1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include <linux/slab.h>
27 
28 #include "dm_services.h"
29 
30 #include "resource.h"
31 #include "include/irq_service_interface.h"
32 #include "link_encoder.h"
33 #include "stream_encoder.h"
34 #include "opp.h"
35 #include "timing_generator.h"
36 #include "transform.h"
37 #include "dccg.h"
38 #include "dchubbub.h"
39 #include "dpp.h"
40 #include "core_types.h"
41 #include "set_mode_types.h"
42 #include "virtual/virtual_stream_encoder.h"
43 #include "dpcd_defs.h"
44 
45 #if defined(CONFIG_DRM_AMD_DC_SI)
46 #include "dce60/dce60_resource.h"
47 #endif
48 #include "dce80/dce80_resource.h"
49 #include "dce100/dce100_resource.h"
50 #include "dce110/dce110_resource.h"
51 #include "dce112/dce112_resource.h"
52 #include "dce120/dce120_resource.h"
53 #if defined(CONFIG_DRM_AMD_DC_DCN)
54 #include "dcn10/dcn10_resource.h"
55 #include "dcn20/dcn20_resource.h"
56 #include "dcn21/dcn21_resource.h"
57 #include "dcn30/dcn30_resource.h"
58 #include "dcn301/dcn301_resource.h"
59 #include "dcn302/dcn302_resource.h"
60 #include "dcn303/dcn303_resource.h"
61 #include "dcn31/dcn31_resource.h"
62 #endif
63 
64 #define DC_LOGGER_INIT(logger)
65 
66 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
67 {
68 	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
69 	switch (asic_id.chip_family) {
70 
71 #if defined(CONFIG_DRM_AMD_DC_SI)
72 	case FAMILY_SI:
73 		if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
74 		    ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
75 		    ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
76 			dc_version = DCE_VERSION_6_0;
77 		else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
78 			dc_version = DCE_VERSION_6_4;
79 		else
80 			dc_version = DCE_VERSION_6_1;
81 		break;
82 #endif
83 	case FAMILY_CI:
84 		dc_version = DCE_VERSION_8_0;
85 		break;
86 	case FAMILY_KV:
87 		if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
88 		    ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
89 		    ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
90 			dc_version = DCE_VERSION_8_3;
91 		else
92 			dc_version = DCE_VERSION_8_1;
93 		break;
94 	case FAMILY_CZ:
95 		dc_version = DCE_VERSION_11_0;
96 		break;
97 
98 	case FAMILY_VI:
99 		if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
100 				ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
101 			dc_version = DCE_VERSION_10_0;
102 			break;
103 		}
104 		if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
105 				ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
106 				ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
107 			dc_version = DCE_VERSION_11_2;
108 		}
109 		if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
110 			dc_version = DCE_VERSION_11_22;
111 		break;
112 	case FAMILY_AI:
113 		if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
114 			dc_version = DCE_VERSION_12_1;
115 		else
116 			dc_version = DCE_VERSION_12_0;
117 		break;
118 #if defined(CONFIG_DRM_AMD_DC_DCN)
119 	case FAMILY_RV:
120 		dc_version = DCN_VERSION_1_0;
121 		if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
122 			dc_version = DCN_VERSION_1_01;
123 		if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
124 			dc_version = DCN_VERSION_2_1;
125 		if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
126 			dc_version = DCN_VERSION_2_1;
127 		break;
128 
129 	case FAMILY_NV:
130 		dc_version = DCN_VERSION_2_0;
131 		if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
132 			dc_version = DCN_VERSION_3_0;
133 		if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
134 			dc_version = DCN_VERSION_3_02;
135 		if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
136 			dc_version = DCN_VERSION_3_03;
137 		break;
138 
139 	case FAMILY_VGH:
140 		dc_version = DCN_VERSION_3_01;
141 		break;
142 
143 	case FAMILY_YELLOW_CARP:
144 		if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
145 			dc_version = DCN_VERSION_3_1;
146 		break;
147 #endif
148 
149 	default:
150 		dc_version = DCE_VERSION_UNKNOWN;
151 		break;
152 	}
153 	return dc_version;
154 }
155 
156 struct resource_pool *dc_create_resource_pool(struct dc  *dc,
157 					      const struct dc_init_data *init_data,
158 					      enum dce_version dc_version)
159 {
160 	struct resource_pool *res_pool = NULL;
161 
162 	switch (dc_version) {
163 #if defined(CONFIG_DRM_AMD_DC_SI)
164 	case DCE_VERSION_6_0:
165 		res_pool = dce60_create_resource_pool(
166 			init_data->num_virtual_links, dc);
167 		break;
168 	case DCE_VERSION_6_1:
169 		res_pool = dce61_create_resource_pool(
170 			init_data->num_virtual_links, dc);
171 		break;
172 	case DCE_VERSION_6_4:
173 		res_pool = dce64_create_resource_pool(
174 			init_data->num_virtual_links, dc);
175 		break;
176 #endif
177 	case DCE_VERSION_8_0:
178 		res_pool = dce80_create_resource_pool(
179 				init_data->num_virtual_links, dc);
180 		break;
181 	case DCE_VERSION_8_1:
182 		res_pool = dce81_create_resource_pool(
183 				init_data->num_virtual_links, dc);
184 		break;
185 	case DCE_VERSION_8_3:
186 		res_pool = dce83_create_resource_pool(
187 				init_data->num_virtual_links, dc);
188 		break;
189 	case DCE_VERSION_10_0:
190 		res_pool = dce100_create_resource_pool(
191 				init_data->num_virtual_links, dc);
192 		break;
193 	case DCE_VERSION_11_0:
194 		res_pool = dce110_create_resource_pool(
195 				init_data->num_virtual_links, dc,
196 				init_data->asic_id);
197 		break;
198 	case DCE_VERSION_11_2:
199 	case DCE_VERSION_11_22:
200 		res_pool = dce112_create_resource_pool(
201 				init_data->num_virtual_links, dc);
202 		break;
203 	case DCE_VERSION_12_0:
204 	case DCE_VERSION_12_1:
205 		res_pool = dce120_create_resource_pool(
206 				init_data->num_virtual_links, dc);
207 		break;
208 
209 #if defined(CONFIG_DRM_AMD_DC_DCN)
210 	case DCN_VERSION_1_0:
211 	case DCN_VERSION_1_01:
212 		res_pool = dcn10_create_resource_pool(init_data, dc);
213 		break;
214 	case DCN_VERSION_2_0:
215 		res_pool = dcn20_create_resource_pool(init_data, dc);
216 		break;
217 	case DCN_VERSION_2_1:
218 		res_pool = dcn21_create_resource_pool(init_data, dc);
219 		break;
220 	case DCN_VERSION_3_0:
221 		res_pool = dcn30_create_resource_pool(init_data, dc);
222 		break;
223 	case DCN_VERSION_3_01:
224 		res_pool = dcn301_create_resource_pool(init_data, dc);
225 		break;
226 	case DCN_VERSION_3_02:
227 		res_pool = dcn302_create_resource_pool(init_data, dc);
228 		break;
229 	case DCN_VERSION_3_03:
230 		res_pool = dcn303_create_resource_pool(init_data, dc);
231 		break;
232 	case DCN_VERSION_3_1:
233 		res_pool = dcn31_create_resource_pool(init_data, dc);
234 		break;
235 #endif
236 	default:
237 		break;
238 	}
239 
240 	if (res_pool != NULL) {
241 		if (dc->ctx->dc_bios->fw_info_valid) {
242 			res_pool->ref_clocks.xtalin_clock_inKhz =
243 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
244 			/* initialize with firmware data first, no all
245 			 * ASIC have DCCG SW component. FPGA or
246 			 * simulation need initialization of
247 			 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
248 			 * with xtalin_clock_inKhz
249 			 */
250 			res_pool->ref_clocks.dccg_ref_clock_inKhz =
251 				res_pool->ref_clocks.xtalin_clock_inKhz;
252 			res_pool->ref_clocks.dchub_ref_clock_inKhz =
253 				res_pool->ref_clocks.xtalin_clock_inKhz;
254 		} else
255 			ASSERT_CRITICAL(false);
256 	}
257 
258 	return res_pool;
259 }
260 
261 void dc_destroy_resource_pool(struct dc  *dc)
262 {
263 	if (dc) {
264 		if (dc->res_pool)
265 			dc->res_pool->funcs->destroy(&dc->res_pool);
266 
267 		kfree(dc->hwseq);
268 	}
269 }
270 
271 static void update_num_audio(
272 	const struct resource_straps *straps,
273 	unsigned int *num_audio,
274 	struct audio_support *aud_support)
275 {
276 	aud_support->dp_audio = true;
277 	aud_support->hdmi_audio_native = false;
278 	aud_support->hdmi_audio_on_dongle = false;
279 
280 	if (straps->hdmi_disable == 0) {
281 		if (straps->dc_pinstraps_audio & 0x2) {
282 			aud_support->hdmi_audio_on_dongle = true;
283 			aud_support->hdmi_audio_native = true;
284 		}
285 	}
286 
287 	switch (straps->audio_stream_number) {
288 	case 0: /* multi streams supported */
289 		break;
290 	case 1: /* multi streams not supported */
291 		*num_audio = 1;
292 		break;
293 	default:
294 		DC_ERR("DC: unexpected audio fuse!\n");
295 	}
296 }
297 
298 bool resource_construct(
299 	unsigned int num_virtual_links,
300 	struct dc  *dc,
301 	struct resource_pool *pool,
302 	const struct resource_create_funcs *create_funcs)
303 {
304 	struct dc_context *ctx = dc->ctx;
305 	const struct resource_caps *caps = pool->res_cap;
306 	int i;
307 	unsigned int num_audio = caps->num_audio;
308 	struct resource_straps straps = {0};
309 
310 	if (create_funcs->read_dce_straps)
311 		create_funcs->read_dce_straps(dc->ctx, &straps);
312 
313 	pool->audio_count = 0;
314 	if (create_funcs->create_audio) {
315 		/* find the total number of streams available via the
316 		 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
317 		 * registers (one for each pin) starting from pin 1
318 		 * up to the max number of audio pins.
