1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 #include "dm_services.h"
26 
27 #include "resource.h"
28 #include "include/irq_service_interface.h"
29 #include "link_encoder.h"
30 #include "stream_encoder.h"
31 #include "opp.h"
32 #include "timing_generator.h"
33 #include "transform.h"
34 #include "dpp.h"
35 #include "core_types.h"
36 #include "set_mode_types.h"
37 #include "virtual/virtual_stream_encoder.h"
38 
39 #include "dce80/dce80_resource.h"
40 #include "dce100/dce100_resource.h"
41 #include "dce110/dce110_resource.h"
42 #include "dce112/dce112_resource.h"
43 #if defined(CONFIG_DRM_AMD_DC_DCN1_0)
44 #include "dcn10/dcn10_resource.h"
45 #endif
46 #include "dce120/dce120_resource.h"
47 
48 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
49 {
50 	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
51 	switch (asic_id.chip_family) {
52 
53 	case FAMILY_CI:
54 		dc_version = DCE_VERSION_8_0;
55 		break;
56 	case FAMILY_KV:
57 		if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
58 		    ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
59 		    ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
60 			dc_version = DCE_VERSION_8_3;
61 		else
62 			dc_version = DCE_VERSION_8_1;
63 		break;
64 	case FAMILY_CZ:
65 		dc_version = DCE_VERSION_11_0;
66 		break;
67 
68 	case FAMILY_VI:
69 		if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
70 				ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
71 			dc_version = DCE_VERSION_10_0;
72 			break;
73 		}
74 		if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
75 				ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
76 				ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
77 			dc_version = DCE_VERSION_11_2;
78 		}
79 		break;
80 	case FAMILY_AI:
81 		dc_version = DCE_VERSION_12_0;
82 		break;
83 #if defined(CONFIG_DRM_AMD_DC_DCN1_0)
84 	case FAMILY_RV:
85 		dc_version = DCN_VERSION_1_0;
86 		break;
87 #endif
88 	default:
89 		dc_version = DCE_VERSION_UNKNOWN;
90 		break;
91 	}
92 	return dc_version;
93 }
94 
95 struct resource_pool *dc_create_resource_pool(
96 				struct dc  *dc,
97 				int num_virtual_links,
98 				enum dce_version dc_version,
99 				struct hw_asic_id asic_id)
100 {
101 	struct resource_pool *res_pool = NULL;
102 
103 	switch (dc_version) {
104 	case DCE_VERSION_8_0:
105 		res_pool = dce80_create_resource_pool(
106 			num_virtual_links, dc);
107 		break;
108 	case DCE_VERSION_8_1:
109 		res_pool = dce81_create_resource_pool(
110 			num_virtual_links, dc);
111 		break;
112 	case DCE_VERSION_8_3:
113 		res_pool = dce83_create_resource_pool(
114 			num_virtual_links, dc);
115 		break;
116 	case DCE_VERSION_10_0:
117 		res_pool = dce100_create_resource_pool(
118 				num_virtual_links, dc);
119 		break;
120 	case DCE_VERSION_11_0:
121 		res_pool = dce110_create_resource_pool(
122 			num_virtual_links, dc, asic_id);
123 		break;
124 	case DCE_VERSION_11_2:
125 		res_pool = dce112_create_resource_pool(
126 			num_virtual_links, dc);
127 		break;
128 	case DCE_VERSION_12_0:
129 		res_pool = dce120_create_resource_pool(
130 			num_virtual_links, dc);
131 		break;
132 
133 #if defined(CONFIG_DRM_AMD_DC_DCN1_0)
134 	case DCN_VERSION_1_0:
135 		res_pool = dcn10_create_resource_pool(
136 				num_virtual_links, dc);
137 		break;
138 #endif
139 
140 
141 	default:
142 		break;
143 	}
144 	if (res_pool != NULL) {
145 		struct dc_firmware_info fw_info = { { 0 } };
146 
147 		if (dc->ctx->dc_bios->funcs->get_firmware_info(
148 				dc->ctx->dc_bios, &fw_info) == BP_RESULT_OK) {
149 				res_pool->ref_clock_inKhz = fw_info.pll_info.crystal_frequency;
150 			} else
151 				ASSERT_CRITICAL(false);
152 	}
153 
154 	return res_pool;
155 }
156 
157 void dc_destroy_resource_pool(struct dc  *dc)
158 {
159 	if (dc) {
160 		if (dc->res_pool)
161 			dc->res_pool->funcs->destroy(&dc->res_pool);
162 
163 		kfree(dc->hwseq);
164 	}
165 }
166 
167 static void update_num_audio(
168 	const struct resource_straps *straps,
169 	unsigned int *num_audio,
170 	struct audio_support *aud_support)
171 {
172 	aud_support->dp_audio = true;
173 	aud_support->hdmi_audio_native = false;
174 	aud_support->hdmi_audio_on_dongle = false;
175 
176 	if (straps->hdmi_disable == 0) {
177 		if (straps->dc_pinstraps_audio & 0x2) {
178 			aud_support->hdmi_audio_on_dongle = true;
179 			aud_support->hdmi_audio_native = true;
180 		}
181 	}
182 
183 	switch (straps->audio_stream_number) {
184 	case 0: /* multi streams supported */
185 		break;
186 	case 1: /* multi streams not supported */
187 		*num_audio = 1;
188 		break;
189 	default:
190 		DC_ERR("DC: unexpected audio fuse!\n");
191 	}
192 }
193 
194 bool resource_construct(
195 	unsigned int num_virtual_links,
196 	struct dc  *dc,
197 	struct resource_pool *pool,
198 	const struct resource_create_funcs *create_funcs)
199 {
200 	struct dc_context *ctx = dc->ctx;
201 	const struct resource_caps *caps = pool->res_cap;
202 	int i;
203 	unsigned int num_audio = caps->num_audio;
204 	struct resource_straps straps = {0};
205 
206 	if (create_funcs->read_dce_straps)
207 		create_funcs->read_dce_straps(dc->ctx, &straps);
208 
209 	pool->audio_count = 0;
210 	if (create_funcs->create_audio) {
211 		/* find the total number of streams available via the
212 		 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
213 		 * registers (one for each pin) starting from pin 1
214 		 * up to the max number of audio pins.
215 		 * We stop on the first pin where
216 		 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
217 		 */
218 		update_num_audio(&straps, &num_audio, &pool->audio_support);
219 		for (i = 0; i < pool->pipe_count && i < num_audio; i++) {
220 			struct audio *aud = create_funcs->create_audio(ctx, i);
221 
222 			if (aud == NULL) {
223 				DC_ERR("DC: failed to create audio!\n");
224 				return false;
225 			}
226 
227 			if (!aud->funcs->endpoint_valid(aud)) {
228 				aud->funcs->destroy(&aud);
229 				break;
230 			}
231 
232 			pool->audios[i] = aud;
233 			pool->audio_count++;
234 		}
235 	}
236 
237 	pool->stream_enc_count = 0;
238 	if (create_funcs->create_stream_encoder) {
239 		for (i = 0; i < caps->num_stream_encoder; i++) {
240 			pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
241 			if (pool->stream_enc[i] == NULL)
242 				DC_ERR("DC: failed to create stream_encoder!\n");
243 			pool->stream_enc_count++;
244 		}
245 	}
246 	dc->caps.dynamic_audio = false;
247 	if (pool->audio_count < pool->stream_enc_count) {
248 		dc->caps.dynamic_audio = true;
249 	}
250 	for (i = 0; i < num_virtual_links; i++) {
251 		pool->stream_enc[pool->stream_enc_count] =
252 			virtual_stream_encoder_create(
253 					ctx, ctx->dc_bios);
254 		if (pool->stream_enc[pool->stream_enc_count] == NULL) {
255 			DC_ERR("DC: failed to create stream_encoder!\n");
256 			return false;
257 		}
258 		pool->stream_enc_count++;
259 	}
260 
261 	dc->hwseq = create_funcs->create_hwseq(ctx);
262 
263 	return true;
264 }
265 
266 
267 void resource_unreference_clock_source(
268 		struct resource_context *res_ctx,
269 		const struct resource_pool *pool,
270 		struct clock_source *clock_source)
271 {
272 	int i;
273 
274 	for (i = 0; i < pool->clk_src_count; i++) {
275 		if (pool->clock_sources[i] != clock_source)
276 			continue;
277 
278 		res_ctx->clock_source_ref_count[i]--;
279 
280 		break;
281 	}
282 
283 	if (pool->dp_clock_source == clock_source)
284 		res_ctx->dp_clock_source_ref_count--;
285 }
286 
287 void resource_reference_clock_source(
288 		struct resource_context *res_ctx,
289 		const struct resource_pool *pool,
290 		struct clock_source *clock_source)
291 {
292 	int i;
293 	for (i = 0; i < pool->clk_src_count; i++) {
294 		if (pool->clock_sources[i] != clock_source)
295 			continue;
296 
297 		res_ctx->clock_source_ref_count[i]++;
298 		break;
299 	}
300 
301 	if (pool->dp_clock_source == clock_source)
302 		res_ctx->dp_clock_source_ref_count++;
303 }
304 
305 bool resource_are_streams_timing_synchronizable(
306 	struct dc_stream_state *stream1,
307 	struct dc_stream_state *stream2)
308 {
309 	if (stream1->timing.h_total != stream2->timing.h_total)
310 		return false;
311 
312 	if (stream1->timing.v_total != stream2->timing.v_total)
313 		return false;
314 
315 	if (stream1->timing.h_addressable
316 				!= stream2->timing.h_addressable)
317 		return false;
318 
319 	if (stream1->timing.v_addressable
320 				!= stream2->timing.v_addressable)
321 		return false;
322 
323 	if (stream1->timing.pix_clk_khz
324 				!= stream2->timing.pix_clk_khz)
325 		return false;
326 
327 	if (stream1->phy_pix_clk != stream2->phy_pix_clk
328 			&& (!dc_is_dp_signal(stream1->signal)
329 			|| !dc_is_dp_signal(stream2->signal)))
330 		return false;
331 
332 	return true;
333 }
334 
335 static bool is_sharable_clk_src(
336 	const struct pipe_ctx *pipe_with_clk_src,
337 	const struct pipe_ctx *pipe)
338 {
339 	if (pipe_with_clk_src->clock_source == NULL)
340 		return false;
341 
342 	if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
343 		return false;
344 
345 	if (dc_is_dp_signal(pipe_with_clk_src->stream->signal))
346 		return false;
347 
348 	if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
349 			&& dc_is_dvi_signal(pipe->stream->signal))
350 		return false;
351 
352 	if (dc_is_hdmi_signal(pipe->stream->signal)
353 			&& dc_is_dvi_signal(pipe_with_clk_src->stream->signal))
354 		return false;
355 
356 	if (!resource_are_streams_timing_synchronizable(
357 			pipe_with_clk_src->stream, pipe->stream))
358 		return false;
359 
360 	return true;
361 }
362 
363 struct clock_source *resource_find_used_clk_src_for_sharing(
364 					struct resource_context *res_ctx,
365 					struct pipe_ctx *pipe_ctx)
366 {
367 	int i;
368 
369 	for (i = 0; i < MAX_PIPES; i++) {
370 		if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
371 			return res_ctx->pipe_ctx[i].clock_source;
372 	}
373 
374 	return NULL;
375 }
376 
377 static enum pixel_format convert_pixel_format_to_dalsurface(
378 		enum surface_pixel_format surface_pixel_format)
379 {
380 	enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
381 
382 	switch (surface_pixel_format) {
383 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
384 		dal_pixel_format = PIXEL_FORMAT_INDEX8;
385 		break;
386 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
387 		dal_pixel_format = PIXEL_FORMAT_RGB565;
388 		break;
389 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
390 		dal_pixel_format = PIXEL_FORMAT_RGB565;
391 		break;
392 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
393 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
394 		break;
395 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
396 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
397 		break;
398 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
399 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
400 		break;
401 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
402 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
403 		break;
404 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
405 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
406 		break;
407 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
408 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
409 		dal_pixel_format = PIXEL_FORMAT_FP16;
410 		break;
411 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
412 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
413 		dal_pixel_format = PIXEL_FORMAT_420BPP8;
414 		break;
415 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
416 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
417 		dal_pixel_format = PIXEL_FORMAT_420BPP10;
418 		break;
419 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
420 	default:
421 		dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
422 		break;
423 	}
424 	return dal_pixel_format;
425 }
426 
427 static void rect_swap_helper(struct rect *rect)
428 {
429 	swap(rect->height, rect->width);
430 	swap(rect->x, rect->y);
431 }
432 
433 static void calculate_viewport(struct pipe_ctx *pipe_ctx)
434 {
435 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
436 	const struct dc_stream_state *stream = pipe_ctx->stream;
437 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
438 	struct rect surf_src = plane_state->src_rect;
439 	struct rect clip = { 0 };
440 	int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
441 			|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
442 	bool pri_split = pipe_ctx->bottom_pipe &&
443 			pipe_ctx->bottom_pipe->plane_state == pipe_ctx->plane_state;
444 	bool sec_split = pipe_ctx->top_pipe &&
445 			pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state;
446 
447 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE ||
448 		stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM) {
449 		pri_split = false;
450 		sec_split = false;
451 	}
452 
453 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
454 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
455 		rect_swap_helper(&surf_src);
456 
457 	/* The actual clip is an intersection between stream
458 	 * source and surface clip
459 	 */
460 	clip.x = stream->src.x > plane_state->clip_rect.x ?
