1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include <linux/slab.h>
27 
28 #include "dm_services.h"
29 
30 #include "resource.h"
31 #include "include/irq_service_interface.h"
32 #include "link_encoder.h"
33 #include "stream_encoder.h"
34 #include "opp.h"
35 #include "timing_generator.h"
36 #include "transform.h"
37 #include "dccg.h"
38 #include "dchubbub.h"
39 #include "dpp.h"
40 #include "core_types.h"
41 #include "set_mode_types.h"
42 #include "virtual/virtual_stream_encoder.h"
43 #include "dpcd_defs.h"
44 #include "link_enc_cfg.h"
45 #include "dc_link_dp.h"
46 
47 #if defined(CONFIG_DRM_AMD_DC_SI)
48 #include "dce60/dce60_resource.h"
49 #endif
50 #include "dce80/dce80_resource.h"
51 #include "dce100/dce100_resource.h"
52 #include "dce110/dce110_resource.h"
53 #include "dce112/dce112_resource.h"
54 #include "dce120/dce120_resource.h"
55 #if defined(CONFIG_DRM_AMD_DC_DCN)
56 #include "dcn10/dcn10_resource.h"
57 #include "dcn20/dcn20_resource.h"
58 #include "dcn21/dcn21_resource.h"
59 #include "dcn201/dcn201_resource.h"
60 #include "dcn30/dcn30_resource.h"
61 #include "dcn301/dcn301_resource.h"
62 #include "dcn302/dcn302_resource.h"
63 #include "dcn303/dcn303_resource.h"
64 #include "dcn31/dcn31_resource.h"
65 #endif
66 
67 #define DC_LOGGER_INIT(logger)
68 
69 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
70 {
71 	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
72 	switch (asic_id.chip_family) {
73 
74 #if defined(CONFIG_DRM_AMD_DC_SI)
75 	case FAMILY_SI:
76 		if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
77 		    ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
78 		    ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
79 			dc_version = DCE_VERSION_6_0;
80 		else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
81 			dc_version = DCE_VERSION_6_4;
82 		else
83 			dc_version = DCE_VERSION_6_1;
84 		break;
85 #endif
86 	case FAMILY_CI:
87 		dc_version = DCE_VERSION_8_0;
88 		break;
89 	case FAMILY_KV:
90 		if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
91 		    ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
92 		    ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
93 			dc_version = DCE_VERSION_8_3;
94 		else
95 			dc_version = DCE_VERSION_8_1;
96 		break;
97 	case FAMILY_CZ:
98 		dc_version = DCE_VERSION_11_0;
99 		break;
100 
101 	case FAMILY_VI:
102 		if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
103 				ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
104 			dc_version = DCE_VERSION_10_0;
105 			break;
106 		}
107 		if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
108 				ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
109 				ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
110 			dc_version = DCE_VERSION_11_2;
111 		}
112 		if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
113 			dc_version = DCE_VERSION_11_22;
114 		break;
115 	case FAMILY_AI:
116 		if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
117 			dc_version = DCE_VERSION_12_1;
118 		else
119 			dc_version = DCE_VERSION_12_0;
120 		break;
121 #if defined(CONFIG_DRM_AMD_DC_DCN)
122 	case FAMILY_RV:
123 		dc_version = DCN_VERSION_1_0;
124 		if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
125 			dc_version = DCN_VERSION_1_01;
126 		if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
127 			dc_version = DCN_VERSION_2_1;
128 		if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
129 			dc_version = DCN_VERSION_2_1;
130 		break;
131 
132 	case FAMILY_NV:
133 		dc_version = DCN_VERSION_2_0;
134 		if (asic_id.chip_id == DEVICE_ID_NV_13FE) {
135 			dc_version = DCN_VERSION_2_01;
136 			break;
137 		}
138 		if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
139 			dc_version = DCN_VERSION_3_0;
140 		if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
141 			dc_version = DCN_VERSION_3_02;
142 		if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
143 			dc_version = DCN_VERSION_3_03;
144 		break;
145 
146 	case FAMILY_VGH:
147 		dc_version = DCN_VERSION_3_01;
148 		break;
149 
150 	case FAMILY_YELLOW_CARP:
151 		if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
152 			dc_version = DCN_VERSION_3_1;
153 		break;
154 #endif
155 
156 	default:
157 		dc_version = DCE_VERSION_UNKNOWN;
158 		break;
159 	}
160 	return dc_version;
161 }
162 
163 struct resource_pool *dc_create_resource_pool(struct dc  *dc,
164 					      const struct dc_init_data *init_data,
165 					      enum dce_version dc_version)
166 {
167 	struct resource_pool *res_pool = NULL;
168 
169 	switch (dc_version) {
170 #if defined(CONFIG_DRM_AMD_DC_SI)
171 	case DCE_VERSION_6_0:
172 		res_pool = dce60_create_resource_pool(
173 			init_data->num_virtual_links, dc);
174 		break;
175 	case DCE_VERSION_6_1:
176 		res_pool = dce61_create_resource_pool(
177 			init_data->num_virtual_links, dc);
178 		break;
179 	case DCE_VERSION_6_4:
180 		res_pool = dce64_create_resource_pool(
181 			init_data->num_virtual_links, dc);
182 		break;
183 #endif
184 	case DCE_VERSION_8_0:
185 		res_pool = dce80_create_resource_pool(
186 				init_data->num_virtual_links, dc);
187 		break;
188 	case DCE_VERSION_8_1:
189 		res_pool = dce81_create_resource_pool(
190 				init_data->num_virtual_links, dc);
191 		break;
192 	case DCE_VERSION_8_3:
193 		res_pool = dce83_create_resource_pool(
194 				init_data->num_virtual_links, dc);
195 		break;
196 	case DCE_VERSION_10_0:
197 		res_pool = dce100_create_resource_pool(
198 				init_data->num_virtual_links, dc);
199 		break;
200 	case DCE_VERSION_11_0:
201 		res_pool = dce110_create_resource_pool(
202 				init_data->num_virtual_links, dc,
203 				init_data->asic_id);
204 		break;
205 	case DCE_VERSION_11_2:
206 	case DCE_VERSION_11_22:
207 		res_pool = dce112_create_resource_pool(
208 				init_data->num_virtual_links, dc);
209 		break;
210 	case DCE_VERSION_12_0:
211 	case DCE_VERSION_12_1:
212 		res_pool = dce120_create_resource_pool(
213 				init_data->num_virtual_links, dc);
214 		break;
215 
216 #if defined(CONFIG_DRM_AMD_DC_DCN)
217 	case DCN_VERSION_1_0:
218 	case DCN_VERSION_1_01:
219 		res_pool = dcn10_create_resource_pool(init_data, dc);
220 		break;
221 	case DCN_VERSION_2_0:
222 		res_pool = dcn20_create_resource_pool(init_data, dc);
223 		break;
224 	case DCN_VERSION_2_1:
225 		res_pool = dcn21_create_resource_pool(init_data, dc);
226 		break;
227 	case DCN_VERSION_2_01:
228 		res_pool = dcn201_create_resource_pool(init_data, dc);
229 		break;
230 	case DCN_VERSION_3_0:
231 		res_pool = dcn30_create_resource_pool(init_data, dc);
232 		break;
233 	case DCN_VERSION_3_01:
234 		res_pool = dcn301_create_resource_pool(init_data, dc);
235 		break;
236 	case DCN_VERSION_3_02:
237 		res_pool = dcn302_create_resource_pool(init_data, dc);
238 		break;
239 	case DCN_VERSION_3_03:
240 		res_pool = dcn303_create_resource_pool(init_data, dc);
241 		break;
242 	case DCN_VERSION_3_1:
243 		res_pool = dcn31_create_resource_pool(init_data, dc);
244 		break;
245 #endif
246 	default:
247 		break;
248 	}
249 
250 	if (res_pool != NULL) {
251 		if (dc->ctx->dc_bios->fw_info_valid) {
252 			res_pool->ref_clocks.xtalin_clock_inKhz =
253 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
254 			/* initialize with firmware data first, no all
255 			 * ASIC have DCCG SW component. FPGA or
256 			 * simulation need initialization of
257 			 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
258 			 * with xtalin_clock_inKhz
259 			 */
260 			res_pool->ref_clocks.dccg_ref_clock_inKhz =
261 				res_pool->ref_clocks.xtalin_clock_inKhz;
262 			res_pool->ref_clocks.dchub_ref_clock_inKhz =
263 				res_pool->ref_clocks.xtalin_clock_inKhz;
264 		} else
265 			ASSERT_CRITICAL(false);
266 	}
267 
268 	return res_pool;
269 }
270 
271 void dc_destroy_resource_pool(struct dc  *dc)
272 {
273 	if (dc) {
274 		if (dc->res_pool)
275 			dc->res_pool->funcs->destroy(&dc->res_pool);
276 
277 		kfree(dc->hwseq);
278 	}
279 }
280 
281 static void update_num_audio(
282 	const struct resource_straps *straps,
283 	unsigned int *num_audio,
284 	struct audio_support *aud_support)
285 {
286 	aud_support->dp_audio = true;
287 	aud_support->hdmi_audio_native = false;
288 	aud_support->hdmi_audio_on_dongle = false;
289 
290 	if (straps->hdmi_disable == 0) {
291 		if (straps->dc_pinstraps_audio & 0x2) {
292 			aud_support->hdmi_audio_on_dongle = true;
293 			aud_support->hdmi_audio_native = true;
294 		}
295 	}
296 
297 	switch (straps->audio_stream_number) {
298 	case 0: /* multi streams supported */
299 		break;
300 	case 1: /* multi streams not supported */
301 		*num_audio = 1;
302 		break;
303 	default:
304 		DC_ERR("DC: unexpected audio fuse!\n");
305 	}
306 }
307 
308 bool resource_construct(
309 	unsigned int num_virtual_links,
310 	struct dc  *dc,
311 	struct resource_pool *pool,
312 	const struct resource_create_funcs *create_funcs)
313 {
314 	struct dc_context *ctx = dc->ctx;
315 	const struct resource_caps *caps = pool->res_cap;
316 	int i;
317 	unsigned int num_audio = caps->num_audio;
318 	struct resource_straps straps = {0};
319 
320 	if (create_funcs->read_dce_straps)
321 		create_funcs->read_dce_straps(dc->ctx, &straps);
322 
323 	pool->audio_count = 0;
324 	if (create_funcs->create_audio) {
325 		/* find the total number of streams available via the
326 		 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
327 		 * registers (one for each pin) starting from pin 1
328 		 * up to the max number of audio pins.