319 		 * We stop on the first pin where
320 		 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
321 		 */
322 		update_num_audio(&straps, &num_audio, &pool->audio_support);
323 		for (i = 0; i < caps->num_audio; i++) {
324 			struct audio *aud = create_funcs->create_audio(ctx, i);
325 
326 			if (aud == NULL) {
327 				DC_ERR("DC: failed to create audio!\n");
328 				return false;
329 			}
330 			if (!aud->funcs->endpoint_valid(aud)) {
331 				aud->funcs->destroy(&aud);
332 				break;
333 			}
334 			pool->audios[i] = aud;
335 			pool->audio_count++;
336 		}
337 	}
338 
339 	pool->stream_enc_count = 0;
340 	if (create_funcs->create_stream_encoder) {
341 		for (i = 0; i < caps->num_stream_encoder; i++) {
342 			pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
343 			if (pool->stream_enc[i] == NULL)
344 				DC_ERR("DC: failed to create stream_encoder!\n");
345 			pool->stream_enc_count++;
346 		}
347 	}
348 
349 #if defined(CONFIG_DRM_AMD_DC_DCN)
350 	for (i = 0; i < caps->num_mpc_3dlut; i++) {
351 		pool->mpc_lut[i] = dc_create_3dlut_func();
352 		if (pool->mpc_lut[i] == NULL)
353 			DC_ERR("DC: failed to create MPC 3dlut!\n");
354 		pool->mpc_shaper[i] = dc_create_transfer_func();
355 		if (pool->mpc_shaper[i] == NULL)
356 			DC_ERR("DC: failed to create MPC shaper!\n");
357 	}
358 #endif
359 	dc->caps.dynamic_audio = false;
360 	if (pool->audio_count < pool->stream_enc_count) {
361 		dc->caps.dynamic_audio = true;
362 	}
363 	for (i = 0; i < num_virtual_links; i++) {
364 		pool->stream_enc[pool->stream_enc_count] =
365 			virtual_stream_encoder_create(
366 					ctx, ctx->dc_bios);
367 		if (pool->stream_enc[pool->stream_enc_count] == NULL) {
368 			DC_ERR("DC: failed to create stream_encoder!\n");
369 			return false;
370 		}
371 		pool->stream_enc_count++;
372 	}
373 
374 	dc->hwseq = create_funcs->create_hwseq(ctx);
375 
376 	return true;
377 }
378 static int find_matching_clock_source(
379 		const struct resource_pool *pool,
380 		struct clock_source *clock_source)
381 {
382 
383 	int i;
384 
385 	for (i = 0; i < pool->clk_src_count; i++) {
386 		if (pool->clock_sources[i] == clock_source)
387 			return i;
388 	}
389 	return -1;
390 }
391 
392 void resource_unreference_clock_source(
393 		struct resource_context *res_ctx,
394 		const struct resource_pool *pool,
395 		struct clock_source *clock_source)
396 {
397 	int i = find_matching_clock_source(pool, clock_source);
398 
399 	if (i > -1)
400 		res_ctx->clock_source_ref_count[i]--;
401 
402 	if (pool->dp_clock_source == clock_source)
403 		res_ctx->dp_clock_source_ref_count--;
404 }
405 
406 void resource_reference_clock_source(
407 		struct resource_context *res_ctx,
408 		const struct resource_pool *pool,
409 		struct clock_source *clock_source)
410 {
411 	int i = find_matching_clock_source(pool, clock_source);
412 
413 	if (i > -1)
414 		res_ctx->clock_source_ref_count[i]++;
415 
416 	if (pool->dp_clock_source == clock_source)
417 		res_ctx->dp_clock_source_ref_count++;
418 }
419 
420 int resource_get_clock_source_reference(
421 		struct resource_context *res_ctx,
422 		const struct resource_pool *pool,
423 		struct clock_source *clock_source)
424 {
425 	int i = find_matching_clock_source(pool, clock_source);
426 
427 	if (i > -1)
428 		return res_ctx->clock_source_ref_count[i];
429 
430 	if (pool->dp_clock_source == clock_source)
431 		return res_ctx->dp_clock_source_ref_count;
432 
433 	return -1;
434 }
435 
436 bool resource_are_vblanks_synchronizable(
437 	struct dc_stream_state *stream1,
438 	struct dc_stream_state *stream2)
439 {
440 	uint32_t base60_refresh_rates[] = {10, 20, 5};
441 	uint8_t i;
442 	uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
443 	uint64_t frame_time_diff;
444 
445 	if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
446 		stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
447 		dc_is_dp_signal(stream1->signal) &&
448 		dc_is_dp_signal(stream2->signal) &&
449 		false == stream1->has_non_synchronizable_pclk &&
450 		false == stream2->has_non_synchronizable_pclk &&
451 		stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
452 		stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
453 		/* disable refresh rates higher than 60Hz for now */
454 		if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
455 				stream1->timing.v_total > 60)
456 			return false;
457 		if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
458 				stream2->timing.v_total > 60)
459 			return false;
460 		frame_time_diff = (uint64_t)10000 *
461 			stream1->timing.h_total *
462 			stream1->timing.v_total *
463 			stream2->timing.pix_clk_100hz;
464 		frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
465 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
466 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
467 		for (i = 0; i < rr_count; i++) {
468 			int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
469 
470 			if (diff < 0)
471 				diff = -diff;
472 			if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
473 				return true;
474 		}
475 	}
476 	return false;
477 }
478 
479 bool resource_are_streams_timing_synchronizable(
480 	struct dc_stream_state *stream1,
481 	struct dc_stream_state *stream2)
482 {
483 	if (stream1->timing.h_total != stream2->timing.h_total)
484 		return false;
485 
486 	if (stream1->timing.v_total != stream2->timing.v_total)
487 		return false;
488 
489 	if (stream1->timing.h_addressable
490 				!= stream2->timing.h_addressable)
491 		return false;
492 
493 	if (stream1->timing.v_addressable
494 				!= stream2->timing.v_addressable)
495 		return false;
496 
497 	if (stream1->timing.v_front_porch
498 				!= stream2->timing.v_front_porch)
499 		return false;
500 
501 	if (stream1->timing.pix_clk_100hz
502 				!= stream2->timing.pix_clk_100hz)
503 		return false;
504 
505 	if (stream1->clamping.c_depth != stream2->clamping.c_depth)
506 		return false;
507 
508 	if (stream1->phy_pix_clk != stream2->phy_pix_clk
509 			&& (!dc_is_dp_signal(stream1->signal)
510 			|| !dc_is_dp_signal(stream2->signal)))
511 		return false;
512 
513 	if (stream1->view_format != stream2->view_format)
514 		return false;
515 
516 	if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
517 		return false;
518 
519 	return true;
520 }
521 static bool is_dp_and_hdmi_sharable(
522 		struct dc_stream_state *stream1,
523 		struct dc_stream_state *stream2)
524 {
525 	if (stream1->ctx->dc->caps.disable_dp_clk_share)
526 		return false;
527 
528 	if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
529 		stream2->clamping.c_depth != COLOR_DEPTH_888)
530 		return false;
531 
532 	return true;
533 
534 }
535 
536 static bool is_sharable_clk_src(
537 	const struct pipe_ctx *pipe_with_clk_src,
538 	const struct pipe_ctx *pipe)
539 {
540 	if (pipe_with_clk_src->clock_source == NULL)
541 		return false;
542 
543 	if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
544 		return false;
545 
546 	if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
547 		(dc_is_dp_signal(pipe->stream->signal) &&
548 		!is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
549 				     pipe->stream)))
550 		return false;
551 
552 	if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
553 			&& dc_is_dual_link_signal(pipe->stream->signal))
554 		return false;
555 
556 	if (dc_is_hdmi_signal(pipe->stream->signal)
557 			&& dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
558 		return false;
559 
560 	if (!resource_are_streams_timing_synchronizable(
561 			pipe_with_clk_src->stream, pipe->stream))
562 		return false;
563 
564 	return true;
565 }
566 
567 struct clock_source *resource_find_used_clk_src_for_sharing(
568 					struct resource_context *res_ctx,
569 					struct pipe_ctx *pipe_ctx)
570 {
571 	int i;
572 
573 	for (i = 0; i < MAX_PIPES; i++) {
574 		if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
575 			return res_ctx->pipe_ctx[i].clock_source;
576 	}
577 
578 	return NULL;
579 }
580 
581 static enum pixel_format convert_pixel_format_to_dalsurface(
582 		enum surface_pixel_format surface_pixel_format)
583 {
584 	enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
585 
586 	switch (surface_pixel_format) {
587 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
588 		dal_pixel_format = PIXEL_FORMAT_INDEX8;
589 		break;
590 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
591 		dal_pixel_format = PIXEL_FORMAT_RGB565;
592 		break;
593 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
594 		dal_pixel_format = PIXEL_FORMAT_RGB565;
595 		break;
596 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
597 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
598 		break;
599 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
600 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
601 		break;
602 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
603 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
604 		break;
605 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
606 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
607 		break;
608 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
609 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
610 		break;
611 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
612 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
613 		dal_pixel_format = PIXEL_FORMAT_FP16;
614 		break;
615 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
616 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
617 		dal_pixel_format = PIXEL_FORMAT_420BPP8;
618 		break;
619 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
620 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
621 		dal_pixel_format = PIXEL_FORMAT_420BPP10;
622 		break;
623 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
624 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
625 	default:
626 		dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
627 		break;
628 	}
629 	return dal_pixel_format;
630 }
631 
632 static inline void get_vp_scan_direction(
633 	enum dc_rotation_angle rotation,
634 	bool horizontal_mirror,
635 	bool *orthogonal_rotation,
636 	bool *flip_vert_scan_dir,
637 	bool *flip_horz_scan_dir)
638 {
639 	*orthogonal_rotation = false;
640 	*flip_vert_scan_dir = false;
641 	*flip_horz_scan_dir = false;
642 	if (rotation == ROTATION_ANGLE_180) {
643 		*flip_vert_scan_dir = true;
644 		*flip_horz_scan_dir = true;
645 	} else if (rotation == ROTATION_ANGLE_90) {
646 		*orthogonal_rotation = true;
647 		*flip_horz_scan_dir = true;
648 	} else if (rotation == ROTATION_ANGLE_270) {
649 		*orthogonal_rotation = true;
650 		*flip_vert_scan_dir = true;
651 	}
652 
653 	if (horizontal_mirror)
654 		*flip_horz_scan_dir = !*flip_horz_scan_dir;
655 }
656 
657 int get_num_mpc_splits(struct pipe_ctx *pipe)
658 {
659 	int mpc_split_count = 0;
660 	struct pipe_ctx *other_pipe = pipe->bottom_pipe;
661 
662 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
663 		mpc_split_count++;
664 		other_pipe = other_pipe->bottom_pipe;
665 	}
666 	other_pipe = pipe->top_pipe;
667 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
668 		mpc_split_count++;
669 		other_pipe = other_pipe->top_pipe;
670 	}
671 
672 	return mpc_split_count;
673 }
674 
675 int get_num_odm_splits(struct pipe_ctx *pipe)
676 {
677 	int odm_split_count = 0;
678 	struct pipe_ctx *next_pipe = pipe->next_odm_pipe;
679 	while (next_pipe) {
680 		odm_split_count++;
681 		next_pipe = next_pipe->next_odm_pipe;
682 	}
683 	pipe = pipe->prev_odm_pipe;
684 	while (pipe) {
685 		odm_split_count++;
686 		pipe = pipe->prev_odm_pipe;
687 	}
688 	return odm_split_count;
689 }
690 
691 static void calculate_split_count_and_index(struct pipe_ctx *pipe_ctx, int *split_count, int *split_idx)
692 {
693 	*split_count = get_num_odm_splits(pipe_ctx);
694 	*split_idx = 0;
695 	if (*split_count == 0) {
696 		/*Check for mpc split*/
697 		struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
698 
699 		*split_count = get_num_mpc_splits(pipe_ctx);
700 		while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
701 			(*split_idx)++;
702 			split_pipe = split_pipe->top_pipe;
703 		}
704 	} else {
705 		/*Get odm split index*/
706 		struct pipe_ctx *split_pipe = pipe_ctx->prev_odm_pipe;
707 
708 		while (split_pipe) {
709 			(*split_idx)++;
710 			split_pipe = split_pipe->prev_odm_pipe;
711 		}
712 	}
713 }
714 
715 /*
716  * This is a preliminary vp size calculation to allow us to check taps support.
717  * The result is completely overridden afterwards.