461 			stream->src.x : plane_state->clip_rect.x;
462 
463 	clip.width = stream->src.x + stream->src.width <
464 			plane_state->clip_rect.x + plane_state->clip_rect.width ?
465 			stream->src.x + stream->src.width - clip.x :
466 			plane_state->clip_rect.x + plane_state->clip_rect.width - clip.x ;
467 
468 	clip.y = stream->src.y > plane_state->clip_rect.y ?
469 			stream->src.y : plane_state->clip_rect.y;
470 
471 	clip.height = stream->src.y + stream->src.height <
472 			plane_state->clip_rect.y + plane_state->clip_rect.height ?
473 			stream->src.y + stream->src.height - clip.y :
474 			plane_state->clip_rect.y + plane_state->clip_rect.height - clip.y ;
475 
476 	/* offset = surf_src.ofs + (clip.ofs - surface->dst_rect.ofs) * scl_ratio
477 	 * num_pixels = clip.num_pix * scl_ratio
478 	 */
479 	data->viewport.x = surf_src.x + (clip.x - plane_state->dst_rect.x) *
480 			surf_src.width / plane_state->dst_rect.width;
481 	data->viewport.width = clip.width *
482 			surf_src.width / plane_state->dst_rect.width;
483 
484 	data->viewport.y = surf_src.y + (clip.y - plane_state->dst_rect.y) *
485 			surf_src.height / plane_state->dst_rect.height;
486 	data->viewport.height = clip.height *
487 			surf_src.height / plane_state->dst_rect.height;
488 
489 	/* Round down, compensate in init */
490 	data->viewport_c.x = data->viewport.x / vpc_div;
491 	data->viewport_c.y = data->viewport.y / vpc_div;
492 	data->inits.h_c = (data->viewport.x % vpc_div) != 0 ?
493 			dal_fixed31_32_half : dal_fixed31_32_zero;
494 	data->inits.v_c = (data->viewport.y % vpc_div) != 0 ?
495 			dal_fixed31_32_half : dal_fixed31_32_zero;
496 	/* Round up, assume original video size always even dimensions */
497 	data->viewport_c.width = (data->viewport.width + vpc_div - 1) / vpc_div;
498 	data->viewport_c.height = (data->viewport.height + vpc_div - 1) / vpc_div;
499 
500 	/* Handle hsplit */
501 	if (sec_split) {
502 		data->viewport.x +=  data->viewport.width / 2;
503 		data->viewport_c.x +=  data->viewport_c.width / 2;
504 		/* Ceil offset pipe */
505 		data->viewport.width = (data->viewport.width + 1) / 2;
506 		data->viewport_c.width = (data->viewport_c.width + 1) / 2;
507 	} else if (pri_split) {
508 		data->viewport.width /= 2;
509 		data->viewport_c.width /= 2;
510 	}
511 
512 	if (plane_state->rotation == ROTATION_ANGLE_90 ||
513 			plane_state->rotation == ROTATION_ANGLE_270) {
514 		rect_swap_helper(&data->viewport_c);
515 		rect_swap_helper(&data->viewport);
516 	}
517 }
518 
519 static void calculate_recout(struct pipe_ctx *pipe_ctx, struct view *recout_skip)
520 {
521 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
522 	const struct dc_stream_state *stream = pipe_ctx->stream;
523 	struct rect surf_src = plane_state->src_rect;
524 	struct rect surf_clip = plane_state->clip_rect;
525 	int recout_full_x, recout_full_y;
526 	bool pri_split = pipe_ctx->bottom_pipe &&
527 			pipe_ctx->bottom_pipe->plane_state == pipe_ctx->plane_state;
528 	bool sec_split = pipe_ctx->top_pipe &&
529 			pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state;
530 	bool top_bottom_split = stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
531 
532 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
533 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
534 		rect_swap_helper(&surf_src);
535 
536 	pipe_ctx->plane_res.scl_data.recout.x = stream->dst.x;
537 	if (stream->src.x < surf_clip.x)
538 		pipe_ctx->plane_res.scl_data.recout.x += (surf_clip.x
539 			- stream->src.x) * stream->dst.width
540 						/ stream->src.width;
541 
542 	pipe_ctx->plane_res.scl_data.recout.width = surf_clip.width *
543 			stream->dst.width / stream->src.width;
544 	if (pipe_ctx->plane_res.scl_data.recout.width + pipe_ctx->plane_res.scl_data.recout.x >
545 			stream->dst.x + stream->dst.width)
546 		pipe_ctx->plane_res.scl_data.recout.width =
547 			stream->dst.x + stream->dst.width
548 						- pipe_ctx->plane_res.scl_data.recout.x;
549 
550 	pipe_ctx->plane_res.scl_data.recout.y = stream->dst.y;
551 	if (stream->src.y < surf_clip.y)
552 		pipe_ctx->plane_res.scl_data.recout.y += (surf_clip.y
553 			- stream->src.y) * stream->dst.height
554 						/ stream->src.height;
555 
556 	pipe_ctx->plane_res.scl_data.recout.height = surf_clip.height *
557 			stream->dst.height / stream->src.height;
558 	if (pipe_ctx->plane_res.scl_data.recout.height + pipe_ctx->plane_res.scl_data.recout.y >
559 			stream->dst.y + stream->dst.height)
560 		pipe_ctx->plane_res.scl_data.recout.height =
561 			stream->dst.y + stream->dst.height
562 						- pipe_ctx->plane_res.scl_data.recout.y;
563 
564 	/* Handle h & vsplit */
565 	if (sec_split && top_bottom_split) {
566 		pipe_ctx->plane_res.scl_data.recout.y +=
567 				pipe_ctx->plane_res.scl_data.recout.height / 2;
568 		/* Floor primary pipe, ceil 2ndary pipe */
569 		pipe_ctx->plane_res.scl_data.recout.height =
570 				(pipe_ctx->plane_res.scl_data.recout.height + 1) / 2;
571 	} else if (pri_split && top_bottom_split)
572 		pipe_ctx->plane_res.scl_data.recout.height /= 2;
573 	else if (pri_split || sec_split) {
574 		/* HMirror XOR Secondary_pipe XOR Rotation_180 */
575 		bool right_view = (sec_split != plane_state->horizontal_mirror) !=
576 					(plane_state->rotation == ROTATION_ANGLE_180);
577 
578 		if (plane_state->rotation == ROTATION_ANGLE_90
579 				|| plane_state->rotation == ROTATION_ANGLE_270)
580 			/* Secondary_pipe XOR Rotation_270 */
581 			right_view = (plane_state->rotation == ROTATION_ANGLE_270) != sec_split;
582 
583 		if (right_view) {
584 			pipe_ctx->plane_res.scl_data.recout.x +=
585 					pipe_ctx->plane_res.scl_data.recout.width / 2;
586 			/* Ceil offset pipe */
587 			pipe_ctx->plane_res.scl_data.recout.width =
588 					(pipe_ctx->plane_res.scl_data.recout.width + 1) / 2;
589 		} else {
590 			pipe_ctx->plane_res.scl_data.recout.width /= 2;
591 		}
592 	}
593 	/* Unclipped recout offset = stream dst offset + ((surf dst offset - stream surf_src offset)
594 	 * 				* 1/ stream scaling ratio) - (surf surf_src offset * 1/ full scl
595 	 * 				ratio)
596 	 */
597 	recout_full_x = stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
598 					* stream->dst.width / stream->src.width -
599 			surf_src.x * plane_state->dst_rect.width / surf_src.width
600 					* stream->dst.width / stream->src.width;
601 	recout_full_y = stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
602 					* stream->dst.height / stream->src.height -
603 			surf_src.y * plane_state->dst_rect.height / surf_src.height
604 					* stream->dst.height / stream->src.height;
605 
606 	recout_skip->width = pipe_ctx->plane_res.scl_data.recout.x - recout_full_x;
607 	recout_skip->height = pipe_ctx->plane_res.scl_data.recout.y - recout_full_y;
608 }
609 
610 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
611 {
612 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
613 	const struct dc_stream_state *stream = pipe_ctx->stream;
614 	struct rect surf_src = plane_state->src_rect;
615 	const int in_w = stream->src.width;
616 	const int in_h = stream->src.height;
617 	const int out_w = stream->dst.width;
618 	const int out_h = stream->dst.height;
619 
620 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
621 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
622 		rect_swap_helper(&surf_src);
623 
624 	pipe_ctx->plane_res.scl_data.ratios.horz = dal_fixed31_32_from_fraction(
625 					surf_src.width,
626 					plane_state->dst_rect.width);
627 	pipe_ctx->plane_res.scl_data.ratios.vert = dal_fixed31_32_from_fraction(
628 					surf_src.height,
629 					plane_state->dst_rect.height);
630 
631 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
632 		pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
633 	else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
634 		pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
635 
636 	pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
637 		pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
638 	pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
639 		pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
640 
641 	pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
642 	pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
643 
644 	if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
645 			|| pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
646 		pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
647 		pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
648 	}
649 }
650 
651 static void calculate_inits_and_adj_vp(struct pipe_ctx *pipe_ctx, struct view *recout_skip)
652 {
653 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
654 	struct rect src = pipe_ctx->plane_state->src_rect;
655 	int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
656 			|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
657 	bool flip_vert_scan_dir = false, flip_horz_scan_dir = false;
658 
659 	/*
660 	 * Need to calculate the scan direction for viewport to make adjustments
661 	 */
662 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_180) {
663 		flip_vert_scan_dir = true;
664 		flip_horz_scan_dir = true;
665 	} else if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90)
666 		flip_vert_scan_dir = true;
667 	else if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
668 		flip_horz_scan_dir = true;
669 	if (pipe_ctx->plane_state->horizontal_mirror)
670 		flip_horz_scan_dir = !flip_horz_scan_dir;
671 
672 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
673 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
674 		rect_swap_helper(&src);
675 		rect_swap_helper(&data->viewport_c);
676 		rect_swap_helper(&data->viewport);
677 	}
678 
679 	/*
680 	 * Init calculated according to formula:
681 	 * 	init = (scaling_ratio + number_of_taps + 1) / 2
682 	 * 	init_bot = init + scaling_ratio
683 	 * 	init_c = init + truncated_vp_c_offset(from calculate viewport)
684 	 */
685 	data->inits.h = dal_fixed31_32_div_int(
686 			dal_fixed31_32_add_int(data->ratios.horz, data->taps.h_taps + 1), 2);
687 
688 	data->inits.h_c = dal_fixed31_32_add(data->inits.h_c, dal_fixed31_32_div_int(
689 			dal_fixed31_32_add_int(data->ratios.horz_c, data->taps.h_taps_c + 1), 2));
690 
691 	data->inits.v = dal_fixed31_32_div_int(
692 			dal_fixed31_32_add_int(data->ratios.vert, data->taps.v_taps + 1), 2);
693 
694 	data->inits.v_c = dal_fixed31_32_add(data->inits.v_c, dal_fixed31_32_div_int(
695 			dal_fixed31_32_add_int(data->ratios.vert_c, data->taps.v_taps_c + 1), 2));
696 
697 
698 	/* Adjust for viewport end clip-off */
699 	if ((data->viewport.x + data->viewport.width) < (src.x + src.width)) {
700 		int vp_clip = src.x + src.width - data->viewport.width - data->viewport.x;
701 		int int_part = dal_fixed31_32_floor(
702 				dal_fixed31_32_sub(data->inits.h, data->ratios.horz));
703 
704 		int_part = int_part > 0 ? int_part : 0;
705 		data->viewport.width += int_part < vp_clip ? int_part : vp_clip;
706 	}
707 	if ((data->viewport.y + data->viewport.height) < (src.y + src.height)) {
708 		int vp_clip = src.y + src.height - data->viewport.height - data->viewport.y;
709 		int int_part = dal_fixed31_32_floor(
710 				dal_fixed31_32_sub(data->inits.v, data->ratios.vert));
711 
712 		int_part = int_part > 0 ? int_part : 0;
713 		data->viewport.height += int_part < vp_clip ? int_part : vp_clip;
714 	}
715 	if ((data->viewport_c.x + data->viewport_c.width) < (src.x + src.width) / vpc_div) {
716 		int vp_clip = (src.x + src.width) / vpc_div -
717 				data->viewport_c.width - data->viewport_c.x;
718 		int int_part = dal_fixed31_32_floor(
719 				dal_fixed31_32_sub(data->inits.h_c, data->ratios.horz_c));
720 
721 		int_part = int_part > 0 ? int_part : 0;
722 		data->viewport_c.width += int_part < vp_clip ? int_part : vp_clip;
723 	}
724 	if ((data->viewport_c.y + data->viewport_c.height) < (src.y + src.height) / vpc_div) {
725 		int vp_clip = (src.y + src.height) / vpc_div -
726 				data->viewport_c.height - data->viewport_c.y;
727 		int int_part = dal_fixed31_32_floor(
728 				dal_fixed31_32_sub(data->inits.v_c, data->ratios.vert_c));
729 
730 		int_part = int_part > 0 ? int_part : 0;
731 		data->viewport_c.height += int_part < vp_clip ? int_part : vp_clip;
732 	}
733 
734 	/* Adjust for non-0 viewport offset */
735 	if (data->viewport.x && !flip_horz_scan_dir) {
736 		int int_part;
737 
738 		data->inits.h = dal_fixed31_32_add(data->inits.h, dal_fixed31_32_mul_int(
739 				data->ratios.horz, recout_skip->width));
740 		int_part = dal_fixed31_32_floor(data->inits.h) - data->viewport.x;
741 		if (int_part < data->taps.h_taps) {
742 			int int_adj = data->viewport.x >= (data->taps.h_taps - int_part) ?