329 		 * We stop on the first pin where
330 		 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
331 		 */
332 		update_num_audio(&straps, &num_audio, &pool->audio_support);
333 		for (i = 0; i < caps->num_audio; i++) {
334 			struct audio *aud = create_funcs->create_audio(ctx, i);
335 
336 			if (aud == NULL) {
337 				DC_ERR("DC: failed to create audio!\n");
338 				return false;
339 			}
340 			if (!aud->funcs->endpoint_valid(aud)) {
341 				aud->funcs->destroy(&aud);
342 				break;
343 			}
344 			pool->audios[i] = aud;
345 			pool->audio_count++;
346 		}
347 	}
348 
349 	pool->stream_enc_count = 0;
350 	if (create_funcs->create_stream_encoder) {
351 		for (i = 0; i < caps->num_stream_encoder; i++) {
352 			pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
353 			if (pool->stream_enc[i] == NULL)
354 				DC_ERR("DC: failed to create stream_encoder!\n");
355 			pool->stream_enc_count++;
356 		}
357 	}
358 
359 #if defined(CONFIG_DRM_AMD_DC_DCN)
360 	pool->hpo_dp_stream_enc_count = 0;
361 	if (create_funcs->create_hpo_dp_stream_encoder) {
362 		for (i = 0; i < caps->num_hpo_dp_stream_encoder; i++) {
363 			pool->hpo_dp_stream_enc[i] = create_funcs->create_hpo_dp_stream_encoder(i+ENGINE_ID_HPO_DP_0, ctx);
364 			if (pool->hpo_dp_stream_enc[i] == NULL)
365 				DC_ERR("DC: failed to create HPO DP stream encoder!\n");
366 			pool->hpo_dp_stream_enc_count++;
367 
368 		}
369 	}
370 
371 	pool->hpo_dp_link_enc_count = 0;
372 	if (create_funcs->create_hpo_dp_link_encoder) {
373 		for (i = 0; i < caps->num_hpo_dp_link_encoder; i++) {
374 			pool->hpo_dp_link_enc[i] = create_funcs->create_hpo_dp_link_encoder(i, ctx);
375 			if (pool->hpo_dp_link_enc[i] == NULL)
376 				DC_ERR("DC: failed to create HPO DP link encoder!\n");
377 			pool->hpo_dp_link_enc_count++;
378 		}
379 	}
380 #endif
381 
382 #if defined(CONFIG_DRM_AMD_DC_DCN)
383 	for (i = 0; i < caps->num_mpc_3dlut; i++) {
384 		pool->mpc_lut[i] = dc_create_3dlut_func();
385 		if (pool->mpc_lut[i] == NULL)
386 			DC_ERR("DC: failed to create MPC 3dlut!\n");
387 		pool->mpc_shaper[i] = dc_create_transfer_func();
388 		if (pool->mpc_shaper[i] == NULL)
389 			DC_ERR("DC: failed to create MPC shaper!\n");
390 	}
391 #endif
392 	dc->caps.dynamic_audio = false;
393 	if (pool->audio_count < pool->stream_enc_count) {
394 		dc->caps.dynamic_audio = true;
395 	}
396 	for (i = 0; i < num_virtual_links; i++) {
397 		pool->stream_enc[pool->stream_enc_count] =
398 			virtual_stream_encoder_create(
399 					ctx, ctx->dc_bios);
400 		if (pool->stream_enc[pool->stream_enc_count] == NULL) {
401 			DC_ERR("DC: failed to create stream_encoder!\n");
402 			return false;
403 		}
404 		pool->stream_enc_count++;
405 	}
406 
407 	dc->hwseq = create_funcs->create_hwseq(ctx);
408 
409 	return true;
410 }
411 static int find_matching_clock_source(
412 		const struct resource_pool *pool,
413 		struct clock_source *clock_source)
414 {
415 
416 	int i;
417 
418 	for (i = 0; i < pool->clk_src_count; i++) {
419 		if (pool->clock_sources[i] == clock_source)
420 			return i;
421 	}
422 	return -1;
423 }
424 
425 void resource_unreference_clock_source(
426 		struct resource_context *res_ctx,
427 		const struct resource_pool *pool,
428 		struct clock_source *clock_source)
429 {
430 	int i = find_matching_clock_source(pool, clock_source);
431 
432 	if (i > -1)
433 		res_ctx->clock_source_ref_count[i]--;
434 
435 	if (pool->dp_clock_source == clock_source)
436 		res_ctx->dp_clock_source_ref_count--;
437 }
438 
439 void resource_reference_clock_source(
440 		struct resource_context *res_ctx,
441 		const struct resource_pool *pool,
442 		struct clock_source *clock_source)
443 {
444 	int i = find_matching_clock_source(pool, clock_source);
445 
446 	if (i > -1)
447 		res_ctx->clock_source_ref_count[i]++;
448 
449 	if (pool->dp_clock_source == clock_source)
450 		res_ctx->dp_clock_source_ref_count++;
451 }
452 
453 int resource_get_clock_source_reference(
454 		struct resource_context *res_ctx,
455 		const struct resource_pool *pool,
456 		struct clock_source *clock_source)
457 {
458 	int i = find_matching_clock_source(pool, clock_source);
459 
460 	if (i > -1)
461 		return res_ctx->clock_source_ref_count[i];
462 
463 	if (pool->dp_clock_source == clock_source)
464 		return res_ctx->dp_clock_source_ref_count;
465 
466 	return -1;
467 }
468 
469 bool resource_are_vblanks_synchronizable(
470 	struct dc_stream_state *stream1,
471 	struct dc_stream_state *stream2)
472 {
473 	uint32_t base60_refresh_rates[] = {10, 20, 5};
474 	uint8_t i;
475 	uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
476 	uint64_t frame_time_diff;
477 
478 	if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
479 		stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
480 		dc_is_dp_signal(stream1->signal) &&
481 		dc_is_dp_signal(stream2->signal) &&
482 		false == stream1->has_non_synchronizable_pclk &&
483 		false == stream2->has_non_synchronizable_pclk &&
484 		stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
485 		stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
486 		/* disable refresh rates higher than 60Hz for now */
487 		if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
488 				stream1->timing.v_total > 60)
489 			return false;
490 		if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
491 				stream2->timing.v_total > 60)
492 			return false;
493 		frame_time_diff = (uint64_t)10000 *
494 			stream1->timing.h_total *
495 			stream1->timing.v_total *
496 			stream2->timing.pix_clk_100hz;
497 		frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
498 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
499 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
500 		for (i = 0; i < rr_count; i++) {
501 			int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
502 
503 			if (diff < 0)
504 				diff = -diff;
505 			if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
506 				return true;
507 		}
508 	}
509 	return false;
510 }
511 
512 bool resource_are_streams_timing_synchronizable(
513 	struct dc_stream_state *stream1,
514 	struct dc_stream_state *stream2)
515 {
516 	if (stream1->timing.h_total != stream2->timing.h_total)
517 		return false;
518 
519 	if (stream1->timing.v_total != stream2->timing.v_total)
520 		return false;
521 
522 	if (stream1->timing.h_addressable
523 				!= stream2->timing.h_addressable)
524 		return false;
525 
526 	if (stream1->timing.v_addressable
527 				!= stream2->timing.v_addressable)
528 		return false;
529 
530 	if (stream1->timing.v_front_porch
531 				!= stream2->timing.v_front_porch)
532 		return false;
533 
534 	if (stream1->timing.pix_clk_100hz
535 				!= stream2->timing.pix_clk_100hz)
536 		return false;
537 
538 	if (stream1->clamping.c_depth != stream2->clamping.c_depth)
539 		return false;
540 
541 	if (stream1->phy_pix_clk != stream2->phy_pix_clk
542 			&& (!dc_is_dp_signal(stream1->signal)
543 			|| !dc_is_dp_signal(stream2->signal)))
544 		return false;
545 
546 	if (stream1->view_format != stream2->view_format)
547 		return false;
548 
549 	if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
550 		return false;
551 
552 	return true;
553 }
554 static bool is_dp_and_hdmi_sharable(
555 		struct dc_stream_state *stream1,
556 		struct dc_stream_state *stream2)
557 {
558 	if (stream1->ctx->dc->caps.disable_dp_clk_share)
559 		return false;
560 
561 	if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
562 		stream2->clamping.c_depth != COLOR_DEPTH_888)
563 		return false;
564 
565 	return true;
566 
567 }
568 
569 static bool is_sharable_clk_src(
570 	const struct pipe_ctx *pipe_with_clk_src,
571 	const struct pipe_ctx *pipe)
572 {
573 	if (pipe_with_clk_src->clock_source == NULL)
574 		return false;
575 
576 	if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
577 		return false;
578 
579 	if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
580 		(dc_is_dp_signal(pipe->stream->signal) &&
581 		!is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
582 				     pipe->stream)))
583 		return false;
584 
585 	if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
586 			&& dc_is_dual_link_signal(pipe->stream->signal))
587 		return false;
588 
589 	if (dc_is_hdmi_signal(pipe->stream->signal)
590 			&& dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
591 		return false;
592 
593 	if (!resource_are_streams_timing_synchronizable(
594 			pipe_with_clk_src->stream, pipe->stream))
595 		return false;
596 
597 	return true;
598 }
599 
600 struct clock_source *resource_find_used_clk_src_for_sharing(
601 					struct resource_context *res_ctx,
602 					struct pipe_ctx *pipe_ctx)
603 {
604 	int i;
605 
606 	for (i = 0; i < MAX_PIPES; i++) {
607 		if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
608 			return res_ctx->pipe_ctx[i].clock_source;
609 	}
610 
611 	return NULL;
612 }
613 
614 static enum pixel_format convert_pixel_format_to_dalsurface(
615 		enum surface_pixel_format surface_pixel_format)
616 {
617 	enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
618 
619 	switch (surface_pixel_format) {
620 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
621 		dal_pixel_format = PIXEL_FORMAT_INDEX8;
622 		break;
623 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
624 		dal_pixel_format = PIXEL_FORMAT_RGB565;
625 		break;
626 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
627 		dal_pixel_format = PIXEL_FORMAT_RGB565;
628 		break;
629 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
630 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
631 		break;
632 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
633 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
634 		break;
635 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
636 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
637 		break;
638 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
639 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
640 		break;
641 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
642 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
643 		break;
644 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
645 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
646 		dal_pixel_format = PIXEL_FORMAT_FP16;
647 		break;
648 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
649 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
650 		dal_pixel_format = PIXEL_FORMAT_420BPP8;
651 		break;
652 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
653 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
654 		dal_pixel_format = PIXEL_FORMAT_420BPP10;
655 		break;
656 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
657 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
658 	default:
659 		dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
660 		break;
661 	}
662 	return dal_pixel_format;
663 }
664 
665 static inline void get_vp_scan_direction(
666 	enum dc_rotation_angle rotation,
667 	bool horizontal_mirror,
668 	bool *orthogonal_rotation,
669 	bool *flip_vert_scan_dir,
670 	bool *flip_horz_scan_dir)
671 {
672 	*orthogonal_rotation = false;
673 	*flip_vert_scan_dir = false;
674 	*flip_horz_scan_dir = false;
675 	if (rotation == ROTATION_ANGLE_180) {
676 		*flip_vert_scan_dir = true;
677 		*flip_horz_scan_dir = true;
678 	} else if (rotation == ROTATION_ANGLE_90) {
679 		*orthogonal_rotation = true;
680 		*flip_horz_scan_dir = true;
681 	} else if (rotation == ROTATION_ANGLE_270) {
682 		*orthogonal_rotation = true;
683 		*flip_vert_scan_dir = true;
684 	}
685 
686 	if (horizontal_mirror)
687 		*flip_horz_scan_dir = !*flip_horz_scan_dir;
688 }
689 
690 int get_num_mpc_splits(struct pipe_ctx *pipe)
691 {
692 	int mpc_split_count = 0;
693 	struct pipe_ctx *other_pipe = pipe->bottom_pipe;
694 
695 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
696 		mpc_split_count++;
697 		other_pipe = other_pipe->bottom_pipe;
698 	}
699 	other_pipe = pipe->top_pipe;
700 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
701 		mpc_split_count++;
702 		other_pipe = other_pipe->top_pipe;
703 	}
704 
705 	return mpc_split_count;
706 }
707 
708 int get_num_odm_splits(struct pipe_ctx *pipe)
709 {
710 	int odm_split_count = 0;
711 	struct pipe_ctx *next_pipe = pipe->next_odm_pipe;
712 	while (next_pipe) {
713 		odm_split_count++;
714 		next_pipe = next_pipe->next_odm_pipe;
715 	}
716 	pipe = pipe->prev_odm_pipe;
717 	while (pipe) {
718 		odm_split_count++;
719 		pipe = pipe->prev_odm_pipe;
720 	}
721 	return odm_split_count;
722 }
723 
724 static void calculate_split_count_and_index(struct pipe_ctx *pipe_ctx, int *split_count, int *split_idx)
725 {
726 	*split_count = get_num_odm_splits(pipe_ctx);
727 	*split_idx = 0;
728 	if (*split_count == 0) {
729 		/*Check for mpc split*/
730 		struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
731 
732 		*split_count = get_num_mpc_splits(pipe_ctx);
733 		while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
734 			(*split_idx)++;
735 			split_pipe = split_pipe->top_pipe;
736 		}
737 	} else {
738 		/*Get odm split index*/
739 		struct pipe_ctx *split_pipe = pipe_ctx->prev_odm_pipe;
740 
741 		while (split_pipe) {
742 			(*split_idx)++;
743 			split_pipe = split_pipe->prev_odm_pipe;
744 		}
745 	}
746 }
747 
748 /*
749  * This is a preliminary vp size calculation to allow us to check taps support.
750  * The result is completely overridden afterwards.
751  */
752 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
753 {
754 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
755 
756 	data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
757 	data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
758 	data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
759 	data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
760 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
761 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
762 		swap(data->viewport.width, data->viewport.height);
763 		swap(data->viewport_c.width, data->viewport_c.height);
764 	}
765 }
766 
767 static void calculate_recout(struct pipe_ctx *pipe_ctx)
768 {
769 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
770 	const struct dc_stream_state *stream = pipe_ctx->stream;
771 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
772 	struct rect surf_clip = plane_state->clip_rect;
773 	bool split_tb = stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
774 	int split_count, split_idx;
775 
776 	calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
777 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
778 		split_idx = 0;
779 
780 	/*
781 	 * Only the leftmost ODM pipe should be offset by a nonzero distance
782 	 */
783 	if (!pipe_ctx->prev_odm_pipe || split_idx == split_count) {
784 		data->recout.x = stream->dst.x;
785 		if (stream->src.x < surf_clip.x)
786 			data->recout.x += (surf_clip.x - stream->src.x) * stream->dst.width
787 						/ stream->src.width;
788 	} else
789 		data->recout.x = 0;
790 
791 	if (stream->src.x > surf_clip.x)
792 		surf_clip.width -= stream->src.x - surf_clip.x;
793 	data->recout.width = surf_clip.width * stream->dst.width / stream->src.width;
794 	if (data->recout.width + data->recout.x > stream->dst.x + stream->dst.width)
795 		data->recout.width = stream->dst.x + stream->dst.width - data->recout.x;
796 
797 	data->recout.y = stream->dst.y;
798 	if (stream->src.y < surf_clip.y)
799 		data->recout.y += (surf_clip.y - stream->src.y) * stream->dst.height
800 						/ stream->src.height;
801 	else if (stream->src.y > surf_clip.y)
802 		surf_clip.height -= stream->src.y - surf_clip.y;
803 
804 	data->recout.height = surf_clip.height * stream->dst.height / stream->src.height;
805 	if (data->recout.height + data->recout.y > stream->dst.y + stream->dst.height)
806 		data->recout.height = stream->dst.y + stream->dst.height - data->recout.y;
807 
808 	/* Handle h & v split */
809 	if (split_tb) {
810 		ASSERT(data->recout.height % 2 == 0);
811 		data->recout.height /= 2;
812 	} else if (split_count) {
813 		if (!pipe_ctx->next_odm_pipe && !pipe_ctx->prev_odm_pipe) {
814 			/* extra pixels in the division remainder need to go to pipes after
815 			 * the extra pixel index minus one(epimo) defined here as:
816 			 */
817 			int epimo = split_count - data->recout.width % (split_count + 1);
818 
819 			data->recout.x += (data->recout.width / (split_count + 1)) * split_idx;
820 			if (split_idx > epimo)
821 				data->recout.x += split_idx - epimo - 1;
822 			ASSERT(stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE || data->recout.width % 2 == 0);
823 			data->recout.width = data->recout.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
824 		} else {
825 			/* odm */
826 			if (split_idx == split_count) {
827 				/* rightmost pipe is the remainder recout */
828 				data->recout.width -= data->h_active * split_count - data->recout.x;
829 
830 				/* ODM combine cases with MPO we can get negative widths */
831 				if (data->recout.width < 0)
832 					data->recout.width = 0;
833 
834 				data->recout.x = 0;
835 			} else
836 				data->recout.width = data->h_active - data->recout.x;
837 		}
838 	}
839 }
840 
841 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
842 {
843 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
844 	const struct dc_stream_state *stream = pipe_ctx->stream;
845 	struct rect surf_src = plane_state->src_rect;
846 	const int in_w = stream->src.width;
847 	const int in_h = stream->src.height;
848 	const int out_w = stream->dst.width;
849 	const int out_h = stream->dst.height;
850 
851 	/*Swap surf_src height and width since scaling ratios are in recout rotation*/
852 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
853 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
854 		swap(surf_src.height, surf_src.width);
855 
856 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
857 					surf_src.width,
858 					plane_state->dst_rect.width);
859 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
860 					surf_src.height,
861 					plane_state->dst_rect.height);
862 
863 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
864 		pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
865 	else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
866 		pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
867 
868 	pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
869 		pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
870 	pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
871 		pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
872 
873 	pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
874 	pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
875 
876 	if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
877 			|| pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
878 		pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
879 		pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
880 	}
881 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
882 			pipe_ctx->plane_res.scl_data.ratios.horz, 19);
883 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
884 			pipe_ctx->plane_res.scl_data.ratios.vert, 19);
885 	pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
886 			pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
887 	pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
888 			pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
889 }
890 
891 
892 /*
893  * We completely calculate vp offset, size and inits here based entirely on scaling
894  * ratios and recout for pixel perfect pipe combine.