718  */
719 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
720 {
721 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
722 
723 	data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
724 	data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
725 	data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
726 	data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
727 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
728 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
729 		swap(data->viewport.width, data->viewport.height);
730 		swap(data->viewport_c.width, data->viewport_c.height);
731 	}
732 }
733 
734 static void calculate_recout(struct pipe_ctx *pipe_ctx)
735 {
736 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
737 	const struct dc_stream_state *stream = pipe_ctx->stream;
738 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
739 	struct rect surf_clip = plane_state->clip_rect;
740 	bool split_tb = stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
741 	int split_count, split_idx;
742 
743 	calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
744 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
745 		split_idx = 0;
746 
747 	/*
748 	 * Only the leftmost ODM pipe should be offset by a nonzero distance
749 	 */
750 	if (!pipe_ctx->prev_odm_pipe || split_idx == split_count) {
751 		data->recout.x = stream->dst.x;
752 		if (stream->src.x < surf_clip.x)
753 			data->recout.x += (surf_clip.x - stream->src.x) * stream->dst.width
754 						/ stream->src.width;
755 	} else
756 		data->recout.x = 0;
757 
758 	if (stream->src.x > surf_clip.x)
759 		surf_clip.width -= stream->src.x - surf_clip.x;
760 	data->recout.width = surf_clip.width * stream->dst.width / stream->src.width;
761 	if (data->recout.width + data->recout.x > stream->dst.x + stream->dst.width)
762 		data->recout.width = stream->dst.x + stream->dst.width - data->recout.x;
763 
764 	data->recout.y = stream->dst.y;
765 	if (stream->src.y < surf_clip.y)
766 		data->recout.y += (surf_clip.y - stream->src.y) * stream->dst.height
767 						/ stream->src.height;
768 	else if (stream->src.y > surf_clip.y)
769 		surf_clip.height -= stream->src.y - surf_clip.y;
770 
771 	data->recout.height = surf_clip.height * stream->dst.height / stream->src.height;
772 	if (data->recout.height + data->recout.y > stream->dst.y + stream->dst.height)
773 		data->recout.height = stream->dst.y + stream->dst.height - data->recout.y;
774 
775 	/* Handle h & v split */
776 	if (split_tb) {
777 		ASSERT(data->recout.height % 2 == 0);
778 		data->recout.height /= 2;
779 	} else if (split_count) {
780 		if (!pipe_ctx->next_odm_pipe && !pipe_ctx->prev_odm_pipe) {
781 			/* extra pixels in the division remainder need to go to pipes after
782 			 * the extra pixel index minus one(epimo) defined here as:
783 			 */
784 			int epimo = split_count - data->recout.width % (split_count + 1);
785 
786 			data->recout.x += (data->recout.width / (split_count + 1)) * split_idx;
787 			if (split_idx > epimo)
788 				data->recout.x += split_idx - epimo - 1;
789 			ASSERT(stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE || data->recout.width % 2 == 0);
790 			data->recout.width = data->recout.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
791 		} else {
792 			/* odm */
793 			if (split_idx == split_count) {
794 				/* rightmost pipe is the remainder recout */
795 				data->recout.width -= data->h_active * split_count - data->recout.x;
796 
797 				/* ODM combine cases with MPO we can get negative widths */
798 				if (data->recout.width < 0)
799 					data->recout.width = 0;
800 
801 				data->recout.x = 0;
802 			} else
803 				data->recout.width = data->h_active - data->recout.x;
804 		}
805 	}
806 }
807 
808 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
809 {
810 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
811 	const struct dc_stream_state *stream = pipe_ctx->stream;
812 	struct rect surf_src = plane_state->src_rect;
813 	const int in_w = stream->src.width;
814 	const int in_h = stream->src.height;
815 	const int out_w = stream->dst.width;
816 	const int out_h = stream->dst.height;
817 
818 	/*Swap surf_src height and width since scaling ratios are in recout rotation*/
819 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
820 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
821 		swap(surf_src.height, surf_src.width);
822 
823 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
824 					surf_src.width,
825 					plane_state->dst_rect.width);
826 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
827 					surf_src.height,
828 					plane_state->dst_rect.height);
829 
830 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
831 		pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
832 	else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
833 		pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
834 
835 	pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
836 		pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
837 	pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
838 		pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
839 
840 	pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
841 	pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
842 
843 	if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
844 			|| pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
845 		pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
846 		pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
847 	}
848 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
849 			pipe_ctx->plane_res.scl_data.ratios.horz, 19);
850 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
851 			pipe_ctx->plane_res.scl_data.ratios.vert, 19);
852 	pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
853 			pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
854 	pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
855 			pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
856 }
857 
858 
859 /*
860  * We completely calculate vp offset, size and inits here based entirely on scaling
861  * ratios and recout for pixel perfect pipe combine.
862  */
863 static void calculate_init_and_vp(
864 		bool flip_scan_dir,
865 		int recout_offset_within_recout_full,
866 		int recout_size,
867 		int src_size,
868 		int taps,
869 		struct fixed31_32 ratio,
870 		struct fixed31_32 *init,
871 		int *vp_offset,
872 		int *vp_size)
873 {
874 	struct fixed31_32 temp;
875 	int int_part;
876 
877 	/*
878 	 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
879 	 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
880 	 * All following calculations are based on this logic.
881 	 *
882 	 * Init calculated according to formula:
883 	 * 	init = (scaling_ratio + number_of_taps + 1) / 2
884 	 * 	init_bot = init + scaling_ratio
885 	 * 	to get pixel perfect combine add the fraction from calculating vp offset
886 	 */
887 	temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
888 	*vp_offset = dc_fixpt_floor(temp);
889 	temp.value &= 0xffffffff;
890 	*init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
891 			dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
892 	/*
893 	 * If viewport has non 0 offset and there are more taps than covered by init then
894 	 * we should decrease the offset and increase init so we are never sampling
895 	 * outside of viewport.
896 	 */
897 	int_part = dc_fixpt_floor(*init);
898 	if (int_part < taps) {
899 		int_part = taps - int_part;
900 		if (int_part > *vp_offset)
901 			int_part = *vp_offset;
902 		*vp_offset -= int_part;
903 		*init = dc_fixpt_add_int(*init, int_part);
904 	}
905 	/*
906 	 * If taps are sampling outside of viewport at end of recout and there are more pixels
907 	 * available in the surface we should increase the viewport size, regardless set vp to
908 	 * only what is used.
909 	 */
910 	temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
911 	*vp_size = dc_fixpt_floor(temp);
912 	if (*vp_size + *vp_offset > src_size)
913 		*vp_size = src_size - *vp_offset;
914 
915 	/* We did all the math assuming we are scanning same direction as display does,
916 	 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
917 	 * is flipped we simply need to calculate offset from the other side of plane.
918 	 * Note that outside of viewport all scaling hardware works in recout space.
919 	 */
920 	if (flip_scan_dir)
921 		*vp_offset = src_size - *vp_offset - *vp_size;
922 }
923 
924 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
925 {
926 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
927 	const struct dc_stream_state *stream = pipe_ctx->stream;
928 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
929 	struct rect src = plane_state->src_rect;
930 	int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
931 				|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
932 	int split_count, split_idx, ro_lb, ro_tb, recout_full_x, recout_full_y;
933 	bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
934 
935 	calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
936 	/*
937 	 * recout full is what the recout would have been if we didnt clip
938 	 * the source plane at all. We only care about left(ro_lb) and top(ro_tb)
939 	 * offsets of recout within recout full because those are the directions
940 	 * we scan from and therefore the only ones that affect inits.
941 	 */
942 	recout_full_x = stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
943 			* stream->dst.width / stream->src.width;
944 	recout_full_y = stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
945 			* stream->dst.height / stream->src.height;
946 	if (pipe_ctx->prev_odm_pipe && split_idx)
947 		ro_lb = data->h_active * split_idx - recout_full_x;
948 	else
949 		ro_lb = data->recout.x - recout_full_x;
950 	ro_tb = data->recout.y - recout_full_y;
951 	ASSERT(ro_lb >= 0 && ro_tb >= 0);
952 
953 	/*
954 	 * Work in recout rotation since that requires less transformations
955 	 */
956 	get_vp_scan_direction(
957 			plane_state->rotation,
958 			plane_state->horizontal_mirror,
959 			&orthogonal_rotation,
960 			&flip_vert_scan_dir,
961 			&flip_horz_scan_dir);
962 
963 	if (orthogonal_rotation) {
964 		swap(src.width, src.height);
965 		swap(flip_vert_scan_dir, flip_horz_scan_dir);
966 	}
967 
968 	calculate_init_and_vp(
969 			flip_horz_scan_dir,
970 			ro_lb,
971 			data->recout.width,
972 			src.width,
973 			data->taps.h_taps,
974 			data->ratios.horz,
975 			&data->inits.h,
976 			&data->viewport.x,
977 			&data->viewport.width);
978 	calculate_init_and_vp(
979 			flip_horz_scan_dir,
980 			ro_lb,
981 			data->recout.width,
982 			src.width / vpc_div,
983 			data->taps.h_taps_c,
984 			data->ratios.horz_c,
985 			&data->inits.h_c,
986 			&data->viewport_c.x,
987 			&data->viewport_c.width);
988 	calculate_init_and_vp(
989 			flip_vert_scan_dir,
990 			ro_tb,
991 			data->recout.height,
992 			src.height,
993 			data->taps.v_taps,
994 			data->ratios.vert,
995 			&data->inits.v,
996 			&data->viewport.y,
997 			&data->viewport.height);
998 	calculate_init_and_vp(
999 			flip_vert_scan_dir,
1000 			ro_tb,
1001 			data->recout.height,
1002 			src.height / vpc_div,
1003 			data->taps.v_taps_c,
1004 			data->ratios.vert_c,
1005 			&data->inits.v_c,
1006 			&data->viewport_c.y,
1007 			&data->viewport_c.height);
1008 	if (orthogonal_rotation) {
1009 		swap(data->viewport.x, data->viewport.y);
1010 		swap(data->viewport.width, data->viewport.height);
1011 		swap(data->viewport_c.x, data->viewport_c.y);
1012 		swap(data->viewport_c.width, data->viewport_c.height);
1013 	}
1014 	data->viewport.x += src.x;
1015 	data->viewport.y += src.y;
1016 	ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1017 	data->viewport_c.x += src.x / vpc_div;
1018 	data->viewport_c.y += src.y / vpc_div;
1019 }
1020 
1021 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1022 {
1023 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1024 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1025 	bool res = false;
1026 	DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1027 
1028 	pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1029 			pipe_ctx->plane_state->format);
1030 
1031 	/* Timing borders are part of vactive that we are also supposed to skip in addition
1032 	 * to any stream dst offset. Since dm logic assumes dst is in addressable
1033 	 * space we need to add the left and top borders to dst offsets temporarily.
1034 	 * TODO: fix in DM, stream dst is supposed to be in vactive
1035 	 */
1036 	pipe_ctx->stream->dst.x += timing->h_border_left;
1037 	pipe_ctx->stream->dst.y += timing->v_border_top;
1038 
1039 	/* Calculate H and V active size */
1040 	pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable +
1041 			timing->h_border_left + timing->h_border_right;
1042 	pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable +
1043 		timing->v_border_top + timing->v_border_bottom;
1044 	if (pipe_ctx->next_odm_pipe || pipe_ctx->prev_odm_pipe)
1045 		pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx) + 1;
1046 
1047 	/* depends on h_active */
1048 	calculate_recout(pipe_ctx);
1049 	/* depends on pixel format */
1050 	calculate_scaling_ratios(pipe_ctx);
1051 	/* depends on scaling ratios and recout, does not calculate offset yet */
1052 	calculate_viewport_size(pipe_ctx);
1053 
1054 	/* Stopgap for validation of ODM + MPO on one side of screen case */
1055 	if (pipe_ctx->plane_res.scl_data.viewport.height < 1 ||
1056 			pipe_ctx->plane_res.scl_data.viewport.width < 1)
1057 		return false;
1058 
1059 	/*
1060 	 * LB calculations depend on vp size, h/v_active and scaling ratios
1061 	 * Setting line buffer pixel depth to 24bpp yields banding
1062 	 * on certain displays, such as the Sharp 4k. 36bpp is needed
1063 	 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1064 	 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1065 	 * precision on at least DCN display engines. However, at least
1066 	 * Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1067 	 * so use only 30 bpp on DCE_VERSION_11_0. Testing with DCE 11.2 and 8.3
1068 	 * did not show such problems, so this seems to be the exception.