743 						(data->taps.h_taps - int_part) : data->viewport.x;
744 			data->viewport.x -= int_adj;
745 			data->viewport.width += int_adj;
746 			int_part += int_adj;
747 		} else if (int_part > data->taps.h_taps) {
748 			data->viewport.x += int_part - data->taps.h_taps;
749 			data->viewport.width -= int_part - data->taps.h_taps;
750 			int_part = data->taps.h_taps;
751 		}
752 		data->inits.h.value &= 0xffffffff;
753 		data->inits.h = dal_fixed31_32_add_int(data->inits.h, int_part);
754 	}
755 
756 	if (data->viewport_c.x && !flip_horz_scan_dir) {
757 		int int_part;
758 
759 		data->inits.h_c = dal_fixed31_32_add(data->inits.h_c, dal_fixed31_32_mul_int(
760 				data->ratios.horz_c, recout_skip->width));
761 		int_part = dal_fixed31_32_floor(data->inits.h_c) - data->viewport_c.x;
762 		if (int_part < data->taps.h_taps_c) {
763 			int int_adj = data->viewport_c.x >= (data->taps.h_taps_c - int_part) ?
764 					(data->taps.h_taps_c - int_part) : data->viewport_c.x;
765 			data->viewport_c.x -= int_adj;
766 			data->viewport_c.width += int_adj;
767 			int_part += int_adj;
768 		} else if (int_part > data->taps.h_taps_c) {
769 			data->viewport_c.x += int_part - data->taps.h_taps_c;
770 			data->viewport_c.width -= int_part - data->taps.h_taps_c;
771 			int_part = data->taps.h_taps_c;
772 		}
773 		data->inits.h_c.value &= 0xffffffff;
774 		data->inits.h_c = dal_fixed31_32_add_int(data->inits.h_c, int_part);
775 	}
776 
777 	if (data->viewport.y && !flip_vert_scan_dir) {
778 		int int_part;
779 
780 		data->inits.v = dal_fixed31_32_add(data->inits.v, dal_fixed31_32_mul_int(
781 				data->ratios.vert, recout_skip->height));
782 		int_part = dal_fixed31_32_floor(data->inits.v) - data->viewport.y;
783 		if (int_part < data->taps.v_taps) {
784 			int int_adj = data->viewport.y >= (data->taps.v_taps - int_part) ?
785 						(data->taps.v_taps - int_part) : data->viewport.y;
786 			data->viewport.y -= int_adj;
787 			data->viewport.height += int_adj;
788 			int_part += int_adj;
789 		} else if (int_part > data->taps.v_taps) {
790 			data->viewport.y += int_part - data->taps.v_taps;
791 			data->viewport.height -= int_part - data->taps.v_taps;
792 			int_part = data->taps.v_taps;
793 		}
794 		data->inits.v.value &= 0xffffffff;
795 		data->inits.v = dal_fixed31_32_add_int(data->inits.v, int_part);
796 	}
797 
798 	if (data->viewport_c.y && !flip_vert_scan_dir) {
799 		int int_part;
800 
801 		data->inits.v_c = dal_fixed31_32_add(data->inits.v_c, dal_fixed31_32_mul_int(
802 				data->ratios.vert_c, recout_skip->height));
803 		int_part = dal_fixed31_32_floor(data->inits.v_c) - data->viewport_c.y;
804 		if (int_part < data->taps.v_taps_c) {
805 			int int_adj = data->viewport_c.y >= (data->taps.v_taps_c - int_part) ?
806 					(data->taps.v_taps_c - int_part) : data->viewport_c.y;
807 			data->viewport_c.y -= int_adj;
808 			data->viewport_c.height += int_adj;
809 			int_part += int_adj;
810 		} else if (int_part > data->taps.v_taps_c) {
811 			data->viewport_c.y += int_part - data->taps.v_taps_c;
812 			data->viewport_c.height -= int_part - data->taps.v_taps_c;
813 			int_part = data->taps.v_taps_c;
814 		}
815 		data->inits.v_c.value &= 0xffffffff;
816 		data->inits.v_c = dal_fixed31_32_add_int(data->inits.v_c, int_part);
817 	}
818 
819 	/* Interlaced inits based on final vert inits */
820 	data->inits.v_bot = dal_fixed31_32_add(data->inits.v, data->ratios.vert);
821 	data->inits.v_c_bot = dal_fixed31_32_add(data->inits.v_c, data->ratios.vert_c);
822 
823 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
824 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
825 		rect_swap_helper(&data->viewport_c);
826 		rect_swap_helper(&data->viewport);
827 	}
828 }
829 
830 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
831 {
832 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
833 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
834 	struct view recout_skip = { 0 };
835 	bool res = false;
836 
837 	/* Important: scaling ratio calculation requires pixel format,
838 	 * lb depth calculation requires recout and taps require scaling ratios.
839 	 * Inits require viewport, taps, ratios and recout of split pipe
840 	 */
841 	pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
842 			pipe_ctx->plane_state->format);
843 
844 	calculate_scaling_ratios(pipe_ctx);
845 
846 	calculate_viewport(pipe_ctx);
847 
848 	if (pipe_ctx->plane_res.scl_data.viewport.height < 16 || pipe_ctx->plane_res.scl_data.viewport.width < 16)
849 		return false;
850 
851 	calculate_recout(pipe_ctx, &recout_skip);
852 
853 	/**
854 	 * Setting line buffer pixel depth to 24bpp yields banding
855 	 * on certain displays, such as the Sharp 4k
856 	 */
857 	pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
858 
859 	pipe_ctx->plane_res.scl_data.recout.x += timing->h_border_left;
860 	pipe_ctx->plane_res.scl_data.recout.y += timing->v_border_top;
861 
862 	pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable + timing->h_border_left + timing->h_border_right;
863 	pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable + timing->v_border_top + timing->v_border_bottom;
864 
865 
866 	/* Taps calculations */
867 	if (pipe_ctx->plane_res.xfm != NULL)
868 		res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
869 				pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
870 
871 	if (pipe_ctx->plane_res.dpp != NULL)
872 		res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
873 				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
874 	if (!res) {
875 		/* Try 24 bpp linebuffer */
876 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
877 
878 		if (pipe_ctx->plane_res.xfm != NULL)
879 			res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
880 					pipe_ctx->plane_res.xfm,
881 					&pipe_ctx->plane_res.scl_data,
882 					&plane_state->scaling_quality);
883 
884 		if (pipe_ctx->plane_res.dpp != NULL)
885 			res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
886 					pipe_ctx->plane_res.dpp,
887 					&pipe_ctx->plane_res.scl_data,
888 					&plane_state->scaling_quality);
889 	}
890 
891 	if (res)
892 		/* May need to re-check lb size after this in some obscure scenario */
893 		calculate_inits_and_adj_vp(pipe_ctx, &recout_skip);
894 
895 	dm_logger_write(pipe_ctx->stream->ctx->logger, LOG_SCALER,
896 				"%s: Viewport:\nheight:%d width:%d x:%d "
897 				"y:%d\n dst_rect:\nheight:%d width:%d x:%d "
898 				"y:%d\n",
899 				__func__,
900 				pipe_ctx->plane_res.scl_data.viewport.height,
901 				pipe_ctx->plane_res.scl_data.viewport.width,
902 				pipe_ctx->plane_res.scl_data.viewport.x,
903 				pipe_ctx->plane_res.scl_data.viewport.y,
904 				plane_state->dst_rect.height,
905 				plane_state->dst_rect.width,
906 				plane_state->dst_rect.x,
907 				plane_state->dst_rect.y);
908 
909 	return res;
910 }
911 
912 
913 enum dc_status resource_build_scaling_params_for_context(
914 	const struct dc  *dc,
915 	struct dc_state *context)
916 {
917 	int i;
918 
919 	for (i = 0; i < MAX_PIPES; i++) {
920 		if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
921 				context->res_ctx.pipe_ctx[i].stream != NULL)
922 			if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
923 				return DC_FAIL_SCALING;
924 	}
925 
926 	return DC_OK;
927 }
928 
929 struct pipe_ctx *find_idle_secondary_pipe(
930 		struct resource_context *res_ctx,
931 		const struct resource_pool *pool)
932 {
933 	int i;
934 	struct pipe_ctx *secondary_pipe = NULL;
935 
936 	/*
937 	 * search backwards for the second pipe to keep pipe
938 	 * assignment more consistent
939 	 */
940 
941 	for (i = pool->pipe_count - 1; i >= 0; i--) {
942 		if (res_ctx->pipe_ctx[i].stream == NULL) {
943 			secondary_pipe = &res_ctx->pipe_ctx[i];
944 			secondary_pipe->pipe_idx = i;
945 			break;
946 		}
947 	}
948 
949 
950 	return secondary_pipe;
951 }
952 
953 struct pipe_ctx *resource_get_head_pipe_for_stream(
954 		struct resource_context *res_ctx,
955 		struct dc_stream_state *stream)
956 {
957 	int i;
958 	for (i = 0; i < MAX_PIPES; i++) {
959 		if (res_ctx->pipe_ctx[i].stream == stream &&
960 				!res_ctx->pipe_ctx[i].top_pipe) {
961 			return &res_ctx->pipe_ctx[i];
962 			break;
963 		}
964 	}
965 	return NULL;
966 }
967 
968 static struct pipe_ctx *resource_get_tail_pipe_for_stream(
969 		struct resource_context *res_ctx,
970 		struct dc_stream_state *stream)
971 {
972 	struct pipe_ctx *head_pipe, *tail_pipe;
973 	head_pipe = resource_get_head_pipe_for_stream(res_ctx, stream);
974 
975 	if (!head_pipe)
976 		return NULL;
977 
978 	tail_pipe = head_pipe->bottom_pipe;
979 
980 	while (tail_pipe) {
981 		head_pipe = tail_pipe;
982 		tail_pipe = tail_pipe->bottom_pipe;
983 	}
984 
985 	return head_pipe;
986 }
987 
988 /*
989  * A free_pipe for a stream is defined here as a pipe
990  * that has no surface attached yet
991  */
992 static struct pipe_ctx *acquire_free_pipe_for_stream(
993 		struct dc_state *context,
994 		const struct resource_pool *pool,
995 		struct dc_stream_state *stream)
996 {
997 	int i;
998 	struct resource_context *res_ctx = &context->res_ctx;
999 
1000 	struct pipe_ctx *head_pipe = NULL;
1001 
1002 	/* Find head pipe, which has the back end set up*/
1003 
1004 	head_pipe = resource_get_head_pipe_for_stream(res_ctx, stream);
1005 
1006 	if (!head_pipe) {
1007 		ASSERT(0);
1008 		return NULL;
1009 	}
1010 
1011 	if (!head_pipe->plane_state)
1012 		return head_pipe;
1013 
1014 	/* Re-use pipe already acquired for this stream if available*/
1015 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1016 		if (res_ctx->pipe_ctx[i].stream == stream &&
1017 				!res_ctx->pipe_ctx[i].plane_state) {
1018 			return &res_ctx->pipe_ctx[i];
1019 		}
1020 	}
1021 
1022 	/*
1023 	 * At this point we have no re-useable pipe for this stream and we need
1024 	 * to acquire an idle one to satisfy the request
1025 	 */
1026 
1027 	if (!pool->funcs->acquire_idle_pipe_for_layer)
1028 		return NULL;
1029 
1030 	return pool->funcs->acquire_idle_pipe_for_layer(context, pool, stream);
1031 
1032 }
1033 
1034 #if defined(CONFIG_DRM_AMD_DC_DCN1_0)
1035 static int acquire_first_split_pipe(
1036 		struct resource_context *res_ctx,
1037 		const struct resource_pool *pool,
1038 		struct dc_stream_state *stream)
1039 {
1040 	int i;
1041 
1042 	for (i = 0; i < pool->pipe_count; i++) {
1043 		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
1044 
1045 		if (pipe_ctx->top_pipe &&
1046 				pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state) {
1047 			pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1048 			if (pipe_ctx->bottom_pipe)
1049 				pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1050 
1051 			memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1052 			pipe_ctx->stream_res.tg = pool->timing_generators[i];
1053 			pipe_ctx->plane_res.hubp = pool->hubps[i];
1054 			pipe_ctx->plane_res.ipp = pool->ipps[i];
1055 			pipe_ctx->plane_res.dpp = pool->dpps[i];
1056 			pipe_ctx->stream_res.opp = pool->opps[i];
1057 			pipe_ctx->pipe_idx = i;
1058 
1059 			pipe_ctx->stream = stream;
1060 			return i;
1061 		}
1062 	}
1063 	return -1;
1064 }
1065 #endif
1066 
1067 bool dc_add_plane_to_context(
1068 		const struct dc *dc,
1069 		struct dc_stream_state *stream,
