_border_left;
1178 	pipe_ctx->stream->timing.h_border_left = store_h_border_left;
1179 }
1180 
1181 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1182 {
1183 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1184 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1185 	bool res = false;
1186 	int store_h_border_left = shift_border_left_to_dst(pipe_ctx);
1187 	DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1188 	/* Important: scaling ratio calculation requires pixel format,
1189 	 * lb depth calculation requires recout and taps require scaling ratios.
1190 	 * Inits require viewport, taps, ratios and recout of split pipe
1191 	 */
1192 	pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1193 			pipe_ctx->plane_state->format);
1194 
1195 	calculate_scaling_ratios(pipe_ctx);
1196 
1197 	calculate_viewport(pipe_ctx);
1198 
1199 	if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE ||
1200 		pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE) {
1201 		if (store_h_border_left) {
1202 			restore_border_left_from_dst(pipe_ctx,
1203 				store_h_border_left);
1204 		}
1205 		return false;
1206 	}
1207 
1208 	calculate_recout(pipe_ctx);
1209 
1210 	/**
1211 	 * Setting line buffer pixel depth to 24bpp yields banding
1212 	 * on certain displays, such as the Sharp 4k
1213 	 */
1214 	pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1215 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1216 
1217 	pipe_ctx->plane_res.scl_data.recout.x += timing->h_border_left;
1218 	pipe_ctx->plane_res.scl_data.recout.y += timing->v_border_top;
1219 
1220 	pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable +
1221 		store_h_border_left + timing->h_border_right;
1222 	pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable +
1223 		timing->v_border_top + timing->v_border_bottom;
1224 	if (pipe_ctx->next_odm_pipe || pipe_ctx->prev_odm_pipe)
1225 		pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx) + 1;
1226 
1227 	/* Taps calculations */
1228 	if (pipe_ctx->plane_res.xfm != NULL)
1229 		res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1230 				pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1231 
1232 	if (pipe_ctx->plane_res.dpp != NULL)
1233 		res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1234 				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1235 
1236 
1237 	if (!res) {
1238 		/* Try 24 bpp linebuffer */
1239 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1240 
1241 		if (pipe_ctx->plane_res.xfm != NULL)
1242 			res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1243 					pipe_ctx->plane_res.xfm,
1244 					&pipe_ctx->plane_res.scl_data,
1245 					&plane_state->scaling_quality);
1246 
1247 		if (pipe_ctx->plane_res.dpp != NULL)
1248 			res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1249 					pipe_ctx->plane_res.dpp,
1250 					&pipe_ctx->plane_res.scl_data,
1251 					&plane_state->scaling_quality);
1252 	}
1253 
1254 	if (res)
1255 		/* May need to re-check lb size after this in some obscure scenario */
1256 		calculate_inits_and_adj_vp(pipe_ctx);
1257 
1258 	DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d  Recout: height:%d width:%d x:%d y:%d  HACTIVE:%d VACTIVE:%d\n"
1259 			"src_rect: height:%d width:%d x:%d y:%d  dst_rect: height:%d width:%d x:%d y:%d  clip_rect: height:%d width:%d x:%d y:%d\n",
1260 			__func__,
1261 			pipe_ctx->pipe_idx,
1262 			pipe_ctx->plane_res.scl_data.viewport.height,
1263 			pipe_ctx->plane_res.scl_data.viewport.width,
1264 			pipe_ctx->plane_res.scl_data.viewport.x,
1265 			pipe_ctx->plane_res.scl_data.viewport.y,
1266 			pipe_ctx->plane_res.scl_data.recout.height,
1267 			pipe_ctx->plane_res.scl_data.recout.width,
1268 			pipe_ctx->plane_res.scl_data.recout.x,
1269 			pipe_ctx->plane_res.scl_data.recout.y,
1270 			pipe_ctx->plane_res.scl_data.h_active,
1271 			pipe_ctx->plane_res.scl_data.v_active,
1272 			plane_state->src_rect.height,
1273 			plane_state->src_rect.width,
1274 			plane_state->src_rect.x,
1275 			plane_state->src_rect.y,
1276 			plane_state->dst_rect.height,
1277 			plane_state->dst_rect.width,
1278 			plane_state->dst_rect.x,
1279 			plane_state->dst_rect.y,
1280 			plane_state->clip_rect.height,
1281 			plane_state->clip_rect.width,
1282 			plane_state->clip_rect.x,
1283 			plane_state->clip_rect.y);
1284 
1285 	if (store_h_border_left)
1286 		restore_border_left_from_dst(pipe_ctx, store_h_border_left);
1287 
1288 	return res;
1289 }
1290 
1291 
1292 enum dc_status resource_build_scaling_params_for_context(
1293 	const struct dc  *dc,
1294 	struct dc_state *context)
1295 {
1296 	int i;
1297 
1298 	for (i = 0; i < MAX_PIPES; i++) {
1299 		if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1300 				context->res_ctx.pipe_ctx[i].stream != NULL)
1301 			if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1302 				return DC_FAIL_SCALING;
1303 	}
1304 
1305 	return DC_OK;
1306 }
1307 
1308 struct pipe_ctx *find_idle_secondary_pipe(
1309 		struct resource_context *res_ctx,
1310 		const struct resource_pool *pool,
1311 		const struct pipe_ctx *primary_pipe)
1312 {
1313 	int i;
1314 	struct pipe_ctx *secondary_pipe = NULL;
1315 
1316 	/*
1317 	 * We add a preferred pipe mapping to avoid the chance that
1318 	 * MPCCs already in use will need to be reassigned to other trees.
1319 	 * For example, if we went with the strict, assign backwards logic:
1320 	 *
1321 	 * (State 1)
1322 	 * Display A on, no surface, top pipe = 0
1323 	 * Display B on, no surface, top pipe = 1
1324 	 *
1325 	 * (State 2)
1326 	 * Display A on, no surface, top pipe = 0
1327 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1328 	 *
1329 	 * (State 3)
1330 	 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1331 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1332 	 *
1333 	 * The state 2->3 transition requires remapping MPCC 5 from display B
1334 	 * to display A.
1335 	 *
1336 	 * However, with the preferred pipe logic, state 2 would look like:
1337 	 *
1338 	 * (State 2)
1339 	 * Display A on, no surface, top pipe = 0
1340 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1341 	 *
1342 	 * This would then cause 2->3 to not require remapping any MPCCs.