1069 	 */
1070 	if (plane_state->ctx->dce_version > DCE_VERSION_11_0)
1071 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1072 	else
1073 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1074 
1075 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1076 
1077 	if (pipe_ctx->plane_res.xfm != NULL)
1078 		res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1079 				pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1080 
1081 	if (pipe_ctx->plane_res.dpp != NULL)
1082 		res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1083 				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1084 
1085 
1086 	if (!res) {
1087 		/* Try 24 bpp linebuffer */
1088 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1089 
1090 		if (pipe_ctx->plane_res.xfm != NULL)
1091 			res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1092 					pipe_ctx->plane_res.xfm,
1093 					&pipe_ctx->plane_res.scl_data,
1094 					&plane_state->scaling_quality);
1095 
1096 		if (pipe_ctx->plane_res.dpp != NULL)
1097 			res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1098 					pipe_ctx->plane_res.dpp,
1099 					&pipe_ctx->plane_res.scl_data,
1100 					&plane_state->scaling_quality);
1101 	}
1102 
1103 	/*
1104 	 * Depends on recout, scaling ratios, h_active and taps
1105 	 * May need to re-check lb size after this in some obscure scenario
1106 	 */
1107 	if (res)
1108 		calculate_inits_and_viewports(pipe_ctx);
1109 
1110 	/*
1111 	 * Handle side by side and top bottom 3d recout offsets after vp calculation
1112 	 * since 3d is special and needs to calculate vp as if there is no recout offset
1113 	 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1114 	 */
1115 	if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1116 		ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1117 			(pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1118 				pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1119 		if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1120 			pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1121 		else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1122 			pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1123 	}
1124 
1125 	if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE ||
1126 			pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1127 		res = false;
1128 
1129 	DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d  Recout: height:%d width:%d x:%d y:%d  HACTIVE:%d VACTIVE:%d\n"
1130 			"src_rect: height:%d width:%d x:%d y:%d  dst_rect: height:%d width:%d x:%d y:%d  clip_rect: height:%d width:%d x:%d y:%d\n",
1131 			__func__,
1132 			pipe_ctx->pipe_idx,
1133 			pipe_ctx->plane_res.scl_data.viewport.height,
1134 			pipe_ctx->plane_res.scl_data.viewport.width,
1135 			pipe_ctx->plane_res.scl_data.viewport.x,
1136 			pipe_ctx->plane_res.scl_data.viewport.y,
1137 			pipe_ctx->plane_res.scl_data.recout.height,
1138 			pipe_ctx->plane_res.scl_data.recout.width,
1139 			pipe_ctx->plane_res.scl_data.recout.x,
1140 			pipe_ctx->plane_res.scl_data.recout.y,
1141 			pipe_ctx->plane_res.scl_data.h_active,
1142 			pipe_ctx->plane_res.scl_data.v_active,
1143 			plane_state->src_rect.height,
1144 			plane_state->src_rect.width,
1145 			plane_state->src_rect.x,
1146 			plane_state->src_rect.y,
1147 			plane_state->dst_rect.height,
1148 			plane_state->dst_rect.width,
1149 			plane_state->dst_rect.x,
1150 			plane_state->dst_rect.y,
1151 			plane_state->clip_rect.height,
1152 			plane_state->clip_rect.width,
1153 			plane_state->clip_rect.x,
1154 			plane_state->clip_rect.y);
1155 
1156 	pipe_ctx->stream->dst.x -= timing->h_border_left;
1157 	pipe_ctx->stream->dst.y -= timing->v_border_top;
1158 
1159 	return res;
1160 }
1161 
1162 
1163 enum dc_status resource_build_scaling_params_for_context(
1164 	const struct dc  *dc,
1165 	struct dc_state *context)
1166 {
1167 	int i;
1168 
1169 	for (i = 0; i < MAX_PIPES; i++) {
1170 		if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1171 				context->res_ctx.pipe_ctx[i].stream != NULL)
1172 			if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1173 				return DC_FAIL_SCALING;
1174 	}
1175 
1176 	return DC_OK;
1177 }
1178 
1179 struct pipe_ctx *find_idle_secondary_pipe(
1180 		struct resource_context *res_ctx,
1181 		const struct resource_pool *pool,
1182 		const struct pipe_ctx *primary_pipe)
1183 {
1184 	int i;
1185 	struct pipe_ctx *secondary_pipe = NULL;
1186 
1187 	/*
1188 	 * We add a preferred pipe mapping to avoid the chance that
1189 	 * MPCCs already in use will need to be reassigned to other trees.
1190 	 * For example, if we went with the strict, assign backwards logic:
1191 	 *
1192 	 * (State 1)
1193 	 * Display A on, no surface, top pipe = 0
1194 	 * Display B on, no surface, top pipe = 1
1195 	 *
1196 	 * (State 2)
1197 	 * Display A on, no surface, top pipe = 0
1198 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1199 	 *
1200 	 * (State 3)
1201 	 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1202 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1203 	 *
1204 	 * The state 2->3 transition requires remapping MPCC 5 from display B
1205 	 * to display A.
1206 	 *
1207 	 * However, with the preferred pipe logic, state 2 would look like:
1208 	 *
1209 	 * (State 2)
1210 	 * Display A on, no surface, top pipe = 0
1211 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1212 	 *
1213 	 * This would then cause 2->3 to not require remapping any MPCCs.
1214 	 */
1215 	if (primary_pipe) {
1216 		int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1217 		if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1218 			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1219 			secondary_pipe->pipe_idx = preferred_pipe_idx;
1220 		}
1221 	}
1222 
1223 	/*
1224 	 * search backwards for the second pipe to keep pipe
1225 	 * assignment more consistent
1226 	 */
1227 	if (!secondary_pipe)
1228 		for (i = pool->pipe_count - 1; i >= 0; i--) {
1229 			if (res_ctx->pipe_ctx[i].stream == NULL) {
1230 				secondary_pipe = &res_ctx->pipe_ctx[i];
1231 				secondary_pipe->pipe_idx = i;
1232 				break;
1233 			}
1234 		}
1235 
1236 	return secondary_pipe;
1237 }
1238 
1239 struct pipe_ctx *resource_get_head_pipe_for_stream(
1240 		struct resource_context *res_ctx,
1241 		struct dc_stream_state *stream)
1242 {
1243 	int i;
1244 
1245 	for (i = 0; i < MAX_PIPES; i++) {
1246 		if (res_ctx->pipe_ctx[i].stream == stream
1247 				&& !res_ctx->pipe_ctx[i].top_pipe
1248 				&& !res_ctx->pipe_ctx[i].prev_odm_pipe)
1249 			return &res_ctx->pipe_ctx[i];
1250 	}
1251 	return NULL;
1252 }
1253 
1254 static struct pipe_ctx *resource_get_tail_pipe(
1255 		struct resource_context *res_ctx,
1256 		struct pipe_ctx *head_pipe)
1257 {
1258 	struct pipe_ctx *tail_pipe;
1259 
1260 	tail_pipe = head_pipe->bottom_pipe;
1261 
1262 	while (tail_pipe) {
1263 		head_pipe = tail_pipe;
1264 		tail_pipe = tail_pipe->bottom_pipe;
1265 	}
1266 
1267 	return head_pipe;
1268 }
1269 
1270 /*
1271  * A free_pipe for a stream is defined here as a pipe
1272  * that has no surface attached yet
1273  */
1274 static struct pipe_ctx *acquire_free_pipe_for_head(
1275 		struct dc_state *context,
1276 		const struct resource_pool *pool,
1277 		struct pipe_ctx *head_pipe)
1278 {
1279 	int i;
1280 	struct resource_context *res_ctx = &context->res_ctx;
1281 
1282 	if (!head_pipe->plane_state)
1283 		return head_pipe;
1284 
1285 	/* Re-use pipe already acquired for this stream if available*/
1286 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1287 		if (res_ctx->pipe_ctx[i].stream == head_pipe->stream &&
1288 				!res_ctx->pipe_ctx[i].plane_state) {
1289 			return &res_ctx->pipe_ctx[i];
1290 		}
1291 	}
1292 
1293 	/*
1294 	 * At this point we have no re-useable pipe for this stream and we need
1295 	 * to acquire an idle one to satisfy the request
1296 	 */
1297 
1298 	if (!pool->funcs->acquire_idle_pipe_for_layer)
1299 		return NULL;
1300 
1301 	return pool->funcs->acquire_idle_pipe_for_layer(context, pool, head_pipe->stream);
1302 }
1303 
1304 #if defined(CONFIG_DRM_AMD_DC_DCN)
1305 static int acquire_first_split_pipe(
1306 		struct resource_context *res_ctx,
1307 		const struct resource_pool *pool,
1308 		struct dc_stream_state *stream)
1309 {
1310 	int i;
1311 
1312 	for (i = 0; i < pool->pipe_count; i++) {
1313 		struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1314 
1315 		if (split_pipe->top_pipe &&
1316 				split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1317 			split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1318 			if (split_pipe->bottom_pipe)
1319 				split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1320 
1321 			if (split_pipe->top_pipe->plane_state)
1322 				resource_build_scaling_params(split_pipe->top_pipe);
1323 
1324 			memset(split_pipe, 0, sizeof(*split_pipe));
1325 			split_pipe->stream_res.tg = pool->timing_generators[i];
1326 			split_pipe->plane_res.hubp = pool->hubps[i];
1327 			split_pipe->plane_res.ipp = pool->ipps[i];
1328 			split_pipe->plane_res.dpp = pool->dpps[i];
1329 			split_pipe->stream_res.opp = pool->opps[i];
1330 			split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1331 			split_pipe->pipe_idx = i;
1332 
1333 			split_pipe->stream = stream;
1334 			return i;
1335 		}
1336 	}
1337 	return -1;
1338 }
1339 #endif
1340 
1341 bool dc_add_plane_to_context(
1342 		const struct dc *dc,
1343 		struct dc_stream_state *stream,
1344 		struct dc_plane_state *plane_state,
1345 		struct dc_state *context)
1346 {
1347 	int i;
1348 	struct resource_pool *pool = dc->res_pool;
1349 	struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1350 	struct dc_stream_status *stream_status = NULL;
1351 
1352 	for (i = 0; i < context->stream_count; i++)
1353 		if (context->streams[i] == stream) {
1354 			stream_status = &context->stream_status[i];
1355 			break;
1356 		}
1357 	if (stream_status == NULL) {
1358 		dm_error("Existing stream not found; failed to attach surface!\n");
1359 		return false;
1360 	}
1361 
1362 
1363 	if (stream_status->plane_count == MAX_SURFACE_NUM) {
1364 		dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1365 				plane_state, MAX_SURFACE_NUM);
1366 		return false;
1367 	}
1368 
1369 	head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1370 
1371 	if (!head_pipe) {
1372 		dm_error("Head pipe not found for stream_state %p !\n", stream);
1373 		return false;
1374 	}
1375 
1376 	/* retain new surface, but only once per stream */
1377 	dc_plane_state_retain(plane_state);
1378 
1379 	while (head_pipe) {
1380 		free_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1381 
1382 	#if defined(CONFIG_DRM_AMD_DC_DCN)
1383 		if (!free_pipe) {
1384 			int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1385 			if (pipe_idx >= 0)
1386 				free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1387 		}
1388 	#endif
1389 		if (!free_pipe) {
1390 			dc_plane_state_release(plane_state);
1391 			return false;
1392 		}
1393 
1394 		free_pipe->plane_state = plane_state;
1395 
1396 		if (head_pipe != free_pipe) {
1397 			tail_pipe = resource_get_tail_pipe(&context->res_ctx, head_pipe);
1398 			ASSERT(tail_pipe);
1399 			free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1400 			free_pipe->stream_res.abm = tail_pipe->stream_res.abm;
1401 			free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1402 			free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1403 			free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1404 			free_pipe->clock_source = tail_pipe->clock_source;
1405 			free_pipe->top_pipe = tail_pipe;
1406 			tail_pipe->bottom_pipe = free_pipe;
1407 			if (!free_pipe->next_odm_pipe && tail_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1408 				free_pipe->next_odm_pipe = tail_pipe->next_odm_pipe->bottom_pipe;