1070 		struct dc_plane_state *plane_state,
1071 		struct dc_state *context)
1072 {
1073 	int i;
1074 	struct resource_pool *pool = dc->res_pool;
1075 	struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1076 	struct dc_stream_status *stream_status = NULL;
1077 
1078 	for (i = 0; i < context->stream_count; i++)
1079 		if (context->streams[i] == stream) {
1080 			stream_status = &context->stream_status[i];
1081 			break;
1082 		}
1083 	if (stream_status == NULL) {
1084 		dm_error("Existing stream not found; failed to attach surface!\n");
1085 		return false;
1086 	}
1087 
1088 
1089 	if (stream_status->plane_count == MAX_SURFACE_NUM) {
1090 		dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1091 				plane_state, MAX_SURFACE_NUM);
1092 		return false;
1093 	}
1094 
1095 	head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1096 
1097 	if (!head_pipe) {
1098 		dm_error("Head pipe not found for stream_state %p !\n", stream);
1099 		return false;
1100 	}
1101 
1102 	free_pipe = acquire_free_pipe_for_stream(context, pool, stream);
1103 
1104 #if defined(CONFIG_DRM_AMD_DC_DCN1_0)
1105 	if (!free_pipe) {
1106 		int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1107 		if (pipe_idx >= 0)
1108 			free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1109 	}
1110 #endif
1111 	if (!free_pipe)
1112 		return false;
1113 
1114 	/* retain new surfaces */
1115 	dc_plane_state_retain(plane_state);
1116 	free_pipe->plane_state = plane_state;
1117 
1118 	if (head_pipe != free_pipe) {
1119 
1120 		tail_pipe = resource_get_tail_pipe_for_stream(&context->res_ctx, stream);
1121 		ASSERT(tail_pipe);
1122 
1123 		free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1124 		free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1125 		free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1126 		free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1127 		free_pipe->clock_source = tail_pipe->clock_source;
1128 		free_pipe->top_pipe = tail_pipe;
1129 		tail_pipe->bottom_pipe = free_pipe;
1130 	}
1131 
1132 	/* assign new surfaces*/
1133 	stream_status->plane_states[stream_status->plane_count] = plane_state;
1134 
1135 	stream_status->plane_count++;
1136 
1137 	return true;
1138 }
1139 
1140 bool dc_remove_plane_from_context(
1141 		const struct dc *dc,
1142 		struct dc_stream_state *stream,
1143 		struct dc_plane_state *plane_state,
1144 		struct dc_state *context)
1145 {
1146 	int i;
1147 	struct dc_stream_status *stream_status = NULL;
1148 	struct resource_pool *pool = dc->res_pool;
1149 
1150 	for (i = 0; i < context->stream_count; i++)
1151 		if (context->streams[i] == stream) {
1152 			stream_status = &context->stream_status[i];
1153 			break;
1154 		}
1155 
1156 	if (stream_status == NULL) {
1157 		dm_error("Existing stream not found; failed to remove plane.\n");
1158 		return false;
1159 	}
1160 
1161 	/* release pipe for plane*/
1162 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1163 		struct pipe_ctx *pipe_ctx;
1164 
1165 		if (context->res_ctx.pipe_ctx[i].plane_state == plane_state) {
1166 			pipe_ctx = &context->res_ctx.pipe_ctx[i];
1167 
1168 			if (pipe_ctx->top_pipe)
1169 				pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1170 
1171 			/* Second condition is to avoid setting NULL to top pipe
1172 			 * of tail pipe making it look like head pipe in subsequent
1173 			 * deletes
1174 			 */
1175 			if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1176 				pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1177 
1178 			/*
1179 			 * For head pipe detach surfaces from pipe for tail
1180 			 * pipe just zero it out
1181 			 */
1182 			if (!pipe_ctx->top_pipe) {
1183 				pipe_ctx->plane_state = NULL;
1184 				pipe_ctx->bottom_pipe = NULL;
1185 			} else  {
1186 				memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1187 			}
1188 		}
1189 	}
1190 
1191 
1192 	for (i = 0; i < stream_status->plane_count; i++) {
1193 		if (stream_status->plane_states[i] == plane_state) {
1194 
1195 			dc_plane_state_release(stream_status->plane_states[i]);
1196 			break;
1197 		}
1198 	}
1199 
1200 	if (i == stream_status->plane_count) {
1201 		dm_error("Existing plane_state not found; failed to detach it!\n");
1202 		return false;
1203 	}
1204 
1205 	stream_status->plane_count--;
1206 
1207 	/* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1208 	for (; i < stream_status->plane_count; i++)
1209 		stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1210 
1211 	stream_status->plane_states[stream_status->plane_count] = NULL;
1212 
1213 	return true;
1214 }
1215 
1216 bool dc_rem_all_planes_for_stream(
1217 		const struct dc *dc,
1218 		struct dc_stream_state *stream,
1219 		struct dc_state *context)
1220 {
1221 	int i, old_plane_count;
1222 	struct dc_stream_status *stream_status = NULL;
1223 	struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1224 
1225 	for (i = 0; i < context->stream_count; i++)
1226 			if (context->streams[i] == stream) {
1227 				stream_status = &context->stream_status[i];
1228 				break;
1229 			}
1230 
1231 	if (stream_status == NULL) {
1232 		dm_error("Existing stream %p not found!\n", stream);
1233 		return false;
1234 	}
1235 
1236 	old_plane_count = stream_status->plane_count;
1237 
1238 	for (i = 0; i < old_plane_count; i++)
1239 		del_planes[i] = stream_status->plane_states[i];
1240 
1241 	for (i = 0; i < old_plane_count; i++)
1242 		if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1243 			return false;
1244 
1245 	return true;
1246 }
1247 
1248 static bool add_all_planes_for_stream(
1249 		const struct dc *dc,
1250 		struct dc_stream_state *stream,
1251 		const struct dc_validation_set set[],
1252 		int set_count,
1253 		struct dc_state *context)
1254 {
1255 	int i, j;
1256 
1257 	for (i = 0; i < set_count; i++)
1258 		if (set[i].stream == stream)
1259 			break;
1260 
1261 	if (i == set_count) {
1262 		dm_error("Stream %p not found in set!\n", stream);
1263 		return false;
1264 	}
1265 
1266 	for (j = 0; j < set[i].plane_count; j++)
1267 		if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1268 			return false;
1269 
1270 	return true;
1271 }
1272 
1273 bool dc_add_all_planes_for_stream(
1274 		const struct dc *dc,
1275 		struct dc_stream_state *stream,
1276 		struct dc_plane_state * const *plane_states,
1277 		int plane_count,
1278 		struct dc_state *context)
1279 {
1280 	struct dc_validation_set set;
1281 	int i;
1282 
1283 	set.stream = stream;
1284 	set.plane_count = plane_count;
1285 
1286 	for (i = 0; i < plane_count; i++)
1287 		set.plane_states[i] = plane_states[i];
1288 
1289 	return add_all_planes_for_stream(dc, stream, &set, 1, context);
1290 }
1291 
1292 
1293 
1294 static bool is_timing_changed(struct dc_stream_state *cur_stream,
1295 		struct dc_stream_state *new_stream)
1296 {
1297 	if (cur_stream == NULL)
1298 		return true;
1299 
1300 	/* If sink pointer changed, it means this is a hotplug, we should do
1301 	 * full hw setting.
1302 	 */
1303 	if (cur_stream->sink != new_stream->sink)
1304 		return true;
1305 
1306 	/* If output color space is changed, need to reprogram info frames */
1307 	if (cur_stream->output_color_space != new_stream->output_color_space)
1308 		return true;
1309 
1310 	return memcmp(
1311 		&cur_stream->timing,
1312 		&new_stream->timing,
1313 		sizeof(struct dc_crtc_timing)) != 0;
1314 }
1315 
1316 static bool are_stream_backends_same(
1317 	struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1318 {
1319 	if (stream_a == stream_b)
1320 		return true;
1321 
1322 	if (stream_a == NULL || stream_b == NULL)
1323 		return false;
1324 
1325 	if (is_timing_changed(stream_a, stream_b))
1326 		return false;
1327 
1328 	return true;
1329 }
1330 
1331 bool dc_is_stream_unchanged(
1332 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1333 {
1334 
1335 	if (!are_stream_backends_same(old_stream, stream))
1336 		return false;
1337 
1338 	return true;
1339 }
1340 
1341 bool dc_is_stream_scaling_unchanged(
1342 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1343 {
1344 	if (old_stream == stream)
1345 		return true;
1346 
1347 	if (old_stream == NULL || stream == NULL)
1348 		return false;
1349 
1350 	if (memcmp(&old_stream->src,
1351 			&stream->src,
1352 			sizeof(struct rect)) != 0)
1353 		return false;
1354 
1355 	if (memcmp(&old_stream->dst,
1356 			&stream->dst,
1357 			sizeof(struct rect)) != 0)
1358 		return false;
1359 
1360 	return true;
1361 }
1362 
1363 static void update_stream_engine_usage(
1364 		struct resource_context *res_ctx,
1365 		const struct resource_pool *pool,
1366 		struct stream_encoder *stream_enc,
1367 		bool acquired)
1368 {
1369 	int i;
1370 
1371 	for (i = 0; i < pool->stream_enc_count; i++) {
1372 		if (pool->stream_enc[i] == stream_enc)
1373 			res_ctx->is_stream_enc_acquired[i] = acquired;
1374 	}
1375 }
1376 
1377 /* TODO: release audio object */
1378 void update_audio_usage(
1379 		struct resource_context *res_ctx,
1380 		const struct resource_pool *pool,
1381 		struct audio *audio,
1382 		bool acquired)
1383 {
1384 	int i;
1385 	for (i = 0; i < pool->audio_count; i++) {
1386 		if (pool->audios[i] == audio)
1387 			res_ctx->is_audio_acquired[i] = acquired;
1388 	}
1389 }
1390 
1391 static int acquire_first_free_pipe(
1392 		struct resource_context *res_ctx,
1393 		const struct resource_pool *pool,
1394 		struct dc_stream_state *stream)
1395 {
1396 	int i;
1397 
1398 	for (i = 0; i < pool->pipe_count; i++) {
1399 		if (!res_ctx->pipe_ctx[i].stream) {
1400 			struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
1401 
1402 			pipe_ctx->stream_res.tg = pool->timing_generators[i];
1403 			pipe_ctx->plane_res.mi = pool->mis[i];
1404 			pipe_ctx->plane_res.hubp = pool->hubps[i];
1405 			pipe_ctx->plane_res.ipp = pool->ipps[i];
1406 			pipe_ctx->plane_res.xfm = pool->transforms[i];
1407 			pipe_ctx->plane_res.dpp = pool->dpps[i];
1408 			pipe_ctx->stream_res.opp = pool->opps[i];
1409 			pipe_ctx->pipe_idx = i;
1410 
1411 
1412 			pipe_ctx->stream = stream;
1413 			return i;
1414 		}
1415 	}
1416 	return -1;
1417 }
1418 
1419 static struct stream_encoder *find_first_free_match_stream_enc_for_link(
1420 		struct resource_context *res_ctx,
1421 		const struct resource_pool *pool,
1422 		struct dc_stream_state *stream)
1423 {
1424 	int i;
1425 	int j = -1;
1426 	struct dc_link *link = stream->sink->link;
1427 
1428 	for (i = 0; i < pool->stream_enc_count; i++) {
1429 		if (!res_ctx->is_stream_enc_acquired[i] &&
1430 				pool->stream_enc[i]) {
1431 			/* Store first available for MST second display
1432 			 * in daisy chain use case */
1433 			j = i;
1434 			if (pool->stream_enc[i]->id ==
1435 					link->link_enc->preferred_engine)
1436 				return pool->stream_enc[i];
1437 		}
1438 	}
1439 
1440 	/*
1441 	 * below can happen in cases when stream encoder is acquired:
1442 	 * 1) for second MST display in chain, so preferred engine already
1443 	 * acquired;
1444 	 * 2) for another link, which preferred engine already acquired by any
1445 	 * MST configuration.
1446 	 *
1447 	 * If signal is of DP type and preferred engine not found, return last available
1448 	 *
1449 	 * TODO - This is just a patch up and a generic solution is
1450 	 * required for non DP connectors.
