1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include <linux/slab.h>
27 
28 #include "dm_services.h"
29 
30 #include "resource.h"
31 #include "include/irq_service_interface.h"
32 #include "link_encoder.h"
33 #include "stream_encoder.h"
34 #include "opp.h"
35 #include "timing_generator.h"
36 #include "transform.h"
37 #include "dccg.h"
38 #include "dchubbub.h"
39 #include "dpp.h"
40 #include "core_types.h"
41 #include "set_mode_types.h"
42 #include "virtual/virtual_stream_encoder.h"
43 #include "dpcd_defs.h"
44 
45 #if defined(CONFIG_DRM_AMD_DC_SI)
46 #include "dce60/dce60_resource.h"
47 #endif
48 #include "dce80/dce80_resource.h"
49 #include "dce100/dce100_resource.h"
50 #include "dce110/dce110_resource.h"
51 #include "dce112/dce112_resource.h"
52 #include "dce120/dce120_resource.h"
53 #if defined(CONFIG_DRM_AMD_DC_DCN)
54 #include "dcn10/dcn10_resource.h"
55 #include "dcn20/dcn20_resource.h"
56 #include "dcn21/dcn21_resource.h"
57 #include "dcn30/dcn30_resource.h"
58 #include "dcn301/dcn301_resource.h"
59 #include "dcn302/dcn302_resource.h"
60 #include "dcn303/dcn303_resource.h"
61 #include "dcn31/dcn31_resource.h"
62 #endif
63 
64 #define DC_LOGGER_INIT(logger)
65 
66 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
67 {
68 	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
69 	switch (asic_id.chip_family) {
70 
71 #if defined(CONFIG_DRM_AMD_DC_SI)
72 	case FAMILY_SI:
73 		if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
74 		    ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
75 		    ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
76 			dc_version = DCE_VERSION_6_0;
77 		else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
78 			dc_version = DCE_VERSION_6_4;
79 		else
80 			dc_version = DCE_VERSION_6_1;
81 		break;
82 #endif
83 	case FAMILY_CI:
84 		dc_version = DCE_VERSION_8_0;
85 		break;
86 	case FAMILY_KV:
87 		if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
88 		    ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
89 		    ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
90 			dc_version = DCE_VERSION_8_3;
91 		else
92 			dc_version = DCE_VERSION_8_1;
93 		break;
94 	case FAMILY_CZ:
95 		dc_version = DCE_VERSION_11_0;
96 		break;
97 
98 	case FAMILY_VI:
99 		if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
100 				ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
101 			dc_version = DCE_VERSION_10_0;
102 			break;
103 		}
104 		if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
105 				ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
106 				ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
107 			dc_version = DCE_VERSION_11_2;
108 		}
109 		if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
110 			dc_version = DCE_VERSION_11_22;
111 		break;
112 	case FAMILY_AI:
113 		if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
114 			dc_version = DCE_VERSION_12_1;
115 		else
116 			dc_version = DCE_VERSION_12_0;
117 		break;
118 #if defined(CONFIG_DRM_AMD_DC_DCN)
119 	case FAMILY_RV:
120 		dc_version = DCN_VERSION_1_0;
121 		if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
122 			dc_version = DCN_VERSION_1_01;
123 		if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
124 			dc_version = DCN_VERSION_2_1;
125 		if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
126 			dc_version = DCN_VERSION_2_1;
127 		break;
128 
129 	case FAMILY_NV:
130 		dc_version = DCN_VERSION_2_0;
131 		if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
132 			dc_version = DCN_VERSION_3_0;
133 		if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
134 			dc_version = DCN_VERSION_3_02;
135 		if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
136 			dc_version = DCN_VERSION_3_03;
137 		break;
138 
139 	case FAMILY_VGH:
140 		dc_version = DCN_VERSION_3_01;
141 		break;
142 
143 	case FAMILY_YELLOW_CARP:
144 		if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
145 			dc_version = DCN_VERSION_3_1;
146 		break;
147 #endif
148 
149 	default:
150 		dc_version = DCE_VERSION_UNKNOWN;
151 		break;
152 	}
153 	return dc_version;
154 }
155 
156 struct resource_pool *dc_create_resource_pool(struct dc  *dc,
157 					      const struct dc_init_data *init_data,
158 					      enum dce_version dc_version)
159 {
160 	struct resource_pool *res_pool = NULL;
161 
162 	switch (dc_version) {
163 #if defined(CONFIG_DRM_AMD_DC_SI)
164 	case DCE_VERSION_6_0:
165 		res_pool = dce60_create_resource_pool(
166 			init_data->num_virtual_links, dc);
167 		break;
168 	case DCE_VERSION_6_1:
169 		res_pool = dce61_create_resource_pool(
170 			init_data->num_virtual_links, dc);
171 		break;
172 	case DCE_VERSION_6_4:
173 		res_pool = dce64_create_resource_pool(
174 			init_data->num_virtual_links, dc);
175 		break;
176 #endif
177 	case DCE_VERSION_8_0:
178 		res_pool = dce80_create_resource_pool(
179 				init_data->num_virtual_links, dc);
180 		break;
181 	case DCE_VERSION_8_1:
182 		res_pool = dce81_create_resource_pool(
183 				init_data->num_virtual_links, dc);
184 		break;
185 	case DCE_VERSION_8_3:
186 		res_pool = dce83_create_resource_pool(
187 				init_data->num_virtual_links, dc);
188 		break;
189 	case DCE_VERSION_10_0:
190 		res_pool = dce100_create_resource_pool(
191 				init_data->num_virtual_links, dc);
192 		break;
193 	case DCE_VERSION_11_0:
194 		res_pool = dce110_create_resource_pool(
195 				init_data->num_virtual_links, dc,
196 				init_data->asic_id);
197 		break;
198 	case DCE_VERSION_11_2:
199 	case DCE_VERSION_11_22:
200 		res_pool = dce112_create_resource_pool(
201 				init_data->num_virtual_links, dc);
202 		break;
203 	case DCE_VERSION_12_0:
204 	case DCE_VERSION_12_1:
205 		res_pool = dce120_create_resource_pool(
206 				init_data->num_virtual_links, dc);
207 		break;
208 
209 #if defined(CONFIG_DRM_AMD_DC_DCN)
210 	case DCN_VERSION_1_0:
211 	case DCN_VERSION_1_01:
212 		res_pool = dcn10_create_resource_pool(init_data, dc);
213 		break;
214 	case DCN_VERSION_2_0:
215 		res_pool = dcn20_create_resource_pool(init_data, dc);
216 		break;
217 	case DCN_VERSION_2_1:
218 		res_pool = dcn21_create_resource_pool(init_data, dc);
219 		break;
220 	case DCN_VERSION_3_0:
221 		res_pool = dcn30_create_resource_pool(init_data, dc);
222 		break;
223 	case DCN_VERSION_3_01:
224 		res_pool = dcn301_create_resource_pool(init_data, dc);
225 		break;
226 	case DCN_VERSION_3_02:
227 		res_pool = dcn302_create_resource_pool(init_data, dc);
228 		break;
229 	case DCN_VERSION_3_03:
230 		res_pool = dcn303_create_resource_pool(init_data, dc);
231 		break;
232 	case DCN_VERSION_3_1:
233 		res_pool = dcn31_create_resource_pool(init_data, dc);
234 		break;
235 #endif
236 	default:
237 		break;
238 	}
239 
240 	if (res_pool != NULL) {
241 		if (dc->ctx->dc_bios->fw_info_valid) {
242 			res_pool->ref_clocks.xtalin_clock_inKhz =
243 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
244 			/* initialize with firmware data first, no all
245 			 * ASIC have DCCG SW component. FPGA or
246 			 * simulation need initialization of
247 			 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
248 			 * with xtalin_clock_inKhz
249 			 */
250 			res_pool->ref_clocks.dccg_ref_clock_inKhz =
251 				res_pool->ref_clocks.xtalin_clock_inKhz;
252 			res_pool->ref_clocks.dchub_ref_clock_inKhz =
253 				res_pool->ref_clocks.xtalin_clock_inKhz;
254 		} else
255 			ASSERT_CRITICAL(false);
256 	}
257 
258 	return res_pool;
259 }
260 
261 void dc_destroy_resource_pool(struct dc  *dc)
262 {
263 	if (dc) {
264 		if (dc->res_pool)
265 			dc->res_pool->funcs->destroy(&dc->res_pool);
266 
267 		kfree(dc->hwseq);
268 	}
269 }
270 
271 static void update_num_audio(
272 	const struct resource_straps *straps,
273 	unsigned int *num_audio,
274 	struct audio_support *aud_support)
275 {
276 	aud_support->dp_audio = true;
277 	aud_support->hdmi_audio_native = false;
278 	aud_support->hdmi_audio_on_dongle = false;
279 
280 	if (straps->hdmi_disable == 0) {
281 		if (straps->dc_pinstraps_audio & 0x2) {
282 			aud_support->hdmi_audio_on_dongle = true;
283 			aud_support->hdmi_audio_native = true;
284 		}
285 	}
286 
287 	switch (straps->audio_stream_number) {
288 	case 0: /* multi streams supported */
289 		break;
290 	case 1: /* multi streams not supported */
291 		*num_audio = 1;
292 		break;
293 	default:
294 		DC_ERR("DC: unexpected audio fuse!\n");
295 	}
296 }
297 
298 bool resource_construct(
299 	unsigned int num_virtual_links,
300 	struct dc  *dc,
301 	struct resource_pool *pool,
302 	const struct resource_create_funcs *create_funcs)
303 {
304 	struct dc_context *ctx = dc->ctx;
305 	const struct resource_caps *caps = pool->res_cap;
306 	int i;
307 	unsigned int num_audio = caps->num_audio;
308 	struct resource_straps straps = {0};
309 
310 	if (create_funcs->read_dce_straps)
311 		create_funcs->read_dce_straps(dc->ctx, &straps);
312 
313 	pool->audio_count = 0;
314 	if (create_funcs->create_audio) {
315 		/* find the total number of streams available via the
316 		 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
317 		 * registers (one for each pin) starting from pin 1
318 		 * up to the max number of audio pins.