895  */
896 static void calculate_init_and_vp(
897 		bool flip_scan_dir,
898 		int recout_offset_within_recout_full,
899 		int recout_size,
900 		int src_size,
901 		int taps,
902 		struct fixed31_32 ratio,
903 		struct fixed31_32 *init,
904 		int *vp_offset,
905 		int *vp_size)
906 {
907 	struct fixed31_32 temp;
908 	int int_part;
909 
910 	/*
911 	 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
912 	 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
913 	 * All following calculations are based on this logic.
914 	 *
915 	 * Init calculated according to formula:
916 	 * 	init = (scaling_ratio + number_of_taps + 1) / 2
917 	 * 	init_bot = init + scaling_ratio
918 	 * 	to get pixel perfect combine add the fraction from calculating vp offset
919 	 */
920 	temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
921 	*vp_offset = dc_fixpt_floor(temp);
922 	temp.value &= 0xffffffff;
923 	*init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
924 			dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
925 	/*
926 	 * If viewport has non 0 offset and there are more taps than covered by init then
927 	 * we should decrease the offset and increase init so we are never sampling
928 	 * outside of viewport.
929 	 */
930 	int_part = dc_fixpt_floor(*init);
931 	if (int_part < taps) {
932 		int_part = taps - int_part;
933 		if (int_part > *vp_offset)
934 			int_part = *vp_offset;
935 		*vp_offset -= int_part;
936 		*init = dc_fixpt_add_int(*init, int_part);
937 	}
938 	/*
939 	 * If taps are sampling outside of viewport at end of recout and there are more pixels
940 	 * available in the surface we should increase the viewport size, regardless set vp to
941 	 * only what is used.
942 	 */
943 	temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
944 	*vp_size = dc_fixpt_floor(temp);
945 	if (*vp_size + *vp_offset > src_size)
946 		*vp_size = src_size - *vp_offset;
947 
948 	/* We did all the math assuming we are scanning same direction as display does,
949 	 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
950 	 * is flipped we simply need to calculate offset from the other side of plane.
951 	 * Note that outside of viewport all scaling hardware works in recout space.
952 	 */
953 	if (flip_scan_dir)
954 		*vp_offset = src_size - *vp_offset - *vp_size;
955 }
956 
957 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
958 {
959 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
960 	const struct dc_stream_state *stream = pipe_ctx->stream;
961 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
962 	struct rect src = plane_state->src_rect;
963 	int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
964 				|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
965 	int split_count, split_idx, ro_lb, ro_tb, recout_full_x, recout_full_y;
966 	bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
967 
968 	calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
969 	/*
970 	 * recout full is what the recout would have been if we didnt clip
971 	 * the source plane at all. We only care about left(ro_lb) and top(ro_tb)
972 	 * offsets of recout within recout full because those are the directions
973 	 * we scan from and therefore the only ones that affect inits.
974 	 */
975 	recout_full_x = stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
976 			* stream->dst.width / stream->src.width;
977 	recout_full_y = stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
978 			* stream->dst.height / stream->src.height;
979 	if (pipe_ctx->prev_odm_pipe && split_idx)
980 		ro_lb = data->h_active * split_idx - recout_full_x;
981 	else
982 		ro_lb = data->recout.x - recout_full_x;
983 	ro_tb = data->recout.y - recout_full_y;
984 	ASSERT(ro_lb >= 0 && ro_tb >= 0);
985 
986 	/*
987 	 * Work in recout rotation since that requires less transformations
988 	 */
989 	get_vp_scan_direction(
990 			plane_state->rotation,
991 			plane_state->horizontal_mirror,
992 			&orthogonal_rotation,
993 			&flip_vert_scan_dir,
994 			&flip_horz_scan_dir);
995 
996 	if (orthogonal_rotation) {
997 		swap(src.width, src.height);
998 		swap(flip_vert_scan_dir, flip_horz_scan_dir);
999 	}
1000 
1001 	calculate_init_and_vp(
1002 			flip_horz_scan_dir,
1003 			ro_lb,
1004 			data->recout.width,
1005 			src.width,
1006 			data->taps.h_taps,
1007 			data->ratios.horz,
1008 			&data->inits.h,
1009 			&data->viewport.x,
1010 			&data->viewport.width);
1011 	calculate_init_and_vp(
1012 			flip_horz_scan_dir,
1013 			ro_lb,
1014 			data->recout.width,
1015 			src.width / vpc_div,
1016 			data->taps.h_taps_c,
1017 			data->ratios.horz_c,
1018 			&data->inits.h_c,
1019 			&data->viewport_c.x,
1020 			&data->viewport_c.width);
1021 	calculate_init_and_vp(
1022 			flip_vert_scan_dir,
1023 			ro_tb,
1024 			data->recout.height,
1025 			src.height,
1026 			data->taps.v_taps,
1027 			data->ratios.vert,
1028 			&data->inits.v,
1029 			&data->viewport.y,
1030 			&data->viewport.height);
1031 	calculate_init_and_vp(
1032 			flip_vert_scan_dir,
1033 			ro_tb,
1034 			data->recout.height,
1035 			src.height / vpc_div,
1036 			data->taps.v_taps_c,
1037 			data->ratios.vert_c,
1038 			&data->inits.v_c,
1039 			&data->viewport_c.y,
1040 			&data->viewport_c.height);
1041 	if (orthogonal_rotation) {
1042 		swap(data->viewport.x, data->viewport.y);
1043 		swap(data->viewport.width, data->viewport.height);
1044 		swap(data->viewport_c.x, data->viewport_c.y);
1045 		swap(data->viewport_c.width, data->viewport_c.height);
1046 	}
1047 	data->viewport.x += src.x;
1048 	data->viewport.y += src.y;
1049 	ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1050 	data->viewport_c.x += src.x / vpc_div;
1051 	data->viewport_c.y += src.y / vpc_div;
1052 }
1053 
1054 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1055 {
1056 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1057 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1058 	bool res = false;
1059 	DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1060 
1061 	pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1062 			pipe_ctx->plane_state->format);
1063 
1064 	/* Timing borders are part of vactive that we are also supposed to skip in addition
1065 	 * to any stream dst offset. Since dm logic assumes dst is in addressable
1066 	 * space we need to add the left and top borders to dst offsets temporarily.
1067 	 * TODO: fix in DM, stream dst is supposed to be in vactive
1068 	 */
1069 	pipe_ctx->stream->dst.x += timing->h_border_left;
1070 	pipe_ctx->stream->dst.y += timing->v_border_top;
1071 
1072 	/* Calculate H and V active size */
1073 	pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable +
1074 			timing->h_border_left + timing->h_border_right;
1075 	pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable +
1076 		timing->v_border_top + timing->v_border_bottom;
1077 	if (pipe_ctx->next_odm_pipe || pipe_ctx->prev_odm_pipe)
1078 		pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx) + 1;
1079 
1080 	/* depends on h_active */
1081 	calculate_recout(pipe_ctx);
1082 	/* depends on pixel format */
1083 	calculate_scaling_ratios(pipe_ctx);
1084 	/* depends on scaling ratios and recout, does not calculate offset yet */
1085 	calculate_viewport_size(pipe_ctx);
1086 
1087 	/* Stopgap for validation of ODM + MPO on one side of screen case */
1088 	if (pipe_ctx->plane_res.scl_data.viewport.height < 1 ||
1089 			pipe_ctx->plane_res.scl_data.viewport.width < 1)
1090 		return false;
1091 
1092 	/*
1093 	 * LB calculations depend on vp size, h/v_active and scaling ratios
1094 	 * Setting line buffer pixel depth to 24bpp yields banding
1095 	 * on certain displays, such as the Sharp 4k. 36bpp is needed
1096 	 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1097 	 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1098 	 * precision on at least DCN display engines. However, at least
1099 	 * Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1100 	 * so use only 30 bpp on DCE_VERSION_11_0. Testing with DCE 11.2 and 8.3
1101 	 * did not show such problems, so this seems to be the exception.
1102 	 */
1103 	if (plane_state->ctx->dce_version > DCE_VERSION_11_0)
1104 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1105 	else
1106 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1107 
1108 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1109 
1110 	if (pipe_ctx->plane_res.xfm != NULL)
1111 		res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1112 				pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1113 
1114 	if (pipe_ctx->plane_res.dpp != NULL)
1115 		res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1116 				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1117 
1118 
1119 	if (!res) {
1120 		/* Try 24 bpp linebuffer */
1121 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1122 
1123 		if (pipe_ctx->plane_res.xfm != NULL)
1124 			res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1125 					pipe_ctx->plane_res.xfm,
1126 					&pipe_ctx->plane_res.scl_data,
1127 					&plane_state->scaling_quality);
1128 
1129 		if (pipe_ctx->plane_res.dpp != NULL)
1130 			res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1131 					pipe_ctx->plane_res.dpp,
1132 					&pipe_ctx->plane_res.scl_data,
1133 					&plane_state->scaling_quality);
1134 	}
1135 
1136 	/*
1137 	 * Depends on recout, scaling ratios, h_active and taps
1138 	 * May need to re-check lb size after this in some obscure scenario
1139 	 */
1140 	if (res)
1141 		calculate_inits_and_viewports(pipe_ctx);
1142 
1143 	/*
1144 	 * Handle side by side and top bottom 3d recout offsets after vp calculation
1145 	 * since 3d is special and needs to calculate vp as if there is no recout offset
1146 	 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1147 	 */
1148 	if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1149 		ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1150 			(pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1151 				pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1152 		if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1153 			pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1154 		else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1155 			pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1156 	}
1157 
1158 	if (!pipe_ctx->stream->ctx->dc->config.enable_windowed_mpo_odm) {
1159 		if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE ||
1160 				pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1161 			res = false;
1162 	} else {
1163 		/* Clamp minimum viewport size */
1164 		if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE)
1165 			pipe_ctx->plane_res.scl_data.viewport.height = MIN_VIEWPORT_SIZE;
1166 		if (pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1167 			pipe_ctx->plane_res.scl_data.viewport.width = MIN_VIEWPORT_SIZE;
1168 	}
1169 
1170 	DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d  Recout: height:%d width:%d x:%d y:%d  HACTIVE:%d VACTIVE:%d\n"
1171 			"src_rect: height:%d width:%d x:%d y:%d  dst_rect: height:%d width:%d x:%d y:%d  clip_rect: height:%d width:%d x:%d y:%d\n",
1172 			__func__,
1173 			pipe_ctx->pipe_idx,
1174 			pipe_ctx->plane_res.scl_data.viewport.height,
1175 			pipe_ctx->plane_res.scl_data.viewport.width,
1176 			pipe_ctx->plane_res.scl_data.viewport.x,
1177 			pipe_ctx->plane_res.scl_data.viewport.y,
1178 			pipe_ctx->plane_res.scl_data.recout.height,
1179 			pipe_ctx->plane_res.scl_data.recout.width,
1180 			pipe_ctx->plane_res.scl_data.recout.x,
1181 			pipe_ctx->plane_res.scl_data.recout.y,
1182 			pipe_ctx->plane_res.scl_data.h_active,
1183 			pipe_ctx->plane_res.scl_data.v_active,
1184 			plane_state->src_rect.height,
1185 			plane_state->src_rect.width,
1186 			plane_state->src_rect.x,
1187 			plane_state->src_rect.y,
1188 			plane_state->dst_rect.height,
1189 			plane_state->dst_rect.width,
1190 			plane_state->dst_rect.x,
1191 			plane_state->dst_rect.y,
1192 			plane_state->clip_rect.height,
1193 			plane_state->clip_rect.width,
1194 			plane_state->clip_rect.x,
1195 			plane_state->clip_rect.y);
1196 
1197 	pipe_ctx->stream->dst.x -= timing->h_border_left;
1198 	pipe_ctx->stream->dst.y -= timing->v_border_top;
1199 
1200 	return res;
1201 }
1202 
1203 
1204 enum dc_status resource_build_scaling_params_for_context(
1205 	const struct dc  *dc,
1206 	struct dc_state *context)
1207 {
1208 	int i;
1209 
1210 	for (i = 0; i < MAX_PIPES; i++) {
1211 		if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1212 				context->res_ctx.pipe_ctx[i].stream != NULL)
1213 			if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1214 				return DC_FAIL_SCALING;
1215 	}
1216 
1217 	return DC_OK;
1218 }
1219 
1220 struct pipe_ctx *find_idle_secondary_pipe(
1221 		struct resource_context *res_ctx,
1222 		const struct resource_pool *pool,
1223 		const struct pipe_ctx *primary_pipe)
1224 {
1225 	int i;
1226 	struct pipe_ctx *secondary_pipe = NULL;
1227 
1228 	/*
1229 	 * We add a preferred pipe mapping to avoid the chance that
1230 	 * MPCCs already in use will need to be reassigned to other trees.