1409 				tail_pipe->next_odm_pipe->bottom_pipe->prev_odm_pipe = free_pipe;
1410 			}
1411 			if (!free_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe->bottom_pipe) {
1412 				free_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1413 				tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = free_pipe;
1414 			}
1415 		}
1416 		head_pipe = head_pipe->next_odm_pipe;
1417 	}
1418 	/* assign new surfaces*/
1419 	stream_status->plane_states[stream_status->plane_count] = plane_state;
1420 
1421 	stream_status->plane_count++;
1422 
1423 	return true;
1424 }
1425 
1426 bool dc_remove_plane_from_context(
1427 		const struct dc *dc,
1428 		struct dc_stream_state *stream,
1429 		struct dc_plane_state *plane_state,
1430 		struct dc_state *context)
1431 {
1432 	int i;
1433 	struct dc_stream_status *stream_status = NULL;
1434 	struct resource_pool *pool = dc->res_pool;
1435 
1436 	for (i = 0; i < context->stream_count; i++)
1437 		if (context->streams[i] == stream) {
1438 			stream_status = &context->stream_status[i];
1439 			break;
1440 		}
1441 
1442 	if (stream_status == NULL) {
1443 		dm_error("Existing stream not found; failed to remove plane.\n");
1444 		return false;
1445 	}
1446 
1447 	/* release pipe for plane*/
1448 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1449 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1450 
1451 		if (pipe_ctx->plane_state == plane_state) {
1452 			if (pipe_ctx->top_pipe)
1453 				pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1454 
1455 			/* Second condition is to avoid setting NULL to top pipe
1456 			 * of tail pipe making it look like head pipe in subsequent
1457 			 * deletes
1458 			 */
1459 			if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1460 				pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1461 
1462 			/*
1463 			 * For head pipe detach surfaces from pipe for tail
1464 			 * pipe just zero it out
1465 			 */
1466 			if (!pipe_ctx->top_pipe)
1467 				pipe_ctx->plane_state = NULL;
1468 			else
1469 				memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1470 		}
1471 	}
1472 
1473 
1474 	for (i = 0; i < stream_status->plane_count; i++) {
1475 		if (stream_status->plane_states[i] == plane_state) {
1476 
1477 			dc_plane_state_release(stream_status->plane_states[i]);
1478 			break;
1479 		}
1480 	}
1481 
1482 	if (i == stream_status->plane_count) {
1483 		dm_error("Existing plane_state not found; failed to detach it!\n");
1484 		return false;
1485 	}
1486 
1487 	stream_status->plane_count--;
1488 
1489 	/* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1490 	for (; i < stream_status->plane_count; i++)
1491 		stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1492 
1493 	stream_status->plane_states[stream_status->plane_count] = NULL;
1494 
1495 	return true;
1496 }
1497 
1498 bool dc_rem_all_planes_for_stream(
1499 		const struct dc *dc,
1500 		struct dc_stream_state *stream,
1501 		struct dc_state *context)
1502 {
1503 	int i, old_plane_count;
1504 	struct dc_stream_status *stream_status = NULL;
1505 	struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1506 
1507 	for (i = 0; i < context->stream_count; i++)
1508 			if (context->streams[i] == stream) {
1509 				stream_status = &context->stream_status[i];
1510 				break;
1511 			}
1512 
1513 	if (stream_status == NULL) {
1514 		dm_error("Existing stream %p not found!\n", stream);
1515 		return false;
1516 	}
1517 
1518 	old_plane_count = stream_status->plane_count;
1519 
1520 	for (i = 0; i < old_plane_count; i++)
1521 		del_planes[i] = stream_status->plane_states[i];
1522 
1523 	for (i = 0; i < old_plane_count; i++)
1524 		if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1525 			return false;
1526 
1527 	return true;
1528 }
1529 
1530 static bool add_all_planes_for_stream(
1531 		const struct dc *dc,
1532 		struct dc_stream_state *stream,
1533 		const struct dc_validation_set set[],
1534 		int set_count,
1535 		struct dc_state *context)
1536 {
1537 	int i, j;
1538 
1539 	for (i = 0; i < set_count; i++)
1540 		if (set[i].stream == stream)
1541 			break;
1542 
1543 	if (i == set_count) {
1544 		dm_error("Stream %p not found in set!\n", stream);
1545 		return false;
1546 	}
1547 
1548 	for (j = 0; j < set[i].plane_count; j++)
1549 		if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1550 			return false;
1551 
1552 	return true;
1553 }
1554 
1555 bool dc_add_all_planes_for_stream(
1556 		const struct dc *dc,
1557 		struct dc_stream_state *stream,
1558 		struct dc_plane_state * const *plane_states,
1559 		int plane_count,
1560 		struct dc_state *context)
1561 {
1562 	struct dc_validation_set set;
1563 	int i;
1564 
1565 	set.stream = stream;
1566 	set.plane_count = plane_count;
1567 
1568 	for (i = 0; i < plane_count; i++)
1569 		set.plane_states[i] = plane_states[i];
1570 
1571 	return add_all_planes_for_stream(dc, stream, &set, 1, context);
1572 }
1573 
1574 static bool is_timing_changed(struct dc_stream_state *cur_stream,
1575 		struct dc_stream_state *new_stream)
1576 {
1577 	if (cur_stream == NULL)
1578 		return true;
1579 
1580 	/* If output color space is changed, need to reprogram info frames */
1581 	if (cur_stream->output_color_space != new_stream->output_color_space)
1582 		return true;
1583 
1584 	return memcmp(
1585 		&cur_stream->timing,
1586 		&new_stream->timing,
1587 		sizeof(struct dc_crtc_timing)) != 0;
1588 }
1589 
1590 static bool are_stream_backends_same(
1591 	struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1592 {
1593 	if (stream_a == stream_b)
1594 		return true;
1595 
1596 	if (stream_a == NULL || stream_b == NULL)
1597 		return false;
1598 
1599 	if (is_timing_changed(stream_a, stream_b))
1600 		return false;
1601 
1602 	if (stream_a->signal != stream_b->signal)
1603 		return false;
1604 
1605 	if (stream_a->dpms_off != stream_b->dpms_off)
1606 		return false;
1607 
1608 	return true;
1609 }
1610 
1611 /*
1612  * dc_is_stream_unchanged() - Compare two stream states for equivalence.
1613  *
1614  * Checks if there a difference between the two states
1615  * that would require a mode change.
1616  *
1617  * Does not compare cursor position or attributes.
1618  */
1619 bool dc_is_stream_unchanged(
1620 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1621 {
1622 
1623 	if (!are_stream_backends_same(old_stream, stream))
1624 		return false;
1625 
1626 	if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
1627 		return false;
1628 
1629 	// Only Have Audio left to check whether it is same or not. This is a corner case for Tiled sinks
1630 	if (old_stream->audio_info.mode_count != stream->audio_info.mode_count)
1631 		return false;
1632 
1633 	return true;
1634 }
1635 
1636 /*
1637  * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
1638  */
1639 bool dc_is_stream_scaling_unchanged(
1640 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1641 {
1642 	if (old_stream == stream)
1643 		return true;
1644 
1645 	if (old_stream == NULL || stream == NULL)
1646 		return false;
1647 
1648 	if (memcmp(&old_stream->src,
1649 			&stream->src,
1650 			sizeof(struct rect)) != 0)
1651 		return false;
1652 
1653 	if (memcmp(&old_stream->dst,
1654 			&stream->dst,
1655 			sizeof(struct rect)) != 0)
1656 		return false;
1657 
1658 	return true;
1659 }
1660 
1661 static void update_stream_engine_usage(
1662 		struct resource_context *res_ctx,
1663 		const struct resource_pool *pool,
1664 		struct stream_encoder *stream_enc,
1665 		bool acquired)
1666 {
1667 	int i;
1668 
1669 	for (i = 0; i < pool->stream_enc_count; i++) {
1670 		if (pool->stream_enc[i] == stream_enc)
1671 			res_ctx->is_stream_enc_acquired[i] = acquired;
1672 	}
1673 }
1674 
1675 /* TODO: release audio object */
1676 void update_audio_usage(
1677 		struct resource_context *res_ctx,
1678 		const struct resource_pool *pool,
1679 		struct audio *audio,
1680 		bool acquired)
1681 {
1682 	int i;
1683 	for (i = 0; i < pool->audio_count; i++) {
1684 		if (pool->audios[i] == audio)
1685 			res_ctx->is_audio_acquired[i] = acquired;
1686 	}
1687 }
1688 
1689 static int acquire_first_free_pipe(
1690 		struct resource_context *res_ctx,
1691 		const struct resource_pool *pool,
1692 		struct dc_stream_state *stream)
1693 {
1694 	int i;
1695 
1696 	for (i = 0; i < pool->pipe_count; i++) {
1697 		if (!res_ctx->pipe_ctx[i].stream) {
1698 			struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
1699 
1700 			pipe_ctx->stream_res.tg = pool->timing_generators[i];
1701 			pipe_ctx->plane_res.mi = pool->mis[i];
1702 			pipe_ctx->plane_res.hubp = pool->hubps[i];
1703 			pipe_ctx->plane_res.ipp = pool->ipps[i];
1704 			pipe_ctx->plane_res.xfm = pool->transforms[i];
1705 			pipe_ctx->plane_res.dpp = pool->dpps[i];
1706 			pipe_ctx->stream_res.opp = pool->opps[i];
1707 			if (pool->dpps[i])
1708 				pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
1709 			pipe_ctx->pipe_idx = i;
1710 
1711 
1712 			pipe_ctx->stream = stream;
1713 			return i;
1714 		}
1715 	}
1716 	return -1;
1717 }
1718 
1719 static struct audio *find_first_free_audio(
1720 		struct resource_context *res_ctx,
1721 		const struct resource_pool *pool,
1722 		enum engine_id id,
1723 		enum dce_version dc_version)
1724 {
1725 	int i, available_audio_count;
1726 
1727 	available_audio_count = pool->audio_count;
1728 
1729 	for (i = 0; i < available_audio_count; i++) {
1730 		if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
1731 			/*we have enough audio endpoint, find the matching inst*/
1732 			if (id != i)
1733 				continue;
1734 			return pool->audios[i];
1735 		}
1736 	}
1737 
1738 	/* use engine id to find free audio */
1739 	if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
1740 		return pool->audios[id];
1741 	}
1742 	/*not found the matching one, first come first serve*/
1743 	for (i = 0; i < available_audio_count; i++) {
1744 		if (res_ctx->is_audio_acquired[i] == false) {
1745 			return pool->audios[i];
1746 		}
1747 	}
1748 	return 0;
1749 }
1750 
1751 /*
1752  * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
1753  */
1754 enum dc_status dc_add_stream_to_ctx(
1755 		struct dc *dc,
1756 		struct dc_state *new_ctx,
1757 		struct dc_stream_state *stream)
1758 {
1759 	enum dc_status res;
1760 	DC_LOGGER_INIT(dc->ctx->logger);
1761 
1762 	if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
1763 		DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
1764 		return DC_ERROR_UNEXPECTED;
1765 	}
1766 
1767 	new_ctx->streams[new_ctx->stream_count] = stream;
1768 	dc_stream_retain(stream);
1769 	new_ctx->stream_count++;
1770 
1771 	res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
1772 	if (res != DC_OK)
1773 		DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
1774 
1775 	return res;
1776 }
1777 
1778 /*
1779  * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
1780  */
1781 enum dc_status dc_remove_stream_from_ctx(
1782 			struct dc *dc,
1783 			struct dc_state *new_ctx,
1784 			struct dc_stream_state *stream)
1785 {
1786 	int i;
1787 	struct dc_context *dc_ctx = dc->ctx;
1788 	struct pipe_ctx *del_pipe = resource_get_head_pipe_for_stream(&new_ctx->res_ctx, stream);
1789 	struct pipe_ctx *odm_pipe;
1790 
1791 	if (!del_pipe) {
1792 		DC_ERROR("Pipe not found for stream %p !\n", stream);
1793 		return DC_ERROR_UNEXPECTED;
1794 	}
1795 
1796 	odm_pipe = del_pipe->next_odm_pipe;
1797 
1798 	/* Release primary pipe */
1799 	ASSERT(del_pipe->stream_res.stream_enc);
1800 	update_stream_engine_usage(
1801 			&new_ctx->res_ctx,
1802 				dc->res_pool,
1803 			del_pipe->stream_res.stream_enc,
1804 			false);
1805 
1806 	if (del_pipe->stream_res.audio)
1807 		update_audio_usage(
1808 			&new_ctx->res_ctx,
1809 			dc->res_pool,
1810 			del_pipe->stream_res.audio,
1811 			false);
1812 
1813 	resource_unreference_clock_source(&new_ctx->res_ctx,