319 		 * We stop on the first pin where
320 		 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
321 		 */
322 		update_num_audio(&straps, &num_audio, &pool->audio_support);
323 		for (i = 0; i < caps->num_audio; i++) {
324 			struct audio *aud = create_funcs->create_audio(ctx, i);
325 
326 			if (aud == NULL) {
327 				DC_ERR("DC: failed to create audio!\n");
328 				return false;
329 			}
330 			if (!aud->funcs->endpoint_valid(aud)) {
331 				aud->funcs->destroy(&aud);
332 				break;
333 			}
334 			pool->audios[i] = aud;
335 			pool->audio_count++;
336 		}
337 	}
338 
339 	pool->stream_enc_count = 0;
340 	if (create_funcs->create_stream_encoder) {
341 		for (i = 0; i < caps->num_stream_encoder; i++) {
342 			pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
343 			if (pool->stream_enc[i] == NULL)
344 				DC_ERR("DC: failed to create stream_encoder!\n");
345 			pool->stream_enc_count++;
346 		}
347 	}
348 
349 #if defined(CONFIG_DRM_AMD_DC_DCN)
350 	for (i = 0; i < caps->num_mpc_3dlut; i++) {
351 		pool->mpc_lut[i] = dc_create_3dlut_func();
352 		if (pool->mpc_lut[i] == NULL)
353 			DC_ERR("DC: failed to create MPC 3dlut!\n");
354 		pool->mpc_shaper[i] = dc_create_transfer_func();
355 		if (pool->mpc_shaper[i] == NULL)
356 			DC_ERR("DC: failed to create MPC shaper!\n");
357 	}
358 #endif
359 	dc->caps.dynamic_audio = false;
360 	if (pool->audio_count < pool->stream_enc_count) {
361 		dc->caps.dynamic_audio = true;
362 	}
363 	for (i = 0; i < num_virtual_links; i++) {
364 		pool->stream_enc[pool->stream_enc_count] =
365 			virtual_stream_encoder_create(
366 					ctx, ctx->dc_bios);
367 		if (pool->stream_enc[pool->stream_enc_count] == NULL) {
368 			DC_ERR("DC: failed to create stream_encoder!\n");
369 			return false;
370 		}
371 		pool->stream_enc_count++;
372 	}
373 
374 	dc->hwseq = create_funcs->create_hwseq(ctx);
375 
376 	return true;
377 }
378 static int find_matching_clock_source(
379 		const struct resource_pool *pool,
380 		struct clock_source *clock_source)
381 {
382 
383 	int i;
384 
385 	for (i = 0; i < pool->clk_src_count; i++) {
386 		if (pool->clock_sources[i] == clock_source)
387 			return i;
388 	}
389 	return -1;
390 }
391 
392 void resource_unreference_clock_source(
393 		struct resource_context *res_ctx,
394 		const struct resource_pool *pool,
395 		struct clock_source *clock_source)
396 {
397 	int i = find_matching_clock_source(pool, clock_source);
398 
399 	if (i > -1)
400 		res_ctx->clock_source_ref_count[i]--;
401 
402 	if (pool->dp_clock_source == clock_source)
403 		res_ctx->dp_clock_source_ref_count--;
404 }
405 
406 void resource_reference_clock_source(
407 		struct resource_context *res_ctx,
408 		const struct resource_pool *pool,
409 		struct clock_source *clock_source)
410 {
411 	int i = find_matching_clock_source(pool, clock_source);
412 
413 	if (i > -1)
414 		res_ctx->clock_source_ref_count[i]++;
415 
416 	if (pool->dp_clock_source == clock_source)
417 		res_ctx->dp_clock_source_ref_count++;
418 }
419 
420 int resource_get_clock_source_reference(
421 		struct resource_context *res_ctx,
422 		const struct resource_pool *pool,
423 		struct clock_source *clock_source)
424 {
425 	int i = find_matching_clock_source(pool, clock_source);
426 
427 	if (i > -1)
428 		return res_ctx->clock_source_ref_count[i];
429 
430 	if (pool->dp_clock_source == clock_source)
431 		return res_ctx->dp_clock_source_ref_count;
432 
433 	return -1;
434 }
435 
436 bool resource_are_vblanks_synchronizable(
437 	struct dc_stream_state *stream1,
438 	struct dc_stream_state *stream2)
439 {
440 	uint32_t base60_refresh_rates[] = {10, 20, 5};
441 	uint8_t i;
442 	uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
443 	uint64_t frame_time_diff;
444 
445 	if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
446 		stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
447 		dc_is_dp_signal(stream1->signal) &&
448 		dc_is_dp_signal(stream2->signal) &&
449 		false == stream1->has_non_synchronizable_pclk &&
450 		false == stream2->has_non_synchronizable_pclk &&
451 		stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
452 		stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
453 		/* disable refresh rates higher than 60Hz for now */
454 		if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
455 				stream1->timing.v_total > 60)
456 			return false;
457 		if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
458 				stream2->timing.v_total > 60)
459 			return false;
460 		frame_time_diff = (uint64_t)10000 *
461 			stream1->timing.h_total *
462 			stream1->timing.v_total *
463 			stream2->timing.pix_clk_100hz;
464 		frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
465 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
466 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
467 		for (i = 0; i < rr_count; i++) {
468 			int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
469 
470 			if (diff < 0)
471 				diff = -diff;
472 			if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
473 				return true;
474 		}
475 	}
476 	return false;
477 }
478 
479 bool resource_are_streams_timing_synchronizable(
480 	struct dc_stream_state *stream1,
481 	struct dc_stream_state *stream2)
482 {
483 	if (stream1->timing.h_total != stream2->timing.h_total)
484 		return false;
485 
486 	if (stream1->timing.v_total != stream2->timing.v_total)
487 		return false;
488 
489 	if (stream1->timing.h_addressable
490 				!= stream2->timing.h_addressable)
491 		return false;
492 
493 	if (stream1->timing.v_addressable
494 				!= stream2->timing.v_addressable)
495 		return false;
496 
497 	if (stream1->timing.v_front_porch
498 				!= stream2->timing.v_front_porch)
499 		return false;
500 
501 	if (stream1->timing.pix_clk_100hz
502 				!= stream2->timing.pix_clk_100hz)
503 		return false;
504 
505 	if (stream1->clamping.c_depth != stream2->clamping.c_depth)
506 		return false;
507 
508 	if (stream1->phy_pix_clk != stream2->phy_pix_clk
509 			&& (!dc_is_dp_signal(stream1->signal)
510 			|| !dc_is_dp_signal(stream2->signal)))
511 		return false;
512 
513 	if (stream1->view_format != stream2->view_format)
514 		return false;
515 
516 	if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
517 		return false;
518 
519 	return true;
520 }
521 static bool is_dp_and_hdmi_sharable(
522 		struct dc_stream_state *stream1,
523 		struct dc_stream_state *stream2)
524 {
525 	if (stream1->ctx->dc->caps.disable_dp_clk_share)
526 		return false;
527 
528 	if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
529 		stream2->clamping.c_depth != COLOR_DEPTH_888)
530 		return false;
531 
532 	return true;
533 
534 }
535 
536 static bool is_sharable_clk_src(
537 	const struct pipe_ctx *pipe_with_clk_src,
538 	const struct pipe_ctx *pipe)
539 {
540 	if (pipe_with_clk_src->clock_source == NULL)
541 		return false;
542 
543 	if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
544 		return false;
545 
546 	if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
547 		(dc_is_dp_signal(pipe->stream->signal) &&
548 		!is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
549 				     pipe->stream)))
550 		return false;
551 
552 	if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
553 			&& dc_is_dual_link_signal(pipe->stream->signal))
554 		return false;
555 
556 	if (dc_is_hdmi_signal(pipe->stream->signal)
557 			&& dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
558 		return false;
559 
560 	if (!resource_are_streams_timing_synchronizable(
561 			pipe_with_clk_src->stream, pipe->stream))
562 		return false;
563 
564 	return true;
565 }
566 
567 struct clock_source *resource_find_used_clk_src_for_sharing(
568 					struct resource_context *res_ctx,
569 					struct pipe_ctx *pipe_ctx)
570 {
571 	int i;
572 
573 	for (i = 0; i < MAX_PIPES; i++) {
574 		if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
575 			return res_ctx->pipe_ctx[i].clock_source;
576 	}
577 
578 	return NULL;
579 }
580 
581 static enum pixel_format convert_pixel_format_to_dalsurface(
582 		enum surface_pixel_format surface_pixel_format)
583 {
584 	enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
585 
586 	switch (surface_pixel_format) {
587 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
588 		dal_pixel_format = PIXEL_FORMAT_INDEX8;
589 		break;
590 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
591 		dal_pixel_format = PIXEL_FORMAT_RGB565;
592 		break;
593 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
594 		dal_pixel_format = PIXEL_FORMAT_RGB565;
595 		break;
596 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
597 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
598 		break;
599 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
600 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
601 		break;
602 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
603 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
604 		break;
605 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
606 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
607 		break;
608 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
609 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
610 		break;
611 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
612 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
613 		dal_pixel_format = PIXEL_FORMAT_FP16;
614 		break;
615 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
616 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
617 		dal_pixel_format = PIXEL_FORMAT_420BPP8;
618 		break;
619 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
620 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
621 		dal_pixel_format = PIXEL_FORMAT_420BPP10;
622 		break;
623 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
624 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
625 	default:
626 		dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
627 		break;
628 	}
629 	return dal_pixel_format;
630 }
631 
632 static inline void get_vp_scan_direction(
633 	enum dc_rotation_angle rotation,
634 	bool horizontal_mirror,
635 	bool *orthogonal_rotation,
636 	bool *flip_vert_scan_dir,
637 	bool *flip_horz_scan_dir)
638 {
639 	*orthogonal_rotation = false;
640 	*flip_vert_scan_dir = false;
641 	*flip_horz_scan_dir = false;
642 	if (rotation == ROTATION_ANGLE_180) {
643 		*flip_vert_scan_dir = true;
644 		*flip_horz_scan_dir = true;
645 	} else if (rotation == ROTATION_ANGLE_90) {
646 		*orthogonal_rotation = true;
647 		*flip_horz_scan_dir = true;
648 	} else if (rotation == ROTATION_ANGLE_270) {
649 		*orthogonal_rotation = true;
650 		*flip_vert_scan_dir = true;
651 	}
652 
653 	if (horizontal_mirror)
654 		*flip_horz_scan_dir = !*flip_horz_scan_dir;
655 }
656 
657 int get_num_mpc_splits(struct pipe_ctx *pipe)
658 {
659 	int mpc_split_count = 0;
660 	struct pipe_ctx *other_pipe = pipe->bottom_pipe;
661 
662 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
663 		mpc_split_count++;
664 		other_pipe = other_pipe->bottom_pipe;
665 	}
666 	other_pipe = pipe->top_pipe;
667 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
668 		mpc_split_count++;
669 		other_pipe = other_pipe->top_pipe;
670 	}
671 
672 	return mpc_split_count;
673 }
674 
675 int get_num_odm_splits(struct pipe_ctx *pipe)
676 {
677 	int odm_split_count = 0;
678 	struct pipe_ctx *next_pipe = pipe->next_odm_pipe;
679 	while (next_pipe) {
680 		odm_split_count++;
681 		next_pipe = next_pipe->next_odm_pipe;
682 	}
683 	pipe = pipe->prev_odm_pipe;
684 	while (pipe) {
685 		odm_split_count++;
686 		pipe = pipe->prev_odm_pipe;
687 	}
688 	return odm_split_count;
689 }
690 
691 static void calculate_split_count_and_index(struct pipe_ctx *pipe_ctx, int *split_count, int *split_idx)
692 {
693 	*split_count = get_num_odm_splits(pipe_ctx);
694 	*split_idx = 0;
695 	if (*split_count == 0) {
696 		/*Check for mpc split*/
697 		struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
698 
699 		*split_count = get_num_mpc_splits(pipe_ctx);
700 		while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
701 			(*split_idx)++;
702 			split_pipe = split_pipe->top_pipe;
703 		}
704 	} else {
705 		/*Get odm split index*/
706 		struct pipe_ctx *split_pipe = pipe_ctx->prev_odm_pipe;
707 
708 		while (split_pipe) {
709 			(*split_idx)++;
710 			split_pipe = split_pipe->prev_odm_pipe;
711 		}
712 	}
713 }
714 
715 /*
716  * This is a preliminary vp size calculation to allow us to check taps support.
717  * The result is completely overridden afterwards.