1231 	 * For example, if we went with the strict, assign backwards logic:
1232 	 *
1233 	 * (State 1)
1234 	 * Display A on, no surface, top pipe = 0
1235 	 * Display B on, no surface, top pipe = 1
1236 	 *
1237 	 * (State 2)
1238 	 * Display A on, no surface, top pipe = 0
1239 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1240 	 *
1241 	 * (State 3)
1242 	 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1243 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1244 	 *
1245 	 * The state 2->3 transition requires remapping MPCC 5 from display B
1246 	 * to display A.
1247 	 *
1248 	 * However, with the preferred pipe logic, state 2 would look like:
1249 	 *
1250 	 * (State 2)
1251 	 * Display A on, no surface, top pipe = 0
1252 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1253 	 *
1254 	 * This would then cause 2->3 to not require remapping any MPCCs.
1255 	 */
1256 	if (primary_pipe) {
1257 		int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1258 		if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1259 			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1260 			secondary_pipe->pipe_idx = preferred_pipe_idx;
1261 		}
1262 	}
1263 
1264 	/*
1265 	 * search backwards for the second pipe to keep pipe
1266 	 * assignment more consistent
1267 	 */
1268 	if (!secondary_pipe)
1269 		for (i = pool->pipe_count - 1; i >= 0; i--) {
1270 			if (res_ctx->pipe_ctx[i].stream == NULL) {
1271 				secondary_pipe = &res_ctx->pipe_ctx[i];
1272 				secondary_pipe->pipe_idx = i;
1273 				break;
1274 			}
1275 		}
1276 
1277 	return secondary_pipe;
1278 }
1279 
1280 struct pipe_ctx *resource_get_head_pipe_for_stream(
1281 		struct resource_context *res_ctx,
1282 		struct dc_stream_state *stream)
1283 {
1284 	int i;
1285 
1286 	for (i = 0; i < MAX_PIPES; i++) {
1287 		if (res_ctx->pipe_ctx[i].stream == stream
1288 				&& !res_ctx->pipe_ctx[i].top_pipe
1289 				&& !res_ctx->pipe_ctx[i].prev_odm_pipe)
1290 			return &res_ctx->pipe_ctx[i];
1291 	}
1292 	return NULL;
1293 }
1294 
1295 static struct pipe_ctx *resource_get_tail_pipe(
1296 		struct resource_context *res_ctx,
1297 		struct pipe_ctx *head_pipe)
1298 {
1299 	struct pipe_ctx *tail_pipe;
1300 
1301 	tail_pipe = head_pipe->bottom_pipe;
1302 
1303 	while (tail_pipe) {
1304 		head_pipe = tail_pipe;
1305 		tail_pipe = tail_pipe->bottom_pipe;
1306 	}
1307 
1308 	return head_pipe;
1309 }
1310 
1311 /*
1312  * A free_pipe for a stream is defined here as a pipe
1313  * that has no surface attached yet
1314  */
1315 static struct pipe_ctx *acquire_free_pipe_for_head(
1316 		struct dc_state *context,
1317 		const struct resource_pool *pool,
1318 		struct pipe_ctx *head_pipe)
1319 {
1320 	int i;
1321 	struct resource_context *res_ctx = &context->res_ctx;
1322 
1323 	if (!head_pipe->plane_state)
1324 		return head_pipe;
1325 
1326 	/* Re-use pipe already acquired for this stream if available*/
1327 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1328 		if (res_ctx->pipe_ctx[i].stream == head_pipe->stream &&
1329 				!res_ctx->pipe_ctx[i].plane_state) {
1330 			return &res_ctx->pipe_ctx[i];
1331 		}
1332 	}
1333 
1334 	/*
1335 	 * At this point we have no re-useable pipe for this stream and we need
1336 	 * to acquire an idle one to satisfy the request
1337 	 */
1338 
1339 	if (!pool->funcs->acquire_idle_pipe_for_layer)
1340 		return NULL;
1341 
1342 	return pool->funcs->acquire_idle_pipe_for_layer(context, pool, head_pipe->stream);
1343 }
1344 
1345 #if defined(CONFIG_DRM_AMD_DC_DCN)
1346 static int acquire_first_split_pipe(
1347 		struct resource_context *res_ctx,
1348 		const struct resource_pool *pool,
1349 		struct dc_stream_state *stream)
1350 {
1351 	int i;
1352 
1353 	for (i = 0; i < pool->pipe_count; i++) {
1354 		struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1355 
1356 		if (split_pipe->top_pipe &&
1357 				split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1358 			split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1359 			if (split_pipe->bottom_pipe)
1360 				split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1361 
1362 			if (split_pipe->top_pipe->plane_state)
1363 				resource_build_scaling_params(split_pipe->top_pipe);
1364 
1365 			memset(split_pipe, 0, sizeof(*split_pipe));
1366 			split_pipe->stream_res.tg = pool->timing_generators[i];
1367 			split_pipe->plane_res.hubp = pool->hubps[i];
1368 			split_pipe->plane_res.ipp = pool->ipps[i];
1369 			split_pipe->plane_res.dpp = pool->dpps[i];
1370 			split_pipe->stream_res.opp = pool->opps[i];
1371 			split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1372 			split_pipe->pipe_idx = i;
1373 
1374 			split_pipe->stream = stream;
1375 			return i;
1376 		}
1377 	}
1378 	return -1;
1379 }
1380 #endif
1381 
1382 bool dc_add_plane_to_context(
1383 		const struct dc *dc,
1384 		struct dc_stream_state *stream,
1385 		struct dc_plane_state *plane_state,
1386 		struct dc_state *context)
1387 {
1388 	int i;
1389 	struct resource_pool *pool = dc->res_pool;
1390 	struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1391 	struct dc_stream_status *stream_status = NULL;
1392 
1393 	for (i = 0; i < context->stream_count; i++)
1394 		if (context->streams[i] == stream) {
1395 			stream_status = &context->stream_status[i];
1396 			break;
1397 		}
1398 	if (stream_status == NULL) {
1399 		dm_error("Existing stream not found; failed to attach surface!\n");
1400 		return false;
1401 	}
1402 
1403 
1404 	if (stream_status->plane_count == MAX_SURFACE_NUM) {
1405 		dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1406 				plane_state, MAX_SURFACE_NUM);
1407 		return false;
1408 	}
1409 
1410 	head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1411 
1412 	if (!head_pipe) {
1413 		dm_error("Head pipe not found for stream_state %p !\n", stream);
1414 		return false;
1415 	}
1416 
1417 	/* retain new surface, but only once per stream */
1418 	dc_plane_state_retain(plane_state);
1419 
1420 	while (head_pipe) {
1421 		free_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1422 
1423 	#if defined(CONFIG_DRM_AMD_DC_DCN)
1424 		if (!free_pipe) {
1425 			int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1426 			if (pipe_idx >= 0)
1427 				free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1428 		}
1429 	#endif
1430 		if (!free_pipe) {
1431 			dc_plane_state_release(plane_state);
1432 			return false;
1433 		}
1434 
1435 		free_pipe->plane_state = plane_state;
1436 
1437 		if (head_pipe != free_pipe) {
1438 			tail_pipe = resource_get_tail_pipe(&context->res_ctx, head_pipe);
1439 			ASSERT(tail_pipe);
1440 			free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1441 			free_pipe->stream_res.abm = tail_pipe->stream_res.abm;
1442 			free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1443 			free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1444 			free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1445 			free_pipe->clock_source = tail_pipe->clock_source;
1446 			free_pipe->top_pipe = tail_pipe;
1447 			tail_pipe->bottom_pipe = free_pipe;
1448 			if (!free_pipe->next_odm_pipe && tail_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1449 				free_pipe->next_odm_pipe = tail_pipe->next_odm_pipe->bottom_pipe;
1450 				tail_pipe->next_odm_pipe->bottom_pipe->prev_odm_pipe = free_pipe;
1451 			}
1452 			if (!free_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe->bottom_pipe) {
1453 				free_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1454 				tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = free_pipe;
1455 			}
1456 		}
1457 		head_pipe = head_pipe->next_odm_pipe;
1458 	}
1459 	/* assign new surfaces*/
1460 	stream_status->plane_states[stream_status->plane_count] = plane_state;
1461 
1462 	stream_status->plane_count++;
1463 
1464 	return true;
1465 }
1466 
1467 bool dc_remove_plane_from_context(
1468 		const struct dc *dc,
1469 		struct dc_stream_state *stream,
1470 		struct dc_plane_state *plane_state,
1471 		struct dc_state *context)
1472 {
1473 	int i;
1474 	struct dc_stream_status *stream_status = NULL;
1475 	struct resource_pool *pool = dc->res_pool;
1476 
1477 	for (i = 0; i < context->stream_count; i++)
1478 		if (context->streams[i] == stream) {
1479 			stream_status = &context->stream_status[i];
1480 			break;
1481 		}
1482 
1483 	if (stream_status == NULL) {
1484 		dm_error("Existing stream not found; failed to remove plane.\n");
1485 		return false;
1486 	}
1487 
1488 	/* release pipe for plane*/
1489 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1490 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1491 
1492 		if (pipe_ctx->plane_state == plane_state) {
1493 			if (pipe_ctx->top_pipe)
1494 				pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1495 
1496 			/* Second condition is to avoid setting NULL to top pipe
1497 			 * of tail pipe making it look like head pipe in subsequent
1498 			 * deletes
1499 			 */
1500 			if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1501 				pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1502 
1503 			/*
1504 			 * For head pipe detach surfaces from pipe for tail
1505 			 * pipe just zero it out
1506 			 */
1507 			if (!pipe_ctx->top_pipe)
1508 				pipe_ctx->plane_state = NULL;
1509 			else
1510 				memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1511 		}
1512 	}
1513 
1514 
1515 	for (i = 0; i < stream_status->plane_count; i++) {
1516 		if (stream_status->plane_states[i] == plane_state) {
1517 
1518 			dc_plane_state_release(stream_status->plane_states[i]);
1519 			break;
1520 		}
1521 	}
1522 
1523 	if (i == stream_status->plane_count) {
1524 		dm_error("Existing plane_state not found; failed to detach it!\n");
1525 		return false;
1526 	}
1527 
1528 	stream_status->plane_count--;
1529 
1530 	/* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1531 	for (; i < stream_status->plane_count; i++)
1532 		stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1533 
1534 	stream_status->plane_states[stream_status->plane_count] = NULL;
1535 
1536 	return true;
1537 }
1538 
1539 bool dc_rem_all_planes_for_stream(
1540 		const struct dc *dc,
1541 		struct dc_stream_state *stream,
1542 		struct dc_state *context)
1543 {
1544 	int i, old_plane_count;
1545 	struct dc_stream_status *stream_status = NULL;
1546 	struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1547 
1548 	for (i = 0; i < context->stream_count; i++)
1549 			if (context->streams[i] == stream) {
1550 				stream_status = &context->stream_status[i];
1551 				break;
1552 			}
1553 
1554 	if (stream_status == NULL) {
1555 		dm_error("Existing stream %p not found!\n", stream);
1556 		return false;
1557 	}
1558 
1559 	old_plane_count = stream_status->plane_count;
1560 
1561 	for (i = 0; i < old_plane_count; i++)
1562 		del_planes[i] = stream_status->plane_states[i];
1563 
1564 	for (i = 0; i < old_plane_count; i++)
1565 		if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1566 			return false;
1567 
1568 	return true;
1569 }
1570 
1571 static bool add_all_planes_for_stream(
1572 		const struct dc *dc,
1573 		struct dc_stream_state *stream,
1574 		const struct dc_validation_set set[],
1575 		int set_count,
1576 		struct dc_state *context)
1577 {
1578 	int i, j;
1579 
1580 	for (i = 0; i < set_count; i++)
1581 		if (set[i].stream == stream)
1582 			break;
1583 
1584 	if (i == set_count) {
1585 		dm_error("Stream %p not found in set!\n", stream);
1586 		return false;
1587 	}
1588 
1589 	for (j = 0; j < set[i].plane_count; j++)
1590 		if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1591 			return false;
1592 
1593 	return true;
1594 }
1595 
1596 bool dc_add_all_planes_for_stream(
1597 		const struct dc *dc,
1598 		struct dc_stream_state *stream,
1599 		struct dc_plane_state * const *plane_states,
1600 		int plane_count,
1601 		struct dc_state *context)
1602 {
1603 	struct dc_validation_set set;
1604 	int i;
1605 
1606 	set.stream = stream;
1607 	set.plane_count = plane_count;
1608 
1609 	for (i = 0; i < plane_count; i++)
1610 		set.plane_states[i] = plane_states[i];
1611 
1612 	return add_all_planes_for_stream(dc, stream, &set, 1, context);
1613 }
1614 
1615 static bool is_timing_changed(struct dc_stream_state *cur_stream,
1616 		struct dc_stream_state *new_stream)
1617 {
1618 	if (cur_stream == NULL)
1619 		return true;
1620 
1621 	/* If output color space is changed, need to reprogram info frames */
1622 	if (cur_stream->output_color_space != new_stream->output_color_space)
1623 		return true;
1624 
1625 	return memcmp(
1626 		&cur_stream->timing,
1627 		&new_stream->timing,
1628 		sizeof(struct dc_crtc_timing)) != 0;
1629 }
1630 
1631 static bool are_stream_backends_same(
1632 	struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1633 {
1634 	if (stream_a == stream_b)
1635 		return true;
1636 
1637 	if (stream_a == NULL || stream_b == NULL)
1638 		return false;
1639 
1640 	if (is_timing_changed(stream_a, stream_b))
1641 		return false;
1642 
1643 	if (stream_a->dpms_off != stream_b->dpms_off)
1644 		return false;
1645 
1646 	return true;
1647 }
1648 
1649 /*
1650  * dc_is_stream_unchanged() - Compare two stream states for equivalence.