1343 	 */
1344 	if (primary_pipe) {
1345 		int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1346 		if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1347 			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1348 			secondary_pipe->pipe_idx = preferred_pipe_idx;
1349 		}
1350 	}
1351 
1352 	/*
1353 	 * search backwards for the second pipe to keep pipe
1354 	 * assignment more consistent
1355 	 */
1356 	if (!secondary_pipe)
1357 		for (i = pool->pipe_count - 1; i >= 0; i--) {
1358 			if (res_ctx->pipe_ctx[i].stream == NULL) {
1359 				secondary_pipe = &res_ctx->pipe_ctx[i];
1360 				secondary_pipe->pipe_idx = i;
1361 				break;
1362 			}
1363 		}
1364 
1365 	return secondary_pipe;
1366 }
1367 
1368 struct pipe_ctx *resource_get_head_pipe_for_stream(
1369 		struct resource_context *res_ctx,
1370 		struct dc_stream_state *stream)
1371 {
1372 	int i;
1373 
1374 	for (i = 0; i < MAX_PIPES; i++) {
1375 		if (res_ctx->pipe_ctx[i].stream == stream
1376 				&& !res_ctx->pipe_ctx[i].top_pipe
1377 				&& !res_ctx->pipe_ctx[i].prev_odm_pipe)
1378 			return &res_ctx->pipe_ctx[i];
1379 	}
1380 	return NULL;
1381 }
1382 
1383 static struct pipe_ctx *resource_get_tail_pipe(
1384 		struct resource_context *res_ctx,
1385 		struct pipe_ctx *head_pipe)
1386 {
1387 	struct pipe_ctx *tail_pipe;
1388 
1389 	tail_pipe = head_pipe->bottom_pipe;
1390 
1391 	while (tail_pipe) {
1392 		head_pipe = tail_pipe;
1393 		tail_pipe = tail_pipe->bottom_pipe;
1394 	}
1395 
1396 	return head_pipe;
1397 }
1398 
1399 /*
1400  * A free_pipe for a stream is defined here as a pipe
1401  * that has no surface attached yet
1402  */
1403 static struct pipe_ctx *acquire_free_pipe_for_head(
1404 		struct dc_state *context,
1405 		const struct resource_pool *pool,
1406 		struct pipe_ctx *head_pipe)
1407 {
1408 	int i;
1409 	struct resource_context *res_ctx = &context->res_ctx;
1410 
1411 	if (!head_pipe->plane_state)
1412 		return head_pipe;
1413 
1414 	/* Re-use pipe already acquired for this stream if available*/
1415 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1416 		if (res_ctx->pipe_ctx[i].stream == head_pipe->stream &&
1417 				!res_ctx->pipe_ctx[i].plane_state) {
1418 			return &res_ctx->pipe_ctx[i];
1419 		}
1420 	}
1421 
1422 	/*
1423 	 * At this point we have no re-useable pipe for this stream and we need
1424 	 * to acquire an idle one to satisfy the request
1425 	 */
1426 
1427 	if (!pool->funcs->acquire_idle_pipe_for_layer)
1428 		return NULL;
1429 
1430 	return pool->funcs->acquire_idle_pipe_for_layer(context, pool, head_pipe->stream);
1431 }
1432 
1433 #if defined(CONFIG_DRM_AMD_DC_DCN)
1434 static int acquire_first_split_pipe(
1435 		struct resource_context *res_ctx,
1436 		const struct resource_pool *pool,
1437 		struct dc_stream_state *stream)
1438 {
1439 	int i;
1440 
1441 	for (i = 0; i < pool->pipe_count; i++) {
1442 		struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1443 
1444 		if (split_pipe->top_pipe &&
1445 				split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1446 			split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1447 			if (split_pipe->bottom_pipe)
1448 				split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1449 
1450 			if (split_pipe->top_pipe->plane_state)
1451 				resource_build_scaling_params(split_pipe->top_pipe);
1452 
1453 			memset(split_pipe, 0, sizeof(*split_pipe));
1454 			split_pipe->stream_res.tg = pool->timing_generators[i];
1455 			split_pipe->plane_res.hubp = pool->hubps[i];
1456 			split_pipe->plane_res.ipp = pool->ipps[i];
1457 			split_pipe->plane_res.dpp = pool->dpps[i];
1458 			split_pipe->stream_res.opp = pool->opps[i];
1459 			split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1460 			split_pipe->pipe_idx = i;
1461 
1462 			split_pipe->stream = stream;
1463 			return i;
1464 		}
1465 	}
1466 	return -1;
1467 }
1468 #endif
1469 
1470 bool dc_add_plane_to_context(
1471 		const struct dc *dc,
1472 		struct dc_stream_state *stream,
1473 		struct dc_plane_state *plane_state,
1474 		struct dc_state *context)
1475 {
1476 	int i;
1477 	struct resource_pool *pool = dc->res_pool;
1478 	struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1479 	struct dc_stream_status *stream_status = NULL;
1480 
1481 	for (i = 0; i < context->stream_count; i++)
1482 		if (context->streams[i] == stream) {
1483 			stream_status = &context->stream_status[i];
1484 			break;
1485 		}
1486 	if (stream_status == NULL) {
1487 		dm_error("Existing stream not found; failed to attach surface!\n");
1488 		return false;
1489 	}
1490 
1491 
1492 	if (stream_status->plane_count == MAX_SURFACE_NUM) {
1493 		dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1494 				plane_state, MAX_SURFACE_NUM);
1495 		return false;
1496 	}
1497 
1498 	head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1499 
1500 	if (!head_pipe) {
1501 		dm_error("Head pipe not found for stream_state %p !\n", stream);
1502 		return false;
1503 	}
1504 
1505 	/* retain new surface, but only once per stream */
1506 	dc_plane_state_retain(plane_state);
1507 
1508 	while (head_pipe) {
1509 		free_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1510 
1511 	#if defined(CONFIG_DRM_AMD_DC_DCN)
1512 		if (!free_pipe) {
1513 			int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1514 			if (pipe_idx >= 0)
1515 				free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1516 		}
1517 	#endif
1518 		if (!free_pipe) {
1519 			dc_plane_state_release(plane_state);
1520 			return false;
1521 		}
1522 
1523 		free_pipe->plane_state = plane_state;
1524 
1525 		if (head_pipe != free_pipe) {
1526 			tail_pipe = resource_get_tail_pipe(&context->res_ctx, head_pipe);
1527 			ASSERT(tail_pipe);