718  */
719 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
720 {
721 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
722 
723 	data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
724 	data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
725 	data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
726 	data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
727 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
728 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
729 		swap(data->viewport.width, data->viewport.height);
730 		swap(data->viewport_c.width, data->viewport_c.height);
731 	}
732 }
733 
734 static void calculate_recout(struct pipe_ctx *pipe_ctx)
735 {
736 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
737 	const struct dc_stream_state *stream = pipe_ctx->stream;
738 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
739 	struct rect surf_clip = plane_state->clip_rect;
740 	bool split_tb = stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
741 	int split_count, split_idx;
742 
743 	calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
744 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
745 		split_idx = 0;
746 
747 	/*
748 	 * Only the leftmost ODM pipe should be offset by a nonzero distance
749 	 */
750 	if (!pipe_ctx->prev_odm_pipe || split_idx == split_count) {
751 		data->recout.x = stream->dst.x;
752 		if (stream->src.x < surf_clip.x)
753 			data->recout.x += (surf_clip.x - stream->src.x) * stream->dst.width
754 						/ stream->src.width;
755 	} else
756 		data->recout.x = 0;
757 
758 	if (stream->src.x > surf_clip.x)
759 		surf_clip.width -= stream->src.x - surf_clip.x;
760 	data->recout.width = surf_clip.width * stream->dst.width / stream->src.width;
761 	if (data->recout.width + data->recout.x > stream->dst.x + stream->dst.width)
762 		data->recout.width = stream->dst.x + stream->dst.width - data->recout.x;
763 
764 	data->recout.y = stream->dst.y;
765 	if (stream->src.y < surf_clip.y)
766 		data->recout.y += (surf_clip.y - stream->src.y) * stream->dst.height
767 						/ stream->src.height;
768 	else if (stream->src.y > surf_clip.y)
769 		surf_clip.height -= stream->src.y - surf_clip.y;
770 
771 	data->recout.height = surf_clip.height * stream->dst.height / stream->src.height;
772 	if (data->recout.height + data->recout.y > stream->dst.y + stream->dst.height)
773 		data->recout.height = stream->dst.y + stream->dst.height - data->recout.y;
774 
775 	/* Handle h & v split */
776 	if (split_tb) {
777 		ASSERT(data->recout.height % 2 == 0);
778 		data->recout.height /= 2;
779 	} else if (split_count) {
780 		if (!pipe_ctx->next_odm_pipe && !pipe_ctx->prev_odm_pipe) {
781 			/* extra pixels in the division remainder need to go to pipes after
782 			 * the extra pixel index minus one(epimo) defined here as:
783 			 */
784 			int epimo = split_count - data->recout.width % (split_count + 1);
785 
786 			data->recout.x += (data->recout.width / (split_count + 1)) * split_idx;
787 			if (split_idx > epimo)
788 				data->recout.x += split_idx - epimo - 1;
789 			ASSERT(stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE || data->recout.width % 2 == 0);
790 			data->recout.width = data->recout.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
791 		} else {
792 			/* odm */
793 			if (split_idx == split_count) {
794 				/* rightmost pipe is the remainder recout */
795 				data->recout.width -= data->h_active * split_count - data->recout.x;
796 
797 				/* ODM combine cases with MPO we can get negative widths */
798 				if (data->recout.width < 0)
799 					data->recout.width = 0;
800 
801 				data->recout.x = 0;
802 			} else
803 				data->recout.width = data->h_active - data->recout.x;
804 		}
805 	}
806 }
807 
808 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
809 {
810 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
811 	const struct dc_stream_state *stream = pipe_ctx->stream;
812 	struct rect surf_src = plane_state->src_rect;
813 	const int in_w = stream->src.width;
814 	const int in_h = stream->src.height;
815 	const int out_w = stream->dst.width;
816 	const int out_h = stream->dst.height;
817 
818 	/*Swap surf_src height and width since scaling ratios are in recout rotation*/
819 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
820 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
821 		swap(surf_src.height, surf_src.width);
822 
823 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
824 					surf_src.width,
825 					plane_state->dst_rect.width);
826 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
827 					surf_src.height,
828 					plane_state->dst_rect.height);
829 
830 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
831 		pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
832 	else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
833 		pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
834 
835 	pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
836 		pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
837 	pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
838 		pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
839 
840 	pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
841 	pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
842 
843 	if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
844 			|| pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
845 		pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
846 		pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
847 	}
848 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
849 			pipe_ctx->plane_res.scl_data.ratios.horz, 19);
850 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
851 			pipe_ctx->plane_res.scl_data.ratios.vert, 19);
852 	pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
853 			pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
854 	pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
855 			pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
856 }
857 
858 
859 /*
860  * We completely calculate vp offset, size and inits here based entirely on scaling
861  * ratios and recout for pixel perfect pipe combine.
862  */
863 static void calculate_init_and_vp(
864 		bool flip_scan_dir,
865 		int recout_offset_within_recout_full,
866 		int recout_size,
867 		int src_size,
868 		int taps,
869 		struct fixed31_32 ratio,
870 		struct fixed31_32 *init,
871 		int *vp_offset,
872 		int *vp_size)
873 {
874 	struct fixed31_32 temp;
875 	int int_part;
876 
877 	/*
878 	 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
879 	 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
880 	 * All following calculations are based on this logic.
881 	 *
882 	 * Init calculated according to formula:
883 	 * 	init = (scaling_ratio + number_of_taps + 1) / 2
884 	 * 	init_bot = init + scaling_ratio
885 	 * 	to get pixel perfect combine add the fraction from calculating vp offset
886 	 */
887 	temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
888 	*vp_offset = dc_fixpt_floor(temp);
889 	temp.value &= 0xffffffff;
890 	*init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
891 			dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
892 	/*
893 	 * If viewport has non 0 offset and there are more taps than covered by init then
894 	 * we should decrease the offset and increase init so we are never sampling
895 	 * outside of viewport.
896 	 */
897 	int_part = dc_fixpt_floor(*init);
898 	if (int_part < taps) {
899 		int_part = taps - int_part;
900 		if (int_part > *vp_offset)
901 			int_part = *vp_offset;
902 		*vp_offset -= int_part;
903 		*init = dc_fixpt_add_int(*init, int_part);
904 	}
905 	/*
906 	 * If taps are sampling outside of viewport at end of recout and there are more pixels
907 	 * available in the surface we should increase the viewport size, regardless set vp to
908 	 * only what is used.
909 	 */
910 	temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
911 	*vp_size = dc_fixpt_floor(temp);
912 	if (*vp_size + *vp_offset > src_size)
913 		*vp_size = src_size - *vp_offset;
914 
915 	/* We did all the math assuming we are scanning same direction as display does,
916 	 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
917 	 * is flipped we simply need to calculate offset from the other side of plane.
918 	 * Note that outside of viewport all scaling hardware works in recout space.
919 	 */
920 	if (flip_scan_dir)
921 		*vp_offset = src_size - *vp_offset - *vp_size;
922 }
923 
924 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
925 {
926 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
927 	const struct dc_stream_state *stream = pipe_ctx->stream;
928 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
929 	struct rect src = plane_state->src_rect;
930 	int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
931 				|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
932 	int split_count, split_idx, ro_lb, ro_tb, recout_full_x, recout_full_y;
933 	bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
934 
935 	calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
936 	/*
937 	 * recout full is what the recout would have been if we didnt clip
938 	 * the source plane at all. We only care about left(ro_lb) and top(ro_tb)
939 	 * offsets of recout within recout full because those are the directions
940 	 * we scan from and therefore the only ones that affect inits.
941 	 */
942 	recout_full_x = stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
943 			* stream->dst.width / stream->src.width;
944 	recout_full_y = stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
945 			* stream->dst.height / stream->src.height;
946 	if (pipe_ctx->prev_odm_pipe && split_idx)
947 		ro_lb = data->h_active * split_idx - recout_full_x;
948 	else
949 		ro_lb = data->recout.x - recout_full_x;
950 	ro_tb = data->recout.y - recout_full_y;
951 	ASSERT(ro_lb >= 0 && ro_tb >= 0);
952 
953 	/*
954 	 * Work in recout rotation since that requires less transformations
955 	 */
956 	get_vp_scan_direction(
957 			plane_state->rotation,
958 			plane_state->horizontal_mirror,
959 			&orthogonal_rotation,
960 			&flip_vert_scan_dir,
961 			&flip_horz_scan_dir);
962 
963 	if (orthogonal_rotation) {
964 		swap(src.width, src.height);
965 		swap(flip_vert_scan_dir, flip_horz_scan_dir);
966 	}
967 
968 	calculate_init_and_vp(
969 			flip_horz_scan_dir,
970 			ro_lb,
971 			data->recout.width,
972 			src.width,
973 			data->taps.h_taps,
974 			data->ratios.horz,
975 			&data->inits.h,
976 			&data->viewport.x,
977 			&data->viewport.width);
978 	calculate_init_and_vp(
979 			flip_horz_scan_dir,
980 			ro_lb,
981 			data->recout.width,
982 			src.width / vpc_div,
983 			data->taps.h_taps_c,
984 			data->ratios.horz_c,
985 			&data->inits.h_c,
986 			&data->viewport_c.x,
987 			&data->viewport_c.width);
988 	calculate_init_and_vp(
989 			flip_vert_scan_dir,
990 			ro_tb,
991 			data->recout.height,
992 			src.height,
993 			data->taps.v_taps,
994 			data->ratios.vert,
995 			&data->inits.v,
996 			&data->viewport.y,
997 			&data->viewport.height);
998 	calculate_init_and_vp(
999 			flip_vert_scan_dir,
1000 			ro_tb,
1001 			data->recout.height,
1002 			src.height / vpc_div,
1003 			data->taps.v_taps_c,
1004 			data->ratios.vert_c,
1005 			&data->inits.v_c,
1006 			&data->viewport_c.y,
1007 			&data->viewport_c.height);
1008 	if (orthogonal_rotation) {
1009 		swap(data->viewport.x, data->viewport.y);
1010 		swap(data->viewport.width, data->viewport.height);
1011 		swap(data->viewport_c.x, data->viewport_c.y);
1012 		swap(data->viewport_c.width, data->viewport_c.height);
1013 	}
1014 	data->viewport.x += src.x;
1015 	data->viewport.y += src.y;
1016 	ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1017 	data->viewport_c.x += src.x / vpc_div;
1018 	data->viewport_c.y += src.y / vpc_div;
1019 }
1020 
1021 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1022 {
1023 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1024 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1025 	bool res = false;
1026 	DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1027 
1028 	pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1029 			pipe_ctx->plane_state->format);
1030 
1031 	/* Timing borders are part of vactive that we are also supposed to skip in addition
1032 	 * to any stream dst offset. Since dm logic assumes dst is in addressable
1033 	 * space we need to add the left and top borders to dst offsets temporarily.
1034 	 * TODO: fix in DM, stream dst is supposed to be in vactive
1035 	 */
1036 	pipe_ctx->stream->dst.x += timing->h_border_left;
1037 	pipe_ctx->stream->dst.y += timing->v_border_top;
1038 
1039 	/* Calculate H and V active size */
1040 	pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable +
1041 			timing->h_border_left + timing->h_border_right;
1042 	pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable +
1043 		timing->v_border_top + timing->v_border_bottom;
1044 	if (pipe_ctx->next_odm_pipe || pipe_ctx->prev_odm_pipe)
1045 		pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx) + 1;
1046 
1047 	/* depends on h_active */
1048 	calculate_recout(pipe_ctx);
1049 	/* depends on pixel format */
1050 	calculate_scaling_ratios(pipe_ctx);
1051 	/* depends on scaling ratios and recout, does not calculate offset yet */
1052 	calculate_viewport_size(pipe_ctx);
1053 
1054 	/* Stopgap for validation of ODM + MPO on one side of screen case */
1055 	if (pipe_ctx->plane_res.scl_data.viewport.height < 1 ||
1056 			pipe_ctx->plane_res.scl_data.viewport.width < 1)
1057 		return false;
1058 
1059 	/*
1060 	 * LB calculations depend on vp size, h/v_active and scaling ratios
1061 	 * Setting line buffer pixel depth to 24bpp yields banding
1062 	 * on certain displays, such as the Sharp 4k. 36bpp is needed
1063 	 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1064 	 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1065 	 * precision on at least DCN display engines. However, at least
1066 	 * Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1067 	 * so use only 30 bpp on DCE_VERSION_11_0. Testing with DCE 11.2 and 8.3
1068 	 * did not show such problems, so this seems to be the exception.