1651  *
1652  * Checks if there a difference between the two states
1653  * that would require a mode change.
1654  *
1655  * Does not compare cursor position or attributes.
1656  */
1657 bool dc_is_stream_unchanged(
1658 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1659 {
1660 
1661 	if (!are_stream_backends_same(old_stream, stream))
1662 		return false;
1663 
1664 	if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
1665 		return false;
1666 
1667 	// Only Have Audio left to check whether it is same or not. This is a corner case for Tiled sinks
1668 	if (old_stream->audio_info.mode_count != stream->audio_info.mode_count)
1669 		return false;
1670 
1671 	return true;
1672 }
1673 
1674 /*
1675  * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
1676  */
1677 bool dc_is_stream_scaling_unchanged(
1678 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1679 {
1680 	if (old_stream == stream)
1681 		return true;
1682 
1683 	if (old_stream == NULL || stream == NULL)
1684 		return false;
1685 
1686 	if (memcmp(&old_stream->src,
1687 			&stream->src,
1688 			sizeof(struct rect)) != 0)
1689 		return false;
1690 
1691 	if (memcmp(&old_stream->dst,
1692 			&stream->dst,
1693 			sizeof(struct rect)) != 0)
1694 		return false;
1695 
1696 	return true;
1697 }
1698 
1699 static void update_stream_engine_usage(
1700 		struct resource_context *res_ctx,
1701 		const struct resource_pool *pool,
1702 		struct stream_encoder *stream_enc,
1703 		bool acquired)
1704 {
1705 	int i;
1706 
1707 	for (i = 0; i < pool->stream_enc_count; i++) {
1708 		if (pool->stream_enc[i] == stream_enc)
1709 			res_ctx->is_stream_enc_acquired[i] = acquired;
1710 	}
1711 }
1712 
1713 #if defined(CONFIG_DRM_AMD_DC_DCN)
1714 static void update_hpo_dp_stream_engine_usage(
1715 		struct resource_context *res_ctx,
1716 		const struct resource_pool *pool,
1717 		struct hpo_dp_stream_encoder *hpo_dp_stream_enc,
1718 		bool acquired)
1719 {
1720 	int i;
1721 
1722 	for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
1723 		if (pool->hpo_dp_stream_enc[i] == hpo_dp_stream_enc)
1724 			res_ctx->is_hpo_dp_stream_enc_acquired[i] = acquired;
1725 	}
1726 }
1727 #endif
1728 
1729 /* TODO: release audio object */
1730 void update_audio_usage(
1731 		struct resource_context *res_ctx,
1732 		const struct resource_pool *pool,
1733 		struct audio *audio,
1734 		bool acquired)
1735 {
1736 	int i;
1737 	for (i = 0; i < pool->audio_count; i++) {
1738 		if (pool->audios[i] == audio)
1739 			res_ctx->is_audio_acquired[i] = acquired;
1740 	}
1741 }
1742 
1743 static int acquire_first_free_pipe(
1744 		struct resource_context *res_ctx,
1745 		const struct resource_pool *pool,
1746 		struct dc_stream_state *stream)
1747 {
1748 	int i;
1749 
1750 	for (i = 0; i < pool->pipe_count; i++) {
1751 		if (!res_ctx->pipe_ctx[i].stream) {
1752 			struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
1753 
1754 			pipe_ctx->stream_res.tg = pool->timing_generators[i];
1755 			pipe_ctx->plane_res.mi = pool->mis[i];
1756 			pipe_ctx->plane_res.hubp = pool->hubps[i];
1757 			pipe_ctx->plane_res.ipp = pool->ipps[i];
1758 			pipe_ctx->plane_res.xfm = pool->transforms[i];
1759 			pipe_ctx->plane_res.dpp = pool->dpps[i];
1760 			pipe_ctx->stream_res.opp = pool->opps[i];
1761 			if (pool->dpps[i])
1762 				pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
1763 			pipe_ctx->pipe_idx = i;
1764 
1765 
1766 			pipe_ctx->stream = stream;
1767 			return i;
1768 		}
1769 	}
1770 	return -1;
1771 }
1772 
1773 #if defined(CONFIG_DRM_AMD_DC_DCN)
1774 static struct hpo_dp_stream_encoder *find_first_free_match_hpo_dp_stream_enc_for_link(
1775 		struct resource_context *res_ctx,
1776 		const struct resource_pool *pool,
1777 		struct dc_stream_state *stream)
1778 {
1779 	int i;
1780 
1781 	for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
1782 		if (!res_ctx->is_hpo_dp_stream_enc_acquired[i] &&
1783 				pool->hpo_dp_stream_enc[i]) {
1784 
1785 			return pool->hpo_dp_stream_enc[i];
1786 		}
1787 	}
1788 
1789 	return NULL;
1790 }
1791 #endif
1792 
1793 static struct audio *find_first_free_audio(
1794 		struct resource_context *res_ctx,
1795 		const struct resource_pool *pool,
1796 		enum engine_id id,
1797 		enum dce_version dc_version)
1798 {
1799 	int i, available_audio_count;
1800 
1801 	available_audio_count = pool->audio_count;
1802 
1803 	for (i = 0; i < available_audio_count; i++) {
1804 		if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
1805 			/*we have enough audio endpoint, find the matching inst*/
1806 			if (id != i)
1807 				continue;
1808 			return pool->audios[i];
1809 		}
1810 	}
1811 
1812 	/* use engine id to find free audio */
1813 	if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
1814 		return pool->audios[id];
1815 	}
1816 	/*not found the matching one, first come first serve*/
1817 	for (i = 0; i < available_audio_count; i++) {
1818 		if (res_ctx->is_audio_acquired[i] == false) {
1819 			return pool->audios[i];
1820 		}
1821 	}
1822 	return 0;
1823 }
1824 
1825 /*
1826  * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
1827  */
1828 enum dc_status dc_add_stream_to_ctx(
1829 		struct dc *dc,
1830 		struct dc_state *new_ctx,
1831 		struct dc_stream_state *stream)
1832 {
1833 	enum dc_status res;
1834 	DC_LOGGER_INIT(dc->ctx->logger);
1835 
1836 	if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
1837 		DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
1838 		return DC_ERROR_UNEXPECTED;
1839 	}
1840 
1841 	new_ctx->streams[new_ctx->stream_count] = stream;
1842 	dc_stream_retain(stream);
1843 	new_ctx->stream_count++;
1844 
1845 	res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
1846 	if (res != DC_OK)
1847 		DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
1848 
1849 	return res;
1850 }
1851 
1852 /*
1853  * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
1854  */
1855 enum dc_status dc_remove_stream_from_ctx(
1856 			struct dc *dc,
1857 			struct dc_state *new_ctx,
1858 			struct dc_stream_state *stream)
1859 {
1860 	int i;
1861 	struct dc_context *dc_ctx = dc->ctx;
1862 	struct pipe_ctx *del_pipe = resource_get_head_pipe_for_stream(&new_ctx->res_ctx, stream);
1863 	struct pipe_ctx *odm_pipe;
1864 
1865 	if (!del_pipe) {
1866 		DC_ERROR("Pipe not found for stream %p !\n", stream);
1867 		return DC_ERROR_UNEXPECTED;
1868 	}
1869 
1870 	odm_pipe = del_pipe->next_odm_pipe;
1871 
1872 	/* Release primary pipe */
1873 	ASSERT(del_pipe->stream_res.stream_enc);
1874 	update_stream_engine_usage(
1875 			&new_ctx->res_ctx,
1876 				dc->res_pool,
1877 			del_pipe->stream_res.stream_enc,
1878 			false);
1879 	/* Release link encoder from stream in new dc_state. */
1880 	if (dc->res_pool->funcs->link_enc_unassign)
1881 		dc->res_pool->funcs->link_enc_unassign(new_ctx, del_pipe->stream);
1882 
1883 #if defined(CONFIG_DRM_AMD_DC_DCN)
1884 	if (is_dp_128b_132b_signal(del_pipe)) {
1885 		update_hpo_dp_stream_engine_usage(
1886 			&new_ctx->res_ctx, dc->res_pool,
1887 			del_pipe->stream_res.hpo_dp_stream_enc,
1888 			false);
1889 	}
1890 #endif
1891 
1892 	if (del_pipe->stream_res.audio)
1893 		update_audio_usage(
1894 			&new_ctx->res_ctx,
1895 			dc->res_pool,
1896 			del_pipe->stream_res.audio,
1897 			false);
1898 
1899 	resource_unreference_clock_source(&new_ctx->res_ctx,
1900 					  dc->res_pool,
1901 					  del_pipe->clock_source);
1902 
1903 	if (dc->res_pool->funcs->remove_stream_from_ctx)
1904 		dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
1905 
1906 	while (odm_pipe) {
1907 		struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1908 
1909 		memset(odm_pipe, 0, sizeof(*odm_pipe));
1910 		odm_pipe = next_odm_pipe;
1911 	}
1912 	memset(del_pipe, 0, sizeof(*del_pipe));
1913 
1914 	for (i = 0; i < new_ctx->stream_count; i++)
1915 		if (new_ctx->streams[i] == stream)
1916 			break;
1917 
1918 	if (new_ctx->streams[i] != stream) {
1919 		DC_ERROR("Context doesn't have stream %p !\n", stream);
1920 		return DC_ERROR_UNEXPECTED;
1921 	}
1922 
1923 	dc_stream_release(new_ctx->streams[i]);
1924 	new_ctx->stream_count--;
1925 
1926 	/* Trim back arrays */
1927 	for (; i < new_ctx->stream_count; i++) {
1928 		new_ctx->streams[i] = new_ctx->streams[i + 1];
1929 		new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
1930 	}
1931 
1932 	new_ctx->streams[new_ctx->stream_count] = NULL;
1933 	memset(
1934 			&new_ctx->stream_status[new_ctx->stream_count],
1935 			0,
1936 			sizeof(new_ctx->stream_status[0]));
1937 
1938 	return DC_OK;
1939 }
1940 
1941 static struct dc_stream_state *find_pll_sharable_stream(
1942 		struct dc_stream_state *stream_needs_pll,
1943 		struct dc_state *context)
1944 {
1945 	int i;
1946 
1947 	for (i = 0; i < context->stream_count; i++) {
1948 		struct dc_stream_state *stream_has_pll = context->streams[i];
1949 
1950 		/* We are looking for non dp, non virtual stream */
1951 		if (resource_are_streams_timing_synchronizable(
1952 			stream_needs_pll, stream_has_pll)
1953 			&& !dc_is_dp_signal(stream_has_pll->signal)
1954 			&& stream_has_pll->link->connector_signal
1955 			!= SIGNAL_TYPE_VIRTUAL)
1956 			return stream_has_pll;
1957 
1958 	}
1959 
1960 	return NULL;
1961 }
1962 
1963 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
1964 {
1965 	uint32_t pix_clk = timing->pix_clk_100hz;
1966 	uint32_t normalized_pix_clk = pix_clk;
1967 
1968 	if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
1969 		pix_clk /= 2;
1970 	if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
1971 		switch (timing->display_color_depth) {
1972 		case COLOR_DEPTH_666:
1973 		case COLOR_DEPTH_888:
1974 			normalized_pix_clk = pix_clk;
1975 			break;
1976 		case COLOR_DEPTH_101010:
1977 			normalized_pix_clk = (pix_clk * 30) / 24;
1978 			break;
1979 		case COLOR_DEPTH_121212:
1980 			normalized_pix_clk = (pix_clk * 36) / 24;
1981 		break;
1982 		case COLOR_DEPTH_161616:
1983 			normalized_pix_clk = (pix_clk * 48) / 24;
1984 		break;
1985 		default:
1986 			ASSERT(0);
1987 		break;
1988 		}
1989 	}
1990 	return normalized_pix_clk;
1991 }
1992 
1993 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
1994 {
1995 	/* update actual pixel clock on all streams */
1996 	if (dc_is_hdmi_signal(stream->signal))
1997 		stream->phy_pix_clk = get_norm_pix_clk(