1814 					  dc->res_pool,
1815 					  del_pipe->clock_source);
1816 
1817 	if (dc->res_pool->funcs->remove_stream_from_ctx)
1818 		dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
1819 
1820 	while (odm_pipe) {
1821 		struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1822 
1823 		memset(odm_pipe, 0, sizeof(*odm_pipe));
1824 		odm_pipe = next_odm_pipe;
1825 	}
1826 	memset(del_pipe, 0, sizeof(*del_pipe));
1827 
1828 	for (i = 0; i < new_ctx->stream_count; i++)
1829 		if (new_ctx->streams[i] == stream)
1830 			break;
1831 
1832 	if (new_ctx->streams[i] != stream) {
1833 		DC_ERROR("Context doesn't have stream %p !\n", stream);
1834 		return DC_ERROR_UNEXPECTED;
1835 	}
1836 
1837 	dc_stream_release(new_ctx->streams[i]);
1838 	new_ctx->stream_count--;
1839 
1840 	/* Trim back arrays */
1841 	for (; i < new_ctx->stream_count; i++) {
1842 		new_ctx->streams[i] = new_ctx->streams[i + 1];
1843 		new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
1844 	}
1845 
1846 	new_ctx->streams[new_ctx->stream_count] = NULL;
1847 	memset(
1848 			&new_ctx->stream_status[new_ctx->stream_count],
1849 			0,
1850 			sizeof(new_ctx->stream_status[0]));
1851 
1852 	return DC_OK;
1853 }
1854 
1855 static struct dc_stream_state *find_pll_sharable_stream(
1856 		struct dc_stream_state *stream_needs_pll,
1857 		struct dc_state *context)
1858 {
1859 	int i;
1860 
1861 	for (i = 0; i < context->stream_count; i++) {
1862 		struct dc_stream_state *stream_has_pll = context->streams[i];
1863 
1864 		/* We are looking for non dp, non virtual stream */
1865 		if (resource_are_streams_timing_synchronizable(
1866 			stream_needs_pll, stream_has_pll)
1867 			&& !dc_is_dp_signal(stream_has_pll->signal)
1868 			&& stream_has_pll->link->connector_signal
1869 			!= SIGNAL_TYPE_VIRTUAL)
1870 			return stream_has_pll;
1871 
1872 	}
1873 
1874 	return NULL;
1875 }
1876 
1877 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
1878 {
1879 	uint32_t pix_clk = timing->pix_clk_100hz;
1880 	uint32_t normalized_pix_clk = pix_clk;
1881 
1882 	if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
1883 		pix_clk /= 2;
1884 	if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
1885 		switch (timing->display_color_depth) {
1886 		case COLOR_DEPTH_666:
1887 		case COLOR_DEPTH_888:
1888 			normalized_pix_clk = pix_clk;
1889 			break;
1890 		case COLOR_DEPTH_101010:
1891 			normalized_pix_clk = (pix_clk * 30) / 24;
1892 			break;
1893 		case COLOR_DEPTH_121212:
1894 			normalized_pix_clk = (pix_clk * 36) / 24;
1895 		break;
1896 		case COLOR_DEPTH_161616:
1897 			normalized_pix_clk = (pix_clk * 48) / 24;
1898 		break;
1899 		default:
1900 			ASSERT(0);
1901 		break;
1902 		}
1903 	}
1904 	return normalized_pix_clk;
1905 }
1906 
1907 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
1908 {
1909 	/* update actual pixel clock on all streams */
1910 	if (dc_is_hdmi_signal(stream->signal))
1911 		stream->phy_pix_clk = get_norm_pix_clk(
1912 			&stream->timing) / 10;
1913 	else
1914 		stream->phy_pix_clk =
1915 			stream->timing.pix_clk_100hz / 10;
1916 
1917 	if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
1918 		stream->phy_pix_clk *= 2;
1919 }
1920 
1921 static int acquire_resource_from_hw_enabled_state(
1922 		struct resource_context *res_ctx,
1923 		const struct resource_pool *pool,
1924 		struct dc_stream_state *stream)
1925 {
1926 	struct dc_link *link = stream->link;
1927 	unsigned int i, inst, tg_inst = 0;
1928 
1929 	/* Check for enabled DIG to identify enabled display */
1930 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1931 		return -1;
1932 
1933 	inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1934 
1935 	if (inst == ENGINE_ID_UNKNOWN)
1936 		return -1;
1937 
1938 	for (i = 0; i < pool->stream_enc_count; i++) {
1939 		if (pool->stream_enc[i]->id == inst) {
1940 			tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
1941 				pool->stream_enc[i]);
1942 			break;
1943 		}
1944 	}
1945 
1946 	// tg_inst not found
1947 	if (i == pool->stream_enc_count)
1948 		return -1;
1949 
1950 	if (tg_inst >= pool->timing_generator_count)
1951 		return -1;
1952 
1953 	if (!res_ctx->pipe_ctx[tg_inst].stream) {
1954 		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
1955 
1956 		pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
1957 		pipe_ctx->plane_res.mi = pool->mis[tg_inst];
1958 		pipe_ctx->plane_res.hubp = pool->hubps[tg_inst];
1959 		pipe_ctx->plane_res.ipp = pool->ipps[tg_inst];
1960 		pipe_ctx->plane_res.xfm = pool->transforms[tg_inst];
1961 		pipe_ctx->plane_res.dpp = pool->dpps[tg_inst];
1962 		pipe_ctx->stream_res.opp = pool->opps[tg_inst];
1963 
1964 		if (pool->dpps[tg_inst]) {
1965 			pipe_ctx->plane_res.mpcc_inst = pool->dpps[tg_inst]->inst;
1966 
1967 			// Read DPP->MPCC->OPP Pipe from HW State
1968 			if (pool->mpc->funcs->read_mpcc_state) {
1969 				struct mpcc_state s = {0};
1970 
1971 				pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
1972 
1973 				if (s.dpp_id < MAX_MPCC)
1974 					pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id = s.dpp_id;
1975 
1976 				if (s.bot_mpcc_id < MAX_MPCC)
1977 					pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
1978 							&pool->mpc->mpcc_array[s.bot_mpcc_id];
1979 
1980 				if (s.opp_id < MAX_OPP)
1981 					pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
1982 			}
1983 		}
1984 		pipe_ctx->pipe_idx = tg_inst;
1985 
1986 		pipe_ctx->stream = stream;
1987 		return tg_inst;
1988 	}
1989 
1990 	return -1;
1991 }
1992 
1993 static void mark_seamless_boot_stream(
1994 		const struct dc  *dc,
1995 		struct dc_stream_state *stream)
1996 {
1997 	struct dc_bios *dcb = dc->ctx->dc_bios;
1998 
1999 	/* TODO: Check Linux */
2000 	if (dc->config.allow_seamless_boot_optimization &&
2001 			!dcb->funcs->is_accelerated_mode(dcb)) {
2002 		if (dc_validate_seamless_boot_timing(dc, stream->sink, &stream->timing))
2003 			stream->apply_seamless_boot_optimization = true;
2004 	}
2005 }
2006 
2007 enum dc_status resource_map_pool_resources(
2008 		const struct dc  *dc,
2009 		struct dc_state *context,
2010 		struct dc_stream_state *stream)
2011 {
2012 	const struct resource_pool *pool = dc->res_pool;
2013 	int i;
2014 	struct dc_context *dc_ctx = dc->ctx;
2015 	struct pipe_ctx *pipe_ctx = NULL;
2016 	int pipe_idx = -1;
2017 
2018 	calculate_phy_pix_clks(stream);
2019 
2020 	mark_seamless_boot_stream(dc, stream);
2021 
2022 	if (stream->apply_seamless_boot_optimization) {
2023 		pipe_idx = acquire_resource_from_hw_enabled_state(
2024 				&context->res_ctx,
2025 				pool,
2026 				stream);
2027 		if (pipe_idx < 0)
2028 			/* hw resource was assigned to other stream */
2029 			stream->apply_seamless_boot_optimization = false;
2030 	}
2031 
2032 	if (pipe_idx < 0)
2033 		/* acquire new resources */
2034 		pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2035 
2036 #ifdef CONFIG_DRM_AMD_DC_DCN
2037 	if (pipe_idx < 0)
2038 		pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2039 #endif
2040 
2041 	if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2042 		return DC_NO_CONTROLLER_RESOURCE;
2043 
2044 	pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2045 
2046 	pipe_ctx->stream_res.stream_enc =
2047 		dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2048 			&context->res_ctx, pool, stream);
2049 
2050 	if (!pipe_ctx->stream_res.stream_enc)
2051 		return DC_NO_STREAM_ENC_RESOURCE;
2052 
2053 	update_stream_engine_usage(
2054 		&context->res_ctx, pool,
2055 		pipe_ctx->stream_res.stream_enc,
2056 		true);
2057 
2058 	/* TODO: Add check if ASIC support and EDID audio */
2059 	if (!stream->converter_disable_audio &&
2060 	    dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2061 	    stream->audio_info.mode_count && stream->audio_info.flags.all) {
2062 		pipe_ctx->stream_res.audio = find_first_free_audio(
2063 		&context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2064 
2065 		/*
2066 		 * Audio assigned in order first come first get.
2067 		 * There are asics which has number of audio
2068 		 * resources less then number of pipes
2069 		 */
2070 		if (pipe_ctx->stream_res.audio)
2071 			update_audio_usage(&context->res_ctx, pool,
2072 					   pipe_ctx->stream_res.audio, true);
2073 	}
2074 
2075 	/* Add ABM to the resource if on EDP */
2076 	if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2077 #if defined(CONFIG_DRM_AMD_DC_DCN)
2078 		if (pool->abm)
2079 			pipe_ctx->stream_res.abm = pool->abm;
2080 		else
2081 			pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2082 #else
2083 		pipe_ctx->stream_res.abm = pool->abm;
2084 #endif
2085 	}
2086 
2087 	for (i = 0; i < context->stream_count; i++)
2088 		if (context->streams[i] == stream) {
2089 			context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2090 			context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2091 			context->stream_status[i].audio_inst =
2092 				pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2093 
2094 			return DC_OK;
2095 		}
2096 
2097 	DC_ERROR("Stream %p not found in new ctx!\n", stream);
2098 	return DC_ERROR_UNEXPECTED;
2099 }
2100 
2101 /**
2102  * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2103  * Is a shallow copy.  Increments refcounts on existing streams and planes.
2104  * @dc: copy out of dc->current_state
2105  * @dst_ctx: copy into this
2106  */
2107 void dc_resource_state_copy_construct_current(
2108 		const struct dc *dc,
2109 		struct dc_state *dst_ctx)
2110 {
2111 	dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2112 }
2113 
2114 
2115 void dc_resource_state_construct(
2116 		const struct dc *dc,
2117 		struct dc_state *dst_ctx)
2118 {
2119 	dst_ctx->clk_mgr = dc->clk_mgr;
2120 }
2121 
2122 
2123 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2124 {
2125 	return dc->res_pool->res_cap->num_dsc > 0;
2126 }
2127 
2128 
2129 /**
2130  * dc_validate_global_state() - Determine if HW can support a given state
2131  * Checks HW resource availability and bandwidth requirement.
2132  * @dc: dc struct for this driver
2133  * @new_ctx: state to be validated
2134  * @fast_validate: set to true if only yes/no to support matters
2135  *
2136  * Return: DC_OK if the result can be programmed.  Otherwise, an error code.
2137  */
2138 enum dc_status dc_validate_global_state(
2139 		struct dc *dc,
2140 		struct dc_state *new_ctx,
2141 		bool fast_validate)
2142 {
2143 	enum dc_status result = DC_ERROR_UNEXPECTED;
2144 	int i, j;
2145 
2146 	if (!new_ctx)
2147 		return DC_ERROR_UNEXPECTED;
2148 #if defined(CONFIG_DRM_AMD_DC_DCN)
2149 
2150 	/*
2151 	 * Update link encoder to stream assignment.
2152 	 * TODO: Split out reason allocation from validation.
2153 	 */
2154 	if (dc->res_pool->funcs->link_encs_assign)
2155 		dc->res_pool->funcs->link_encs_assign(
2156 			dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
2157 #endif
2158 
2159 	if (dc->res_pool->funcs->validate_global) {
2160 		result = dc->res_pool->funcs->validate_global(dc, new_ctx);
2161 		if (result != DC_OK)
2162 			return result;
2163 	}
2164 
2165 	for (i = 0; i < new_ctx->stream_count; i++) {
2166 		struct dc_stream_state *stream = new_ctx->streams[i];
2167 
2168 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
2169 			struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
2170 
2171 			if (pipe_ctx->stream != stream)
2172 				continue;
2173 
2174 			if (dc->res_pool->funcs->patch_unknown_plane_state &&
2175 					pipe_ctx->plane_state &&
2176 					pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
2177 				result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
2178 				if (result != DC_OK)
2179 					return result;
2180 			}
2181 
2182 			/* Switch to dp clock source only if there is
2183 			 * no non dp stream that shares the same timing
2184 			 * with the dp stream.