1069 	 */
1070 	if (plane_state->ctx->dce_version > DCE_VERSION_11_0)
1071 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1072 	else
1073 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1074 
1075 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1076 
1077 	if (pipe_ctx->plane_res.xfm != NULL)
1078 		res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1079 				pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1080 
1081 	if (pipe_ctx->plane_res.dpp != NULL)
1082 		res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1083 				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1084 
1085 
1086 	if (!res) {
1087 		/* Try 24 bpp linebuffer */
1088 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1089 
1090 		if (pipe_ctx->plane_res.xfm != NULL)
1091 			res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1092 					pipe_ctx->plane_res.xfm,
1093 					&pipe_ctx->plane_res.scl_data,
1094 					&plane_state->scaling_quality);
1095 
1096 		if (pipe_ctx->plane_res.dpp != NULL)
1097 			res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1098 					pipe_ctx->plane_res.dpp,
1099 					&pipe_ctx->plane_res.scl_data,
1100 					&plane_state->scaling_quality);
1101 	}
1102 
1103 	/*
1104 	 * Depends on recout, scaling ratios, h_active and taps
1105 	 * May need to re-check lb size after this in some obscure scenario
1106 	 */
1107 	if (res)
1108 		calculate_inits_and_viewports(pipe_ctx);
1109 
1110 	/*
1111 	 * Handle side by side and top bottom 3d recout offsets after vp calculation
1112 	 * since 3d is special and needs to calculate vp as if there is no recout offset
1113 	 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1114 	 */
1115 	if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1116 		ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1117 			(pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1118 				pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1119 		if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1120 			pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1121 		else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1122 			pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1123 	}
1124 
1125 	if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE ||
1126 			pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1127 		res = false;
1128 
1129 	DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d  Recout: height:%d width:%d x:%d y:%d  HACTIVE:%d VACTIVE:%d\n"
1130 			"src_rect: height:%d width:%d x:%d y:%d  dst_rect: height:%d width:%d x:%d y:%d  clip_rect: height:%d width:%d x:%d y:%d\n",
1131 			__func__,
1132 			pipe_ctx->pipe_idx,
1133 			pipe_ctx->plane_res.scl_data.viewport.height,
1134 			pipe_ctx->plane_res.scl_data.viewport.width,
1135 			pipe_ctx->plane_res.scl_data.viewport.x,
1136 			pipe_ctx->plane_res.scl_data.viewport.y,
1137 			pipe_ctx->plane_res.scl_data.recout.height,
1138 			pipe_ctx->plane_res.scl_data.recout.width,
1139 			pipe_ctx->plane_res.scl_data.recout.x,
1140 			pipe_ctx->plane_res.scl_data.recout.y,
1141 			pipe_ctx->plane_res.scl_data.h_active,
1142 			pipe_ctx->plane_res.scl_data.v_active,
1143 			plane_state->src_rect.height,
1144 			plane_state->src_rect.width,
1145 			plane_state->src_rect.x,
1146 			plane_state->src_rect.y,
1147 			plane_state->dst_rect.height,
1148 			plane_state->dst_rect.width,
1149 			plane_state->dst_rect.x,
1150 			plane_state->dst_rect.y,
1151 			plane_state->clip_rect.height,
1152 			plane_state->clip_rect.width,
1153 			plane_state->clip_rect.x,
1154 			plane_state->clip_rect.y);
1155 
1156 	pipe_ctx->stream->dst.x -= timing->h_border_left;
1157 	pipe_ctx->stream->dst.y -= timing->v_border_top;
1158 
1159 	return res;
1160 }
1161 
1162 
1163 enum dc_status resource_build_scaling_params_for_context(
1164 	const struct dc  *dc,
1165 	struct dc_state *context)
1166 {
1167 	int i;
1168 
1169 	for (i = 0; i < MAX_PIPES; i++) {
1170 		if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1171 				context->res_ctx.pipe_ctx[i].stream != NULL)
1172 			if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1173 				return DC_FAIL_SCALING;
1174 	}
1175 
1176 	return DC_OK;
1177 }
1178 
1179 struct pipe_ctx *find_idle_secondary_pipe(
1180 		struct resource_context *res_ctx,
1181 		const struct resource_pool *pool,
1182 		const struct pipe_ctx *primary_pipe)
1183 {
1184 	int i;
1185 	struct pipe_ctx *secondary_pipe = NULL;
1186 
1187 	/*
1188 	 * We add a preferred pipe mapping to avoid the chance that
1189 	 * MPCCs already in use will need to be reassigned to other trees.
1190 	 * For example, if we went with the strict, assign backwards logic:
1191 	 *
1192 	 * (State 1)
1193 	 * Display A on, no surface, top pipe = 0
1194 	 * Display B on, no surface, top pipe = 1
1195 	 *
1196 	 * (State 2)
1197 	 * Display A on, no surface, top pipe = 0
1198 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1199 	 *
1200 	 * (State 3)
1201 	 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1202 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1203 	 *
1204 	 * The state 2->3 transition requires remapping MPCC 5 from display B
1205 	 * to display A.
1206 	 *
1207 	 * However, with the preferred pipe logic, state 2 would look like:
1208 	 *
1209 	 * (State 2)
1210 	 * Display A on, no surface, top pipe = 0
1211 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1212 	 *
1213 	 * This would then cause 2->3 to not require remapping any MPCCs.
1214 	 */
1215 	if (primary_pipe) {
1216 		int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1217 		if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1218 			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1219 			secondary_pipe->pipe_idx = preferred_pipe_idx;
1220 		}
1221 	}
1222 
1223 	/*
1224 	 * search backwards for the second pipe to keep pipe
1225 	 * assignment more consistent
1226 	 */
1227 	if (!secondary_pipe)
1228 		for (i = pool->pipe_count - 1; i >= 0; i--) {
1229 			if (res_ctx->pipe_ctx[i].stream == NULL) {
1230 				secondary_pipe = &res_ctx->pipe_ctx[i];
1231 				secondary_pipe->pipe_idx = i;
1232 				break;
1233 			}
1234 		}
1235 
1236 	return secondary_pipe;
1237 }
1238 
1239 struct pipe_ctx *resource_get_head_pipe_for_stream(
1240 		struct resource_context *res_ctx,
1241 		struct dc_stream_state *stream)
1242 {
1243 	int i;
1244 
1245 	for (i = 0; i < MAX_PIPES; i++) {
1246 		if (res_ctx->pipe_ctx[i].stream == stream
1247 				&& !res_ctx->pipe_ctx[i].top_pipe
1248 				&& !res_ctx->pipe_ctx[i].prev_odm_pipe)
1249 			return &res_ctx->pipe_ctx[i];
1250 	}
1251 	return NULL;
1252 }
1253 
1254 static struct pipe_ctx *resource_get_tail_pipe(
1255 		struct resource_context *res_ctx,
1256 		struct pipe_ctx *head_pipe)
1257 {
1258 	struct pipe_ctx *tail_pipe;
1259 
1260 	tail_pipe = head_pipe->bottom_pipe;
1261 
1262 	while (tail_pipe) {
1263 		head_pipe = tail_pipe;
1264 		tail_pipe = tail_pipe->bottom_pipe;
1265 	}
1266 
1267 	return head_pipe;
1268 }
1269 
1270 /*
1271  * A free_pipe for a stream is defined here as a pipe
1272  * that has no surface attached yet
1273  */
1274 static struct pipe_ctx *acquire_free_pipe_for_head(
1275 		struct dc_state *context,
1276 		const struct resource_pool *pool,
1277 		struct pipe_ctx *head_pipe)
1278 {
1279 	int i;
1280 	struct resource_context *res_ctx = &context->res_ctx;
1281 
1282 	if (!head_pipe->plane_state)
1283 		return head_pipe;
1284 
1285 	/* Re-use pipe already acquired for this stream if available*/
1286 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1287 		if (res_ctx->pipe_ctx[i].stream == head_pipe->stream &&
1288 				!res_ctx->pipe_ctx[i].plane_state) {
1289 			return &res_ctx->pipe_ctx[i];
1290 		}
1291 	}
1292 
1293 	/*
1294 	 * At this point we have no re-useable pipe for this stream and we need
1295 	 * to acquire an idle one to satisfy the request
1296 	 */
1297 
1298 	if (!pool->funcs->acquire_idle_pipe_for_layer)
1299 		return NULL;
1300 
1301 	return pool->funcs->acquire_idle_pipe_for_layer(context, pool, head_pipe->stream);
1302 }
1303 
1304 #if defined(CONFIG_DRM_AMD_DC_DCN)
1305 static int acquire_first_split_pipe(
1306 		struct resource_context *res_ctx,
1307 		const struct resource_pool *pool,
1308 		struct dc_stream_state *stream)
1309 {
1310 	int i;
1311 
1312 	for (i = 0; i < pool->pipe_count; i++) {
1313 		struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1314 
1315 		if (split_pipe->top_pipe &&
1316 				split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1317 			split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1318 			if (split_pipe->bottom_pipe)
1319 				split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1320 
1321 			if (split_pipe->top_pipe->plane_state)
1322 				resource_build_scaling_params(split_pipe->top_pipe);
1323 
1324 			memset(split_pipe, 0, sizeof(*split_pipe));
1325 			split_pipe->stream_res.tg = pool->timing_generators[i];
1326 			split_pipe->plane_res.hubp = pool->hubps[i];
1327 			split_pipe->plane_res.ipp = pool->ipps[i];
1328 			split_pipe->plane_res.dpp = pool->dpps[i];
1329 			split_pipe->stream_res.opp = pool->opps[i];
1330 			split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1331 			split_pipe->pipe_idx = i;
1332 
1333 			split_pipe->stream = stream;
1334 			return i;
1335 		}
1336 	}
1337 	return -1;
1338 }
1339 #endif
1340 
1341 bool dc_add_plane_to_context(
1342 		const struct dc *dc,
1343 		struct dc_stream_state *stream,
1344 		struct dc_plane_state *plane_state,
1345 		struct dc_state *context)
1346 {
1347 	int i;
1348 	struct resource_pool *pool = dc->res_pool;
1349 	struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1350 	struct dc_stream_status *stream_status = NULL;
1351 
1352 	for (i = 0; i < context->stream_count; i++)
1353 		if (context->streams[i] == stream) {
1354 			stream_status = &context->stream_status[i];
1355 			break;
1356 		}
1357 	if (stream_status == NULL) {
1358 		dm_error("Existing stream not found; failed to attach surface!\n");
1359 		return false;
1360 	}
1361 
1362 
1363 	if (stream_status->plane_count == MAX_SURFACE_NUM) {
1364 		dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1365 				plane_state, MAX_SURFACE_NUM);
1366 		return false;
1367 	}
1368 
1369 	head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1370 
1371 	if (!head_pipe) {
1372 		dm_error("Head pipe not found for stream_state %p !\n", stream);
1373 		return false;
1374 	}
1375 
1376 	/* retain new surface, but only once per stream */
1377 	dc_plane_state_retain(plane_state);
1378 
1379 	while (head_pipe) {
1380 		free_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1381 
1382 	#if defined(CONFIG_DRM_AMD_DC_DCN)
1383 		if (!free_pipe) {
1384 			int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1385 			if (pipe_idx >= 0)
1386 				free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1387 		}
1388 	#endif
1389 		if (!free_pipe) {
1390 			dc_plane_state_release(plane_state);
1391 			return false;
1392 		}
1393 
1394 		free_pipe->plane_state = plane_state;
1395 
1396 		if (head_pipe != free_pipe) {
1397 			tail_pipe = resource_get_tail_pipe(&context->res_ctx, head_pipe);
1398 			ASSERT(tail_pipe);
1399 			free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1400 			free_pipe->stream_res.abm = tail_pipe->stream_res.abm;
1401 			free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1402 			free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1403 			free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1404 			free_pipe->clock_source = tail_pipe->clock_source;
1405 			free_pipe->top_pipe = tail_pipe;
1406 			tail_pipe->bottom_pipe = free_pipe;
1407 			if (!free_pipe->next_odm_pipe && tail_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1408 				free_pipe->next_odm_pipe = tail_pipe->next_odm_pipe->bottom_pipe;