1528 			free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1529 			free_pipe->stream_res.abm = tail_pipe->stream_res.abm;
1530 			free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1531 			free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1532 			free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1533 			free_pipe->clock_source = tail_pipe->clock_source;
1534 			free_pipe->top_pipe = tail_pipe;
1535 			tail_pipe->bottom_pipe = free_pipe;
1536 			if (!free_pipe->next_odm_pipe && tail_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1537 				free_pipe->next_odm_pipe = tail_pipe->next_odm_pipe->bottom_pipe;
1538 				tail_pipe->next_odm_pipe->bottom_pipe->prev_odm_pipe = free_pipe;
1539 			}
1540 			if (!free_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe->bottom_pipe) {
1541 				free_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1542 				tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = free_pipe;
1543 			}
1544 		}
1545 		head_pipe = head_pipe->next_odm_pipe;
1546 	}
1547 	/* assign new surfaces*/
1548 	stream_status->plane_states[stream_status->plane_count] = plane_state;
1549 
1550 	stream_status->plane_count++;
1551 
1552 	return true;
1553 }
1554 
1555 bool dc_remove_plane_from_context(
1556 		const struct dc *dc,
1557 		struct dc_stream_state *stream,
1558 		struct dc_plane_state *plane_state,
1559 		struct dc_state *context)
1560 {
1561 	int i;
1562 	struct dc_stream_status *stream_status = NULL;
1563 	struct resource_pool *pool = dc->res_pool;
1564 
1565 	for (i = 0; i < context->stream_count; i++)
1566 		if (context->streams[i] == stream) {
1567 			stream_status = &context->stream_status[i];
1568 			break;
1569 		}
1570 
1571 	if (stream_status == NULL) {
1572 		dm_error("Existing stream not found; failed to remove plane.\n");
1573 		return false;
1574 	}
1575 
1576 	/* release pipe for plane*/
1577 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1578 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1579 
1580 		if (pipe_ctx->plane_state == plane_state) {
1581 			if (pipe_ctx->top_pipe)
1582 				pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1583 
1584 			/* Second condition is to avoid setting NULL to top pipe
1585 			 * of tail pipe making it look like head pipe in subsequent
1586 			 * deletes
1587 			 */
1588 			if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1589 				pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1590 
1591 			/*
1592 			 * For head pipe detach surfaces from pipe for tail
1593 			 * pipe just zero it out
1594 			 */
1595 			if (!pipe_ctx->top_pipe)
1596 				pipe_ctx->plane_state = NULL;
1597 			else
1598 				memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1599 		}
1600 	}
1601 
1602 
1603 	for (i = 0; i < stream_status->plane_count; i++) {
1604 		if (stream_status->plane_states[i] == plane_state) {
1605 
1606 			dc_plane_state_release(stream_status->plane_states[i]);
1607 			break;
1608 		}
1609 	}
1610 
1611 	if (i == stream_status->plane_count) {
1612 		dm_error("Existing plane_state not found; failed to detach it!\n");
1613 		return false;
1614 	}
1615 
1616 	stream_status->plane_count--;
1617 
1618 	/* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1619 	for (; i < stream_status->plane_count; i++)
1620 		stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1621 
1622 	stream_status->plane_states[stream_status->plane_count] = NULL;
1623 
1624 	return true;
1625 }
1626 
1627 bool dc_rem_all_planes_for_stream(
1628 		const struct dc *dc,
1629 		struct dc_stream_state *stream,
1630 		struct dc_state *context)
1631 {
1632 	int i, old_plane_count;
1633 	struct dc_stream_status *stream_status = NULL;
1634 	struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1635 
1636 	for (i = 0; i < context->stream_count; i++)
1637 			if (context->streams[i] == stream) {
1638 				stream_status = &context->stream_status[i];
1639 				break;
1640 			}
1641 
1642 	if (stream_status == NULL) {
1643 		dm_error("Existing stream %p not found!\n", stream);
1644 		return false;
1645 	}
1646 
1647 	old_plane_count = stream_status->plane_count;
1648 
1649 	for (i = 0; i < old_plane_count; i++)
1650 		del_planes[i] = stream_status->plane_states[i];
1651 
1652 	for (i = 0; i < old_plane_count; i++)
1653 		if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1654 			return false;
1655 
1656 	return true;
1657 }
1658 
1659 static bool add_all_planes_for_stream(
1660 		const struct dc *dc,
1661 		struct dc_stream_state *stream,
1662 		const struct dc_validation_set set[],
1663 		int set_count,
1664 		struct dc_state *context)
1665 {
1666 	int i, j;
1667 
1668 	for (i = 0; i < set_count; i++)
1669 		if (set[i].stream == stream)
1670 			break;
1671 
1672 	if (i == set_count) {
1673 		dm_error("Stream %p not found in set!\n", stream);
1674 		return false;
1675 	}
1676 
1677 	for (j = 0; j < set[i].plane_count; j++)
1678 		if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1679 			return false;
1680 
1681 	return true;
1682 }
1683 
1684 bool dc_add_all_planes_for_stream(
1685 		const struct dc *dc,
1686 		struct dc_stream_state *stream,
1687 		struct dc_plane_state * const *plane_states,
1688 		int plane_count,
1689 		struct dc_state *context)
1690 {
1691 	struct dc_validation_set set;
1692 	int i;
1693 
1694 	set.stream = stream;
1695 	set.plane_count = plane_count;
1696 
1697 	for (i = 0; i < plane_count; i++)
1698 		set.plane_states[i] = plane_states[i];
1699 
1700 	return add_all_planes_for_stream(dc, stream, &set, 1, context);
1701 }
1702 
1703 static bool is_timing_changed(struct dc_stream_state *cur_stream,
1704 		struct dc_stream_state *new_stream)
1705 {
1706 	if (cur_stream == NULL)
1707 		return true;
1708 
1709 	/* If sink pointer changed, it means this is a hotplug, we should do
1710 	 * full hw setting.