2185 			 */
2186 			if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
2187 				!find_pll_sharable_stream(stream, new_ctx)) {
2188 
2189 				resource_unreference_clock_source(
2190 						&new_ctx->res_ctx,
2191 						dc->res_pool,
2192 						pipe_ctx->clock_source);
2193 
2194 				pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
2195 				resource_reference_clock_source(
2196 						&new_ctx->res_ctx,
2197 						dc->res_pool,
2198 						 pipe_ctx->clock_source);
2199 			}
2200 		}
2201 	}
2202 
2203 	result = resource_build_scaling_params_for_context(dc, new_ctx);
2204 
2205 	if (result == DC_OK)
2206 		if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
2207 			result = DC_FAIL_BANDWIDTH_VALIDATE;
2208 
2209 	return result;
2210 }
2211 
2212 static void patch_gamut_packet_checksum(
2213 		struct dc_info_packet *gamut_packet)
2214 {
2215 	/* For gamut we recalc checksum */
2216 	if (gamut_packet->valid) {
2217 		uint8_t chk_sum = 0;
2218 		uint8_t *ptr;
2219 		uint8_t i;
2220 
2221 		/*start of the Gamut data. */
2222 		ptr = &gamut_packet->sb[3];
2223 
2224 		for (i = 0; i <= gamut_packet->sb[1]; i++)
2225 			chk_sum += ptr[i];
2226 
2227 		gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
2228 	}
2229 }
2230 
2231 static void set_avi_info_frame(
2232 		struct dc_info_packet *info_packet,
2233 		struct pipe_ctx *pipe_ctx)
2234 {
2235 	struct dc_stream_state *stream = pipe_ctx->stream;
2236 	enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
2237 	uint32_t pixel_encoding = 0;
2238 	enum scanning_type scan_type = SCANNING_TYPE_NODATA;
2239 	enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
2240 	bool itc = false;
2241 	uint8_t itc_value = 0;
2242 	uint8_t cn0_cn1 = 0;
2243 	unsigned int cn0_cn1_value = 0;
2244 	uint8_t *check_sum = NULL;
2245 	uint8_t byte_index = 0;
2246 	union hdmi_info_packet hdmi_info;
2247 	union display_content_support support = {0};
2248 	unsigned int vic = pipe_ctx->stream->timing.vic;
2249 	enum dc_timing_3d_format format;
2250 
2251 	memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
2252 
2253 	color_space = pipe_ctx->stream->output_color_space;
2254 	if (color_space == COLOR_SPACE_UNKNOWN)
2255 		color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
2256 			COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
2257 
2258 	/* Initialize header */
2259 	hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
2260 	/* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
2261 	* not be used in HDMI 2.0 (Section 10.1) */
2262 	hdmi_info.bits.header.version = 2;
2263 	hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
2264 
2265 	/*
2266 	 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
2267 	 * according to HDMI 2.0 spec (Section 10.1)
2268 	 */
2269 
2270 	switch (stream->timing.pixel_encoding) {
2271 	case PIXEL_ENCODING_YCBCR422:
2272 		pixel_encoding = 1;
2273 		break;
2274 
2275 	case PIXEL_ENCODING_YCBCR444:
2276 		pixel_encoding = 2;
2277 		break;
2278 	case PIXEL_ENCODING_YCBCR420:
2279 		pixel_encoding = 3;
2280 		break;
2281 
2282 	case PIXEL_ENCODING_RGB:
2283 	default:
2284 		pixel_encoding = 0;
2285 	}
2286 
2287 	/* Y0_Y1_Y2 : The pixel encoding */
2288 	/* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
2289 	hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
2290 
2291 	/* A0 = 1 Active Format Information valid */
2292 	hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
2293 
2294 	/* B0, B1 = 3; Bar info data is valid */
2295 	hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
2296 
2297 	hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
2298 
2299 	/* S0, S1 : Underscan / Overscan */
2300 	/* TODO: un-hardcode scan type */
2301 	scan_type = SCANNING_TYPE_UNDERSCAN;
2302 	hdmi_info.bits.S0_S1 = scan_type;
2303 
2304 	/* C0, C1 : Colorimetry */
2305 	if (color_space == COLOR_SPACE_YCBCR709 ||
2306 			color_space == COLOR_SPACE_YCBCR709_LIMITED)
2307 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
2308 	else if (color_space == COLOR_SPACE_YCBCR601 ||
2309 			color_space == COLOR_SPACE_YCBCR601_LIMITED)
2310 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
2311 	else {
2312 		hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
2313 	}
2314 	if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
2315 			color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
2316 			color_space == COLOR_SPACE_2020_YCBCR) {
2317 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
2318 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2319 	} else if (color_space == COLOR_SPACE_ADOBERGB) {
2320 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
2321 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2322 	}
2323 
2324 	/* TODO: un-hardcode aspect ratio */
2325 	aspect = stream->timing.aspect_ratio;
2326 
2327 	switch (aspect) {
2328 	case ASPECT_RATIO_4_3:
2329 	case ASPECT_RATIO_16_9:
2330 		hdmi_info.bits.M0_M1 = aspect;
2331 		break;
2332 
2333 	case ASPECT_RATIO_NO_DATA:
2334 	case ASPECT_RATIO_64_27:
2335 	case ASPECT_RATIO_256_135:
2336 	default:
2337 		hdmi_info.bits.M0_M1 = 0;
2338 	}
2339 
2340 	/* Active Format Aspect ratio - same as Picture Aspect Ratio. */
2341 	hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
2342 
2343 	/* TODO: un-hardcode cn0_cn1 and itc */
2344 
2345 	cn0_cn1 = 0;
2346 	cn0_cn1_value = 0;
2347 
2348 	itc = true;
2349 	itc_value = 1;
2350 
2351 	support = stream->content_support;
2352 
2353 	if (itc) {
2354 		if (!support.bits.valid_content_type) {
2355 			cn0_cn1_value = 0;
2356 		} else {
2357 			if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
2358 				if (support.bits.graphics_content == 1) {
2359 					cn0_cn1_value = 0;
2360 				}
2361 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
2362 				if (support.bits.photo_content == 1) {
2363 					cn0_cn1_value = 1;
2364 				} else {
2365 					cn0_cn1_value = 0;
2366 					itc_value = 0;
2367 				}
2368 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
2369 				if (support.bits.cinema_content == 1) {
2370 					cn0_cn1_value = 2;
2371 				} else {
2372 					cn0_cn1_value = 0;
2373 					itc_value = 0;
2374 				}
2375 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
2376 				if (support.bits.game_content == 1) {
2377 					cn0_cn1_value = 3;
2378 				} else {
2379 					cn0_cn1_value = 0;
2380 					itc_value = 0;
2381 				}
2382 			}
2383 		}
2384 		hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
2385 		hdmi_info.bits.ITC = itc_value;
2386 	}
2387 
2388 	if (stream->qs_bit == 1) {
2389 		if (color_space == COLOR_SPACE_SRGB ||
2390 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2391 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_FULL_RANGE;
2392 		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2393 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2394 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_LIMITED_RANGE;
2395 		else
2396 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2397 	} else
2398 		hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2399 
2400 	/* TODO : We should handle YCC quantization */
2401 	/* but we do not have matrix calculation */
2402 	if (stream->qy_bit == 1) {
2403 		if (color_space == COLOR_SPACE_SRGB ||
2404 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2405 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2406 		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2407 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2408 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2409 		else
2410 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2411 	} else
2412 		hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2413 
2414 	///VIC
2415 	format = stream->timing.timing_3d_format;
2416 	/*todo, add 3DStereo support*/
2417 	if (format != TIMING_3D_FORMAT_NONE) {
2418 		// Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
2419 		switch (pipe_ctx->stream->timing.hdmi_vic) {
2420 		case 1:
2421 			vic = 95;
2422 			break;
2423 		case 2:
2424 			vic = 94;
2425 			break;
2426 		case 3:
2427 			vic = 93;
2428 			break;
2429 		case 4:
2430 			vic = 98;
2431 			break;
2432 		default:
2433 			break;
2434 		}
2435 	}
2436 	/* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
2437 	hdmi_info.bits.VIC0_VIC7 = vic;
2438 	if (vic >= 128)
2439 		hdmi_info.bits.header.version = 3;
2440 	/* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
2441 	 * the Source shall use 20 AVI InfoFrame Version 4
2442 	 */
2443 	if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
2444 			hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
2445 		hdmi_info.bits.header.version = 4;
2446 		hdmi_info.bits.header.length = 14;
2447 	}
2448 
2449 	/* pixel repetition
2450 	 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
2451 	 * repetition start from 1 */
2452 	hdmi_info.bits.PR0_PR3 = 0;
2453 
2454 	/* Bar Info
2455 	 * barTop:    Line Number of End of Top Bar.
2456 	 * barBottom: Line Number of Start of Bottom Bar.
2457 	 * barLeft:   Pixel Number of End of Left Bar.
2458 	 * barRight:  Pixel Number of Start of Right Bar. */
2459 	hdmi_info.bits.bar_top = stream->timing.v_border_top;
2460 	hdmi_info.bits.bar_bottom = (stream->timing.v_total
2461 			- stream->timing.v_border_bottom + 1);
2462 	hdmi_info.bits.bar_left  = stream->timing.h_border_left;
2463 	hdmi_info.bits.bar_right = (stream->timing.h_total
2464 			- stream->timing.h_border_right + 1);
2465 
2466     /* Additional Colorimetry Extension
2467      * Used in conduction with C0-C1 and EC0-EC2
2468      * 0 = DCI-P3 RGB (D65)
2469      * 1 = DCI-P3 RGB (theater)
2470      */
2471 	hdmi_info.bits.ACE0_ACE3 = 0;
2472 
2473 	/* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
2474 	check_sum = &hdmi_info.packet_raw_data.sb[0];
2475 
2476 	*check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
2477 
2478 	for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
2479 		*check_sum += hdmi_info.packet_raw_data.sb[byte_index];
2480 
2481 	/* one byte complement */
2482 	*check_sum = (uint8_t) (0x100 - *check_sum);
2483 
2484 	/* Store in hw_path_mode */
2485 	info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
2486 	info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
2487 	info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
2488 
2489 	for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
2490 		info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
2491 
2492 	info_packet->valid = true;
2493 }
2494 
2495 static void set_vendor_info_packet(
2496 		struct dc_info_packet *info_packet,
2497 		struct dc_stream_state *stream)
2498 {
2499 	/* SPD info packet for FreeSync */
2500 
2501 	/* Check if Freesync is supported. Return if false. If true,
2502 	 * set the corresponding bit in the info packet
2503 	 */
2504 	if (!stream->vsp_infopacket.valid)
2505 		return;
2506 
2507 	*info_packet = stream->vsp_infopacket;
2508 }
2509 
2510 static void set_spd_info_packet(
2511 		struct dc_info_packet *info_packet,
2512 		struct dc_stream_state *stream)
2513 {
2514 	/* SPD info packet for FreeSync */
2515 
2516 	/* Check if Freesync is supported. Return if false. If true,
2517 	 * set the corresponding bit in the info packet
2518 	 */
2519 	if (!stream->vrr_infopacket.valid)
2520 		return;
2521 
2522 	*info_packet = stream->vrr_infopacket;
2523 }
2524 
2525 static void set_hdr_static_info_packet(
2526 		struct dc_info_packet *info_packet,
2527 		struct dc_stream_state *stream)
2528 {
2529 	/* HDR Static Metadata info packet for HDR10 */
2530 
2531 	if (!stream->hdr_static_metadata.valid ||
2532 			stream->use_dynamic_meta)
2533 		return;
2534 
2535 	*info_packet = stream->hdr_static_metadata;
2536 }
2537 
2538 static void set_vsc_info_packet(
2539 		struct dc_info_packet *info_packet,
2540 		struct dc_stream_state *stream)
2541 {
2542 	if (!stream->vsc_infopacket.valid)
2543 		return;
2544 
2545 	*info_packet = stream->vsc_infopacket;
2546 }
2547 
2548 void dc_resource_state_destruct(struct dc_state *context)
2549 {
2550 	int i, j;
2551 
2552 	for (i = 0; i < context->stream_count; i++) {
2553 		for (j = 0; j < context->stream_status[i].plane_count; j++)
2554 			dc_plane_state_release(
2555 				context->stream_status[i].plane_states[j]);
2556 
2557 		context->stream_status[i].plane_count = 0;
2558 		dc_stream_release(context->streams[i]);
2559 		context->streams[i] = NULL;
2560 	}
2561 	context->stream_count = 0;
2562 }
2563 
2564 void dc_resource_state_copy_construct(
2565 		const struct dc_state *src_ctx,
2566 		struct dc_state *dst_ctx)
2567 {
2568 	int i, j;
2569 	struct kref refcount = dst_ctx->refcount;
2570 
2571 	*dst_ctx = *src_ctx;
2572 
2573 	for (i = 0; i < MAX_PIPES; i++) {
2574 		struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
2575 
2576 		if (cur_pipe->top_pipe)
2577 			cur_pipe->top_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2578 
2579 		if (cur_pipe->bottom_pipe)
2580 			cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2581 
2582 		if (cur_pipe->next_odm_pipe)
2583 			cur_pipe->next_odm_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2584 
2585 		if (cur_pipe->prev_odm_pipe)
2586 			cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2587 	}
2588 
2589 	for (i = 0; i < dst_ctx->stream_count; i++) {
2590 		dc_stream_retain(dst_ctx->streams[i]);
2591 		for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
2592 			dc_plane_state_retain(
2593 				dst_ctx->stream_status[i].plane_states[j]);
2594 	}
2595 
2596 	/* context refcount should not be overridden */
2597 	dst_ctx->refcount = refcount;
2598 
2599 }
2600 
2601 struct clock_source *dc_resource_find_first_free_pll(
2602 		struct resource_context *res_ctx,
2603 		const struct resource_pool *pool)
2604 {
2605 	int i;
2606 
2607 	for (i = 0; i < pool->clk_src_count; ++i) {
2608 		if (res_ctx->clock_source_ref_count[i] == 0)
2609 			return pool->clock_sources[i];
2610 	}
2611 
2612 	return NULL;
2613 }
2614 
2615 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
2616 {
2617 	enum signal_type signal = SIGNAL_TYPE_NONE;
2618 	struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
2619 
2620 	/* default all packets to invalid */
2621 	info->avi.valid = false;
2622 	info->gamut.valid = false;
2623 	info->vendor.valid = false;
2624 	info->spd.valid = false;
2625 	info->hdrsmd.valid = false;
2626 	info->vsc.valid = false;
2627 
2628 	signal = pipe_ctx->stream->signal;
2629 
2630 	/* HDMi and DP have different info packets*/
2631 	if (dc_is_hdmi_signal(signal)) {
2632 		set_avi_info_frame(&info->avi, pipe_ctx);
2633 
2634 		set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
2635 
2636 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
2637 
2638 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2639 
2640 	} else if (dc_is_dp_signal(signal)) {
2641 		set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
2642 
2643 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
2644 
2645 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2646 	}
2647 
2648 	patch_gamut_packet_checksum(&info->gamut);
2649 }
2650 
2651 enum dc_status resource_map_clock_resources(
2652 		const struct dc  *dc,
2653 		struct dc_state *context,
2654 		struct dc_stream_state *stream)
2655 {
2656 	/* acquire new resources */
2657 	const struct resource_pool *pool = dc->res_pool;
2658 	struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
2659 				&context->res_ctx, stream);
2660 
2661 	if (!pipe_ctx)
2662 		return DC_ERROR_UNEXPECTED;
2663 
2664 	if (dc_is_dp_signal(pipe_ctx->stream->signal)
2665 		|| pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
2666 		pipe_ctx->clock_source = pool->dp_clock_source;
2667 	else {
2668 		pipe_ctx->clock_source = NULL;
2669 
2670 		if (!dc->config.disable_disp_pll_sharing)
2671 			pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
2672 				&context->res_ctx,
2673 				pipe_ctx);
2674 
2675 		if (pipe_ctx->clock_source == NULL)
2676 			pipe_ctx->clock_source =
2677 				dc_resource_find_first_free_pll(
2678 					&context->res_ctx,
2679 					pool);
2680 	}
2681 
2682 	if (pipe_ctx->clock_source == NULL)
2683 		return DC_NO_CLOCK_SOURCE_RESOURCE;
2684 
2685 	resource_reference_clock_source(
2686 		&context->res_ctx, pool,
2687 		pipe_ctx->clock_source);
2688 
2689 	return DC_OK;
2690 }
2691 
2692 /*
2693  * Note: We need to disable output if clock sources change,
2694  * since bios does optimization and doesn't apply if changing
2695  * PHY when not already disabled.