1451 	 */
1452 
1453 	if (j >= 0 && dc_is_dp_signal(stream->signal))
1454 		return pool->stream_enc[j];
1455 
1456 	return NULL;
1457 }
1458 
1459 static struct audio *find_first_free_audio(
1460 		struct resource_context *res_ctx,
1461 		const struct resource_pool *pool,
1462 		enum engine_id id)
1463 {
1464 	int i;
1465 	for (i = 0; i < pool->audio_count; i++) {
1466 		if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
1467 			/*we have enough audio endpoint, find the matching inst*/
1468 			if (id != i)
1469 				continue;
1470 
1471 			return pool->audios[i];
1472 		}
1473 	}
1474 	/*not found the matching one, first come first serve*/
1475 	for (i = 0; i < pool->audio_count; i++) {
1476 		if (res_ctx->is_audio_acquired[i] == false) {
1477 			return pool->audios[i];
1478 		}
1479 	}
1480 	return 0;
1481 }
1482 
1483 bool resource_is_stream_unchanged(
1484 	struct dc_state *old_context, struct dc_stream_state *stream)
1485 {
1486 	int i;
1487 
1488 	for (i = 0; i < old_context->stream_count; i++) {
1489 		struct dc_stream_state *old_stream = old_context->streams[i];
1490 
1491 		if (are_stream_backends_same(old_stream, stream))
1492 				return true;
1493 	}
1494 
1495 	return false;
1496 }
1497 
1498 enum dc_status dc_add_stream_to_ctx(
1499 		struct dc *dc,
1500 		struct dc_state *new_ctx,
1501 		struct dc_stream_state *stream)
1502 {
1503 	struct dc_context *dc_ctx = dc->ctx;
1504 	enum dc_status res;
1505 
1506 	if (new_ctx->stream_count >= dc->res_pool->pipe_count) {
1507 		DC_ERROR("Max streams reached, can add stream %p !\n", stream);
1508 		return DC_ERROR_UNEXPECTED;
1509 	}
1510 
1511 	new_ctx->streams[new_ctx->stream_count] = stream;
1512 	dc_stream_retain(stream);
1513 	new_ctx->stream_count++;
1514 
1515 	res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
1516 	if (res != DC_OK)
1517 		DC_ERROR("Adding stream %p to context failed with err %d!\n", stream, res);
1518 
1519 	return res;
1520 }
1521 
1522 enum dc_status dc_remove_stream_from_ctx(
1523 			struct dc *dc,
1524 			struct dc_state *new_ctx,
1525 			struct dc_stream_state *stream)
1526 {
1527 	int i;
1528 	struct dc_context *dc_ctx = dc->ctx;
1529 	struct pipe_ctx *del_pipe = NULL;
1530 
1531 	/* Release primary pipe */
1532 	for (i = 0; i < MAX_PIPES; i++) {
1533 		if (new_ctx->res_ctx.pipe_ctx[i].stream == stream &&
1534 				!new_ctx->res_ctx.pipe_ctx[i].top_pipe) {
1535 			del_pipe = &new_ctx->res_ctx.pipe_ctx[i];
1536 
1537 			ASSERT(del_pipe->stream_res.stream_enc);
1538 			update_stream_engine_usage(
1539 					&new_ctx->res_ctx,
1540 						dc->res_pool,
1541 					del_pipe->stream_res.stream_enc,
1542 					false);
1543 
1544 			if (del_pipe->stream_res.audio)
1545 				update_audio_usage(
1546 					&new_ctx->res_ctx,
1547 					dc->res_pool,
1548 					del_pipe->stream_res.audio,
1549 					false);
1550 
1551 			resource_unreference_clock_source(&new_ctx->res_ctx,
1552 							  dc->res_pool,
1553 							  del_pipe->clock_source);
1554 
1555 			memset(del_pipe, 0, sizeof(*del_pipe));
1556 
1557 			break;
1558 		}
1559 	}
1560 
1561 	if (!del_pipe) {
1562 		DC_ERROR("Pipe not found for stream %p !\n", stream);
1563 		return DC_ERROR_UNEXPECTED;
1564 	}
1565 
1566 	for (i = 0; i < new_ctx->stream_count; i++)
1567 		if (new_ctx->streams[i] == stream)
1568 			break;
1569 
1570 	if (new_ctx->streams[i] != stream) {
1571 		DC_ERROR("Context doesn't have stream %p !\n", stream);
1572 		return DC_ERROR_UNEXPECTED;
1573 	}
1574 
1575 	dc_stream_release(new_ctx->streams[i]);
1576 	new_ctx->stream_count--;
1577 
1578 	/* Trim back arrays */
1579 	for (; i < new_ctx->stream_count; i++) {
1580 		new_ctx->streams[i] = new_ctx->streams[i + 1];
1581 		new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
1582 	}
1583 
1584 	new_ctx->streams[new_ctx->stream_count] = NULL;
1585 	memset(
1586 			&new_ctx->stream_status[new_ctx->stream_count],
1587 			0,
1588 			sizeof(new_ctx->stream_status[0]));
1589 
1590 	return DC_OK;
1591 }
1592 
1593 static void copy_pipe_ctx(
1594 	const struct pipe_ctx *from_pipe_ctx, struct pipe_ctx *to_pipe_ctx)
1595 {
1596 	struct dc_plane_state *plane_state = to_pipe_ctx->plane_state;
1597 	struct dc_stream_state *stream = to_pipe_ctx->stream;
1598 
1599 	*to_pipe_ctx = *from_pipe_ctx;
1600 	to_pipe_ctx->stream = stream;
1601 	if (plane_state != NULL)
1602 		to_pipe_ctx->plane_state = plane_state;
1603 }
1604 
1605 static struct dc_stream_state *find_pll_sharable_stream(
1606 		struct dc_stream_state *stream_needs_pll,
1607 		struct dc_state *context)
1608 {
1609 	int i;
1610 
1611 	for (i = 0; i < context->stream_count; i++) {
1612 		struct dc_stream_state *stream_has_pll = context->streams[i];
1613 
1614 		/* We are looking for non dp, non virtual stream */
1615 		if (resource_are_streams_timing_synchronizable(
1616 			stream_needs_pll, stream_has_pll)
1617 			&& !dc_is_dp_signal(stream_has_pll->signal)
1618 			&& stream_has_pll->sink->link->connector_signal
1619 			!= SIGNAL_TYPE_VIRTUAL)
1620 			return stream_has_pll;
1621 
1622 	}
1623 
1624 	return NULL;
1625 }
1626 
1627 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
1628 {
1629 	uint32_t pix_clk = timing->pix_clk_khz;
1630 	uint32_t normalized_pix_clk = pix_clk;
1631 
1632 	if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
1633 		pix_clk /= 2;
1634 	if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
1635 		switch (timing->display_color_depth) {
1636 		case COLOR_DEPTH_888:
1637 			normalized_pix_clk = pix_clk;
1638 			break;
1639 		case COLOR_DEPTH_101010:
1640 			normalized_pix_clk = (pix_clk * 30) / 24;
1641 			break;
1642 		case COLOR_DEPTH_121212:
1643 			normalized_pix_clk = (pix_clk * 36) / 24;
1644 		break;
1645 		case COLOR_DEPTH_161616:
1646 			normalized_pix_clk = (pix_clk * 48) / 24;
1647 		break;
1648 		default:
1649 			ASSERT(0);
1650 		break;
1651 		}
1652 	}
1653 	return normalized_pix_clk;
1654 }
1655 
1656 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
1657 {
1658 	/* update actual pixel clock on all streams */
1659 	if (dc_is_hdmi_signal(stream->signal))
1660 		stream->phy_pix_clk = get_norm_pix_clk(
1661 			&stream->timing);
1662 	else
1663 		stream->phy_pix_clk =
1664 			stream->timing.pix_clk_khz;
1665 }
1666 
1667 enum dc_status resource_map_pool_resources(
1668 		const struct dc  *dc,
1669 		struct dc_state *context,
1670 		struct dc_stream_state *stream)
1671 {
1672 	const struct resource_pool *pool = dc->res_pool;
1673 	int i;
1674 	struct dc_context *dc_ctx = dc->ctx;
1675 	struct pipe_ctx *pipe_ctx = NULL;
1676 	int pipe_idx = -1;
1677 
1678 	/* TODO Check if this is needed */
1679 	/*if (!resource_is_stream_unchanged(old_context, stream)) {
1680 			if (stream != NULL && old_context->streams[i] != NULL) {
1681 				stream->bit_depth_params =
1682 						old_context->streams[i]->bit_depth_params;
1683 				stream->clamping = old_context->streams[i]->clamping;
1684 				continue;
1685 			}
1686 		}
1687 	*/
1688 
1689 	/* acquire new resources */
1690 	pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
1691 
1692 #ifdef CONFIG_DRM_AMD_DC_DCN1_0
1693 	if (pipe_idx < 0)
1694 		pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1695 #endif
1696 
1697 	if (pipe_idx < 0)
1698 		return DC_NO_CONTROLLER_RESOURCE;
1699 
1700 	pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
1701 
1702 	pipe_ctx->stream_res.stream_enc =
1703 		find_first_free_match_stream_enc_for_link(
1704 			&context->res_ctx, pool, stream);
1705 
1706 	if (!pipe_ctx->stream_res.stream_enc)
1707 		return DC_NO_STREAM_ENG_RESOURCE;
1708 
1709 	update_stream_engine_usage(
1710 		&context->res_ctx, pool,
1711 		pipe_ctx->stream_res.stream_enc,
1712 		true);
1713 
1714 	/* TODO: Add check if ASIC support and EDID audio */
1715 	if (!stream->sink->converter_disable_audio &&
1716 	    dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
1717 	    stream->audio_info.mode_count) {
1718 		pipe_ctx->stream_res.audio = find_first_free_audio(
1719 		&context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id);
1720 
1721 		/*
1722 		 * Audio assigned in order first come first get.
1723 		 * There are asics which has number of audio
1724 		 * resources less then number of pipes
1725 		 */
1726 		if (pipe_ctx->stream_res.audio)
1727 			update_audio_usage(&context->res_ctx, pool,
1728 					   pipe_ctx->stream_res.audio, true);
1729 	}
1730 
1731 	for (i = 0; i < context->stream_count; i++)
1732 		if (context->streams[i] == stream) {
1733 			context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
1734 			context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->id;
1735 			return DC_OK;
1736 		}
1737 
1738 	DC_ERROR("Stream %p not found in new ctx!\n", stream);
1739 	return DC_ERROR_UNEXPECTED;
1740 }
1741 
1742 /* first stream in the context is used to populate the rest */
1743 void validate_guaranteed_copy_streams(
1744 		struct dc_state *context,
1745 		int max_streams)
1746 {
1747 	int i;
1748 
1749 	for (i = 1; i < max_streams; i++) {
1750 		context->streams[i] = context->streams[0];
1751 
1752 		copy_pipe_ctx(&context->res_ctx.pipe_ctx[0],
1753 			      &context->res_ctx.pipe_ctx[i]);
1754 		context->res_ctx.pipe_ctx[i].stream =
1755 				context->res_ctx.pipe_ctx[0].stream;
1756 
1757 		dc_stream_retain(context->streams[i]);
1758 		context->stream_count++;
1759 	}
1760 }
1761 
1762 void dc_resource_state_copy_construct_current(
1763 		const struct dc *dc,
1764 		struct dc_state *dst_ctx)
1765 {
1766 	dc_resource_state_copy_construct(dc->current_state, dst_ctx);
1767 }
1768 
1769 
1770 void dc_resource_state_construct(
1771 		const struct dc *dc,
1772 		struct dc_state *dst_ctx)
1773 {
1774 	dst_ctx->dis_clk = dc->res_pool->display_clock;
1775 }
1776 
1777 enum dc_status dc_validate_global_state(
1778 		struct dc *dc,
1779 		struct dc_state *new_ctx)
1780 {
1781 	enum dc_status result = DC_ERROR_UNEXPECTED;
1782 	int i, j;
1783 
1784 	if (!new_ctx)
1785 		return DC_ERROR_UNEXPECTED;
1786 
1787 	if (dc->res_pool->funcs->validate_global) {
1788 			result = dc->res_pool->funcs->validate_global(dc, new_ctx);
1789 			if (result != DC_OK)
1790 				return result;
1791 	}
1792 
1793 	for (i = 0; i < new_ctx->stream_count; i++) {
1794 		struct dc_stream_state *stream = new_ctx->streams[i];
1795 
1796 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
1797 			struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
1798 
1799 			if (pipe_ctx->stream != stream)
1800 				continue;
1801 
1802 			/* Switch to dp clock source only if there is
1803 			 * no non dp stream that shares the same timing
1804 			 * with the dp stream.