1711 	 */
1712 	if (cur_stream->sink != new_stream->sink)
1713 		return true;
1714 
1715 	/* If output color space is changed, need to reprogram info frames */
1716 	if (cur_stream->output_color_space != new_stream->output_color_space)
1717 		return true;
1718 
1719 	return memcmp(
1720 		&cur_stream->timing,
1721 		&new_stream->timing,
1722 		sizeof(struct dc_crtc_timing)) != 0;
1723 }
1724 
1725 static bool are_stream_backends_same(
1726 	struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1727 {
1728 	if (stream_a == stream_b)
1729 		return true;
1730 
1731 	if (stream_a == NULL || stream_b == NULL)
1732 		return false;
1733 
1734 	if (is_timing_changed(stream_a, stream_b))
1735 		return false;
1736 
1737 	if (stream_a->dpms_off != stream_b->dpms_off)
1738 		return false;
1739 
1740 	return true;
1741 }
1742 
1743 /*
1744  * dc_is_stream_unchanged() - Compare two stream states for equivalence.
1745  *
1746  * Checks if there a difference between the two states
1747  * that would require a mode change.
1748  *
1749  * Does not compare cursor position or attributes.
1750  */
1751 bool dc_is_stream_unchanged(
1752 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1753 {
1754 
1755 	if (!are_stream_backends_same(old_stream, stream))
1756 		return false;
1757 
1758 	if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
1759 		return false;
1760 
1761 	return true;
1762 }
1763 
1764 /*
1765  * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
1766  */
1767 bool dc_is_stream_scaling_unchanged(
1768 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1769 {
1770 	if (old_stream == stream)
1771 		return true;
1772 
1773 	if (old_stream == NULL || stream == NULL)
1774 		return false;
1775 
1776 	if (memcmp(&old_stream->src,
1777 			&stream->src,
1778 			sizeof(struct rect)) != 0)
1779 		return false;
1780 
1781 	if (memcmp(&old_stream->dst,
1782 			&stream->dst,
1783 			sizeof(struct rect)) != 0)
1784 		return false;
1785 
1786 	return true;
1787 }
1788 
1789 static void update_stream_engine_usage(
1790 		struct resource_context *res_ctx,
1791 		const struct resource_pool *pool,
1792 		struct stream_encoder *stream_enc,
1793 		bool acquired)
1794 {
1795 	int i;
1796 
1797 	for (i = 0; i < pool->stream_enc_count; i++) {
1798 		if (pool->stream_enc[i] == stream_enc)
1799 			res_ctx->is_stream_enc_acquired[i] = acquired;
1800 	}
1801 }
1802 
1803 /* TODO: release audio object */
1804 void update_audio_usage(
1805 		struct resource_context *res_ctx,
1806 		const struct resource_pool *pool,
1807 		struct audio *audio,
1808 		bool acquired)
1809 {
1810 	int i;
1811 	for (i = 0; i < pool->audio_count; i++) {
1812 		if (pool->audios[i] == audio)
1813 			res_ctx->is_audio_acquired[i] = acquired;
1814 	}
1815 }
1816 
1817 static int acquire_first_free_pipe(
1818 		struct resource_context *res_ctx,
1819 		const struct resource_pool *pool,
1820 		struct dc_stream_state *stream)
1821 {
1822 	int i;
1823 
1824 	for (i = 0; i < pool->pipe_count; i++) {
1825 		if (!res_ctx->pipe_ctx[i].stream) {
1826 			struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
1827 
1828 			pipe_ctx->stream_res.tg = pool->timing_generators[i];
1829 			pipe_ctx->plane_res.mi = pool->mis[i];
1830 			pipe_ctx->plane_res.hubp = pool->hubps[i];
1831 			pipe_ctx->plane_res.ipp = pool->ipps[i];
1832 			pipe_ctx->plane_res.xfm = pool->transforms[i];
1833 			pipe_ctx->plane_res.dpp = pool->dpps[i];
1834 			pipe_ctx->stream_res.opp = pool->opps[i];
1835 			if (pool->dpps[i])
1836 				pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
1837 			pipe_ctx->pipe_idx = i;
1838 
1839 
1840 			pipe_ctx->stream = stream;
1841 			return i;
1842 		}
1843 	}
1844 	return -1;
1845 }
1846 
1847 static struct audio *find_first_free_audio(
1848 		struct resource_context *res_ctx,
1849 		const struct resource_pool *pool,
1850 		enum engine_id id,
1851 		enum dce_version dc_version)
1852 {
1853 	int i, available_audio_count;
1854 
1855 	available_audio_count = pool->audio_count;
1856 
1857 	for (i = 0; i < available_audio_count; i++) {
1858 		if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
1859 			/*we have enough audio endpoint, find the matching inst*/
1860 			if (id != i)
1861 				continue;
1862 			return pool->audios[i];
1863 		}
1864 	}
1865 
1866 	/* use engine id to find free audio */
1867 	if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
1868 		return pool->audios[id];
1869 	}
1870 	/*not found the matching one, first come first serve*/
1871 	for (i = 0; i < available_audio_count; i++) {
1872 		if (res_ctx->is_audio_acquired[i] == false) {
1873 			return pool->audios[i];
1874 		}
1875 	}
1876 	return 0;
1877 }
1878 
1879 /*
1880  * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
1881  */
1882 enum dc_status dc_add_stream_to_ctx(
1883 		struct dc *dc,
1884 		struct dc_state *new_ctx,
1885 		struct dc_stream_state *stream)
1886 {
1887 	enum dc_status res;
1888 	DC_LOGGER_INIT(dc->ctx->logger);
1889 
1890 	if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
1891 		DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
1892 		return DC_ERROR_UNEXPECTED;
1893 	}
1894 
1895 	new_ctx->streams[new_ctx->stream_count] = stream;
1896 	dc_stream_retain(stream);
1897 	new_ctx->stream_count++;
1898 
1899 	res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
1900 	if (res != DC_OK)
1901 		DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
1902 
1903 	return res;
1904 }
1905 
1906 /*
1907  * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
1908  */
1909 enum dc_status dc_remove_stream_from_ctx(
1910 			struct dc *dc,
1911 			struct dc_state *new_ctx,
1912 			struct dc_stream_state *stream)
1913 {
1914 	int i;
1915 	struct dc_context *dc_ctx = dc->ctx;
1916 	struct pipe_ctx *del_pipe = resource_get_head_pipe_for_stream(&new_ctx->res_ctx, stream);
1917 	struct pipe_ctx *odm_pipe;
1918 
1919 	if (!del_pipe) {
1920 		DC_ERROR("Pipe not found for stream %p !\n", stream);
1921 		return DC_ERROR_UNEXPECTED;
1922 	}
1923 
1924 	odm_pipe = del_pipe->next_odm_pipe;
1925 
1926 	/* Release primary pipe */
1927 	ASSERT(del_pipe->stream_res.stream_enc);
1928 	update_stream_engine_usage(
1929 			&new_ctx->res_ctx,
1930 				dc->res_pool,
1931 			del_pipe->stream_res.stream_enc,
1932 			false);
1933 	/* Release link encoder from stream in new dc_state. */
1934 	if (dc->res_pool->funcs->link_enc_unassign)
1935 		dc->res_pool->funcs->link_enc_unassign(new_ctx, del_pipe->stream);
1936 
1937 	if (del_pipe->stream_res.audio)
1938 		update_audio_usage(
1939 			&new_ctx->res_ctx,
1940 			dc->res_pool,
1941 			del_pipe->stream_res.audio,
1942 			false);
1943 
1944 	resource_unreference_clock_source(&new_ctx->res_ctx,
1945 					  dc->res_pool,
1946 					  del_pipe->clock_source);
1947 
1948 	if (dc->res_pool->funcs->remove_stream_from_ctx)
1949 		dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
1950 
1951 	while (odm_pipe) {
1952 		struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1953 
1954 		memset(odm_pipe, 0, sizeof(*odm_pipe));
1955 		odm_pipe = next_odm_pipe;
1956 	}
1957 	memset(del_pipe, 0, sizeof(*del_pipe));
1958 
1959 	for (i = 0; i < new_ctx->stream_count; i++)
1960 		if (new_ctx->streams[i] == stream)
1961 			break;
1962 
1963 	if (new_ctx->streams[i] != stream) {
1964 		DC_ERROR("Context doesn't have stream %p !\n", stream);
1965 		return DC_ERROR_UNEXPECTED;
1966 	}
1967 
1968 	dc_stream_release(new_ctx->streams[i]);
1969 	new_ctx->stream_count--;
1970 
1971 	/* Trim back arrays */
1972 	for (; i < new_ctx->stream_count; i++) {
1973 		new_ctx->streams[i] = new_ctx->streams[i + 1];
1974 		new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
1975 	}
1976 
1977 	new_ctx->streams[new_ctx->stream_count] = NULL;
1978 	memset(
1979 			&new_ctx->stream_status[new_ctx->stream_count],
1980 			0,
1981 			sizeof(new_ctx->stream_status[0]));
1982 
1983 	return DC_OK;
1984 }
1985 
1986 static struct dc_stream_state *find_pll_sharable_stream(
1987 		struct dc_stream_state *stream_needs_pll,
1988 		struct dc_state *context)
1989 {
1990 	int i;
1991 
1992 	for (i = 0; i < context->stream_count; i++) {
1993 		struct dc_stream_state *stream_has_pll = context->streams[i];
1994 
1995 		/* We are looking for non dp, non virtual stream */
1996 		if (resource_are_streams_timing_synchronizable(
1997 			stream_needs_pll, stream_has_pll)
1998 			&& !dc_is_dp_signal(stream_has_pll->signal)
1999 			&& stream_has_pll->link->connector_signal
2000 			!= SIGNAL_TYPE_VIRTUAL)
2001 			return stream_has_pll;
2002 
2003 	}
2004 
2005 	return NULL;
2006 }
2007 
2008 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
2009 {
2010 	uint32_t pix_clk = timing->pix_clk_100hz;
2011 	uint32_t normalized_pix_clk = pix_clk;
2012 
2013 	if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
2014 		pix_clk /= 2;
2015 	if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
2016 		switch (timing->display_color_depth) {
2017 		case COLOR_DEPTH_666:
2018 		case COLOR_DEPTH_888:
2019 			normalized_pix_clk = pix_clk;
2020 			break;
2021 		case COLOR_DEPTH_101010:
2022 			normalized_pix_clk = (pix_clk * 30) / 24;
2023 			break;
2024 		case COLOR_DEPTH_121212:
2025 			normalized_pix_clk = (pix_clk * 36) / 24;
2026 		break;
2027 		case COLOR_DEPTH_161616:
2028 			normalized_pix_clk = (pix_clk * 48) / 24;
2029 		break;
2030 		default:
2031 			ASSERT(0);
2032 		break;
2033 		}
2034 	}
2035 	return normalized_pix_clk;
2036 }
2037 
2038 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
2039 {
2040 	/* update actual pixel clock on all streams */
2041 	if (dc_is_hdmi_signal(stream->signal))
2042 		stream->phy_pix_clk = get_norm_pix_clk(
2043 			&stream->timing) / 10;
2044 	else
2045 		stream->phy_pix_clk =
2046 			stream->timing.pix_clk_100hz / 10;
2047 
2048 	if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
2049 		stream->phy_pix_clk *= 2;
2050 }
2051 
2052 static int acquire_resource_from_hw_enabled_state(
2053 		struct resource_context *res_ctx,
2054 		const struct resource_pool *pool,
2055 		struct dc_stream_state *stream)
2056 {
2057 	struct dc_link *link = stream->link;
2058 	unsigned int i, inst, tg_inst = 0;
2059 
2060 	/* Check for enabled DIG to identify enabled display */
2061 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
2062 		return -1;
2063 
2064 	inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
2065 
2066 	if (inst == ENGINE_ID_UNKNOWN)
2067 		return -1;
2068 
2069 	for (i = 0; i < pool->stream_enc_count; i++) {
2070 		if (pool->stream_enc[i]->id == inst) {
2071 			tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
2072 				pool->stream_enc[i]);
2073 			break;
2074 		}
2075 	}
2076 
2077 	// tg_inst not found
2078 	if (i == pool->stream_enc_count)
2079 		return -1;
2080 
2081 	if (tg_inst >= pool->timing_generator_count)
2082 		return -1;
2083 
2084 	if (!res_ctx->pipe_ctx[tg_inst].stream) {
2085 		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
2086 
2087 		pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2088 		pipe_ctx->plane_res.mi = pool->mis[tg_inst];
2089 		pipe_ctx->plane_res.hubp = pool->hubps[tg_inst];
2090 		pipe_ctx->plane_res.ipp = pool->ipps[tg_inst];
2091 		pipe_ctx->plane_res.xfm = pool->transforms[tg_inst];
2092 		pipe_ctx->plane_res.dpp = pool->dpps[tg_inst];
2093 		pipe_ctx->stream_res.opp = pool->opps[tg_inst];
2094 
2095 		if (pool->dpps[tg_inst]) {
2096 			pipe_ctx->plane_res.mpcc_inst = pool->dpps[tg_inst]->inst;
2097 
2098 			// Read DPP->MPCC->OPP Pipe from HW State
2099 			if (pool->mpc->funcs->read_mpcc_state) {
2100 				struct mpcc_state s = {0};
2101 
2102 				pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
2103 
2104 				if (s.dpp_id < MAX_MPCC)
2105 					pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id = s.dpp_id;
2106 
2107 				if (s.bot_mpcc_id < MAX_MPCC)
2108 					pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
2109 							&pool->mpc->mpcc_array[s.bot_mpcc_id];
2110 
2111 				if (s.opp_id < MAX_OPP)
2112 					pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
2113 			}
2114 		}
2115 		pipe_ctx->pipe_idx = tg_inst;
2116 
2117 		pipe_ctx->stream = stream;
2118 		return tg_inst;
2119 	}
2120 
2121 	return -1;
2122 }
2123 
2124 static void mark_seamless_boot_stream(
2125 		const struct dc  *dc,
2126 		struct dc_stream_state *stream)
2127 {
2128 	struct dc_bios *dcb = dc->ctx->dc_bios;
2129 
2130 	/* TODO: Check Linux */
2131 	if (dc->config.allow_seamless_boot_optimization &&
2132 			!dcb->funcs->is_accelerated_mode(dcb)) {
2133 		if (dc_validate_seamless_boot_timing(dc, stream->sink, &stream->timing))
2134 			stream->apply_seamless_boot_optimization = true;
2135 	}
2136 }
2137 
2138 enum dc_status resource_map_pool_resources(
2139 		const struct dc  *dc,
2140 		struct dc_state *context,
2141 		struct dc_stream_state *stream)
2142 {
2143 	const struct resource_pool *pool = dc->res_pool;
2144 	int i;
2145 	struct dc_context *dc_ctx = dc->ctx;
2146 	struct pipe_ctx *pipe_ctx = NULL;
2147 	int pipe_idx = -1;
2148 
2149 	calculate_phy_pix_clks(stream);
2150 
2151 	mark_seamless_boot_stream(dc, stream);
2152 
2153 	if (stream->apply_seamless_boot_optimization) {
2154 		pipe_idx = acquire_resource_from_hw_enabled_state(
2155 				&context->res_ctx,
2156 				pool,
2157 				stream);
2158 		if (pipe_idx < 0)
2159 			/* hw resource was assigned to other stream */
2160 			stream->apply_seamless_boot_optimization = false;
2161 	}
2162 
2163 	if (pipe_idx < 0)
2164 		/* acquire new resources */
2165 		pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2166 
2167 #ifdef CONFIG_DRM_AMD_DC_DCN
2168 	if (pipe_idx < 0)
2169 		pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2170 #endif
2171 
2172 	if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2173 		return DC_NO_CONTROLLER_RESOURCE;
2174 
2175 	pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2176 
2177 	pipe_ctx->stream_res.stream_enc =
2178 		dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2179 			&context->res_ctx, pool, stream);
2180 
2181 	if (!pipe_ctx->stream_res.stream_enc)
2182 		return DC_NO_STREAM_ENC_RESOURCE;
2183 
2184 	update_stream_engine_usage(
2185 		&context->res_ctx, pool,
2186 		pipe_ctx->stream_res.stream_enc,
2187 		true);
2188 
2189 	/* TODO: Add check if ASIC support and EDID audio */
2190 	if (!stream->converter_disable_audio &&
2191 	    dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2192 	    stream->audio_info.mode_count && stream->audio_info.flags.all) {
2193 		pipe_ctx->stream_res.audio = find_first_free_audio(
2194 		&context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2195 
2196 		/*
2197 		 * Audio assigned in order first come first get.
2198 		 * There are asics which has number of audio
2199 		 * resources less then number of pipes
2200 		 */
2201 		if (pipe_ctx->stream_res.audio)
2202 			update_audio_usage(&context->res_ctx, pool,
2203 					   pipe_ctx->stream_res.audio, true);
2204 	}
2205 
2206 	/* Add ABM to the resource if on EDP */
2207 	if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2208 #if defined(CONFIG_DRM_AMD_DC_DCN)
2209 		if (pool->abm)
2210 			pipe_ctx->stream_res.abm = pool->abm;
2211 		else
2212 			pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2213 #else
2214 		pipe_ctx->stream_res.abm = pool->abm;
2215 #endif
2216 	}
2217 
2218 	for (i = 0; i < context->stream_count; i++)
2219 		if (context->streams[i] == stream) {
2220 			context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2221 			context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2222 			context->stream_status[i].audio_inst =
2223 				pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2224 
2225 			return DC_OK;
2226 		}
2227 
2228 	DC_ERROR("Stream %p not found in new ctx!\n", stream);
2229 	return DC_ERROR_UNEXPECTED;
2230 }
2231 
2232 /**
2233  * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2234  * Is a shallow copy.  Increments refcounts on existing streams and planes.
2235  * @dc: copy out of dc->current_state
2236  * @dst_ctx: copy into this
2237  */
2238 void dc_resource_state_copy_construct_current(
2239 		const struct dc *dc,
2240 		struct dc_state *dst_ctx)
2241 {
2242 	dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2243 }
2244 
2245 
2246 void dc_resource_state_construct(
2247 		const struct dc *dc,
2248 		struct dc_state *dst_ctx)
2249 {
2250 	dst_ctx->clk_mgr = dc->clk_mgr;
2251 }
2252 
2253 
2254 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2255 {
2256 	return dc->res_pool->res_cap->num_dsc > 0;
2257 }
2258 
2259 
2260 /**
2261  * dc_validate_global_state() - Determine if HW can support a given state
2262  * Checks HW resource availability and bandwidth requirement.
2263  * @dc: dc struct for this driver
2264  * @new_ctx: state to be validated
2265  * @fast_validate: set to true if only yes/no to support matters
2266  *
2267  * Return: DC_OK if the result can be programmed.  Otherwise, an error code.
2268  */
2269 enum dc_status dc_validate_global_state(
2270 		struct dc *dc,
2271 		struct dc_state *new_ctx,
2272 		bool fast_validate)
2273 {
2274 	enum dc_status result = DC_ERROR_UNEXPECTED;
2275 	int i, j;
2276 
2277 	if (!new_ctx)
2278 		return DC_ERROR_UNEXPECTED;
2279 
2280 	if (dc->res_pool->funcs->validate_global) {
2281 		result = dc->res_pool->funcs->validate_global(dc, new_ctx);
2282 		if (result != DC_OK)
2283 			return result;
2284 	}
2285 
2286 	for (i = 0; i < new_ctx->stream_count; i++) {
2287 		struct dc_stream_state *stream = new_ctx->streams[i];
2288 
2289 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
2290 			struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
2291 
2292 			if (pipe_ctx->stream != stream)
2293 				continue;
2294 
2295 			if (dc->res_pool->funcs->patch_unknown_plane_state &&
2296 					pipe_ctx->plane_state &&
2297 					pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
2298 				result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
2299 				if (result != DC_OK)
2300 					return result;
2301 			}
2302 
2303 			/* Switch to dp clock source only if there is
2304 			 * no non dp stream that shares the same timing
2305 			 * with the dp stream.