1409 				tail_pipe->next_odm_pipe->bottom_pipe->prev_odm_pipe = free_pipe;
1410 			}
1411 			if (!free_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe->bottom_pipe) {
1412 				free_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1413 				tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = free_pipe;
1414 			}
1415 		}
1416 		head_pipe = head_pipe->next_odm_pipe;
1417 	}
1418 	/* assign new surfaces*/
1419 	stream_status->plane_states[stream_status->plane_count] = plane_state;
1420 
1421 	stream_status->plane_count++;
1422 
1423 	return true;
1424 }
1425 
1426 bool dc_remove_plane_from_context(
1427 		const struct dc *dc,
1428 		struct dc_stream_state *stream,
1429 		struct dc_plane_state *plane_state,
1430 		struct dc_state *context)
1431 {
1432 	int i;
1433 	struct dc_stream_status *stream_status = NULL;
1434 	struct resource_pool *pool = dc->res_pool;
1435 
1436 	for (i = 0; i < context->stream_count; i++)
1437 		if (context->streams[i] == stream) {
1438 			stream_status = &context->stream_status[i];
1439 			break;
1440 		}
1441 
1442 	if (stream_status == NULL) {
1443 		dm_error("Existing stream not found; failed to remove plane.\n");
1444 		return false;
1445 	}
1446 
1447 	/* release pipe for plane*/
1448 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1449 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1450 
1451 		if (pipe_ctx->plane_state == plane_state) {
1452 			if (pipe_ctx->top_pipe)
1453 				pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1454 
1455 			/* Second condition is to avoid setting NULL to top pipe
1456 			 * of tail pipe making it look like head pipe in subsequent
1457 			 * deletes
1458 			 */
1459 			if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1460 				pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1461 
1462 			/*
1463 			 * For head pipe detach surfaces from pipe for tail
1464 			 * pipe just zero it out
1465 			 */
1466 			if (!pipe_ctx->top_pipe)
1467 				pipe_ctx->plane_state = NULL;
1468 			else
1469 				memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1470 		}
1471 	}
1472 
1473 
1474 	for (i = 0; i < stream_status->plane_count; i++) {
1475 		if (stream_status->plane_states[i] == plane_state) {
1476 
1477 			dc_plane_state_release(stream_status->plane_states[i]);
1478 			break;
1479 		}
1480 	}
1481 
1482 	if (i == stream_status->plane_count) {
1483 		dm_error("Existing plane_state not found; failed to detach it!\n");
1484 		return false;
1485 	}
1486 
1487 	stream_status->plane_count--;
1488 
1489 	/* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1490 	for (; i < stream_status->plane_count; i++)
1491 		stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1492 
1493 	stream_status->plane_states[stream_status->plane_count] = NULL;
1494 
1495 	return true;
1496 }
1497 
1498 bool dc_rem_all_planes_for_stream(
1499 		const struct dc *dc,
1500 		struct dc_stream_state *stream,
1501 		struct dc_state *context)
1502 {
1503 	int i, old_plane_count;
1504 	struct dc_stream_status *stream_status = NULL;
1505 	struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1506 
1507 	for (i = 0; i < context->stream_count; i++)
1508 			if (context->streams[i] == stream) {
1509 				stream_status = &context->stream_status[i];
1510 				break;
1511 			}
1512 
1513 	if (stream_status == NULL) {
1514 		dm_error("Existing stream %p not found!\n", stream);
1515 		return false;
1516 	}
1517 
1518 	old_plane_count = stream_status->plane_count;
1519 
1520 	for (i = 0; i < old_plane_count; i++)
1521 		del_planes[i] = stream_status->plane_states[i];
1522 
1523 	for (i = 0; i < old_plane_count; i++)
1524 		if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1525 			return false;
1526 
1527 	return true;
1528 }
1529 
1530 static bool add_all_planes_for_stream(
1531 		const struct dc *dc,
1532 		struct dc_stream_state *stream,
1533 		const struct dc_validation_set set[],
1534 		int set_count,
1535 		struct dc_state *context)
1536 {
1537 	int i, j;
1538 
1539 	for (i = 0; i < set_count; i++)
1540 		if (set[i].stream == stream)
1541 			break;
1542 
1543 	if (i == set_count) {
1544 		dm_error("Stream %p not found in set!\n", stream);
1545 		return false;
1546 	}
1547 
1548 	for (j = 0; j < set[i].plane_count; j++)
1549 		if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1550 			return false;
1551 
1552 	return true;
1553 }
1554 
1555 bool dc_add_all_planes_for_stream(
1556 		const struct dc *dc,
1557 		struct dc_stream_state *stream,
1558 		struct dc_plane_state * const *plane_states,
1559 		int plane_count,
1560 		struct dc_state *context)
1561 {
1562 	struct dc_validation_set set;
1563 	int i;
1564 
1565 	set.stream = stream;
1566 	set.plane_count = plane_count;
1567 
1568 	for (i = 0; i < plane_count; i++)
1569 		set.plane_states[i] = plane_states[i];
1570 
1571 	return add_all_planes_for_stream(dc, stream, &set, 1, context);
1572 }
1573 
1574 static bool is_timing_changed(struct dc_stream_state *cur_stream,
1575 		struct dc_stream_state *new_stream)
1576 {
1577 	if (cur_stream == NULL)
1578 		return true;
1579 
1580 	/* If output color space is changed, need to reprogram info frames */
1581 	if (cur_stream->output_color_space != new_stream->output_color_space)
1582 		return true;
1583 
1584 	return memcmp(
1585 		&cur_stream->timing,
1586 		&new_stream->timing,
1587 		sizeof(struct dc_crtc_timing)) != 0;
1588 }
1589 
1590 static bool are_stream_backends_same(
1591 	struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1592 {
1593 	if (stream_a == stream_b)
1594 		return true;
1595 
1596 	if (stream_a == NULL || stream_b == NULL)
1597 		return false;
1598 
1599 	if (is_timing_changed(stream_a, stream_b))
1600 		return false;
1601 
1602 	if (stream_a->dpms_off != stream_b->dpms_off)
1603 		return false;
1604 
1605 	return true;
1606 }
1607 
1608 /*
1609  * dc_is_stream_unchanged() - Compare two stream states for equivalence.
1610  *
1611  * Checks if there a difference between the two states
1612  * that would require a mode change.
1613  *
1614  * Does not compare cursor position or attributes.
1615  */
1616 bool dc_is_stream_unchanged(
1617 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1618 {
1619 
1620 	if (!are_stream_backends_same(old_stream, stream))
1621 		return false;
1622 
1623 	if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
1624 		return false;
1625 
1626 	return true;
1627 }
1628 
1629 /*
1630  * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
1631  */
1632 bool dc_is_stream_scaling_unchanged(
1633 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1634 {
1635 	if (old_stream == stream)
1636 		return true;
1637 
1638 	if (old_stream == NULL || stream == NULL)
1639 		return false;
1640 
1641 	if (memcmp(&old_stream->src,
1642 			&stream->src,
1643 			sizeof(struct rect)) != 0)
1644 		return false;
1645 
1646 	if (memcmp(&old_stream->dst,
1647 			&stream->dst,
1648 			sizeof(struct rect)) != 0)
1649 		return false;
1650 
1651 	return true;
1652 }
1653 
1654 static void update_stream_engine_usage(
1655 		struct resource_context *res_ctx,
1656 		const struct resource_pool *pool,
1657 		struct stream_encoder *stream_enc,
1658 		bool acquired)
1659 {
1660 	int i;
1661 
1662 	for (i = 0; i < pool->stream_enc_count; i++) {
1663 		if (pool->stream_enc[i] == stream_enc)
1664 			res_ctx->is_stream_enc_acquired[i] = acquired;
1665 	}
1666 }
1667 
1668 /* TODO: release audio object */
1669 void update_audio_usage(
1670 		struct resource_context *res_ctx,
1671 		const struct resource_pool *pool,
1672 		struct audio *audio,
1673 		bool acquired)
1674 {
1675 	int i;
1676 	for (i = 0; i < pool->audio_count; i++) {
1677 		if (pool->audios[i] == audio)
1678 			res_ctx->is_audio_acquired[i] = acquired;
1679 	}
1680 }
1681 
1682 static int acquire_first_free_pipe(
1683 		struct resource_context *res_ctx,
1684 		const struct resource_pool *pool,
1685 		struct dc_stream_state *stream)
1686 {
1687 	int i;
1688 
1689 	for (i = 0; i < pool->pipe_count; i++) {
1690 		if (!res_ctx->pipe_ctx[i].stream) {
1691 			struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
1692 
1693 			pipe_ctx->stream_res.tg = pool->timing_generators[i];
1694 			pipe_ctx->plane_res.mi = pool->mis[i];
1695 			pipe_ctx->plane_res.hubp = pool->hubps[i];
1696 			pipe_ctx->plane_res.ipp = pool->ipps[i];
1697 			pipe_ctx->plane_res.xfm = pool->transforms[i];
1698 			pipe_ctx->plane_res.dpp = pool->dpps[i];
1699 			pipe_ctx->stream_res.opp = pool->opps[i];
1700 			if (pool->dpps[i])
1701 				pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
1702 			pipe_ctx->pipe_idx = i;
1703 
1704 
1705 			pipe_ctx->stream = stream;
1706 			return i;
1707 		}
1708 	}
1709 	return -1;
1710 }
1711 
1712 static struct audio *find_first_free_audio(
1713 		struct resource_context *res_ctx,
1714 		const struct resource_pool *pool,
1715 		enum engine_id id,
1716 		enum dce_version dc_version)
1717 {
1718 	int i, available_audio_count;
1719 
1720 	available_audio_count = pool->audio_count;
1721 
1722 	for (i = 0; i < available_audio_count; i++) {
1723 		if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
1724 			/*we have enough audio endpoint, find the matching inst*/
1725 			if (id != i)
1726 				continue;
1727 			return pool->audios[i];
1728 		}
1729 	}
1730 
1731 	/* use engine id to find free audio */
1732 	if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
1733 		return pool->audios[id];
1734 	}
1735 	/*not found the matching one, first come first serve*/
1736 	for (i = 0; i < available_audio_count; i++) {
1737 		if (res_ctx->is_audio_acquired[i] == false) {
1738 			return pool->audios[i];
1739 		}
1740 	}
1741 	return 0;
1742 }
1743 
1744 /*
1745  * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
1746  */
1747 enum dc_status dc_add_stream_to_ctx(
1748 		struct dc *dc,
1749 		struct dc_state *new_ctx,
1750 		struct dc_stream_state *stream)
1751 {
1752 	enum dc_status res;
1753 	DC_LOGGER_INIT(dc->ctx->logger);
1754 
1755 	if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
1756 		DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
1757 		return DC_ERROR_UNEXPECTED;
1758 	}
1759 
1760 	new_ctx->streams[new_ctx->stream_count] = stream;
1761 	dc_stream_retain(stream);
1762 	new_ctx->stream_count++;
1763 
1764 	res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
1765 	if (res != DC_OK)
1766 		DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
1767 
1768 	return res;
1769 }
1770 
1771 /*
1772  * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
1773  */
1774 enum dc_status dc_remove_stream_from_ctx(
1775 			struct dc *dc,
1776 			struct dc_state *new_ctx,
1777 			struct dc_stream_state *stream)
1778 {
1779 	int i;
1780 	struct dc_context *dc_ctx = dc->ctx;
1781 	struct pipe_ctx *del_pipe = resource_get_head_pipe_for_stream(&new_ctx->res_ctx, stream);
1782 	struct pipe_ctx *odm_pipe;
1783 
1784 	if (!del_pipe) {
1785 		DC_ERROR("Pipe not found for stream %p !\n", stream);
1786 		return DC_ERROR_UNEXPECTED;
1787 	}
1788 
1789 	odm_pipe = del_pipe->next_odm_pipe;
1790 
1791 	/* Release primary pipe */
1792 	ASSERT(del_pipe->stream_res.stream_enc);
1793 	update_stream_engine_usage(
1794 			&new_ctx->res_ctx,
1795 				dc->res_pool,
1796 			del_pipe->stream_res.stream_enc,
1797 			false);
1798 	/* Release link encoder from stream in new dc_state. */
1799 	if (dc->res_pool->funcs->link_enc_unassign)
1800 		dc->res_pool->funcs->link_enc_unassign(new_ctx, del_pipe->stream);
1801 
1802 	if (del_pipe->stream_res.audio)
1803 		update_audio_usage(
1804 			&new_ctx->res_ctx,
1805 			dc->res_pool,
1806 			del_pipe->stream_res.audio,
1807 			false);
1808 
1809 	resource_unreference_clock_source(&new_ctx->res_ctx,
1810 					  dc->res_pool,