1805 			 */
1806 			if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
1807 				!find_pll_sharable_stream(stream, new_ctx)) {
1808 
1809 				resource_unreference_clock_source(
1810 						&new_ctx->res_ctx,
1811 						dc->res_pool,
1812 						pipe_ctx->clock_source);
1813 
1814 				pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
1815 				resource_reference_clock_source(
1816 						&new_ctx->res_ctx,
1817 						dc->res_pool,
1818 						 pipe_ctx->clock_source);
1819 			}
1820 		}
1821 	}
1822 
1823 	result = resource_build_scaling_params_for_context(dc, new_ctx);
1824 
1825 	if (result == DC_OK)
1826 		if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx))
1827 			result = DC_FAIL_BANDWIDTH_VALIDATE;
1828 
1829 	return result;
1830 }
1831 
1832 static void patch_gamut_packet_checksum(
1833 		struct encoder_info_packet *gamut_packet)
1834 {
1835 	/* For gamut we recalc checksum */
1836 	if (gamut_packet->valid) {
1837 		uint8_t chk_sum = 0;
1838 		uint8_t *ptr;
1839 		uint8_t i;
1840 
1841 		/*start of the Gamut data. */
1842 		ptr = &gamut_packet->sb[3];
1843 
1844 		for (i = 0; i <= gamut_packet->sb[1]; i++)
1845 			chk_sum += ptr[i];
1846 
1847 		gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
1848 	}
1849 }
1850 
1851 static void set_avi_info_frame(
1852 		struct encoder_info_packet *info_packet,
1853 		struct pipe_ctx *pipe_ctx)
1854 {
1855 	struct dc_stream_state *stream = pipe_ctx->stream;
1856 	enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
1857 	struct info_frame info_frame = { {0} };
1858 	uint32_t pixel_encoding = 0;
1859 	enum scanning_type scan_type = SCANNING_TYPE_NODATA;
1860 	enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
1861 	bool itc = false;
1862 	uint8_t itc_value = 0;
1863 	uint8_t cn0_cn1 = 0;
1864 	unsigned int cn0_cn1_value = 0;
1865 	uint8_t *check_sum = NULL;
1866 	uint8_t byte_index = 0;
1867 	union hdmi_info_packet *hdmi_info = &info_frame.avi_info_packet.info_packet_hdmi;
1868 	union display_content_support support = {0};
1869 	unsigned int vic = pipe_ctx->stream->timing.vic;
1870 	enum dc_timing_3d_format format;
1871 
1872 	color_space = pipe_ctx->stream->output_color_space;
1873 	if (color_space == COLOR_SPACE_UNKNOWN)
1874 		color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
1875 			COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
1876 
1877 	/* Initialize header */
1878 	hdmi_info->bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
1879 	/* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
1880 	* not be used in HDMI 2.0 (Section 10.1) */
1881 	hdmi_info->bits.header.version = 2;
1882 	hdmi_info->bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
1883 
1884 	/*
1885 	 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
1886 	 * according to HDMI 2.0 spec (Section 10.1)
1887 	 */
1888 
1889 	switch (stream->timing.pixel_encoding) {
1890 	case PIXEL_ENCODING_YCBCR422:
1891 		pixel_encoding = 1;
1892 		break;
1893 
1894 	case PIXEL_ENCODING_YCBCR444:
1895 		pixel_encoding = 2;
1896 		break;
1897 	case PIXEL_ENCODING_YCBCR420:
1898 		pixel_encoding = 3;
1899 		break;
1900 
1901 	case PIXEL_ENCODING_RGB:
1902 	default:
1903 		pixel_encoding = 0;
1904 	}
1905 
1906 	/* Y0_Y1_Y2 : The pixel encoding */
1907 	/* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
1908 	hdmi_info->bits.Y0_Y1_Y2 = pixel_encoding;
1909 
1910 	/* A0 = 1 Active Format Information valid */
1911 	hdmi_info->bits.A0 = ACTIVE_FORMAT_VALID;
1912 
1913 	/* B0, B1 = 3; Bar info data is valid */
1914 	hdmi_info->bits.B0_B1 = BAR_INFO_BOTH_VALID;
1915 
1916 	hdmi_info->bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
1917 
1918 	/* S0, S1 : Underscan / Overscan */
1919 	/* TODO: un-hardcode scan type */
1920 	scan_type = SCANNING_TYPE_UNDERSCAN;
1921 	hdmi_info->bits.S0_S1 = scan_type;
1922 
1923 	/* C0, C1 : Colorimetry */
1924 	if (color_space == COLOR_SPACE_YCBCR709 ||
1925 			color_space == COLOR_SPACE_YCBCR709_LIMITED)
1926 		hdmi_info->bits.C0_C1 = COLORIMETRY_ITU709;
1927 	else if (color_space == COLOR_SPACE_YCBCR601 ||
1928 			color_space == COLOR_SPACE_YCBCR601_LIMITED)
1929 		hdmi_info->bits.C0_C1 = COLORIMETRY_ITU601;
1930 	else {
1931 		hdmi_info->bits.C0_C1 = COLORIMETRY_NO_DATA;
1932 	}
1933 	if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
1934 			color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
1935 			color_space == COLOR_SPACE_2020_YCBCR) {
1936 		hdmi_info->bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
1937 		hdmi_info->bits.C0_C1   = COLORIMETRY_EXTENDED;
1938 	} else if (color_space == COLOR_SPACE_ADOBERGB) {
1939 		hdmi_info->bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
1940 		hdmi_info->bits.C0_C1   = COLORIMETRY_EXTENDED;
1941 	}
1942 
1943 	/* TODO: un-hardcode aspect ratio */
1944 	aspect = stream->timing.aspect_ratio;
1945 
1946 	switch (aspect) {
1947 	case ASPECT_RATIO_4_3:
1948 	case ASPECT_RATIO_16_9:
1949 		hdmi_info->bits.M0_M1 = aspect;
1950 		break;
1951 
1952 	case ASPECT_RATIO_NO_DATA:
1953 	case ASPECT_RATIO_64_27:
1954 	case ASPECT_RATIO_256_135:
1955 	default:
1956 		hdmi_info->bits.M0_M1 = 0;
1957 	}
1958 
1959 	/* Active Format Aspect ratio - same as Picture Aspect Ratio. */
1960 	hdmi_info->bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
1961 
1962 	/* TODO: un-hardcode cn0_cn1 and itc */
1963 
1964 	cn0_cn1 = 0;
1965 	cn0_cn1_value = 0;
1966 
1967 	itc = true;
1968 	itc_value = 1;
1969 
1970 	support = stream->sink->edid_caps.content_support;
1971 
1972 	if (itc) {
1973 		if (!support.bits.valid_content_type) {
1974 			cn0_cn1_value = 0;
1975 		} else {
1976 			if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
1977 				if (support.bits.graphics_content == 1) {
1978 					cn0_cn1_value = 0;
1979 				}
1980 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
1981 				if (support.bits.photo_content == 1) {
1982 					cn0_cn1_value = 1;
1983 				} else {
1984 					cn0_cn1_value = 0;
1985 					itc_value = 0;
1986 				}
1987 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
1988 				if (support.bits.cinema_content == 1) {
1989 					cn0_cn1_value = 2;
1990 				} else {
1991 					cn0_cn1_value = 0;
1992 					itc_value = 0;
1993 				}
1994 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
1995 				if (support.bits.game_content == 1) {
1996 					cn0_cn1_value = 3;
1997 				} else {
1998 					cn0_cn1_value = 0;
1999 					itc_value = 0;
2000 				}
2001 			}
2002 		}
2003 		hdmi_info->bits.CN0_CN1 = cn0_cn1_value;
2004 		hdmi_info->bits.ITC = itc_value;
2005 	}
2006 
2007 	/* TODO : We should handle YCC quantization */
2008 	/* but we do not have matrix calculation */
2009 	if (stream->sink->edid_caps.qs_bit == 1 &&
2010 			stream->sink->edid_caps.qy_bit == 1) {
2011 		if (color_space == COLOR_SPACE_SRGB ||
2012 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE) {
2013 			hdmi_info->bits.Q0_Q1   = RGB_QUANTIZATION_FULL_RANGE;
2014 			hdmi_info->bits.YQ0_YQ1 = YYC_QUANTIZATION_FULL_RANGE;
2015 		} else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2016 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE) {
2017 			hdmi_info->bits.Q0_Q1   = RGB_QUANTIZATION_LIMITED_RANGE;
2018 			hdmi_info->bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2019 		} else {
2020 			hdmi_info->bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2021 			hdmi_info->bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2022 		}
2023 	} else {
2024 		hdmi_info->bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2025 		hdmi_info->bits.YQ0_YQ1   = YYC_QUANTIZATION_LIMITED_RANGE;
2026 	}
2027 
2028 	///VIC
2029 	format = stream->timing.timing_3d_format;
2030 	/*todo, add 3DStereo support*/
2031 	if (format != TIMING_3D_FORMAT_NONE) {
2032 		// Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
2033 		switch (pipe_ctx->stream->timing.hdmi_vic) {
2034 		case 1:
2035 			vic = 95;
2036 			break;
2037 		case 2:
2038 			vic = 94;
2039 			break;
2040 		case 3:
2041 			vic = 93;
2042 			break;
2043 		case 4:
2044 			vic = 98;
2045 			break;
2046 		default:
2047 			break;
2048 		}
2049 	}
2050 	hdmi_info->bits.VIC0_VIC7 = vic;
2051 
2052 	/* pixel repetition
2053 	 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
2054 	 * repetition start from 1 */
2055 	hdmi_info->bits.PR0_PR3 = 0;
2056 
2057 	/* Bar Info
2058 	 * barTop:    Line Number of End of Top Bar.
2059 	 * barBottom: Line Number of Start of Bottom Bar.
2060 	 * barLeft:   Pixel Number of End of Left Bar.
2061 	 * barRight:  Pixel Number of Start of Right Bar. */
2062 	hdmi_info->bits.bar_top = stream->timing.v_border_top;
2063 	hdmi_info->bits.bar_bottom = (stream->timing.v_total
2064 			- stream->timing.v_border_bottom + 1);
2065 	hdmi_info->bits.bar_left  = stream->timing.h_border_left;
2066 	hdmi_info->bits.bar_right = (stream->timing.h_total
2067 			- stream->timing.h_border_right + 1);
2068 
2069 	/* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
2070 	check_sum = &info_frame.avi_info_packet.info_packet_hdmi.packet_raw_data.sb[0];
2071 
2072 	*check_sum = HDMI_INFOFRAME_TYPE_AVI + HDMI_AVI_INFOFRAME_SIZE + 2;
2073 
2074 	for (byte_index = 1; byte_index <= HDMI_AVI_INFOFRAME_SIZE; byte_index++)
2075 		*check_sum += hdmi_info->packet_raw_data.sb[byte_index];
2076 
2077 	/* one byte complement */
2078 	*check_sum = (uint8_t) (0x100 - *check_sum);
2079 
2080 	/* Store in hw_path_mode */
2081 	info_packet->hb0 = hdmi_info->packet_raw_data.hb0;
2082 	info_packet->hb1 = hdmi_info->packet_raw_data.hb1;
2083 	info_packet->hb2 = hdmi_info->packet_raw_data.hb2;
2084 
2085 	for (byte_index = 0; byte_index < sizeof(info_frame.avi_info_packet.
2086 				info_packet_hdmi.packet_raw_data.sb); byte_index++)
2087 		info_packet->sb[byte_index] = info_frame.avi_info_packet.
2088 				info_packet_hdmi.packet_raw_data.sb[byte_index];
2089 
2090 	info_packet->valid = true;
2091 }
2092 
2093 static void set_vendor_info_packet(
2094 		struct encoder_info_packet *info_packet,
2095 		struct dc_stream_state *stream)
2096 {
2097 	uint32_t length = 0;
2098 	bool hdmi_vic_mode = false;
2099 	uint8_t checksum = 0;
2100 	uint32_t i = 0;
2101 	enum dc_timing_3d_format format;
2102 	// Can be different depending on packet content /*todo*/
2103 	// unsigned int length = pPathMode->dolbyVision ? 24 : 5;
2104 
2105 	info_packet->valid = false;
2106 
2107 	format = stream->timing.timing_3d_format;
2108 	if (stream->view_format == VIEW_3D_FORMAT_NONE)
2109 		format = TIMING_3D_FORMAT_NONE;
2110 
2111 	/* Can be different depending on packet content */
2112 	length = 5;
2113 
2114 	if (stream->timing.hdmi_vic != 0
2115 			&& stream->timing.h_total >= 3840
2116 			&& stream->timing.v_total >= 2160)
2117 		hdmi_vic_mode = true;
2118 
2119 	/* According to HDMI 1.4a CTS, VSIF should be sent
2120 	 * for both 3D stereo and HDMI VIC modes.
2121 	 * For all other modes, there is no VSIF sent.  */
2122 
2123 	if (format == TIMING_3D_FORMAT_NONE && !hdmi_vic_mode)
2124 		return;
2125 
2126 	/* 24bit IEEE Registration identifier (0x000c03). LSB first. */
2127 	info_packet->sb[1] = 0x03;
2128 	info_packet->sb[2] = 0x0C;
2129 	info_packet->sb[3] = 0x00;
2130 
2131 	/*PB4: 5 lower bytes = 0 (reserved). 3 higher bits = HDMI_Video_Format.