2306 			 */
2307 			if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
2308 				!find_pll_sharable_stream(stream, new_ctx)) {
2309 
2310 				resource_unreference_clock_source(
2311 						&new_ctx->res_ctx,
2312 						dc->res_pool,
2313 						pipe_ctx->clock_source);
2314 
2315 				pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
2316 				resource_reference_clock_source(
2317 						&new_ctx->res_ctx,
2318 						dc->res_pool,
2319 						 pipe_ctx->clock_source);
2320 			}
2321 		}
2322 	}
2323 
2324 	result = resource_build_scaling_params_for_context(dc, new_ctx);
2325 
2326 	if (result == DC_OK)
2327 		if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
2328 			result = DC_FAIL_BANDWIDTH_VALIDATE;
2329 
2330 	return result;
2331 }
2332 
2333 static void patch_gamut_packet_checksum(
2334 		struct dc_info_packet *gamut_packet)
2335 {
2336 	/* For gamut we recalc checksum */
2337 	if (gamut_packet->valid) {
2338 		uint8_t chk_sum = 0;
2339 		uint8_t *ptr;
2340 		uint8_t i;
2341 
2342 		/*start of the Gamut data. */
2343 		ptr = &gamut_packet->sb[3];
2344 
2345 		for (i = 0; i <= gamut_packet->sb[1]; i++)
2346 			chk_sum += ptr[i];
2347 
2348 		gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
2349 	}
2350 }
2351 
2352 static void set_avi_info_frame(
2353 		struct dc_info_packet *info_packet,
2354 		struct pipe_ctx *pipe_ctx)
2355 {
2356 	struct dc_stream_state *stream = pipe_ctx->stream;
2357 	enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
2358 	uint32_t pixel_encoding = 0;
2359 	enum scanning_type scan_type = SCANNING_TYPE_NODATA;
2360 	enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
2361 	bool itc = false;
2362 	uint8_t itc_value = 0;
2363 	uint8_t cn0_cn1 = 0;
2364 	unsigned int cn0_cn1_value = 0;
2365 	uint8_t *check_sum = NULL;
2366 	uint8_t byte_index = 0;
2367 	union hdmi_info_packet hdmi_info;
2368 	union display_content_support support = {0};
2369 	unsigned int vic = pipe_ctx->stream->timing.vic;
2370 	enum dc_timing_3d_format format;
2371 
2372 	memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
2373 
2374 	color_space = pipe_ctx->stream->output_color_space;
2375 	if (color_space == COLOR_SPACE_UNKNOWN)
2376 		color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
2377 			COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
2378 
2379 	/* Initialize header */
2380 	hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
2381 	/* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
2382 	* not be used in HDMI 2.0 (Section 10.1) */
2383 	hdmi_info.bits.header.version = 2;
2384 	hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
2385 
2386 	/*
2387 	 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
2388 	 * according to HDMI 2.0 spec (Section 10.1)
2389 	 */
2390 
2391 	switch (stream->timing.pixel_encoding) {
2392 	case PIXEL_ENCODING_YCBCR422:
2393 		pixel_encoding = 1;
2394 		break;
2395 
2396 	case PIXEL_ENCODING_YCBCR444:
2397 		pixel_encoding = 2;
2398 		break;
2399 	case PIXEL_ENCODING_YCBCR420:
2400 		pixel_encoding = 3;
2401 		break;
2402 
2403 	case PIXEL_ENCODING_RGB:
2404 	default:
2405 		pixel_encoding = 0;
2406 	}
2407 
2408 	/* Y0_Y1_Y2 : The pixel encoding */
2409 	/* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
2410 	hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
2411 
2412 	/* A0 = 1 Active Format Information valid */
2413 	hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
2414 
2415 	/* B0, B1 = 3; Bar info data is valid */
2416 	hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
2417 
2418 	hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
2419 
2420 	/* S0, S1 : Underscan / Overscan */
2421 	/* TODO: un-hardcode scan type */
2422 	scan_type = SCANNING_TYPE_UNDERSCAN;
2423 	hdmi_info.bits.S0_S1 = scan_type;
2424 
2425 	/* C0, C1 : Colorimetry */
2426 	if (color_space == COLOR_SPACE_YCBCR709 ||
2427 			color_space == COLOR_SPACE_YCBCR709_LIMITED)
2428 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
2429 	else if (color_space == COLOR_SPACE_YCBCR601 ||
2430 			color_space == COLOR_SPACE_YCBCR601_LIMITED)
2431 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
2432 	else {
2433 		hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
2434 	}
2435 	if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
2436 			color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
2437 			color_space == COLOR_SPACE_2020_YCBCR) {
2438 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
2439 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2440 	} else if (color_space == COLOR_SPACE_ADOBERGB) {
2441 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
2442 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2443 	}
2444 
2445 	/* TODO: un-hardcode aspect ratio */
2446 	aspect = stream->timing.aspect_ratio;
2447 
2448 	switch (aspect) {
2449 	case ASPECT_RATIO_4_3:
2450 	case ASPECT_RATIO_16_9:
2451 		hdmi_info.bits.M0_M1 = aspect;
2452 		break;
2453 
2454 	case ASPECT_RATIO_NO_DATA:
2455 	case ASPECT_RATIO_64_27:
2456 	case ASPECT_RATIO_256_135:
2457 	default:
2458 		hdmi_info.bits.M0_M1 = 0;
2459 	}
2460 
2461 	/* Active Format Aspect ratio - same as Picture Aspect Ratio. */
2462 	hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
2463 
2464 	/* TODO: un-hardcode cn0_cn1 and itc */
2465 
2466 	cn0_cn1 = 0;
2467 	cn0_cn1_value = 0;
2468 
2469 	itc = true;
2470 	itc_value = 1;
2471 
2472 	support = stream->content_support;
2473 
2474 	if (itc) {
2475 		if (!support.bits.valid_content_type) {
2476 			cn0_cn1_value = 0;
2477 		} else {
2478 			if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
2479 				if (support.bits.graphics_content == 1) {
2480 					cn0_cn1_value = 0;
2481 				}
2482 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
2483 				if (support.bits.photo_content == 1) {
2484 					cn0_cn1_value = 1;
2485 				} else {
2486 					cn0_cn1_value = 0;
2487 					itc_value = 0;
2488 				}
2489 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
2490 				if (support.bits.cinema_content == 1) {
2491 					cn0_cn1_value = 2;
2492 				} else {
2493 					cn0_cn1_value = 0;
2494 					itc_value = 0;
2495 				}
2496 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
2497 				if (support.bits.game_content == 1) {
2498 					cn0_cn1_value = 3;
2499 				} else {
2500 					cn0_cn1_value = 0;
2501 					itc_value = 0;
2502 				}
2503 			}
2504 		}
2505 		hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
2506 		hdmi_info.bits.ITC = itc_value;
2507 	}
2508 
2509 	if (stream->qs_bit == 1) {
2510 		if (color_space == COLOR_SPACE_SRGB ||
2511 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2512 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_FULL_RANGE;
2513 		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2514 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2515 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_LIMITED_RANGE;
2516 		else
2517 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2518 	} else
2519 		hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2520 
2521 	/* TODO : We should handle YCC quantization */
2522 	/* but we do not have matrix calculation */
2523 	if (stream->qy_bit == 1) {
2524 		if (color_space == COLOR_SPACE_SRGB ||
2525 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2526 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2527 		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2528 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2529 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2530 		else
2531 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2532 	} else
2533 		hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2534 
2535 	///VIC
2536 	format = stream->timing.timing_3d_format;
2537 	/*todo, add 3DStereo support*/
2538 	if (format != TIMING_3D_FORMAT_NONE) {
2539 		// Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
2540 		switch (pipe_ctx->stream->timing.hdmi_vic) {
2541 		case 1:
2542 			vic = 95;
2543 			break;
2544 		case 2:
2545 			vic = 94;
2546 			break;
2547 		case 3:
2548 			vic = 93;
2549 			break;
2550 		case 4:
2551 			vic = 98;
2552 			break;
2553 		default:
2554 			break;
2555 		}
2556 	}
2557 	/* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
2558 	hdmi_info.bits.VIC0_VIC7 = vic;
2559 	if (vic >= 128)
2560 		hdmi_info.bits.header.version = 3;
2561 	/* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
2562 	 * the Source shall use 20 AVI InfoFrame Version 4
2563 	 */
2564 	if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
2565 			hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
2566 		hdmi_info.bits.header.version = 4;
2567 		hdmi_info.bits.header.length = 14;
2568 	}
2569 
2570 	/* pixel repetition
2571 	 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
2572 	 * repetition start from 1 */
2573 	hdmi_info.bits.PR0_PR3 = 0;
2574 
2575 	/* Bar Info
2576 	 * barTop:    Line Number of End of Top Bar.
2577 	 * barBottom: Line Number of Start of Bottom Bar.
2578 	 * barLeft:   Pixel Number of End of Left Bar.