1811 					  del_pipe->clock_source);
1812 
1813 	if (dc->res_pool->funcs->remove_stream_from_ctx)
1814 		dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
1815 
1816 	while (odm_pipe) {
1817 		struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1818 
1819 		memset(odm_pipe, 0, sizeof(*odm_pipe));
1820 		odm_pipe = next_odm_pipe;
1821 	}
1822 	memset(del_pipe, 0, sizeof(*del_pipe));
1823 
1824 	for (i = 0; i < new_ctx->stream_count; i++)
1825 		if (new_ctx->streams[i] == stream)
1826 			break;
1827 
1828 	if (new_ctx->streams[i] != stream) {
1829 		DC_ERROR("Context doesn't have stream %p !\n", stream);
1830 		return DC_ERROR_UNEXPECTED;
1831 	}
1832 
1833 	dc_stream_release(new_ctx->streams[i]);
1834 	new_ctx->stream_count--;
1835 
1836 	/* Trim back arrays */
1837 	for (; i < new_ctx->stream_count; i++) {
1838 		new_ctx->streams[i] = new_ctx->streams[i + 1];
1839 		new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
1840 	}
1841 
1842 	new_ctx->streams[new_ctx->stream_count] = NULL;
1843 	memset(
1844 			&new_ctx->stream_status[new_ctx->stream_count],
1845 			0,
1846 			sizeof(new_ctx->stream_status[0]));
1847 
1848 	return DC_OK;
1849 }
1850 
1851 static struct dc_stream_state *find_pll_sharable_stream(
1852 		struct dc_stream_state *stream_needs_pll,
1853 		struct dc_state *context)
1854 {
1855 	int i;
1856 
1857 	for (i = 0; i < context->stream_count; i++) {
1858 		struct dc_stream_state *stream_has_pll = context->streams[i];
1859 
1860 		/* We are looking for non dp, non virtual stream */
1861 		if (resource_are_streams_timing_synchronizable(
1862 			stream_needs_pll, stream_has_pll)
1863 			&& !dc_is_dp_signal(stream_has_pll->signal)
1864 			&& stream_has_pll->link->connector_signal
1865 			!= SIGNAL_TYPE_VIRTUAL)
1866 			return stream_has_pll;
1867 
1868 	}
1869 
1870 	return NULL;
1871 }
1872 
1873 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
1874 {
1875 	uint32_t pix_clk = timing->pix_clk_100hz;
1876 	uint32_t normalized_pix_clk = pix_clk;
1877 
1878 	if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
1879 		pix_clk /= 2;
1880 	if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
1881 		switch (timing->display_color_depth) {
1882 		case COLOR_DEPTH_666:
1883 		case COLOR_DEPTH_888:
1884 			normalized_pix_clk = pix_clk;
1885 			break;
1886 		case COLOR_DEPTH_101010:
1887 			normalized_pix_clk = (pix_clk * 30) / 24;
1888 			break;
1889 		case COLOR_DEPTH_121212:
1890 			normalized_pix_clk = (pix_clk * 36) / 24;
1891 		break;
1892 		case COLOR_DEPTH_161616:
1893 			normalized_pix_clk = (pix_clk * 48) / 24;
1894 		break;
1895 		default:
1896 			ASSERT(0);
1897 		break;
1898 		}
1899 	}
1900 	return normalized_pix_clk;
1901 }
1902 
1903 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
1904 {
1905 	/* update actual pixel clock on all streams */
1906 	if (dc_is_hdmi_signal(stream->signal))
1907 		stream->phy_pix_clk = get_norm_pix_clk(
1908 			&stream->timing) / 10;
1909 	else
1910 		stream->phy_pix_clk =
1911 			stream->timing.pix_clk_100hz / 10;
1912 
1913 	if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
1914 		stream->phy_pix_clk *= 2;
1915 }
1916 
1917 static int acquire_resource_from_hw_enabled_state(
1918 		struct resource_context *res_ctx,
1919 		const struct resource_pool *pool,
1920 		struct dc_stream_state *stream)
1921 {
1922 	struct dc_link *link = stream->link;
1923 	unsigned int i, inst, tg_inst = 0;
1924 
1925 	/* Check for enabled DIG to identify enabled display */
1926 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1927 		return -1;
1928 
1929 	inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1930 
1931 	if (inst == ENGINE_ID_UNKNOWN)
1932 		return -1;
1933 
1934 	for (i = 0; i < pool->stream_enc_count; i++) {
1935 		if (pool->stream_enc[i]->id == inst) {
1936 			tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
1937 				pool->stream_enc[i]);
1938 			break;
1939 		}
1940 	}
1941 
1942 	// tg_inst not found
1943 	if (i == pool->stream_enc_count)
1944 		return -1;
1945 
1946 	if (tg_inst >= pool->timing_generator_count)
1947 		return -1;
1948 
1949 	if (!res_ctx->pipe_ctx[tg_inst].stream) {
1950 		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
1951 
1952 		pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
1953 		pipe_ctx->plane_res.mi = pool->mis[tg_inst];
1954 		pipe_ctx->plane_res.hubp = pool->hubps[tg_inst];
1955 		pipe_ctx->plane_res.ipp = pool->ipps[tg_inst];
1956 		pipe_ctx->plane_res.xfm = pool->transforms[tg_inst];
1957 		pipe_ctx->plane_res.dpp = pool->dpps[tg_inst];
1958 		pipe_ctx->stream_res.opp = pool->opps[tg_inst];
1959 
1960 		if (pool->dpps[tg_inst]) {
1961 			pipe_ctx->plane_res.mpcc_inst = pool->dpps[tg_inst]->inst;
1962 
1963 			// Read DPP->MPCC->OPP Pipe from HW State
1964 			if (pool->mpc->funcs->read_mpcc_state) {
1965 				struct mpcc_state s = {0};
1966 
1967 				pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
1968 
1969 				if (s.dpp_id < MAX_MPCC)
1970 					pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id = s.dpp_id;
1971 
1972 				if (s.bot_mpcc_id < MAX_MPCC)
1973 					pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
1974 							&pool->mpc->mpcc_array[s.bot_mpcc_id];
1975 
1976 				if (s.opp_id < MAX_OPP)
1977 					pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
1978 			}
1979 		}
1980 		pipe_ctx->pipe_idx = tg_inst;
1981 
1982 		pipe_ctx->stream = stream;
1983 		return tg_inst;
1984 	}
1985 
1986 	return -1;
1987 }
1988 
1989 static void mark_seamless_boot_stream(
1990 		const struct dc  *dc,
1991 		struct dc_stream_state *stream)
1992 {
1993 	struct dc_bios *dcb = dc->ctx->dc_bios;
1994 
1995 	/* TODO: Check Linux */
1996 	if (dc->config.allow_seamless_boot_optimization &&
1997 			!dcb->funcs->is_accelerated_mode(dcb)) {
1998 		if (dc_validate_seamless_boot_timing(dc, stream->sink, &stream->timing))
1999 			stream->apply_seamless_boot_optimization = true;
2000 	}
2001 }
2002 
2003 enum dc_status resource_map_pool_resources(
2004 		const struct dc  *dc,
2005 		struct dc_state *context,
2006 		struct dc_stream_state *stream)
2007 {
2008 	const struct resource_pool *pool = dc->res_pool;
2009 	int i;
2010 	struct dc_context *dc_ctx = dc->ctx;
2011 	struct pipe_ctx *pipe_ctx = NULL;
2012 	int pipe_idx = -1;
2013 
2014 	calculate_phy_pix_clks(stream);
2015 
2016 	mark_seamless_boot_stream(dc, stream);
2017 
2018 	if (stream->apply_seamless_boot_optimization) {
2019 		pipe_idx = acquire_resource_from_hw_enabled_state(
2020 				&context->res_ctx,
2021 				pool,
2022 				stream);
2023 		if (pipe_idx < 0)
2024 			/* hw resource was assigned to other stream */
2025 			stream->apply_seamless_boot_optimization = false;
2026 	}
2027 
2028 	if (pipe_idx < 0)
2029 		/* acquire new resources */
2030 		pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2031 
2032 #ifdef CONFIG_DRM_AMD_DC_DCN
2033 	if (pipe_idx < 0)
2034 		pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2035 #endif
2036 
2037 	if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2038 		return DC_NO_CONTROLLER_RESOURCE;
2039 
2040 	pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2041 
2042 	pipe_ctx->stream_res.stream_enc =
2043 		dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2044 			&context->res_ctx, pool, stream);
2045 
2046 	if (!pipe_ctx->stream_res.stream_enc)
2047 		return DC_NO_STREAM_ENC_RESOURCE;
2048 
2049 	update_stream_engine_usage(
2050 		&context->res_ctx, pool,
2051 		pipe_ctx->stream_res.stream_enc,
2052 		true);
2053 
2054 	/* TODO: Add check if ASIC support and EDID audio */
2055 	if (!stream->converter_disable_audio &&
2056 	    dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2057 	    stream->audio_info.mode_count && stream->audio_info.flags.all) {
2058 		pipe_ctx->stream_res.audio = find_first_free_audio(
2059 		&context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2060 
2061 		/*
2062 		 * Audio assigned in order first come first get.
2063 		 * There are asics which has number of audio
2064 		 * resources less then number of pipes
2065 		 */
2066 		if (pipe_ctx->stream_res.audio)
2067 			update_audio_usage(&context->res_ctx, pool,
2068 					   pipe_ctx->stream_res.audio, true);
2069 	}
2070 
2071 	/* Add ABM to the resource if on EDP */
2072 	if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2073 #if defined(CONFIG_DRM_AMD_DC_DCN)
2074 		if (pool->abm)
2075 			pipe_ctx->stream_res.abm = pool->abm;
2076 		else
2077 			pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2078 #else
2079 		pipe_ctx->stream_res.abm = pool->abm;
2080 #endif
2081 	}
2082 
2083 	for (i = 0; i < context->stream_count; i++)
2084 		if (context->streams[i] == stream) {
2085 			context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2086 			context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2087 			context->stream_status[i].audio_inst =
2088 				pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2089 
2090 			return DC_OK;
2091 		}
2092 
2093 	DC_ERROR("Stream %p not found in new ctx!\n", stream);
2094 	return DC_ERROR_UNEXPECTED;
2095 }
2096 
2097 /**
2098  * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2099  * Is a shallow copy.  Increments refcounts on existing streams and planes.
2100  * @dc: copy out of dc->current_state
2101  * @dst_ctx: copy into this
2102  */
2103 void dc_resource_state_copy_construct_current(
2104 		const struct dc *dc,
2105 		struct dc_state *dst_ctx)
2106 {
2107 	dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2108 }
2109 
2110 
2111 void dc_resource_state_construct(
2112 		const struct dc *dc,
2113 		struct dc_state *dst_ctx)
2114 {
2115 	dst_ctx->clk_mgr = dc->clk_mgr;
2116 }
2117 
2118 
2119 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2120 {
2121 	return dc->res_pool->res_cap->num_dsc > 0;
2122 }
2123 
2124 
2125 /**
2126  * dc_validate_global_state() - Determine if HW can support a given state
2127  * Checks HW resource availability and bandwidth requirement.
2128  * @dc: dc struct for this driver
2129  * @new_ctx: state to be validated
2130  * @fast_validate: set to true if only yes/no to support matters
2131  *
2132  * Return: DC_OK if the result can be programmed.  Otherwise, an error code.
2133  */
2134 enum dc_status dc_validate_global_state(
2135 		struct dc *dc,
2136 		struct dc_state *new_ctx,
2137 		bool fast_validate)
2138 {
2139 	enum dc_status result = DC_ERROR_UNEXPECTED;
2140 	int i, j;
2141 
2142 	if (!new_ctx)
2143 		return DC_ERROR_UNEXPECTED;
2144 #if defined(CONFIG_DRM_AMD_DC_DCN)
2145 
2146 	/*
2147 	 * Update link encoder to stream assignment.
2148 	 * TODO: Split out reason allocation from validation.
2149 	 */
2150 	if (dc->res_pool->funcs->link_encs_assign)
2151 		dc->res_pool->funcs->link_encs_assign(
2152 			dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
2153 #endif
2154 
2155 	if (dc->res_pool->funcs->validate_global) {
2156 		result = dc->res_pool->funcs->validate_global(dc, new_ctx);
2157 		if (result != DC_OK)
2158 			return result;
2159 	}
2160 
2161 	for (i = 0; i < new_ctx->stream_count; i++) {
2162 		struct dc_stream_state *stream = new_ctx->streams[i];
2163 
2164 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
2165 			struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
2166 
2167 			if (pipe_ctx->stream != stream)
2168 				continue;
2169 
2170 			if (dc->res_pool->funcs->patch_unknown_plane_state &&
2171 					pipe_ctx->plane_state &&
2172 					pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
2173 				result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
2174 				if (result != DC_OK)
2175 					return result;
2176 			}
2177 
2178 			/* Switch to dp clock source only if there is
2179 			 * no non dp stream that shares the same timing
2180 			 * with the dp stream.