2132 	 * The value for HDMI_Video_Format are:
2133 	 * 0x0 (0b000) - No additional HDMI video format is presented in this
2134 	 * packet
2135 	 * 0x1 (0b001) - Extended resolution format present. 1 byte of HDMI_VIC
2136 	 * parameter follows
2137 	 * 0x2 (0b010) - 3D format indication present. 3D_Structure and
2138 	 * potentially 3D_Ext_Data follows
2139 	 * 0x3..0x7 (0b011..0b111) - reserved for future use */
2140 	if (format != TIMING_3D_FORMAT_NONE)
2141 		info_packet->sb[4] = (2 << 5);
2142 	else if (hdmi_vic_mode)
2143 		info_packet->sb[4] = (1 << 5);
2144 
2145 	/* PB5: If PB4 claims 3D timing (HDMI_Video_Format = 0x2):
2146 	 * 4 lower bites = 0 (reserved). 4 higher bits = 3D_Structure.
2147 	 * The value for 3D_Structure are:
2148 	 * 0x0 - Frame Packing
2149 	 * 0x1 - Field Alternative
2150 	 * 0x2 - Line Alternative
2151 	 * 0x3 - Side-by-Side (full)
2152 	 * 0x4 - L + depth
2153 	 * 0x5 - L + depth + graphics + graphics-depth
2154 	 * 0x6 - Top-and-Bottom
2155 	 * 0x7 - Reserved for future use
2156 	 * 0x8 - Side-by-Side (Half)
2157 	 * 0x9..0xE - Reserved for future use
2158 	 * 0xF - Not used */
2159 	switch (format) {
2160 	case TIMING_3D_FORMAT_HW_FRAME_PACKING:
2161 	case TIMING_3D_FORMAT_SW_FRAME_PACKING:
2162 		info_packet->sb[5] = (0x0 << 4);
2163 		break;
2164 
2165 	case TIMING_3D_FORMAT_SIDE_BY_SIDE:
2166 	case TIMING_3D_FORMAT_SBS_SW_PACKED:
2167 		info_packet->sb[5] = (0x8 << 4);
2168 		length = 6;
2169 		break;
2170 
2171 	case TIMING_3D_FORMAT_TOP_AND_BOTTOM:
2172 	case TIMING_3D_FORMAT_TB_SW_PACKED:
2173 		info_packet->sb[5] = (0x6 << 4);
2174 		break;
2175 
2176 	default:
2177 		break;
2178 	}
2179 
2180 	/*PB5: If PB4 is set to 0x1 (extended resolution format)
2181 	 * fill PB5 with the correct HDMI VIC code */
2182 	if (hdmi_vic_mode)
2183 		info_packet->sb[5] = stream->timing.hdmi_vic;
2184 
2185 	/* Header */
2186 	info_packet->hb0 = HDMI_INFOFRAME_TYPE_VENDOR; /* VSIF packet type. */
2187 	info_packet->hb1 = 0x01; /* Version */
2188 
2189 	/* 4 lower bits = Length, 4 higher bits = 0 (reserved) */
2190 	info_packet->hb2 = (uint8_t) (length);
2191 
2192 	/* Calculate checksum */
2193 	checksum = 0;
2194 	checksum += info_packet->hb0;
2195 	checksum += info_packet->hb1;
2196 	checksum += info_packet->hb2;
2197 
2198 	for (i = 1; i <= length; i++)
2199 		checksum += info_packet->sb[i];
2200 
2201 	info_packet->sb[0] = (uint8_t) (0x100 - checksum);
2202 
2203 	info_packet->valid = true;
2204 }
2205 
2206 static void set_spd_info_packet(
2207 		struct encoder_info_packet *info_packet,
2208 		struct dc_stream_state *stream)
2209 {
2210 	/* SPD info packet for FreeSync */
2211 
2212 	unsigned char checksum = 0;
2213 	unsigned int idx, payload_size = 0;
2214 
2215 	/* Check if Freesync is supported. Return if false. If true,
2216 	 * set the corresponding bit in the info packet
2217 	 */
2218 	if (stream->freesync_ctx.supported == false)
2219 		return;
2220 
2221 	if (dc_is_hdmi_signal(stream->signal)) {
2222 
2223 		/* HEADER */
2224 
2225 		/* HB0  = Packet Type = 0x83 (Source Product
2226 		 *	  Descriptor InfoFrame)
2227 		 */
2228 		info_packet->hb0 = HDMI_INFOFRAME_TYPE_SPD;
2229 
2230 		/* HB1  = Version = 0x01 */
2231 		info_packet->hb1 = 0x01;
2232 
2233 		/* HB2  = [Bits 7:5 = 0] [Bits 4:0 = Length = 0x08] */
2234 		info_packet->hb2 = 0x08;
2235 
2236 		payload_size = 0x08;
2237 
2238 	} else if (dc_is_dp_signal(stream->signal)) {
2239 
2240 		/* HEADER */
2241 
2242 		/* HB0  = Secondary-data Packet ID = 0 - Only non-zero
2243 		 *	  when used to associate audio related info packets
2244 		 */
2245 		info_packet->hb0 = 0x00;
2246 
2247 		/* HB1  = Packet Type = 0x83 (Source Product
2248 		 *	  Descriptor InfoFrame)
2249 		 */
2250 		info_packet->hb1 = HDMI_INFOFRAME_TYPE_SPD;
2251 
2252 		/* HB2  = [Bits 7:0 = Least significant eight bits -
2253 		 *	  For INFOFRAME, the value must be 1Bh]
2254 		 */
2255 		info_packet->hb2 = 0x1B;
2256 
2257 		/* HB3  = [Bits 7:2 = INFOFRAME SDP Version Number = 0x1]
2258 		 *	  [Bits 1:0 = Most significant two bits = 0x00]
2259 		 */
2260 		info_packet->hb3 = 0x04;
2261 
2262 		payload_size = 0x1B;
2263 	}
2264 
2265 	/* PB1 = 0x1A (24bit AMD IEEE OUI (0x00001A) - Byte 0) */
2266 	info_packet->sb[1] = 0x1A;
2267 
2268 	/* PB2 = 0x00 (24bit AMD IEEE OUI (0x00001A) - Byte 1) */
2269 	info_packet->sb[2] = 0x00;
2270 
2271 	/* PB3 = 0x00 (24bit AMD IEEE OUI (0x00001A) - Byte 2) */
2272 	info_packet->sb[3] = 0x00;
2273 
2274 	/* PB4 = Reserved */
2275 	info_packet->sb[4] = 0x00;
2276 
2277 	/* PB5 = Reserved */
2278 	info_packet->sb[5] = 0x00;
2279 
2280 	/* PB6 = [Bits 7:3 = Reserved] */
2281 	info_packet->sb[6] = 0x00;
2282 
2283 	if (stream->freesync_ctx.supported == true)
2284 		/* PB6 = [Bit 0 = FreeSync Supported] */
2285 		info_packet->sb[6] |= 0x01;
2286 
2287 	if (stream->freesync_ctx.enabled == true)
2288 		/* PB6 = [Bit 1 = FreeSync Enabled] */
2289 		info_packet->sb[6] |= 0x02;
2290 
2291 	if (stream->freesync_ctx.active == true)
2292 		/* PB6 = [Bit 2 = FreeSync Active] */
2293 		info_packet->sb[6] |= 0x04;
2294 
2295 	/* PB7 = FreeSync Minimum refresh rate (Hz) */
2296 	info_packet->sb[7] = (unsigned char) (stream->freesync_ctx.
2297 			min_refresh_in_micro_hz / 1000000);
2298 
2299 	/* PB8 = FreeSync Maximum refresh rate (Hz)
2300 	 *
2301 	 * Note: We do not use the maximum capable refresh rate
2302 	 * of the panel, because we should never go above the field
2303 	 * rate of the mode timing set.
2304 	 */
2305 	info_packet->sb[8] = (unsigned char) (stream->freesync_ctx.
2306 			nominal_refresh_in_micro_hz / 1000000);
2307 
2308 	/* PB9 - PB27  = Reserved */
2309 	for (idx = 9; idx <= 27; idx++)
2310 		info_packet->sb[idx] = 0x00;
2311 
2312 	/* Calculate checksum */
2313 	checksum += info_packet->hb0;
2314 	checksum += info_packet->hb1;
2315 	checksum += info_packet->hb2;
2316 	checksum += info_packet->hb3;
2317 
2318 	for (idx = 1; idx <= payload_size; idx++)
2319 		checksum += info_packet->sb[idx];
2320 
2321 	/* PB0 = Checksum (one byte complement) */
2322 	info_packet->sb[0] = (unsigned char) (0x100 - checksum);
2323 
2324 	info_packet->valid = true;
2325 }
2326 
2327 static void set_hdr_static_info_packet(
2328 		struct encoder_info_packet *info_packet,
2329 		struct dc_stream_state *stream)
2330 {
2331 	uint16_t i = 0;
2332 	enum signal_type signal = stream->signal;
2333 	uint32_t data;
2334 
2335 	if (!stream->hdr_static_metadata.hdr_supported)
2336 		return;
2337 
2338 	if (dc_is_hdmi_signal(signal)) {
2339 		info_packet->valid = true;
2340 
2341 		info_packet->hb0 = 0x87;
2342 		info_packet->hb1 = 0x01;
2343 		info_packet->hb2 = 0x1A;
2344 		i = 1;
2345 	} else if (dc_is_dp_signal(signal)) {
2346 		info_packet->valid = true;
2347 
2348 		info_packet->hb0 = 0x00;
2349 		info_packet->hb1 = 0x87;
2350 		info_packet->hb2 = 0x1D;
2351 		info_packet->hb3 = (0x13 << 2);
2352 		i = 2;
2353 	}
2354 
2355 	data = stream->hdr_static_metadata.is_hdr;
2356 	info_packet->sb[i++] = data ? 0x02 : 0x00;
2357 	info_packet->sb[i++] = 0x00;
2358 
2359 	data = stream->hdr_static_metadata.chromaticity_green_x / 2;
2360 	info_packet->sb[i++] = data & 0xFF;
2361 	info_packet->sb[i++] = (data & 0xFF00) >> 8;
2362 
2363 	data = stream->hdr_static_metadata.chromaticity_green_y / 2;
2364 	info_packet->sb[i++] = data & 0xFF;
2365 	info_packet->sb[i++] = (data & 0xFF00) >> 8;
2366 
2367 	data = stream->hdr_static_metadata.chromaticity_blue_x / 2;
2368 	info_packet->sb[i++] = data & 0xFF;
2369 	info_packet->sb[i++] = (data & 0xFF00) >> 8;
2370 
2371 	data = stream->hdr_static_metadata.chromaticity_blue_y / 2;
2372 	info_packet->sb[i++] = data & 0xFF;
2373 	info_packet->sb[i++] = (data & 0xFF00) >> 8;
2374 
2375 	data = stream->hdr_static_metadata.chromaticity_red_x / 2;
2376 	info_packet->sb[i++] = data & 0xFF;
2377 	info_packet->sb[i++] = (data & 0xFF00) >> 8;
2378 
2379 	data = stream->hdr_static_metadata.chromaticity_red_y / 2;
2380 	info_packet->sb[i++] = data & 0xFF;
2381 	info_packet->sb[i++] = (data & 0xFF00) >> 8;
2382 
2383 	data = stream->hdr_static_metadata.chromaticity_white_point_x / 2;
2384 	info_packet->sb[i++] = data & 0xFF;
2385 	info_packet->sb[i++] = (data & 0xFF00) >> 8;
2386 
2387 	data = stream->hdr_static_metadata.chromaticity_white_point_y / 2;
2388 	info_packet->sb[i++] = data & 0xFF;
2389 	info_packet->sb[i++] = (data & 0xFF00) >> 8;
2390 
2391 	data = stream->hdr_static_metadata.max_luminance;
2392 	info_packet->sb[i++] = data & 0xFF;
2393 	info_packet->sb[i++] = (data & 0xFF00) >> 8;
2394 
2395 	data = stream->hdr_static_metadata.min_luminance;
2396 	info_packet->sb[i++] = data & 0xFF;
2397 	info_packet->sb[i++] = (data & 0xFF00) >> 8;
2398 
2399 	data = stream->hdr_static_metadata.maximum_content_light_level;
2400 	info_packet->sb[i++] = data & 0xFF;
2401 	info_packet->sb[i++] = (data & 0xFF00) >> 8;
2402 
2403 	data = stream->hdr_static_metadata.maximum_frame_average_light_level;
2404 	info_packet->sb[i++] = data & 0xFF;
2405 	info_packet->sb[i++] = (data & 0xFF00) >> 8;
2406 
2407 	if (dc_is_hdmi_signal(signal)) {
2408 		uint32_t checksum = 0;
2409 
2410 		checksum += info_packet->hb0;
2411 		checksum += info_packet->hb1;
2412 		checksum += info_packet->hb2;
2413 
2414 		for (i = 1; i <= info_packet->hb2; i++)
2415 			checksum += info_packet->sb[i];
2416 
2417 		info_packet->sb[0] = 0x100 - checksum;
2418 	} else if (dc_is_dp_signal(signal)) {
2419 		info_packet->sb[0] = 0x01;
2420 		info_packet->sb[1] = 0x1A;
2421 	}
2422 }
2423 
2424 static void set_vsc_info_packet(
2425 		struct encoder_info_packet *info_packet,
2426 		struct dc_stream_state *stream)
2427 {
2428 	unsigned int vscPacketRevision = 0;
2429 	unsigned int i;
2430 
2431 	if (stream->sink->link->psr_enabled) {
2432 		vscPacketRevision = 2;
2433 	}
2434 
2435 	/* VSC packet not needed based on the features
2436 	 * supported by this DP display
2437 	 */
2438 	if (vscPacketRevision == 0)
2439 		return;
2440 
2441 	if (vscPacketRevision == 0x2) {
2442 		/* Secondary-data Packet ID = 0*/
2443 		info_packet->hb0 = 0x00;
2444 		/* 07h - Packet Type Value indicating Video
2445 		 * Stream Configuration packet
2446 		 */
2447 		info_packet->hb1 = 0x07;
2448 		/* 02h = VSC SDP supporting 3D stereo and PSR
2449 		 * (applies to eDP v1.3 or higher).