2579 	 * barRight:  Pixel Number of Start of Right Bar. */
2580 	hdmi_info.bits.bar_top = stream->timing.v_border_top;
2581 	hdmi_info.bits.bar_bottom = (stream->timing.v_total
2582 			- stream->timing.v_border_bottom + 1);
2583 	hdmi_info.bits.bar_left  = stream->timing.h_border_left;
2584 	hdmi_info.bits.bar_right = (stream->timing.h_total
2585 			- stream->timing.h_border_right + 1);
2586 
2587     /* Additional Colorimetry Extension
2588      * Used in conduction with C0-C1 and EC0-EC2
2589      * 0 = DCI-P3 RGB (D65)
2590      * 1 = DCI-P3 RGB (theater)
2591      */
2592 	hdmi_info.bits.ACE0_ACE3 = 0;
2593 
2594 	/* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
2595 	check_sum = &hdmi_info.packet_raw_data.sb[0];
2596 
2597 	*check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
2598 
2599 	for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
2600 		*check_sum += hdmi_info.packet_raw_data.sb[byte_index];
2601 
2602 	/* one byte complement */
2603 	*check_sum = (uint8_t) (0x100 - *check_sum);
2604 
2605 	/* Store in hw_path_mode */
2606 	info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
2607 	info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
2608 	info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
2609 
2610 	for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
2611 		info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
2612 
2613 	info_packet->valid = true;
2614 }
2615 
2616 static void set_vendor_info_packet(
2617 		struct dc_info_packet *info_packet,
2618 		struct dc_stream_state *stream)
2619 {
2620 	/* SPD info packet for FreeSync */
2621 
2622 	/* Check if Freesync is supported. Return if false. If true,
2623 	 * set the corresponding bit in the info packet
2624 	 */
2625 	if (!stream->vsp_infopacket.valid)
2626 		return;
2627 
2628 	*info_packet = stream->vsp_infopacket;
2629 }
2630 
2631 static void set_spd_info_packet(
2632 		struct dc_info_packet *info_packet,
2633 		struct dc_stream_state *stream)
2634 {
2635 	/* SPD info packet for FreeSync */
2636 
2637 	/* Check if Freesync is supported. Return if false. If true,
2638 	 * set the corresponding bit in the info packet
2639 	 */
2640 	if (!stream->vrr_infopacket.valid)
2641 		return;
2642 
2643 	*info_packet = stream->vrr_infopacket;
2644 }
2645 
2646 static void set_hdr_static_info_packet(
2647 		struct dc_info_packet *info_packet,
2648 		struct dc_stream_state *stream)
2649 {
2650 	/* HDR Static Metadata info packet for HDR10 */
2651 
2652 	if (!stream->hdr_static_metadata.valid ||
2653 			stream->use_dynamic_meta)
2654 		return;
2655 
2656 	*info_packet = stream->hdr_static_metadata;
2657 }
2658 
2659 static void set_vsc_info_packet(
2660 		struct dc_info_packet *info_packet,
2661 		struct dc_stream_state *stream)
2662 {
2663 	if (!stream->vsc_infopacket.valid)
2664 		return;
2665 
2666 	*info_packet = stream->vsc_infopacket;
2667 }
2668 
2669 void dc_resource_state_destruct(struct dc_state *context)
2670 {
2671 	int i, j;
2672 
2673 	for (i = 0; i < context->stream_count; i++) {
2674 		for (j = 0; j < context->stream_status[i].plane_count; j++)
2675 			dc_plane_state_release(
2676 				context->stream_status[i].plane_states[j]);
2677 
2678 		context->stream_status[i].plane_count = 0;
2679 		dc_stream_release(context->streams[i]);
2680 		context->streams[i] = NULL;
2681 	}
2682 }
2683 
2684 void dc_resource_state_copy_construct(
2685 		const struct dc_state *src_ctx,
2686 		struct dc_state *dst_ctx)
2687 {
2688 	int i, j;
2689 	struct kref refcount = dst_ctx->refcount;
2690 
2691 	*dst_ctx = *src_ctx;
2692 
2693 	for (i = 0; i < MAX_PIPES; i++) {
2694 		struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
2695 
2696 		if (cur_pipe->top_pipe)
2697 			cur_pipe->top_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2698 
2699 		if (cur_pipe->bottom_pipe)
2700 			cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2701 
2702 		if (cur_pipe->next_odm_pipe)
2703 			cur_pipe->next_odm_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2704 
2705 		if (cur_pipe->prev_odm_pipe)
2706 			cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2707 	}
2708 
2709 	for (i = 0; i < dst_ctx->stream_count; i++) {
2710 		dc_stream_retain(dst_ctx->streams[i]);
2711 		for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
2712 			dc_plane_state_retain(
2713 				dst_ctx->stream_status[i].plane_states[j]);
2714 	}
2715 
2716 	/* context refcount should not be overridden */
2717 	dst_ctx->refcount = refcount;
2718 
2719 }
2720 
2721 struct clock_source *dc_resource_find_first_free_pll(
2722 		struct resource_context *res_ctx,
2723 		const struct resource_pool *pool)
2724 {
2725 	int i;
2726 
2727 	for (i = 0; i < pool->clk_src_count; ++i) {
2728 		if (res_ctx->clock_source_ref_count[i] == 0)
2729 			return pool->clock_sources[i];
2730 	}
2731 
2732 	return NULL;
2733 }
2734 
2735 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
2736 {
2737 	enum signal_type signal = SIGNAL_TYPE_NONE;
2738 	struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
2739 
2740 	/* default all packets to invalid */
2741 	info->avi.valid = false;
2742 	info->gamut.valid = false;
2743 	info->vendor.valid = false;
2744 	info->spd.valid = false;
2745 	info->hdrsmd.valid = false;
2746 	info->vsc.valid = false;
2747 
2748 	signal = pipe_ctx->stream->signal;
2749 
2750 	/* HDMi and DP have different info packets*/
2751 	if (dc_is_hdmi_signal(signal)) {
2752 		set_avi_info_frame(&info->avi, pipe_ctx);
2753 
2754 		set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
2755 
2756 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
2757 
2758 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2759 
2760 	} else if (dc_is_dp_signal(signal)) {
2761 		set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
2762 
2763 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
2764 
2765 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2766 	}
2767 
2768 	patch_gamut_packet_checksum(&info->gamut);
2769 }
2770 
2771 enum dc_status resource_map_clock_resources(
2772 		const struct dc  *dc,
2773 		struct dc_state *context,
2774 		struct dc_stream_state *stream)
2775 {
2776 	/* acquire new resources */
2777 	const struct resource_pool *pool = dc->res_pool;
2778 	struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
2779 				&context->res_ctx, stream);
2780 
2781 	if (!pipe_ctx)
2782 		return DC_ERROR_UNEXPECTED;
2783 
2784 	if (dc_is_dp_signal(pipe_ctx->stream->signal)
2785 		|| pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
2786 		pipe_ctx->clock_source = pool->dp_clock_source;
2787 	else {
2788 		pipe_ctx->clock_source = NULL;
2789 
2790 		if (!dc->config.disable_disp_pll_sharing)
2791 			pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
2792 				&context->res_ctx,
2793 				pipe_ctx);
2794 
2795 		if (pipe_ctx->clock_source == NULL)
2796 			pipe_ctx->clock_source =
2797 				dc_resource_find_first_free_pll(
2798 					&context->res_ctx,
2799 					pool);
2800 	}
2801 
2802 	if (pipe_ctx->clock_source == NULL)
2803 		return DC_NO_CLOCK_SOURCE_RESOURCE;
2804 
2805 	resource_reference_clock_source(
2806 		&context->res_ctx, pool,
2807 		pipe_ctx->clock_source);
2808 
2809 	return DC_OK;
2810 }
2811 
2812 /*
2813  * Note: We need to disable output if clock sources change,
2814  * since bios does optimization and doesn't apply if changing
2815  * PHY when not already disabled.