2181 			 */
2182 			if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
2183 				!find_pll_sharable_stream(stream, new_ctx)) {
2184 
2185 				resource_unreference_clock_source(
2186 						&new_ctx->res_ctx,
2187 						dc->res_pool,
2188 						pipe_ctx->clock_source);
2189 
2190 				pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
2191 				resource_reference_clock_source(
2192 						&new_ctx->res_ctx,
2193 						dc->res_pool,
2194 						 pipe_ctx->clock_source);
2195 			}
2196 		}
2197 	}
2198 
2199 	result = resource_build_scaling_params_for_context(dc, new_ctx);
2200 
2201 	if (result == DC_OK)
2202 		if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
2203 			result = DC_FAIL_BANDWIDTH_VALIDATE;
2204 
2205 	return result;
2206 }
2207 
2208 static void patch_gamut_packet_checksum(
2209 		struct dc_info_packet *gamut_packet)
2210 {
2211 	/* For gamut we recalc checksum */
2212 	if (gamut_packet->valid) {
2213 		uint8_t chk_sum = 0;
2214 		uint8_t *ptr;
2215 		uint8_t i;
2216 
2217 		/*start of the Gamut data. */
2218 		ptr = &gamut_packet->sb[3];
2219 
2220 		for (i = 0; i <= gamut_packet->sb[1]; i++)
2221 			chk_sum += ptr[i];
2222 
2223 		gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
2224 	}
2225 }
2226 
2227 static void set_avi_info_frame(
2228 		struct dc_info_packet *info_packet,
2229 		struct pipe_ctx *pipe_ctx)
2230 {
2231 	struct dc_stream_state *stream = pipe_ctx->stream;
2232 	enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
2233 	uint32_t pixel_encoding = 0;
2234 	enum scanning_type scan_type = SCANNING_TYPE_NODATA;
2235 	enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
2236 	bool itc = false;
2237 	uint8_t itc_value = 0;
2238 	uint8_t cn0_cn1 = 0;
2239 	unsigned int cn0_cn1_value = 0;
2240 	uint8_t *check_sum = NULL;
2241 	uint8_t byte_index = 0;
2242 	union hdmi_info_packet hdmi_info;
2243 	union display_content_support support = {0};
2244 	unsigned int vic = pipe_ctx->stream->timing.vic;
2245 	enum dc_timing_3d_format format;
2246 
2247 	memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
2248 
2249 	color_space = pipe_ctx->stream->output_color_space;
2250 	if (color_space == COLOR_SPACE_UNKNOWN)
2251 		color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
2252 			COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
2253 
2254 	/* Initialize header */
2255 	hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
2256 	/* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
2257 	* not be used in HDMI 2.0 (Section 10.1) */
2258 	hdmi_info.bits.header.version = 2;
2259 	hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
2260 
2261 	/*
2262 	 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
2263 	 * according to HDMI 2.0 spec (Section 10.1)
2264 	 */
2265 
2266 	switch (stream->timing.pixel_encoding) {
2267 	case PIXEL_ENCODING_YCBCR422:
2268 		pixel_encoding = 1;
2269 		break;
2270 
2271 	case PIXEL_ENCODING_YCBCR444:
2272 		pixel_encoding = 2;
2273 		break;
2274 	case PIXEL_ENCODING_YCBCR420:
2275 		pixel_encoding = 3;
2276 		break;
2277 
2278 	case PIXEL_ENCODING_RGB:
2279 	default:
2280 		pixel_encoding = 0;
2281 	}
2282 
2283 	/* Y0_Y1_Y2 : The pixel encoding */
2284 	/* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
2285 	hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
2286 
2287 	/* A0 = 1 Active Format Information valid */
2288 	hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
2289 
2290 	/* B0, B1 = 3; Bar info data is valid */
2291 	hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
2292 
2293 	hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
2294 
2295 	/* S0, S1 : Underscan / Overscan */
2296 	/* TODO: un-hardcode scan type */
2297 	scan_type = SCANNING_TYPE_UNDERSCAN;
2298 	hdmi_info.bits.S0_S1 = scan_type;
2299 
2300 	/* C0, C1 : Colorimetry */
2301 	if (color_space == COLOR_SPACE_YCBCR709 ||
2302 			color_space == COLOR_SPACE_YCBCR709_LIMITED)
2303 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
2304 	else if (color_space == COLOR_SPACE_YCBCR601 ||
2305 			color_space == COLOR_SPACE_YCBCR601_LIMITED)
2306 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
2307 	else {
2308 		hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
2309 	}
2310 	if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
2311 			color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
2312 			color_space == COLOR_SPACE_2020_YCBCR) {
2313 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
2314 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2315 	} else if (color_space == COLOR_SPACE_ADOBERGB) {
2316 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
2317 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2318 	}
2319 
2320 	/* TODO: un-hardcode aspect ratio */
2321 	aspect = stream->timing.aspect_ratio;
2322 
2323 	switch (aspect) {
2324 	case ASPECT_RATIO_4_3:
2325 	case ASPECT_RATIO_16_9:
2326 		hdmi_info.bits.M0_M1 = aspect;
2327 		break;
2328 
2329 	case ASPECT_RATIO_NO_DATA:
2330 	case ASPECT_RATIO_64_27:
2331 	case ASPECT_RATIO_256_135:
2332 	default:
2333 		hdmi_info.bits.M0_M1 = 0;
2334 	}
2335 
2336 	/* Active Format Aspect ratio - same as Picture Aspect Ratio. */
2337 	hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
2338 
2339 	/* TODO: un-hardcode cn0_cn1 and itc */
2340 
2341 	cn0_cn1 = 0;
2342 	cn0_cn1_value = 0;
2343 
2344 	itc = true;
2345 	itc_value = 1;
2346 
2347 	support = stream->content_support;
2348 
2349 	if (itc) {
2350 		if (!support.bits.valid_content_type) {
2351 			cn0_cn1_value = 0;
2352 		} else {
2353 			if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
2354 				if (support.bits.graphics_content == 1) {
2355 					cn0_cn1_value = 0;
2356 				}
2357 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
2358 				if (support.bits.photo_content == 1) {
2359 					cn0_cn1_value = 1;
2360 				} else {
2361 					cn0_cn1_value = 0;
2362 					itc_value = 0;
2363 				}
2364 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
2365 				if (support.bits.cinema_content == 1) {
2366 					cn0_cn1_value = 2;
2367 				} else {
2368 					cn0_cn1_value = 0;
2369 					itc_value = 0;
2370 				}
2371 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
2372 				if (support.bits.game_content == 1) {
2373 					cn0_cn1_value = 3;
2374 				} else {
2375 					cn0_cn1_value = 0;
2376 					itc_value = 0;
2377 				}
2378 			}
2379 		}
2380 		hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
2381 		hdmi_info.bits.ITC = itc_value;
2382 	}
2383 
2384 	if (stream->qs_bit == 1) {
2385 		if (color_space == COLOR_SPACE_SRGB ||
2386 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2387 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_FULL_RANGE;
2388 		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2389 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2390 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_LIMITED_RANGE;
2391 		else
2392 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2393 	} else
2394 		hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2395 
2396 	/* TODO : We should handle YCC quantization */
2397 	/* but we do not have matrix calculation */
2398 	if (stream->qy_bit == 1) {
2399 		if (color_space == COLOR_SPACE_SRGB ||
2400 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2401 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2402 		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2403 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2404 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2405 		else
2406 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2407 	} else
2408 		hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2409 
2410 	///VIC
2411 	format = stream->timing.timing_3d_format;
2412 	/*todo, add 3DStereo support*/
2413 	if (format != TIMING_3D_FORMAT_NONE) {
2414 		// Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
2415 		switch (pipe_ctx->stream->timing.hdmi_vic) {
2416 		case 1:
2417 			vic = 95;
2418 			break;
2419 		case 2:
2420 			vic = 94;
2421 			break;
2422 		case 3:
2423 			vic = 93;
2424 			break;
2425 		case 4:
2426 			vic = 98;
2427 			break;
2428 		default:
2429 			break;
2430 		}
2431 	}
2432 	/* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
2433 	hdmi_info.bits.VIC0_VIC7 = vic;
2434 	if (vic >= 128)
2435 		hdmi_info.bits.header.version = 3;
2436 	/* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
2437 	 * the Source shall use 20 AVI InfoFrame Version 4
2438 	 */
2439 	if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
2440 			hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
2441 		hdmi_info.bits.header.version = 4;
2442 		hdmi_info.bits.header.length = 14;
2443 	}
2444 
2445 	/* pixel repetition
2446 	 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
2447 	 * repetition start from 1 */
2448 	hdmi_info.bits.PR0_PR3 = 0;
2449 
2450 	/* Bar Info
2451 	 * barTop:    Line Number of End of Top Bar.
2452 	 * barBottom: Line Number of Start of Bottom Bar.
2453 	 * barLeft:   Pixel Number of End of Left Bar.
2454 	 * barRight:  Pixel Number of Start of Right Bar. */
2455 	hdmi_info.bits.bar_top = stream->timing.v_border_top;
2456 	hdmi_info.bits.bar_bottom = (stream->timing.v_total
2457 			- stream->timing.v_border_bottom + 1);
2458 	hdmi_info.bits.bar_left  = stream->timing.h_border_left;
2459 	hdmi_info.bits.bar_right = (stream->timing.h_total
2460 			- stream->timing.h_border_right + 1);
2461 
2462     /* Additional Colorimetry Extension
2463      * Used in conduction with C0-C1 and EC0-EC2
2464      * 0 = DCI-P3 RGB (D65)
2465      * 1 = DCI-P3 RGB (theater)
2466      */
2467 	hdmi_info.bits.ACE0_ACE3 = 0;
2468 
2469 	/* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
2470 	check_sum = &hdmi_info.packet_raw_data.sb[0];
2471 
2472 	*check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
2473 
2474 	for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
2475 		*check_sum += hdmi_info.packet_raw_data.sb[byte_index];
2476 
2477 	/* one byte complement */
2478 	*check_sum = (uint8_t) (0x100 - *check_sum);
2479 
2480 	/* Store in hw_path_mode */
2481 	info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
2482 	info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
2483 	info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
2484 
2485 	for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
2486 		info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
2487 
2488 	info_packet->valid = true;
2489 }
2490 
2491 static void set_vendor_info_packet(
2492 		struct dc_info_packet *info_packet,
2493 		struct dc_stream_state *stream)
2494 {
2495 	/* SPD info packet for FreeSync */
2496 
2497 	/* Check if Freesync is supported. Return if false. If true,
2498 	 * set the corresponding bit in the info packet
2499 	 */
2500 	if (!stream->vsp_infopacket.valid)
2501 		return;
2502 
2503 	*info_packet = stream->vsp_infopacket;
2504 }
2505 
2506 static void set_spd_info_packet(
2507 		struct dc_info_packet *info_packet,
2508 		struct dc_stream_state *stream)
2509 {
2510 	/* SPD info packet for FreeSync */
2511 
2512 	/* Check if Freesync is supported. Return if false. If true,
2513 	 * set the corresponding bit in the info packet
2514 	 */
2515 	if (!stream->vrr_infopacket.valid)
2516 		return;
2517 
2518 	*info_packet = stream->vrr_infopacket;
2519 }
2520 
2521 static void set_hdr_static_info_packet(
2522 		struct dc_info_packet *info_packet,
2523 		struct dc_stream_state *stream)
2524 {
2525 	/* HDR Static Metadata info packet for HDR10 */
2526 
2527 	if (!stream->hdr_static_metadata.valid ||
2528 			stream->use_dynamic_meta)
2529 		return;
2530 
2531 	*info_packet = stream->hdr_static_metadata;
2532 }
2533 
2534 static void set_vsc_info_packet(
2535 		struct dc_info_packet *info_packet,
2536 		struct dc_stream_state *stream)
2537 {
2538 	if (!stream->vsc_infopacket.valid)
2539 		return;
2540 
2541 	*info_packet = stream->vsc_infopacket;
2542 }
2543 
2544 void dc_resource_state_destruct(struct dc_state *context)
2545 {
2546 	int i, j;
2547 
2548 	for (i = 0; i < context->stream_count; i++) {
2549 		for (j = 0; j < context->stream_status[i].plane_count; j++)
2550 			dc_plane_state_release(
2551 				context->stream_status[i].plane_states[j]);
2552 
2553 		context->stream_status[i].plane_count = 0;
2554 		dc_stream_release(context->streams[i]);
2555 		context->streams[i] = NULL;
2556 	}
2557 	context->stream_count = 0;
2558 }
2559 
2560 void dc_resource_state_copy_construct(
2561 		const struct dc_state *src_ctx,
2562 		struct dc_state *dst_ctx)
2563 {
2564 	int i, j;
2565 	struct kref refcount = dst_ctx->refcount;
2566 
2567 	*dst_ctx = *src_ctx;
2568 
2569 	for (i = 0; i < MAX_PIPES; i++) {
2570 		struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
2571 
2572 		if (cur_pipe->top_pipe)
2573 			cur_pipe->top_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2574 
2575 		if (cur_pipe->bottom_pipe)
2576 			cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2577 
2578 		if (cur_pipe->next_odm_pipe)
2579 			cur_pipe->next_odm_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2580 
2581 		if (cur_pipe->prev_odm_pipe)
2582 			cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2583 	}
2584 
2585 	for (i = 0; i < dst_ctx->stream_count; i++) {
2586 		dc_stream_retain(dst_ctx->streams[i]);
2587 		for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
2588 			dc_plane_state_retain(
2589 				dst_ctx->stream_status[i].plane_states[j]);
2590 	}
2591 
2592 	/* context refcount should not be overridden */
2593 	dst_ctx->refcount = refcount;
2594 
2595 }
2596 
2597 struct clock_source *dc_resource_find_first_free_pll(
2598 		struct resource_context *res_ctx,
2599 		const struct resource_pool *pool)
2600 {
2601 	int i;
2602 
2603 	for (i = 0; i < pool->clk_src_count; ++i) {
2604 		if (res_ctx->clock_source_ref_count[i] == 0)
2605 			return pool->clock_sources[i];
2606 	}
2607 
2608 	return NULL;
2609 }
2610 
2611 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
2612 {
2613 	enum signal_type signal = SIGNAL_TYPE_NONE;
2614 	struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
2615 
2616 	/* default all packets to invalid */
2617 	info->avi.valid = false;
2618 	info->gamut.valid = false;
2619 	info->vendor.valid = false;
2620 	info->spd.valid = false;
2621 	info->hdrsmd.valid = false;
2622 	info->vsc.valid = false;
2623 
2624 	signal = pipe_ctx->stream->signal;
2625 
2626 	/* HDMi and DP have different info packets*/
2627 	if (dc_is_hdmi_signal(signal)) {
2628 		set_avi_info_frame(&info->avi, pipe_ctx);
2629 
2630 		set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
2631 
2632 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
2633 
2634 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2635 
2636 	} else if (dc_is_dp_signal(signal)) {
2637 		set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
2638 
2639 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
2640 
2641 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2642 	}
2643 
2644 	patch_gamut_packet_checksum(&info->gamut);
2645 }
2646 
2647 enum dc_status resource_map_clock_resources(
2648 		const struct dc  *dc,
2649 		struct dc_state *context,
2650 		struct dc_stream_state *stream)
2651 {
2652 	/* acquire new resources */
2653 	const struct resource_pool *pool = dc->res_pool;
2654 	struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
2655 				&context->res_ctx, stream);
2656 
2657 	if (!pipe_ctx)
2658 		return DC_ERROR_UNEXPECTED;
2659 
2660 	if (dc_is_dp_signal(pipe_ctx->stream->signal)
2661 		|| pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
2662 		pipe_ctx->clock_source = pool->dp_clock_source;
2663 	else {
2664 		pipe_ctx->clock_source = NULL;
2665 
2666 		if (!dc->config.disable_disp_pll_sharing)
2667 			pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
2668 				&context->res_ctx,
2669 				pipe_ctx);
2670 
2671 		if (pipe_ctx->clock_source == NULL)
2672 			pipe_ctx->clock_source =
2673 				dc_resource_find_first_free_pll(
2674 					&context->res_ctx,
2675 					pool);
2676 	}
2677 
2678 	if (pipe_ctx->clock_source == NULL)
2679 		return DC_NO_CLOCK_SOURCE_RESOURCE;
2680 
2681 	resource_reference_clock_source(
2682 		&context->res_ctx, pool,
2683 		pipe_ctx->clock_source);
2684 
2685 	return DC_OK;
2686 }
2687 
2688 /*
2689  * Note: We need to disable output if clock sources change,
2690  * since bios does optimization and doesn't apply if changing
2691  * PHY when not already disabled.