1998 			&stream->timing) / 10;
1999 	else
2000 		stream->phy_pix_clk =
2001 			stream->timing.pix_clk_100hz / 10;
2002 
2003 	if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
2004 		stream->phy_pix_clk *= 2;
2005 }
2006 
2007 static int acquire_resource_from_hw_enabled_state(
2008 		struct resource_context *res_ctx,
2009 		const struct resource_pool *pool,
2010 		struct dc_stream_state *stream)
2011 {
2012 	struct dc_link *link = stream->link;
2013 	unsigned int i, inst, tg_inst = 0;
2014 
2015 	/* Check for enabled DIG to identify enabled display */
2016 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
2017 		return -1;
2018 
2019 	inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
2020 
2021 	if (inst == ENGINE_ID_UNKNOWN)
2022 		return -1;
2023 
2024 	for (i = 0; i < pool->stream_enc_count; i++) {
2025 		if (pool->stream_enc[i]->id == inst) {
2026 			tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
2027 				pool->stream_enc[i]);
2028 			break;
2029 		}
2030 	}
2031 
2032 	// tg_inst not found
2033 	if (i == pool->stream_enc_count)
2034 		return -1;
2035 
2036 	if (tg_inst >= pool->timing_generator_count)
2037 		return -1;
2038 
2039 	if (!res_ctx->pipe_ctx[tg_inst].stream) {
2040 		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
2041 
2042 		pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2043 		pipe_ctx->plane_res.mi = pool->mis[tg_inst];
2044 		pipe_ctx->plane_res.hubp = pool->hubps[tg_inst];
2045 		pipe_ctx->plane_res.ipp = pool->ipps[tg_inst];
2046 		pipe_ctx->plane_res.xfm = pool->transforms[tg_inst];
2047 		pipe_ctx->plane_res.dpp = pool->dpps[tg_inst];
2048 		pipe_ctx->stream_res.opp = pool->opps[tg_inst];
2049 
2050 		if (pool->dpps[tg_inst]) {
2051 			pipe_ctx->plane_res.mpcc_inst = pool->dpps[tg_inst]->inst;
2052 
2053 			// Read DPP->MPCC->OPP Pipe from HW State
2054 			if (pool->mpc->funcs->read_mpcc_state) {
2055 				struct mpcc_state s = {0};
2056 
2057 				pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
2058 
2059 				if (s.dpp_id < MAX_MPCC)
2060 					pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id = s.dpp_id;
2061 
2062 				if (s.bot_mpcc_id < MAX_MPCC)
2063 					pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
2064 							&pool->mpc->mpcc_array[s.bot_mpcc_id];
2065 
2066 				if (s.opp_id < MAX_OPP)
2067 					pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
2068 			}
2069 		}
2070 		pipe_ctx->pipe_idx = tg_inst;
2071 
2072 		pipe_ctx->stream = stream;
2073 		return tg_inst;
2074 	}
2075 
2076 	return -1;
2077 }
2078 
2079 static void mark_seamless_boot_stream(
2080 		const struct dc  *dc,
2081 		struct dc_stream_state *stream)
2082 {
2083 	struct dc_bios *dcb = dc->ctx->dc_bios;
2084 
2085 	/* TODO: Check Linux */
2086 	if (dc->config.allow_seamless_boot_optimization &&
2087 			!dcb->funcs->is_accelerated_mode(dcb)) {
2088 		if (dc_validate_seamless_boot_timing(dc, stream->sink, &stream->timing))
2089 			stream->apply_seamless_boot_optimization = true;
2090 	}
2091 }
2092 
2093 enum dc_status resource_map_pool_resources(
2094 		const struct dc  *dc,
2095 		struct dc_state *context,
2096 		struct dc_stream_state *stream)
2097 {
2098 	const struct resource_pool *pool = dc->res_pool;
2099 	int i;
2100 	struct dc_context *dc_ctx = dc->ctx;
2101 	struct pipe_ctx *pipe_ctx = NULL;
2102 	int pipe_idx = -1;
2103 
2104 	calculate_phy_pix_clks(stream);
2105 
2106 	mark_seamless_boot_stream(dc, stream);
2107 
2108 	if (stream->apply_seamless_boot_optimization) {
2109 		pipe_idx = acquire_resource_from_hw_enabled_state(
2110 				&context->res_ctx,
2111 				pool,
2112 				stream);
2113 		if (pipe_idx < 0)
2114 			/* hw resource was assigned to other stream */
2115 			stream->apply_seamless_boot_optimization = false;
2116 	}
2117 
2118 	if (pipe_idx < 0)
2119 		/* acquire new resources */
2120 		pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2121 
2122 #ifdef CONFIG_DRM_AMD_DC_DCN
2123 	if (pipe_idx < 0)
2124 		pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2125 #endif
2126 
2127 	if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2128 		return DC_NO_CONTROLLER_RESOURCE;
2129 
2130 	pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2131 
2132 	pipe_ctx->stream_res.stream_enc =
2133 		dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2134 			&context->res_ctx, pool, stream);
2135 
2136 	if (!pipe_ctx->stream_res.stream_enc)
2137 		return DC_NO_STREAM_ENC_RESOURCE;
2138 
2139 	update_stream_engine_usage(
2140 		&context->res_ctx, pool,
2141 		pipe_ctx->stream_res.stream_enc,
2142 		true);
2143 
2144 #if defined(CONFIG_DRM_AMD_DC_DCN)
2145 	/* Allocate DP HPO Stream Encoder based on signal, hw capabilities
2146 	 * and link settings
2147 	 */
2148 	if (dc_is_dp_signal(stream->signal) &&
2149 			dc->caps.dp_hpo) {
2150 		struct dc_link_settings link_settings = {0};
2151 
2152 		decide_link_settings(stream, &link_settings);
2153 		if (dp_get_link_encoding_format(&link_settings) == DP_128b_132b_ENCODING) {
2154 			pipe_ctx->stream_res.hpo_dp_stream_enc =
2155 					find_first_free_match_hpo_dp_stream_enc_for_link(
2156 							&context->res_ctx, pool, stream);
2157 
2158 			if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
2159 				return DC_NO_STREAM_ENC_RESOURCE;
2160 
2161 			update_hpo_dp_stream_engine_usage(
2162 					&context->res_ctx, pool,
2163 					pipe_ctx->stream_res.hpo_dp_stream_enc,
2164 					true);
2165 		}
2166 	}
2167 #endif
2168 
2169 	/* TODO: Add check if ASIC support and EDID audio */
2170 	if (!stream->converter_disable_audio &&
2171 	    dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2172 	    stream->audio_info.mode_count && stream->audio_info.flags.all) {
2173 		pipe_ctx->stream_res.audio = find_first_free_audio(
2174 		&context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2175 
2176 		/*
2177 		 * Audio assigned in order first come first get.
2178 		 * There are asics which has number of audio
2179 		 * resources less then number of pipes
2180 		 */
2181 		if (pipe_ctx->stream_res.audio)
2182 			update_audio_usage(&context->res_ctx, pool,
2183 					   pipe_ctx->stream_res.audio, true);
2184 	}
2185 
2186 	/* Add ABM to the resource if on EDP */
2187 	if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2188 #if defined(CONFIG_DRM_AMD_DC_DCN)
2189 		if (pool->abm)
2190 			pipe_ctx->stream_res.abm = pool->abm;
2191 		else
2192 			pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2193 #else
2194 		pipe_ctx->stream_res.abm = pool->abm;
2195 #endif
2196 	}
2197 
2198 	for (i = 0; i < context->stream_count; i++)
2199 		if (context->streams[i] == stream) {
2200 			context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2201 			context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2202 			context->stream_status[i].audio_inst =
2203 				pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2204 
2205 			return DC_OK;
2206 		}
2207 
2208 	DC_ERROR("Stream %p not found in new ctx!\n", stream);
2209 	return DC_ERROR_UNEXPECTED;
2210 }
2211 
2212 /**
2213  * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2214  * Is a shallow copy.  Increments refcounts on existing streams and planes.
2215  * @dc: copy out of dc->current_state
2216  * @dst_ctx: copy into this
2217  */
2218 void dc_resource_state_copy_construct_current(
2219 		const struct dc *dc,
2220 		struct dc_state *dst_ctx)
2221 {
2222 	dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2223 }
2224 
2225 
2226 void dc_resource_state_construct(
2227 		const struct dc *dc,
2228 		struct dc_state *dst_ctx)
2229 {
2230 	dst_ctx->clk_mgr = dc->clk_mgr;
2231 }
2232 
2233 
2234 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2235 {
2236 	return dc->res_pool->res_cap->num_dsc > 0;
2237 }
2238 
2239 
2240 /**
2241  * dc_validate_global_state() - Determine if HW can support a given state
2242  * Checks HW resource availability and bandwidth requirement.
2243  * @dc: dc struct for this driver
2244  * @new_ctx: state to be validated
2245  * @fast_validate: set to true if only yes/no to support matters
2246  *
2247  * Return: DC_OK if the result can be programmed.  Otherwise, an error code.
2248  */
2249 enum dc_status dc_validate_global_state(
2250 		struct dc *dc,
2251 		struct dc_state *new_ctx,
2252 		bool fast_validate)
2253 {
2254 	enum dc_status result = DC_ERROR_UNEXPECTED;
2255 	int i, j;
2256 
2257 	if (!new_ctx)
2258 		return DC_ERROR_UNEXPECTED;
2259 
2260 	if (dc->res_pool->funcs->validate_global) {
2261 		result = dc->res_pool->funcs->validate_global(dc, new_ctx);
2262 		if (result != DC_OK)
2263 			return result;
2264 	}
2265 
2266 	for (i = 0; i < new_ctx->stream_count; i++) {
2267 		struct dc_stream_state *stream = new_ctx->streams[i];
2268 
2269 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
2270 			struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
2271 
2272 			if (pipe_ctx->stream != stream)
2273 				continue;
2274 
2275 			if (dc->res_pool->funcs->patch_unknown_plane_state &&
2276 					pipe_ctx->plane_state &&
2277 					pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
2278 				result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
2279 				if (result != DC_OK)
2280 					return result;
2281 			}
2282 
2283 			/* Switch to dp clock source only if there is
2284 			 * no non dp stream that shares the same timing
2285 			 * with the dp stream.
2286 			 */
2287 			if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
2288 				!find_pll_sharable_stream(stream, new_ctx)) {
2289 
2290 				resource_unreference_clock_source(
2291 						&new_ctx->res_ctx,
2292 						dc->res_pool,
2293 						pipe_ctx->clock_source);
2294 
2295 				pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
2296 				resource_reference_clock_source(
2297 						&new_ctx->res_ctx,
2298 						dc->res_pool,
2299 						 pipe_ctx->clock_source);
2300 			}
2301 		}
2302 	}
2303 
2304 	result = resource_build_scaling_params_for_context(dc, new_ctx);
2305 
2306 	if (result == DC_OK)
2307 		if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
2308 			result = DC_FAIL_BANDWIDTH_VALIDATE;
2309 
2310 #if defined(CONFIG_DRM_AMD_DC_DCN)
2311 	/*
2312 	 * Only update link encoder to stream assignment after bandwidth validation passed.
2313 	 * TODO: Split out assignment and validation.