2696  */
2697 bool pipe_need_reprogram(
2698 		struct pipe_ctx *pipe_ctx_old,
2699 		struct pipe_ctx *pipe_ctx)
2700 {
2701 	if (!pipe_ctx_old->stream)
2702 		return false;
2703 
2704 	if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
2705 		return true;
2706 
2707 	if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
2708 		return true;
2709 
2710 	if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
2711 		return true;
2712 
2713 	if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
2714 			&& pipe_ctx_old->stream != pipe_ctx->stream)
2715 		return true;
2716 
2717 	if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
2718 		return true;
2719 
2720 	if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
2721 		return true;
2722 
2723 	if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
2724 		return true;
2725 
2726 	if (false == pipe_ctx_old->stream->link->link_state_valid &&
2727 		false == pipe_ctx_old->stream->dpms_off)
2728 		return true;
2729 
2730 	if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
2731 		return true;
2732 
2733 	/* DIG link encoder resource assignment for stream changed. */
2734 	if (pipe_ctx_old->stream->link_enc != pipe_ctx->stream->link_enc)
2735 		return true;
2736 
2737 	return false;
2738 }
2739 
2740 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
2741 		struct bit_depth_reduction_params *fmt_bit_depth)
2742 {
2743 	enum dc_dither_option option = stream->dither_option;
2744 	enum dc_pixel_encoding pixel_encoding =
2745 			stream->timing.pixel_encoding;
2746 
2747 	memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
2748 
2749 	if (option == DITHER_OPTION_DEFAULT) {
2750 		switch (stream->timing.display_color_depth) {
2751 		case COLOR_DEPTH_666:
2752 			option = DITHER_OPTION_SPATIAL6;
2753 			break;
2754 		case COLOR_DEPTH_888:
2755 			option = DITHER_OPTION_SPATIAL8;
2756 			break;
2757 		case COLOR_DEPTH_101010:
2758 			option = DITHER_OPTION_SPATIAL10;
2759 			break;
2760 		default:
2761 			option = DITHER_OPTION_DISABLE;
2762 		}
2763 	}
2764 
2765 	if (option == DITHER_OPTION_DISABLE)
2766 		return;
2767 
2768 	if (option == DITHER_OPTION_TRUN6) {
2769 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2770 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
2771 	} else if (option == DITHER_OPTION_TRUN8 ||
2772 			option == DITHER_OPTION_TRUN8_SPATIAL6 ||
2773 			option == DITHER_OPTION_TRUN8_FM6) {
2774 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2775 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
2776 	} else if (option == DITHER_OPTION_TRUN10        ||
2777 			option == DITHER_OPTION_TRUN10_SPATIAL6   ||
2778 			option == DITHER_OPTION_TRUN10_SPATIAL8   ||
2779 			option == DITHER_OPTION_TRUN10_FM8     ||
2780 			option == DITHER_OPTION_TRUN10_FM6     ||
2781 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2782 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2783 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2784 	}
2785 
2786 	/* special case - Formatter can only reduce by 4 bits at most.
2787 	 * When reducing from 12 to 6 bits,
2788 	 * HW recommends we use trunc with round mode
2789 	 * (if we did nothing, trunc to 10 bits would be used)
2790 	 * note that any 12->10 bit reduction is ignored prior to DCE8,
2791 	 * as the input was 10 bits.
2792 	 */
2793 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
2794 			option == DITHER_OPTION_SPATIAL6 ||
2795 			option == DITHER_OPTION_FM6) {
2796 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2797 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2798 		fmt_bit_depth->flags.TRUNCATE_MODE = 1;
2799 	}
2800 
2801 	/* spatial dither
2802 	 * note that spatial modes 1-3 are never used
2803 	 */
2804 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM            ||
2805 			option == DITHER_OPTION_SPATIAL6 ||
2806 			option == DITHER_OPTION_TRUN10_SPATIAL6      ||
2807 			option == DITHER_OPTION_TRUN8_SPATIAL6) {
2808 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2809 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
2810 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2811 		fmt_bit_depth->flags.RGB_RANDOM =
2812 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2813 	} else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM            ||
2814 			option == DITHER_OPTION_SPATIAL8 ||
2815 			option == DITHER_OPTION_SPATIAL8_FM6        ||
2816 			option == DITHER_OPTION_TRUN10_SPATIAL8      ||
2817 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2818 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2819 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
2820 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2821 		fmt_bit_depth->flags.RGB_RANDOM =
2822 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2823 	} else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
2824 			option == DITHER_OPTION_SPATIAL10 ||
2825 			option == DITHER_OPTION_SPATIAL10_FM8 ||
2826 			option == DITHER_OPTION_SPATIAL10_FM6) {
2827 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2828 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
2829 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2830 		fmt_bit_depth->flags.RGB_RANDOM =
2831 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2832 	}
2833 
2834 	if (option == DITHER_OPTION_SPATIAL6 ||
2835 			option == DITHER_OPTION_SPATIAL8 ||
2836 			option == DITHER_OPTION_SPATIAL10) {
2837 		fmt_bit_depth->flags.FRAME_RANDOM = 0;
2838 	} else {
2839 		fmt_bit_depth->flags.FRAME_RANDOM = 1;
2840 	}
2841 
2842 	//////////////////////
2843 	//// temporal dither
2844 	//////////////////////
2845 	if (option == DITHER_OPTION_FM6           ||
2846 			option == DITHER_OPTION_SPATIAL8_FM6     ||
2847 			option == DITHER_OPTION_SPATIAL10_FM6     ||
2848 			option == DITHER_OPTION_TRUN10_FM6     ||
2849 			option == DITHER_OPTION_TRUN8_FM6      ||
2850 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2851 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2852 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
2853 	} else if (option == DITHER_OPTION_FM8        ||
2854 			option == DITHER_OPTION_SPATIAL10_FM8  ||
2855 			option == DITHER_OPTION_TRUN10_FM8) {
2856 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2857 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
2858 	} else if (option == DITHER_OPTION_FM10) {
2859 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2860 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
2861 	}
2862 
2863 	fmt_bit_depth->pixel_encoding = pixel_encoding;
2864 }
2865 
2866 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
2867 {
2868 	struct dc_link *link = stream->link;
2869 	struct timing_generator *tg = dc->res_pool->timing_generators[0];
2870 	enum dc_status res = DC_OK;
2871 
2872 	calculate_phy_pix_clks(stream);
2873 
2874 	if (!tg->funcs->validate_timing(tg, &stream->timing))
2875 		res = DC_FAIL_CONTROLLER_VALIDATE;
2876 
2877 	if (res == DC_OK) {
2878 		if (!link->link_enc->funcs->validate_output_with_stream(
2879 						link->link_enc, stream))
2880 			res = DC_FAIL_ENC_VALIDATE;
2881 	}
2882 
2883 	/* TODO: validate audio ASIC caps, encoder */
2884 
2885 	if (res == DC_OK)
2886 		res = dc_link_validate_mode_timing(stream,
2887 		      link,
2888 		      &stream->timing);
2889 
2890 	return res;
2891 }
2892 
2893 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
2894 {
2895 	enum dc_status res = DC_OK;
2896 
2897 	/* TODO For now validates pixel format only */
2898 	if (dc->res_pool->funcs->validate_plane)
2899 		return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
2900 
2901 	return res;
2902 }
2903 
2904 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
2905 {
2906 	switch (format) {
2907 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
2908 		return 8;
2909 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
2910 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
2911 		return 12;
2912 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
2913 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
2914 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
2915 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
2916 		return 16;
2917 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
2918 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
2919 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
2920 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
2921 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
2922 #if defined(CONFIG_DRM_AMD_DC_DCN)
2923 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
2924 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
2925 #endif
2926 		return 32;
2927 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
2928 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
2929 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
2930 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
2931 		return 64;
2932 	default:
2933 		ASSERT_CRITICAL(false);
2934 		return -1;
2935 	}
2936 }
2937 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
2938 {
2939 	if (modes) {
2940 		if (modes->sample_rates.rate.RATE_192)
2941 			return 192000;
2942 		if (modes->sample_rates.rate.RATE_176_4)
2943 			return 176400;
2944 		if (modes->sample_rates.rate.RATE_96)
2945 			return 96000;
2946 		if (modes->sample_rates.rate.RATE_88_2)
2947 			return 88200;
2948 		if (modes->sample_rates.rate.RATE_48)
2949 			return 48000;
2950 		if (modes->sample_rates.rate.RATE_44_1)
2951 			return 44100;
2952 		if (modes->sample_rates.rate.RATE_32)
2953 			return 32000;
2954 	}
2955 	/*original logic when no audio info*/
2956 	return 441000;
2957 }
2958 
2959 void get_audio_check(struct audio_info *aud_modes,
2960 	struct audio_check *audio_chk)
2961 {
2962 	unsigned int i;
2963 	unsigned int max_sample_rate = 0;
2964 
2965 	if (aud_modes) {
2966 		audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
2967 
2968 		audio_chk->max_audiosample_rate = 0;
2969 		for (i = 0; i < aud_modes->mode_count; i++) {
2970 			max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
2971 			if (audio_chk->max_audiosample_rate < max_sample_rate)
2972 				audio_chk->max_audiosample_rate = max_sample_rate;
2973 			/*dts takes the same as type 2: AP = 0.25*/
2974 		}
2975 		/*check which one take more bandwidth*/
2976 		if (audio_chk->max_audiosample_rate > 192000)
2977 			audio_chk->audio_packet_type = 0x9;/*AP =1*/
2978 		audio_chk->acat = 0;/*not support*/
2979 	}
2980 }
2981 
2982