2692  */
2693 bool pipe_need_reprogram(
2694 		struct pipe_ctx *pipe_ctx_old,
2695 		struct pipe_ctx *pipe_ctx)
2696 {
2697 	if (!pipe_ctx_old->stream)
2698 		return false;
2699 
2700 	if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
2701 		return true;
2702 
2703 	if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
2704 		return true;
2705 
2706 	if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
2707 		return true;
2708 
2709 	if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
2710 			&& pipe_ctx_old->stream != pipe_ctx->stream)
2711 		return true;
2712 
2713 	if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
2714 		return true;
2715 
2716 	if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
2717 		return true;
2718 
2719 	if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
2720 		return true;
2721 
2722 	if (false == pipe_ctx_old->stream->link->link_state_valid &&
2723 		false == pipe_ctx_old->stream->dpms_off)
2724 		return true;
2725 
2726 	if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
2727 		return true;
2728 
2729 	/* DIG link encoder resource assignment for stream changed. */
2730 	if (pipe_ctx_old->stream->link_enc != pipe_ctx->stream->link_enc)
2731 		return true;
2732 
2733 	return false;
2734 }
2735 
2736 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
2737 		struct bit_depth_reduction_params *fmt_bit_depth)
2738 {
2739 	enum dc_dither_option option = stream->dither_option;
2740 	enum dc_pixel_encoding pixel_encoding =
2741 			stream->timing.pixel_encoding;
2742 
2743 	memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
2744 
2745 	if (option == DITHER_OPTION_DEFAULT) {
2746 		switch (stream->timing.display_color_depth) {
2747 		case COLOR_DEPTH_666:
2748 			option = DITHER_OPTION_SPATIAL6;
2749 			break;
2750 		case COLOR_DEPTH_888:
2751 			option = DITHER_OPTION_SPATIAL8;
2752 			break;
2753 		case COLOR_DEPTH_101010:
2754 			option = DITHER_OPTION_SPATIAL10;
2755 			break;
2756 		default:
2757 			option = DITHER_OPTION_DISABLE;
2758 		}
2759 	}
2760 
2761 	if (option == DITHER_OPTION_DISABLE)
2762 		return;
2763 
2764 	if (option == DITHER_OPTION_TRUN6) {
2765 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2766 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
2767 	} else if (option == DITHER_OPTION_TRUN8 ||
2768 			option == DITHER_OPTION_TRUN8_SPATIAL6 ||
2769 			option == DITHER_OPTION_TRUN8_FM6) {
2770 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2771 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
2772 	} else if (option == DITHER_OPTION_TRUN10        ||
2773 			option == DITHER_OPTION_TRUN10_SPATIAL6   ||
2774 			option == DITHER_OPTION_TRUN10_SPATIAL8   ||
2775 			option == DITHER_OPTION_TRUN10_FM8     ||
2776 			option == DITHER_OPTION_TRUN10_FM6     ||
2777 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2778 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2779 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2780 	}
2781 
2782 	/* special case - Formatter can only reduce by 4 bits at most.
2783 	 * When reducing from 12 to 6 bits,
2784 	 * HW recommends we use trunc with round mode
2785 	 * (if we did nothing, trunc to 10 bits would be used)
2786 	 * note that any 12->10 bit reduction is ignored prior to DCE8,
2787 	 * as the input was 10 bits.
2788 	 */
2789 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
2790 			option == DITHER_OPTION_SPATIAL6 ||
2791 			option == DITHER_OPTION_FM6) {
2792 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2793 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2794 		fmt_bit_depth->flags.TRUNCATE_MODE = 1;
2795 	}
2796 
2797 	/* spatial dither
2798 	 * note that spatial modes 1-3 are never used
2799 	 */
2800 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM            ||
2801 			option == DITHER_OPTION_SPATIAL6 ||
2802 			option == DITHER_OPTION_TRUN10_SPATIAL6      ||
2803 			option == DITHER_OPTION_TRUN8_SPATIAL6) {
2804 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2805 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
2806 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2807 		fmt_bit_depth->flags.RGB_RANDOM =
2808 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2809 	} else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM            ||
2810 			option == DITHER_OPTION_SPATIAL8 ||
2811 			option == DITHER_OPTION_SPATIAL8_FM6        ||
2812 			option == DITHER_OPTION_TRUN10_SPATIAL8      ||
2813 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2814 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2815 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
2816 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2817 		fmt_bit_depth->flags.RGB_RANDOM =
2818 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2819 	} else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
2820 			option == DITHER_OPTION_SPATIAL10 ||
2821 			option == DITHER_OPTION_SPATIAL10_FM8 ||
2822 			option == DITHER_OPTION_SPATIAL10_FM6) {
2823 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2824 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
2825 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2826 		fmt_bit_depth->flags.RGB_RANDOM =
2827 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2828 	}
2829 
2830 	if (option == DITHER_OPTION_SPATIAL6 ||
2831 			option == DITHER_OPTION_SPATIAL8 ||
2832 			option == DITHER_OPTION_SPATIAL10) {
2833 		fmt_bit_depth->flags.FRAME_RANDOM = 0;
2834 	} else {
2835 		fmt_bit_depth->flags.FRAME_RANDOM = 1;
2836 	}
2837 
2838 	//////////////////////
2839 	//// temporal dither
2840 	//////////////////////
2841 	if (option == DITHER_OPTION_FM6           ||
2842 			option == DITHER_OPTION_SPATIAL8_FM6     ||
2843 			option == DITHER_OPTION_SPATIAL10_FM6     ||
2844 			option == DITHER_OPTION_TRUN10_FM6     ||
2845 			option == DITHER_OPTION_TRUN8_FM6      ||
2846 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2847 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2848 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
2849 	} else if (option == DITHER_OPTION_FM8        ||
2850 			option == DITHER_OPTION_SPATIAL10_FM8  ||
2851 			option == DITHER_OPTION_TRUN10_FM8) {
2852 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2853 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
2854 	} else if (option == DITHER_OPTION_FM10) {
2855 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2856 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
2857 	}
2858 
2859 	fmt_bit_depth->pixel_encoding = pixel_encoding;
2860 }
2861 
2862 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
2863 {
2864 	struct dc_link *link = stream->link;
2865 	struct timing_generator *tg = dc->res_pool->timing_generators[0];
2866 	enum dc_status res = DC_OK;
2867 
2868 	calculate_phy_pix_clks(stream);
2869 
2870 	if (!tg->funcs->validate_timing(tg, &stream->timing))
2871 		res = DC_FAIL_CONTROLLER_VALIDATE;
2872 
2873 	if (res == DC_OK) {
2874 		if (!link->link_enc->funcs->validate_output_with_stream(
2875 						link->link_enc, stream))
2876 			res = DC_FAIL_ENC_VALIDATE;
2877 	}
2878 
2879 	/* TODO: validate audio ASIC caps, encoder */
2880 
2881 	if (res == DC_OK)
2882 		res = dc_link_validate_mode_timing(stream,
2883 		      link,
2884 		      &stream->timing);
2885 
2886 	return res;
2887 }
2888 
2889 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
2890 {
2891 	enum dc_status res = DC_OK;
2892 
2893 	/* TODO For now validates pixel format only */
2894 	if (dc->res_pool->funcs->validate_plane)
2895 		return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
2896 
2897 	return res;
2898 }
2899 
2900 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
2901 {
2902 	switch (format) {
2903 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
2904 		return 8;
2905 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
2906 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
2907 		return 12;
2908 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
2909 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
2910 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
2911 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
2912 		return 16;
2913 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
2914 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
2915 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
2916 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
2917 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
2918 #if defined(CONFIG_DRM_AMD_DC_DCN)
2919 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
2920 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
2921 #endif
2922 		return 32;
2923 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
2924 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
2925 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
2926 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
2927 		return 64;
2928 	default:
2929 		ASSERT_CRITICAL(false);
2930 		return -1;
2931 	}
2932 }
2933 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
2934 {
2935 	if (modes) {
2936 		if (modes->sample_rates.rate.RATE_192)
2937 			return 192000;
2938 		if (modes->sample_rates.rate.RATE_176_4)
2939 			return 176400;
2940 		if (modes->sample_rates.rate.RATE_96)
2941 			return 96000;
2942 		if (modes->sample_rates.rate.RATE_88_2)
2943 			return 88200;
2944 		if (modes->sample_rates.rate.RATE_48)
2945 			return 48000;
2946 		if (modes->sample_rates.rate.RATE_44_1)
2947 			return 44100;
2948 		if (modes->sample_rates.rate.RATE_32)
2949 			return 32000;
2950 	}
2951 	/*original logic when no audio info*/
2952 	return 441000;
2953 }
2954 
2955 void get_audio_check(struct audio_info *aud_modes,
2956 	struct audio_check *audio_chk)
2957 {
2958 	unsigned int i;
2959 	unsigned int max_sample_rate = 0;
2960 
2961 	if (aud_modes) {
2962 		audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
2963 
2964 		audio_chk->max_audiosample_rate = 0;
2965 		for (i = 0; i < aud_modes->mode_count; i++) {
2966 			max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
2967 			if (audio_chk->max_audiosample_rate < max_sample_rate)
2968 				audio_chk->max_audiosample_rate = max_sample_rate;
2969 			/*dts takes the same as type 2: AP = 0.25*/
2970 		}
2971 		/*check which one take more bandwidth*/
2972 		if (audio_chk->max_audiosample_rate > 192000)
2973 			audio_chk->audio_packet_type = 0x9;/*AP =1*/
2974 		audio_chk->acat = 0;/*not support*/
2975 	}
2976 }
2977 
2978