2314 	 */
2315 	if (result == DC_OK && dc->res_pool->funcs->link_encs_assign && fast_validate == false)
2316 		dc->res_pool->funcs->link_encs_assign(
2317 			dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
2318 #endif
2319 
2320 	return result;
2321 }
2322 
2323 static void patch_gamut_packet_checksum(
2324 		struct dc_info_packet *gamut_packet)
2325 {
2326 	/* For gamut we recalc checksum */
2327 	if (gamut_packet->valid) {
2328 		uint8_t chk_sum = 0;
2329 		uint8_t *ptr;
2330 		uint8_t i;
2331 
2332 		/*start of the Gamut data. */
2333 		ptr = &gamut_packet->sb[3];
2334 
2335 		for (i = 0; i <= gamut_packet->sb[1]; i++)
2336 			chk_sum += ptr[i];
2337 
2338 		gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
2339 	}
2340 }
2341 
2342 static void set_avi_info_frame(
2343 		struct dc_info_packet *info_packet,
2344 		struct pipe_ctx *pipe_ctx)
2345 {
2346 	struct dc_stream_state *stream = pipe_ctx->stream;
2347 	enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
2348 	uint32_t pixel_encoding = 0;
2349 	enum scanning_type scan_type = SCANNING_TYPE_NODATA;
2350 	enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
2351 	bool itc = false;
2352 	uint8_t itc_value = 0;
2353 	uint8_t cn0_cn1 = 0;
2354 	unsigned int cn0_cn1_value = 0;
2355 	uint8_t *check_sum = NULL;
2356 	uint8_t byte_index = 0;
2357 	union hdmi_info_packet hdmi_info;
2358 	union display_content_support support = {0};
2359 	unsigned int vic = pipe_ctx->stream->timing.vic;
2360 	enum dc_timing_3d_format format;
2361 
2362 	memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
2363 
2364 	color_space = pipe_ctx->stream->output_color_space;
2365 	if (color_space == COLOR_SPACE_UNKNOWN)
2366 		color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
2367 			COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
2368 
2369 	/* Initialize header */
2370 	hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
2371 	/* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
2372 	* not be used in HDMI 2.0 (Section 10.1) */
2373 	hdmi_info.bits.header.version = 2;
2374 	hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
2375 
2376 	/*
2377 	 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
2378 	 * according to HDMI 2.0 spec (Section 10.1)
2379 	 */
2380 
2381 	switch (stream->timing.pixel_encoding) {
2382 	case PIXEL_ENCODING_YCBCR422:
2383 		pixel_encoding = 1;
2384 		break;
2385 
2386 	case PIXEL_ENCODING_YCBCR444:
2387 		pixel_encoding = 2;
2388 		break;
2389 	case PIXEL_ENCODING_YCBCR420:
2390 		pixel_encoding = 3;
2391 		break;
2392 
2393 	case PIXEL_ENCODING_RGB:
2394 	default:
2395 		pixel_encoding = 0;
2396 	}
2397 
2398 	/* Y0_Y1_Y2 : The pixel encoding */
2399 	/* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
2400 	hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
2401 
2402 	/* A0 = 1 Active Format Information valid */
2403 	hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
2404 
2405 	/* B0, B1 = 3; Bar info data is valid */
2406 	hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
2407 
2408 	hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
2409 
2410 	/* S0, S1 : Underscan / Overscan */
2411 	/* TODO: un-hardcode scan type */
2412 	scan_type = SCANNING_TYPE_UNDERSCAN;
2413 	hdmi_info.bits.S0_S1 = scan_type;
2414 
2415 	/* C0, C1 : Colorimetry */
2416 	if (color_space == COLOR_SPACE_YCBCR709 ||
2417 			color_space == COLOR_SPACE_YCBCR709_LIMITED)
2418 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
2419 	else if (color_space == COLOR_SPACE_YCBCR601 ||
2420 			color_space == COLOR_SPACE_YCBCR601_LIMITED)
2421 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
2422 	else {
2423 		hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
2424 	}
2425 	if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
2426 			color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
2427 			color_space == COLOR_SPACE_2020_YCBCR) {
2428 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
2429 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2430 	} else if (color_space == COLOR_SPACE_ADOBERGB) {
2431 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
2432 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2433 	}
2434 
2435 	/* TODO: un-hardcode aspect ratio */
2436 	aspect = stream->timing.aspect_ratio;
2437 
2438 	switch (aspect) {
2439 	case ASPECT_RATIO_4_3:
2440 	case ASPECT_RATIO_16_9:
2441 		hdmi_info.bits.M0_M1 = aspect;
2442 		break;
2443 
2444 	case ASPECT_RATIO_NO_DATA:
2445 	case ASPECT_RATIO_64_27:
2446 	case ASPECT_RATIO_256_135:
2447 	default:
2448 		hdmi_info.bits.M0_M1 = 0;
2449 	}
2450 
2451 	/* Active Format Aspect ratio - same as Picture Aspect Ratio. */
2452 	hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
2453 
2454 	/* TODO: un-hardcode cn0_cn1 and itc */
2455 
2456 	cn0_cn1 = 0;
2457 	cn0_cn1_value = 0;
2458 
2459 	itc = true;
2460 	itc_value = 1;
2461 
2462 	support = stream->content_support;
2463 
2464 	if (itc) {
2465 		if (!support.bits.valid_content_type) {
2466 			cn0_cn1_value = 0;
2467 		} else {
2468 			if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
2469 				if (support.bits.graphics_content == 1) {
2470 					cn0_cn1_value = 0;
2471 				}
2472 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
2473 				if (support.bits.photo_content == 1) {
2474 					cn0_cn1_value = 1;
2475 				} else {
2476 					cn0_cn1_value = 0;
2477 					itc_value = 0;
2478 				}
2479 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
2480 				if (support.bits.cinema_content == 1) {
2481 					cn0_cn1_value = 2;
2482 				} else {
2483 					cn0_cn1_value = 0;
2484 					itc_value = 0;
2485 				}
2486 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
2487 				if (support.bits.game_content == 1) {
2488 					cn0_cn1_value = 3;
2489 				} else {
2490 					cn0_cn1_value = 0;
2491 					itc_value = 0;
2492 				}
2493 			}
2494 		}
2495 		hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
2496 		hdmi_info.bits.ITC = itc_value;
2497 	}
2498 
2499 	if (stream->qs_bit == 1) {
2500 		if (color_space == COLOR_SPACE_SRGB ||
2501 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2502 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_FULL_RANGE;
2503 		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2504 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2505 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_LIMITED_RANGE;
2506 		else
2507 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2508 	} else
2509 		hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2510 
2511 	/* TODO : We should handle YCC quantization */
2512 	/* but we do not have matrix calculation */
2513 	if (stream->qy_bit == 1) {
2514 		if (color_space == COLOR_SPACE_SRGB ||
2515 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2516 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2517 		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2518 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2519 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2520 		else
2521 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2522 	} else
2523 		hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2524 
2525 	///VIC
2526 	format = stream->timing.timing_3d_format;
2527 	/*todo, add 3DStereo support*/
2528 	if (format != TIMING_3D_FORMAT_NONE) {
2529 		// Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
2530 		switch (pipe_ctx->stream->timing.hdmi_vic) {
2531 		case 1:
2532 			vic = 95;
2533 			break;
2534 		case 2:
2535 			vic = 94;
2536 			break;
2537 		case 3:
2538 			vic = 93;
2539 			break;
2540 		case 4:
2541 			vic = 98;
2542 			break;
2543 		default:
2544 			break;
2545 		}
2546 	}
2547 	/* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
2548 	hdmi_info.bits.VIC0_VIC7 = vic;
2549 	if (vic >= 128)
2550 		hdmi_info.bits.header.version = 3;
2551 	/* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
2552 	 * the Source shall use 20 AVI InfoFrame Version 4
2553 	 */
2554 	if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
2555 			hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
2556 		hdmi_info.bits.header.version = 4;
2557 		hdmi_info.bits.header.length = 14;
2558 	}
2559 
2560 	/* pixel repetition
2561 	 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
2562 	 * repetition start from 1 */
2563 	hdmi_info.bits.PR0_PR3 = 0;
2564 
2565 	/* Bar Info
2566 	 * barTop:    Line Number of End of Top Bar.
2567 	 * barBottom: Line Number of Start of Bottom Bar.
2568 	 * barLeft:   Pixel Number of End of Left Bar.
2569 	 * barRight:  Pixel Number of Start of Right Bar. */
2570 	hdmi_info.bits.bar_top = stream->timing.v_border_top;
2571 	hdmi_info.bits.bar_bottom = (stream->timing.v_total
2572 			- stream->timing.v_border_bottom + 1);
2573 	hdmi_info.bits.bar_left  = stream->timing.h_border_left;
2574 	hdmi_info.bits.bar_right = (stream->timing.h_total
2575 			- stream->timing.h_border_right + 1);
2576 
2577     /* Additional Colorimetry Extension
2578      * Used in conduction with C0-C1 and EC0-EC2
2579      * 0 = DCI-P3 RGB (D65)
2580      * 1 = DCI-P3 RGB (theater)
2581      */
2582 	hdmi_info.bits.ACE0_ACE3 = 0;
2583 
2584 	/* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
2585 	check_sum = &hdmi_info.packet_raw_data.sb[0];
2586 
2587 	*check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
2588 
2589 	for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
2590 		*check_sum += hdmi_info.packet_raw_data.sb[byte_index];
2591 
2592 	/* one byte complement */
2593 	*check_sum = (uint8_t) (0x100 - *check_sum);
2594 
2595 	/* Store in hw_path_mode */
2596 	info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
2597 	info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
2598 	info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
2599 
2600 	for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
2601 		info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
2602 
2603 	info_packet->valid = true;
2604 }
2605 
2606 static void set_vendor_info_packet(
2607 		struct dc_info_packet *info_packet,
2608 		struct dc_stream_state *stream)
2609 {
2610 	/* SPD info packet for FreeSync */
2611 
2612 	/* Check if Freesync is supported. Return if false. If true,
2613 	 * set the corresponding bit in the info packet
2614 	 */
2615 	if (!stream->vsp_infopacket.valid)
2616 		return;
2617 
2618 	*info_packet = stream->vsp_infopacket;
2619 }
2620 
2621 static void set_spd_info_packet(
2622 		struct dc_info_packet *info_packet,
2623 		struct dc_stream_state *stream)
2624 {
2625 	/* SPD info packet for FreeSync */
2626 
2627 	/* Check if Freesync is supported. Return if false. If true,
2628 	 * set the corresponding bit in the info packet
2629 	 */
2630 	if (!stream->vrr_infopacket.valid)
2631 		return;
2632 
2633 	*info_packet = stream->vrr_infopacket;
2634 }
2635 
2636 static void set_hdr_static_info_packet(
2637 		struct dc_info_packet *info_packet,
2638 		struct dc_stream_state *stream)
2639 {
2640 	/* HDR Static Metadata info packet for HDR10 */
2641 
2642 	if (!stream->hdr_static_metadata.valid ||
2643 			stream->use_dynamic_meta)
2644 		return;
2645 
2646 	*info_packet = stream->hdr_static_metadata;
2647 }
2648 
2649 static void set_vsc_info_packet(
2650 		struct dc_info_packet *info_packet,
2651 		struct dc_stream_state *stream)
2652 {
2653 	if (!stream->vsc_infopacket.valid)
2654 		return;
2655 
2656 	*info_packet = stream->vsc_infopacket;
2657 }
2658 
2659 void dc_resource_state_destruct(struct dc_state *context)
2660 {
2661 	int i, j;
2662 
2663 	for (i = 0; i < context->stream_count; i++) {
2664 		for (j = 0; j < context->stream_status[i].plane_count; j++)
2665 			dc_plane_state_release(
2666 				context->stream_status[i].plane_states[j]);
2667 
2668 		context->stream_status[i].plane_count = 0;
2669 		dc_stream_release(context->streams[i]);
2670 		context->streams[i] = NULL;
2671 	}
2672 	context->stream_count = 0;
2673 }
2674 
2675 void dc_resource_state_copy_construct(
2676 		const struct dc_state *src_ctx,
2677 		struct dc_state *dst_ctx)
2678 {
2679 	int i, j;
2680 	struct kref refcount = dst_ctx->refcount;
2681 
2682 	*dst_ctx = *src_ctx;
2683 
2684 	for (i = 0; i < MAX_PIPES; i++) {
2685 		struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
2686 
2687 		if (cur_pipe->top_pipe)
2688 			cur_pipe->top_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2689 
2690 		if (cur_pipe->bottom_pipe)
2691 			cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2692 
2693 		if (cur_pipe->next_odm_pipe)
2694 			cur_pipe->next_odm_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2695 
2696 		if (cur_pipe->prev_odm_pipe)
2697 			cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2698 	}
2699 
2700 	for (i = 0; i < dst_ctx->stream_count; i++) {
2701 		dc_stream_retain(dst_ctx->streams[i]);
2702 		for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
2703 			dc_plane_state_retain(
2704 				dst_ctx->stream_status[i].plane_states[j]);
2705 	}
2706 
2707 	/* context refcount should not be overridden */
2708 	dst_ctx->refcount = refcount;
2709 
2710 }
2711 
2712 struct clock_source *dc_resource_find_first_free_pll(
2713 		struct resource_context *res_ctx,
2714 		const struct resource_pool *pool)
2715 {
2716 	int i;
2717 
2718 	for (i = 0; i < pool->clk_src_count; ++i) {
2719 		if (res_ctx->clock_source_ref_count[i] == 0)
2720 			return pool->clock_sources[i];
2721 	}
2722 
2723 	return NULL;
2724 }
2725 
2726 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
2727 {
2728 	enum signal_type signal = SIGNAL_TYPE_NONE;
2729 	struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
2730 
2731 	/* default all packets to invalid */
2732 	info->avi.valid = false;
2733 	info->gamut.valid = false;
2734 	info->vendor.valid = false;
2735 	info->spd.valid = false;
2736 	info->hdrsmd.valid = false;
2737 	info->vsc.valid = false;
2738 
2739 	signal = pipe_ctx->stream->signal;
2740 
2741 	/* HDMi and DP have different info packets*/
2742 	if (dc_is_hdmi_signal(signal)) {
2743 		set_avi_info_frame(&info->avi, pipe_ctx);
2744 
2745 		set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
2746 
2747 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
2748 
2749 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2750 
2751 	} else if (dc_is_dp_signal(signal)) {
2752 		set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
2753 
2754 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
2755 
2756 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2757 	}
2758 
2759 	patch_gamut_packet_checksum(&info->gamut);
2760 }
2761 
2762 enum dc_status resource_map_clock_resources(
2763 		const struct dc  *dc,
2764 		struct dc_state *context,
2765 		struct dc_stream_state *stream)
2766 {
2767 	/* acquire new resources */
2768 	const struct resource_pool *pool = dc->res_pool;
2769 	struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
2770 				&context->res_ctx, stream);
2771 
2772 	if (!pipe_ctx)
2773 		return DC_ERROR_UNEXPECTED;
2774 
2775 	if (dc_is_dp_signal(pipe_ctx->stream->signal)
2776 		|| pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
2777 		pipe_ctx->clock_source = pool->dp_clock_source;
2778 	else {
2779 		pipe_ctx->clock_source = NULL;
2780 
2781 		if (!dc->config.disable_disp_pll_sharing)
2782 			pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
2783 				&context->res_ctx,
2784 				pipe_ctx);
2785 
2786 		if (pipe_ctx->clock_source == NULL)
2787 			pipe_ctx->clock_source =
2788 				dc_resource_find_first_free_pll(
2789 					&context->res_ctx,
2790 					pool);
2791 	}
2792 
2793 	if (pipe_ctx->clock_source == NULL)
2794 		return DC_NO_CLOCK_SOURCE_RESOURCE;
2795 
2796 	resource_reference_clock_source(
2797 		&context->res_ctx, pool,
2798 		pipe_ctx->clock_source);
2799 
2800 	return DC_OK;
2801 }
2802 
2803 /*
2804  * Note: We need to disable output if clock sources change,
2805  * since bios does optimization and doesn't apply if changing
2806  * PHY when not already disabled.