2450 		 */
2451 		info_packet->hb2 = 0x02;
2452 		/* 08h = VSC packet supporting 3D stereo + PSR
2453 		 * (HB2 = 02h).
2454 		 */
2455 		info_packet->hb3 = 0x08;
2456 
2457 		for (i = 0; i < 28; i++)
2458 			info_packet->sb[i] = 0;
2459 
2460 		info_packet->valid = true;
2461 	}
2462 
2463 	/*TODO: stereo 3D support and extend pixel encoding colorimetry*/
2464 }
2465 
2466 void dc_resource_state_destruct(struct dc_state *context)
2467 {
2468 	int i, j;
2469 
2470 	for (i = 0; i < context->stream_count; i++) {
2471 		for (j = 0; j < context->stream_status[i].plane_count; j++)
2472 			dc_plane_state_release(
2473 				context->stream_status[i].plane_states[j]);
2474 
2475 		context->stream_status[i].plane_count = 0;
2476 		dc_stream_release(context->streams[i]);
2477 		context->streams[i] = NULL;
2478 	}
2479 }
2480 
2481 /*
2482  * Copy src_ctx into dst_ctx and retain all surfaces and streams referenced
2483  * by the src_ctx
2484  */
2485 void dc_resource_state_copy_construct(
2486 		const struct dc_state *src_ctx,
2487 		struct dc_state *dst_ctx)
2488 {
2489 	int i, j;
2490 	struct kref refcount = dst_ctx->refcount;
2491 
2492 	*dst_ctx = *src_ctx;
2493 
2494 	for (i = 0; i < MAX_PIPES; i++) {
2495 		struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
2496 
2497 		if (cur_pipe->top_pipe)
2498 			cur_pipe->top_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2499 
2500 		if (cur_pipe->bottom_pipe)
2501 			cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2502 
2503 	}
2504 
2505 	for (i = 0; i < dst_ctx->stream_count; i++) {
2506 		dc_stream_retain(dst_ctx->streams[i]);
2507 		for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
2508 			dc_plane_state_retain(
2509 				dst_ctx->stream_status[i].plane_states[j]);
2510 	}
2511 
2512 	/* context refcount should not be overridden */
2513 	dst_ctx->refcount = refcount;
2514 
2515 }
2516 
2517 struct clock_source *dc_resource_find_first_free_pll(
2518 		struct resource_context *res_ctx,
2519 		const struct resource_pool *pool)
2520 {
2521 	int i;
2522 
2523 	for (i = 0; i < pool->clk_src_count; ++i) {
2524 		if (res_ctx->clock_source_ref_count[i] == 0)
2525 			return pool->clock_sources[i];
2526 	}
2527 
2528 	return NULL;
2529 }
2530 
2531 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
2532 {
2533 	enum signal_type signal = SIGNAL_TYPE_NONE;
2534 	struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
2535 
2536 	/* default all packets to invalid */
2537 	info->avi.valid = false;
2538 	info->gamut.valid = false;
2539 	info->vendor.valid = false;
2540 	info->spd.valid = false;
2541 	info->hdrsmd.valid = false;
2542 	info->vsc.valid = false;
2543 
2544 	signal = pipe_ctx->stream->signal;
2545 
2546 	/* HDMi and DP have different info packets*/
2547 	if (dc_is_hdmi_signal(signal)) {
2548 		set_avi_info_frame(&info->avi, pipe_ctx);
2549 
2550 		set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
2551 
2552 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
2553 
2554 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2555 
2556 	} else if (dc_is_dp_signal(signal)) {
2557 		set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
2558 
2559 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
2560 
2561 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2562 	}
2563 
2564 	patch_gamut_packet_checksum(&info->gamut);
2565 }
2566 
2567 enum dc_status resource_map_clock_resources(
2568 		const struct dc  *dc,
2569 		struct dc_state *context,
2570 		struct dc_stream_state *stream)
2571 {
2572 	/* acquire new resources */
2573 	const struct resource_pool *pool = dc->res_pool;
2574 	struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
2575 				&context->res_ctx, stream);
2576 
2577 	if (!pipe_ctx)
2578 		return DC_ERROR_UNEXPECTED;
2579 
2580 	if (dc_is_dp_signal(pipe_ctx->stream->signal)
2581 		|| pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
2582 		pipe_ctx->clock_source = pool->dp_clock_source;
2583 	else {
2584 		pipe_ctx->clock_source = NULL;
2585 
2586 		if (!dc->config.disable_disp_pll_sharing)
2587 			pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
2588 				&context->res_ctx,
2589 				pipe_ctx);
2590 
2591 		if (pipe_ctx->clock_source == NULL)
2592 			pipe_ctx->clock_source =
2593 				dc_resource_find_first_free_pll(
2594 					&context->res_ctx,
2595 					pool);
2596 	}
2597 
2598 	if (pipe_ctx->clock_source == NULL)
2599 		return DC_NO_CLOCK_SOURCE_RESOURCE;
2600 
2601 	resource_reference_clock_source(
2602 		&context->res_ctx, pool,
2603 		pipe_ctx->clock_source);
2604 
2605 	return DC_OK;
2606 }
2607 
2608 /*
2609  * Note: We need to disable output if clock sources change,
2610  * since bios does optimization and doesn't apply if changing
2611  * PHY when not already disabled.
2612  */
2613 bool pipe_need_reprogram(
2614 		struct pipe_ctx *pipe_ctx_old,
2615 		struct pipe_ctx *pipe_ctx)
2616 {
2617 	if (!pipe_ctx_old->stream)
2618 		return false;
2619 
2620 	if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
2621 		return true;
2622 
2623 	if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
2624 		return true;
2625 
2626 	if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
2627 		return true;
2628 
2629 	if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
2630 			&& pipe_ctx_old->stream != pipe_ctx->stream)
2631 		return true;
2632 
2633 	if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
2634 		return true;
2635 
2636 	if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
2637 		return true;
2638 
2639 
2640 	return false;
2641 }
2642 
2643 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
2644 		struct bit_depth_reduction_params *fmt_bit_depth)
2645 {
2646 	enum dc_dither_option option = stream->dither_option;
2647 	enum dc_pixel_encoding pixel_encoding =
2648 			stream->timing.pixel_encoding;
2649 
2650 	memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
2651 
2652 	if (option == DITHER_OPTION_DEFAULT) {
2653 		switch (stream->timing.display_color_depth) {
2654 		case COLOR_DEPTH_666:
2655 			option = DITHER_OPTION_SPATIAL6;
2656 			break;
2657 		case COLOR_DEPTH_888:
2658 			option = DITHER_OPTION_SPATIAL8;
2659 			break;
2660 		case COLOR_DEPTH_101010:
2661 			option = DITHER_OPTION_SPATIAL10;
2662 			break;
2663 		default:
2664 			option = DITHER_OPTION_DISABLE;
2665 		}
2666 	}
2667 
2668 	if (option == DITHER_OPTION_DISABLE)
2669 		return;
2670 
2671 	if (option == DITHER_OPTION_TRUN6) {
2672 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2673 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
2674 	} else if (option == DITHER_OPTION_TRUN8 ||
2675 			option == DITHER_OPTION_TRUN8_SPATIAL6 ||
2676 			option == DITHER_OPTION_TRUN8_FM6) {
2677 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2678 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
2679 	} else if (option == DITHER_OPTION_TRUN10        ||
2680 			option == DITHER_OPTION_TRUN10_SPATIAL6   ||
2681 			option == DITHER_OPTION_TRUN10_SPATIAL8   ||
2682 			option == DITHER_OPTION_TRUN10_FM8     ||
2683 			option == DITHER_OPTION_TRUN10_FM6     ||
2684 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2685 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2686 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2687 	}
2688 
2689 	/* special case - Formatter can only reduce by 4 bits at most.
2690 	 * When reducing from 12 to 6 bits,
2691 	 * HW recommends we use trunc with round mode
2692 	 * (if we did nothing, trunc to 10 bits would be used)
2693 	 * note that any 12->10 bit reduction is ignored prior to DCE8,
2694 	 * as the input was 10 bits.
2695 	 */
2696 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
2697 			option == DITHER_OPTION_SPATIAL6 ||
2698 			option == DITHER_OPTION_FM6) {
2699 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2700 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2701 		fmt_bit_depth->flags.TRUNCATE_MODE = 1;
2702 	}
2703 
2704 	/* spatial dither
2705 	 * note that spatial modes 1-3 are never used
2706 	 */
2707 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM            ||
2708 			option == DITHER_OPTION_SPATIAL6 ||
2709 			option == DITHER_OPTION_TRUN10_SPATIAL6      ||
2710 			option == DITHER_OPTION_TRUN8_SPATIAL6) {
2711 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2712 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
2713 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2714 		fmt_bit_depth->flags.RGB_RANDOM =
2715 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2716 	} else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM            ||
2717 			option == DITHER_OPTION_SPATIAL8 ||
2718 			option == DITHER_OPTION_SPATIAL8_FM6        ||
2719 			option == DITHER_OPTION_TRUN10_SPATIAL8      ||
2720 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2721 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2722 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
2723 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2724 		fmt_bit_depth->flags.RGB_RANDOM =
2725 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2726 	} else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
2727 			option == DITHER_OPTION_SPATIAL10 ||
2728 			option == DITHER_OPTION_SPATIAL10_FM8 ||
2729 			option == DITHER_OPTION_SPATIAL10_FM6) {
2730 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2731 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
2732 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2733 		fmt_bit_depth->flags.RGB_RANDOM =
2734 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2735 	}
2736 
2737 	if (option == DITHER_OPTION_SPATIAL6 ||
2738 			option == DITHER_OPTION_SPATIAL8 ||
2739 			option == DITHER_OPTION_SPATIAL10) {
2740 		fmt_bit_depth->flags.FRAME_RANDOM = 0;
2741 	} else {
2742 		fmt_bit_depth->flags.FRAME_RANDOM = 1;
2743 	}
2744 
2745 	//////////////////////
2746 	//// temporal dither
2747 	//////////////////////
2748 	if (option == DITHER_OPTION_FM6           ||
2749 			option == DITHER_OPTION_SPATIAL8_FM6     ||
2750 			option == DITHER_OPTION_SPATIAL10_FM6     ||
2751 			option == DITHER_OPTION_TRUN10_FM6     ||
2752 			option == DITHER_OPTION_TRUN8_FM6      ||
2753 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2754 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2755 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
2756 	} else if (option == DITHER_OPTION_FM8        ||
2757 			option == DITHER_OPTION_SPATIAL10_FM8  ||
2758 			option == DITHER_OPTION_TRUN10_FM8) {
2759 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2760 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
2761 	} else if (option == DITHER_OPTION_FM10) {
2762 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2763 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
2764 	}
2765 
2766 	fmt_bit_depth->pixel_encoding = pixel_encoding;
2767 }
2768 
2769 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
2770 {
2771 	struct dc  *core_dc = dc;
2772 	struct dc_link *link = stream->sink->link;
2773 	struct timing_generator *tg = core_dc->res_pool->timing_generators[0];
2774 	enum dc_status res = DC_OK;
2775 
2776 	calculate_phy_pix_clks(stream);
2777 
2778 	if (!tg->funcs->validate_timing(tg, &stream->timing))
2779 		res = DC_FAIL_CONTROLLER_VALIDATE;
2780 
2781 	if (res == DC_OK)
2782 		if (!link->link_enc->funcs->validate_output_with_stream(
2783 						link->link_enc, stream))
2784 			res = DC_FAIL_ENC_VALIDATE;
2785 
2786 	/* TODO: validate audio ASIC caps, encoder */
2787 
2788 	if (res == DC_OK)
2789 		res = dc_link_validate_mode_timing(stream,
2790 		      link,
2791 		      &stream->timing);
2792 
2793 	return res;
2794 }
2795 
2796 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
2797 {
2798 	enum dc_status res = DC_OK;
2799 
2800 	/* TODO For now validates pixel format only */
2801 	if (dc->res_pool->funcs->validate_plane)
2802 		return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
2803 
2804 	return res;
2805 }
2806