2816  */
2817 bool pipe_need_reprogram(
2818 		struct pipe_ctx *pipe_ctx_old,
2819 		struct pipe_ctx *pipe_ctx)
2820 {
2821 	if (!pipe_ctx_old->stream)
2822 		return false;
2823 
2824 	if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
2825 		return true;
2826 
2827 	if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
2828 		return true;
2829 
2830 	if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
2831 		return true;
2832 
2833 	if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
2834 			&& pipe_ctx_old->stream != pipe_ctx->stream)
2835 		return true;
2836 
2837 	if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
2838 		return true;
2839 
2840 	if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
2841 		return true;
2842 
2843 	if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
2844 		return true;
2845 
2846 	if (false == pipe_ctx_old->stream->link->link_state_valid &&
2847 		false == pipe_ctx_old->stream->dpms_off)
2848 		return true;
2849 
2850 	if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
2851 		return true;
2852 
2853 	/* DIG link encoder resource assignment for stream changed. */
2854 	if (pipe_ctx_old->stream->link_enc != pipe_ctx->stream->link_enc)
2855 		return true;
2856 
2857 	return false;
2858 }
2859 
2860 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
2861 		struct bit_depth_reduction_params *fmt_bit_depth)
2862 {
2863 	enum dc_dither_option option = stream->dither_option;
2864 	enum dc_pixel_encoding pixel_encoding =
2865 			stream->timing.pixel_encoding;
2866 
2867 	memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
2868 
2869 	if (option == DITHER_OPTION_DEFAULT) {
2870 		switch (stream->timing.display_color_depth) {
2871 		case COLOR_DEPTH_666:
2872 			option = DITHER_OPTION_SPATIAL6;
2873 			break;
2874 		case COLOR_DEPTH_888:
2875 			option = DITHER_OPTION_SPATIAL8;
2876 			break;
2877 		case COLOR_DEPTH_101010:
2878 			option = DITHER_OPTION_SPATIAL10;
2879 			break;
2880 		default:
2881 			option = DITHER_OPTION_DISABLE;
2882 		}
2883 	}
2884 
2885 	if (option == DITHER_OPTION_DISABLE)
2886 		return;
2887 
2888 	if (option == DITHER_OPTION_TRUN6) {
2889 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2890 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
2891 	} else if (option == DITHER_OPTION_TRUN8 ||
2892 			option == DITHER_OPTION_TRUN8_SPATIAL6 ||
2893 			option == DITHER_OPTION_TRUN8_FM6) {
2894 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2895 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
2896 	} else if (option == DITHER_OPTION_TRUN10        ||
2897 			option == DITHER_OPTION_TRUN10_SPATIAL6   ||
2898 			option == DITHER_OPTION_TRUN10_SPATIAL8   ||
2899 			option == DITHER_OPTION_TRUN10_FM8     ||
2900 			option == DITHER_OPTION_TRUN10_FM6     ||
2901 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2902 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2903 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2904 	}
2905 
2906 	/* special case - Formatter can only reduce by 4 bits at most.
2907 	 * When reducing from 12 to 6 bits,
2908 	 * HW recommends we use trunc with round mode
2909 	 * (if we did nothing, trunc to 10 bits would be used)
2910 	 * note that any 12->10 bit reduction is ignored prior to DCE8,
2911 	 * as the input was 10 bits.
2912 	 */
2913 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
2914 			option == DITHER_OPTION_SPATIAL6 ||
2915 			option == DITHER_OPTION_FM6) {
2916 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2917 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2918 		fmt_bit_depth->flags.TRUNCATE_MODE = 1;
2919 	}
2920 
2921 	/* spatial dither
2922 	 * note that spatial modes 1-3 are never used
2923 	 */
2924 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM            ||
2925 			option == DITHER_OPTION_SPATIAL6 ||
2926 			option == DITHER_OPTION_TRUN10_SPATIAL6      ||
2927 			option == DITHER_OPTION_TRUN8_SPATIAL6) {
2928 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2929 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
2930 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2931 		fmt_bit_depth->flags.RGB_RANDOM =
2932 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2933 	} else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM            ||
2934 			option == DITHER_OPTION_SPATIAL8 ||
2935 			option == DITHER_OPTION_SPATIAL8_FM6        ||
2936 			option == DITHER_OPTION_TRUN10_SPATIAL8      ||
2937 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2938 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2939 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
2940 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2941 		fmt_bit_depth->flags.RGB_RANDOM =
2942 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2943 	} else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
2944 			option == DITHER_OPTION_SPATIAL10 ||
2945 			option == DITHER_OPTION_SPATIAL10_FM8 ||
2946 			option == DITHER_OPTION_SPATIAL10_FM6) {
2947 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2948 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
2949 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2950 		fmt_bit_depth->flags.RGB_RANDOM =
2951 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2952 	}
2953 
2954 	if (option == DITHER_OPTION_SPATIAL6 ||
2955 			option == DITHER_OPTION_SPATIAL8 ||
2956 			option == DITHER_OPTION_SPATIAL10) {
2957 		fmt_bit_depth->flags.FRAME_RANDOM = 0;
2958 	} else {
2959 		fmt_bit_depth->flags.FRAME_RANDOM = 1;
2960 	}
2961 
2962 	//////////////////////
2963 	//// temporal dither
2964 	//////////////////////
2965 	if (option == DITHER_OPTION_FM6           ||
2966 			option == DITHER_OPTION_SPATIAL8_FM6     ||
2967 			option == DITHER_OPTION_SPATIAL10_FM6     ||
2968 			option == DITHER_OPTION_TRUN10_FM6     ||
2969 			option == DITHER_OPTION_TRUN8_FM6      ||
2970 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2971 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2972 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
2973 	} else if (option == DITHER_OPTION_FM8        ||
2974 			option == DITHER_OPTION_SPATIAL10_FM8  ||
2975 			option == DITHER_OPTION_TRUN10_FM8) {
2976 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2977 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
2978 	} else if (option == DITHER_OPTION_FM10) {
2979 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2980 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
2981 	}
2982 
2983 	fmt_bit_depth->pixel_encoding = pixel_encoding;
2984 }
2985 
2986 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
2987 {
2988 	struct dc_link *link = stream->link;
2989 	struct timing_generator *tg = dc->res_pool->timing_generators[0];
2990 	enum dc_status res = DC_OK;
2991 
2992 	calculate_phy_pix_clks(stream);
2993 
2994 	if (!tg->funcs->validate_timing(tg, &stream->timing))
2995 		res = DC_FAIL_CONTROLLER_VALIDATE;
2996 
2997 	if (res == DC_OK) {
2998 		if (!link->link_enc->funcs->validate_output_with_stream(
2999 						link->link_enc, stream))
3000 			res = DC_FAIL_ENC_VALIDATE;
3001 	}
3002 
3003 	/* TODO: validate audio ASIC caps, encoder */
3004 
3005 	if (res == DC_OK)
3006 		res = dc_link_validate_mode_timing(stream,
3007 		      link,
3008 		      &stream->timing);
3009 
3010 	return res;
3011 }
3012 
3013 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
3014 {
3015 	enum dc_status res = DC_OK;
3016 
3017 	/* TODO For now validates pixel format only */
3018 	if (dc->res_pool->funcs->validate_plane)
3019 		return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
3020 
3021 	return res;
3022 }
3023 
3024 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
3025 {
3026 	switch (format) {
3027 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
3028 		return 8;
3029 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
3030 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
3031 		return 12;
3032 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
3033 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
3034 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
3035 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
3036 		return 16;
3037 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
3038 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
3039 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
3040 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
3041 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
3042 #if defined(CONFIG_DRM_AMD_DC_DCN)
3043 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
3044 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
3045 #endif
3046 		return 32;
3047 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
3048 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
3049 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
3050 		return 64;
3051 	default:
3052 		ASSERT_CRITICAL(false);
3053 		return -1;
3054 	}
3055 }
3056 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
3057 {
3058 	if (modes) {
3059 		if (modes->sample_rates.rate.RATE_192)
3060 			return 192000;
3061 		if (modes->sample_rates.rate.RATE_176_4)
3062 			return 176400;
3063 		if (modes->sample_rates.rate.RATE_96)
3064 			return 96000;
3065 		if (modes->sample_rates.rate.RATE_88_2)
3066 			return 88200;
3067 		if (modes->sample_rates.rate.RATE_48)
3068 			return 48000;
3069 		if (modes->sample_rates.rate.RATE_44_1)
3070 			return 44100;
3071 		if (modes->sample_rates.rate.RATE_32)
3072 			return 32000;
3073 	}
3074 	/*original logic when no audio info*/
3075 	return 441000;
3076 }
3077 
3078 void get_audio_check(struct audio_info *aud_modes,
3079 	struct audio_check *audio_chk)
3080 {
3081 	unsigned int i;
3082 	unsigned int max_sample_rate = 0;
3083 
3084 	if (aud_modes) {
3085 		audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
3086 
3087 		audio_chk->max_audiosample_rate = 0;
3088 		for (i = 0; i < aud_modes->mode_count; i++) {
3089 			max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
3090 			if (audio_chk->max_audiosample_rate < max_sample_rate)
3091 				audio_chk->max_audiosample_rate = max_sample_rate;
3092 			/*dts takes the same as type 2: AP = 0.25*/
3093 		}
3094 		/*check which one take more bandwidth*/
3095 		if (audio_chk->max_audiosample_rate > 192000)
3096 			audio_chk->audio_packet_type = 0x9;/*AP =1*/
3097 		audio_chk->acat = 0;/*not support*/
3098 	}
3099 }
3100 
3101