2807  */
2808 bool pipe_need_reprogram(
2809 		struct pipe_ctx *pipe_ctx_old,
2810 		struct pipe_ctx *pipe_ctx)
2811 {
2812 	if (!pipe_ctx_old->stream)
2813 		return false;
2814 
2815 	if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
2816 		return true;
2817 
2818 	if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
2819 		return true;
2820 
2821 	if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
2822 		return true;
2823 
2824 	if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
2825 			&& pipe_ctx_old->stream != pipe_ctx->stream)
2826 		return true;
2827 
2828 	if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
2829 		return true;
2830 
2831 	if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
2832 		return true;
2833 
2834 	if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
2835 		return true;
2836 
2837 	if (false == pipe_ctx_old->stream->link->link_state_valid &&
2838 		false == pipe_ctx_old->stream->dpms_off)
2839 		return true;
2840 
2841 	if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
2842 		return true;
2843 
2844 #if defined(CONFIG_DRM_AMD_DC_DCN)
2845 	if (pipe_ctx_old->stream_res.hpo_dp_stream_enc != pipe_ctx->stream_res.hpo_dp_stream_enc)
2846 		return true;
2847 #endif
2848 
2849 	/* DIG link encoder resource assignment for stream changed. */
2850 	if (pipe_ctx_old->stream->ctx->dc->res_pool->funcs->link_encs_assign) {
2851 		bool need_reprogram = false;
2852 		struct dc *dc = pipe_ctx_old->stream->ctx->dc;
2853 		enum link_enc_cfg_mode mode = dc->current_state->res_ctx.link_enc_cfg_ctx.mode;
2854 
2855 		dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
2856 		if (link_enc_cfg_get_link_enc_used_by_stream(dc, pipe_ctx_old->stream) != pipe_ctx->stream->link_enc)
2857 			need_reprogram = true;
2858 		dc->current_state->res_ctx.link_enc_cfg_ctx.mode = mode;
2859 
2860 		return need_reprogram;
2861 	}
2862 
2863 	return false;
2864 }
2865 
2866 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
2867 		struct bit_depth_reduction_params *fmt_bit_depth)
2868 {
2869 	enum dc_dither_option option = stream->dither_option;
2870 	enum dc_pixel_encoding pixel_encoding =
2871 			stream->timing.pixel_encoding;
2872 
2873 	memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
2874 
2875 	if (option == DITHER_OPTION_DEFAULT) {
2876 		switch (stream->timing.display_color_depth) {
2877 		case COLOR_DEPTH_666:
2878 			option = DITHER_OPTION_SPATIAL6;
2879 			break;
2880 		case COLOR_DEPTH_888:
2881 			option = DITHER_OPTION_SPATIAL8;
2882 			break;
2883 		case COLOR_DEPTH_101010:
2884 			option = DITHER_OPTION_SPATIAL10;
2885 			break;
2886 		default:
2887 			option = DITHER_OPTION_DISABLE;
2888 		}
2889 	}
2890 
2891 	if (option == DITHER_OPTION_DISABLE)
2892 		return;
2893 
2894 	if (option == DITHER_OPTION_TRUN6) {
2895 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2896 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
2897 	} else if (option == DITHER_OPTION_TRUN8 ||
2898 			option == DITHER_OPTION_TRUN8_SPATIAL6 ||
2899 			option == DITHER_OPTION_TRUN8_FM6) {
2900 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2901 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
2902 	} else if (option == DITHER_OPTION_TRUN10        ||
2903 			option == DITHER_OPTION_TRUN10_SPATIAL6   ||
2904 			option == DITHER_OPTION_TRUN10_SPATIAL8   ||
2905 			option == DITHER_OPTION_TRUN10_FM8     ||
2906 			option == DITHER_OPTION_TRUN10_FM6     ||
2907 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2908 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2909 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2910 	}
2911 
2912 	/* special case - Formatter can only reduce by 4 bits at most.
2913 	 * When reducing from 12 to 6 bits,
2914 	 * HW recommends we use trunc with round mode
2915 	 * (if we did nothing, trunc to 10 bits would be used)
2916 	 * note that any 12->10 bit reduction is ignored prior to DCE8,
2917 	 * as the input was 10 bits.
2918 	 */
2919 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
2920 			option == DITHER_OPTION_SPATIAL6 ||
2921 			option == DITHER_OPTION_FM6) {
2922 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2923 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2924 		fmt_bit_depth->flags.TRUNCATE_MODE = 1;
2925 	}
2926 
2927 	/* spatial dither
2928 	 * note that spatial modes 1-3 are never used
2929 	 */
2930 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM            ||
2931 			option == DITHER_OPTION_SPATIAL6 ||
2932 			option == DITHER_OPTION_TRUN10_SPATIAL6      ||
2933 			option == DITHER_OPTION_TRUN8_SPATIAL6) {
2934 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2935 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
2936 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2937 		fmt_bit_depth->flags.RGB_RANDOM =
2938 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2939 	} else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM            ||
2940 			option == DITHER_OPTION_SPATIAL8 ||
2941 			option == DITHER_OPTION_SPATIAL8_FM6        ||
2942 			option == DITHER_OPTION_TRUN10_SPATIAL8      ||
2943 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2944 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2945 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
2946 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2947 		fmt_bit_depth->flags.RGB_RANDOM =
2948 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2949 	} else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
2950 			option == DITHER_OPTION_SPATIAL10 ||
2951 			option == DITHER_OPTION_SPATIAL10_FM8 ||
2952 			option == DITHER_OPTION_SPATIAL10_FM6) {
2953 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2954 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
2955 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2956 		fmt_bit_depth->flags.RGB_RANDOM =
2957 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2958 	}
2959 
2960 	if (option == DITHER_OPTION_SPATIAL6 ||
2961 			option == DITHER_OPTION_SPATIAL8 ||
2962 			option == DITHER_OPTION_SPATIAL10) {
2963 		fmt_bit_depth->flags.FRAME_RANDOM = 0;
2964 	} else {
2965 		fmt_bit_depth->flags.FRAME_RANDOM = 1;
2966 	}
2967 
2968 	//////////////////////
2969 	//// temporal dither
2970 	//////////////////////
2971 	if (option == DITHER_OPTION_FM6           ||
2972 			option == DITHER_OPTION_SPATIAL8_FM6     ||
2973 			option == DITHER_OPTION_SPATIAL10_FM6     ||
2974 			option == DITHER_OPTION_TRUN10_FM6     ||
2975 			option == DITHER_OPTION_TRUN8_FM6      ||
2976 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2977 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2978 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
2979 	} else if (option == DITHER_OPTION_FM8        ||
2980 			option == DITHER_OPTION_SPATIAL10_FM8  ||
2981 			option == DITHER_OPTION_TRUN10_FM8) {
2982 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2983 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
2984 	} else if (option == DITHER_OPTION_FM10) {
2985 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2986 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
2987 	}
2988 
2989 	fmt_bit_depth->pixel_encoding = pixel_encoding;
2990 }
2991 
2992 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
2993 {
2994 	struct dc_link *link = stream->link;
2995 	struct timing_generator *tg = dc->res_pool->timing_generators[0];
2996 	enum dc_status res = DC_OK;
2997 
2998 	calculate_phy_pix_clks(stream);
2999 
3000 	if (!tg->funcs->validate_timing(tg, &stream->timing))
3001 		res = DC_FAIL_CONTROLLER_VALIDATE;
3002 
3003 	if (res == DC_OK) {
3004 		if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
3005 				!link->link_enc->funcs->validate_output_with_stream(
3006 						link->link_enc, stream))
3007 			res = DC_FAIL_ENC_VALIDATE;
3008 	}
3009 
3010 	/* TODO: validate audio ASIC caps, encoder */
3011 
3012 	if (res == DC_OK)
3013 		res = dc_link_validate_mode_timing(stream,
3014 		      link,
3015 		      &stream->timing);
3016 
3017 	return res;
3018 }
3019 
3020 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
3021 {
3022 	enum dc_status res = DC_OK;
3023 
3024 	/* check if surface has invalid dimensions */
3025 	if (plane_state->src_rect.width == 0 || plane_state->src_rect.height == 0 ||
3026 		plane_state->dst_rect.width == 0 || plane_state->dst_rect.height == 0)
3027 		return DC_FAIL_SURFACE_VALIDATE;
3028 
3029 	/* TODO For now validates pixel format only */
3030 	if (dc->res_pool->funcs->validate_plane)
3031 		return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
3032 
3033 	return res;
3034 }
3035 
3036 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
3037 {
3038 	switch (format) {
3039 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
3040 		return 8;
3041 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
3042 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
3043 		return 12;
3044 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
3045 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
3046 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
3047 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
3048 		return 16;
3049 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
3050 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
3051 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
3052 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
3053 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
3054 #if defined(CONFIG_DRM_AMD_DC_DCN)
3055 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
3056 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
3057 #endif
3058 		return 32;
3059 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
3060 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
3061 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
3062 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
3063 		return 64;
3064 	default:
3065 		ASSERT_CRITICAL(false);
3066 		return -1;
3067 	}
3068 }
3069 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
3070 {
3071 	if (modes) {
3072 		if (modes->sample_rates.rate.RATE_192)
3073 			return 192000;
3074 		if (modes->sample_rates.rate.RATE_176_4)
3075 			return 176400;
3076 		if (modes->sample_rates.rate.RATE_96)
3077 			return 96000;
3078 		if (modes->sample_rates.rate.RATE_88_2)
3079 			return 88200;
3080 		if (modes->sample_rates.rate.RATE_48)
3081 			return 48000;
3082 		if (modes->sample_rates.rate.RATE_44_1)
3083 			return 44100;
3084 		if (modes->sample_rates.rate.RATE_32)
3085 			return 32000;
3086 	}
3087 	/*original logic when no audio info*/
3088 	return 441000;
3089 }
3090 
3091 void get_audio_check(struct audio_info *aud_modes,
3092 	struct audio_check *audio_chk)
3093 {
3094 	unsigned int i;
3095 	unsigned int max_sample_rate = 0;
3096 
3097 	if (aud_modes) {
3098 		audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
3099 
3100 		audio_chk->max_audiosample_rate = 0;
3101 		for (i = 0; i < aud_modes->mode_count; i++) {
3102 			max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
3103 			if (audio_chk->max_audiosample_rate < max_sample_rate)
3104 				audio_chk->max_audiosample_rate = max_sample_rate;
3105 			/*dts takes the same as type 2: AP = 0.25*/
3106 		}
3107 		/*check which one take more bandwidth*/
3108 		if (audio_chk->max_audiosample_rate > 192000)
3109 			audio_chk->audio_packet_type = 0x9;/*AP =1*/
3110 		audio_chk->acat = 0;/*not support*/
3111 	}
3112 }
3113 
3114 #if defined(CONFIG_DRM_AMD_DC_DCN)
3115 struct hpo_dp_link_encoder *resource_get_unused_hpo_dp_link_encoder(
3116 		const struct resource_pool *pool)
3117 {
3118 	uint8_t i;
3119 	struct hpo_dp_link_encoder *enc = NULL;
3120 
3121 	ASSERT(pool->hpo_dp_link_enc_count <= MAX_HPO_DP2_LINK_ENCODERS);
3122 
3123 	for (i = 0; i < pool->hpo_dp_link_enc_count; i++) {
3124 		if (pool->hpo_dp_link_enc[i]->transmitter == TRANSMITTER_UNKNOWN) {
3125 			enc = pool->hpo_dp_link_enc[i];
3126 			break;
3127 		}
3128 	}
3129 
3130 	return enc;
3131 }
3132 #endif
3133