1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 
28 #include "resource.h"
29 #include "include/irq_service_interface.h"
30 #include "link_encoder.h"
31 #include "stream_encoder.h"
32 #include "opp.h"
33 #include "timing_generator.h"
34 #include "transform.h"
35 #include "dccg.h"
36 #include "dchubbub.h"
37 #include "dpp.h"
38 #include "core_types.h"
39 #include "set_mode_types.h"
40 #include "virtual/virtual_stream_encoder.h"
41 #include "dpcd_defs.h"
42 #include "link_enc_cfg.h"
43 #include "link.h"
44 #include "virtual/virtual_link_hwss.h"
45 #include "link/hwss/link_hwss_dio.h"
46 #include "link/hwss/link_hwss_dpia.h"
47 #include "link/hwss/link_hwss_hpo_dp.h"
48 
49 #if defined(CONFIG_DRM_AMD_DC_SI)
50 #include "dce60/dce60_resource.h"
51 #endif
52 #include "dce80/dce80_resource.h"
53 #include "dce100/dce100_resource.h"
54 #include "dce110/dce110_resource.h"
55 #include "dce112/dce112_resource.h"
56 #include "dce120/dce120_resource.h"
57 #include "dcn10/dcn10_resource.h"
58 #include "dcn20/dcn20_resource.h"
59 #include "dcn21/dcn21_resource.h"
60 #include "dcn201/dcn201_resource.h"
61 #include "dcn30/dcn30_resource.h"
62 #include "dcn301/dcn301_resource.h"
63 #include "dcn302/dcn302_resource.h"
64 #include "dcn303/dcn303_resource.h"
65 #include "dcn31/dcn31_resource.h"
66 #include "dcn314/dcn314_resource.h"
67 #include "dcn315/dcn315_resource.h"
68 #include "dcn316/dcn316_resource.h"
69 #include "../dcn32/dcn32_resource.h"
70 #include "../dcn321/dcn321_resource.h"
71 
72 #define DC_LOGGER_INIT(logger)
73 
74 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
75 {
76 	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
77 
78 	switch (asic_id.chip_family) {
79 
80 #if defined(CONFIG_DRM_AMD_DC_SI)
81 	case FAMILY_SI:
82 		if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
83 		    ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
84 		    ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
85 			dc_version = DCE_VERSION_6_0;
86 		else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
87 			dc_version = DCE_VERSION_6_4;
88 		else
89 			dc_version = DCE_VERSION_6_1;
90 		break;
91 #endif
92 	case FAMILY_CI:
93 		dc_version = DCE_VERSION_8_0;
94 		break;
95 	case FAMILY_KV:
96 		if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
97 		    ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
98 		    ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
99 			dc_version = DCE_VERSION_8_3;
100 		else
101 			dc_version = DCE_VERSION_8_1;
102 		break;
103 	case FAMILY_CZ:
104 		dc_version = DCE_VERSION_11_0;
105 		break;
106 
107 	case FAMILY_VI:
108 		if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
109 				ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
110 			dc_version = DCE_VERSION_10_0;
111 			break;
112 		}
113 		if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
114 				ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
115 				ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
116 			dc_version = DCE_VERSION_11_2;
117 		}
118 		if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
119 			dc_version = DCE_VERSION_11_22;
120 		break;
121 	case FAMILY_AI:
122 		if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
123 			dc_version = DCE_VERSION_12_1;
124 		else
125 			dc_version = DCE_VERSION_12_0;
126 		break;
127 	case FAMILY_RV:
128 		dc_version = DCN_VERSION_1_0;
129 		if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
130 			dc_version = DCN_VERSION_1_01;
131 		if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
132 			dc_version = DCN_VERSION_2_1;
133 		if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
134 			dc_version = DCN_VERSION_2_1;
135 		break;
136 
137 	case FAMILY_NV:
138 		dc_version = DCN_VERSION_2_0;
139 		if (asic_id.chip_id == DEVICE_ID_NV_13FE || asic_id.chip_id == DEVICE_ID_NV_143F) {
140 			dc_version = DCN_VERSION_2_01;
141 			break;
142 		}
143 		if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
144 			dc_version = DCN_VERSION_3_0;
145 		if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
146 			dc_version = DCN_VERSION_3_02;
147 		if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
148 			dc_version = DCN_VERSION_3_03;
149 		break;
150 
151 	case FAMILY_VGH:
152 		dc_version = DCN_VERSION_3_01;
153 		break;
154 
155 	case FAMILY_YELLOW_CARP:
156 		if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
157 			dc_version = DCN_VERSION_3_1;
158 		break;
159 	case AMDGPU_FAMILY_GC_10_3_6:
160 		if (ASICREV_IS_GC_10_3_6(asic_id.hw_internal_rev))
161 			dc_version = DCN_VERSION_3_15;
162 		break;
163 	case AMDGPU_FAMILY_GC_10_3_7:
164 		if (ASICREV_IS_GC_10_3_7(asic_id.hw_internal_rev))
165 			dc_version = DCN_VERSION_3_16;
166 		break;
167 	case AMDGPU_FAMILY_GC_11_0_0:
168 		dc_version = DCN_VERSION_3_2;
169 		if (ASICREV_IS_GC_11_0_2(asic_id.hw_internal_rev))
170 			dc_version = DCN_VERSION_3_21;
171 		break;
172 	case AMDGPU_FAMILY_GC_11_0_1:
173 		dc_version = DCN_VERSION_3_14;
174 		break;
175 	default:
176 		dc_version = DCE_VERSION_UNKNOWN;
177 		break;
178 	}
179 	return dc_version;
180 }
181 
182 struct resource_pool *dc_create_resource_pool(struct dc  *dc,
183 					      const struct dc_init_data *init_data,
184 					      enum dce_version dc_version)
185 {
186 	struct resource_pool *res_pool = NULL;
187 
188 	switch (dc_version) {
189 #if defined(CONFIG_DRM_AMD_DC_SI)
190 	case DCE_VERSION_6_0:
191 		res_pool = dce60_create_resource_pool(
192 			init_data->num_virtual_links, dc);
193 		break;
194 	case DCE_VERSION_6_1:
195 		res_pool = dce61_create_resource_pool(
196 			init_data->num_virtual_links, dc);
197 		break;
198 	case DCE_VERSION_6_4:
199 		res_pool = dce64_create_resource_pool(
200 			init_data->num_virtual_links, dc);
201 		break;
202 #endif
203 	case DCE_VERSION_8_0:
204 		res_pool = dce80_create_resource_pool(
205 				init_data->num_virtual_links, dc);
206 		break;
207 	case DCE_VERSION_8_1:
208 		res_pool = dce81_create_resource_pool(
209 				init_data->num_virtual_links, dc);
210 		break;
211 	case DCE_VERSION_8_3:
212 		res_pool = dce83_create_resource_pool(
213 				init_data->num_virtual_links, dc);
214 		break;
215 	case DCE_VERSION_10_0:
216 		res_pool = dce100_create_resource_pool(
217 				init_data->num_virtual_links, dc);
218 		break;
219 	case DCE_VERSION_11_0:
220 		res_pool = dce110_create_resource_pool(
221 				init_data->num_virtual_links, dc,
222 				init_data->asic_id);
223 		break;
224 	case DCE_VERSION_11_2:
225 	case DCE_VERSION_11_22:
226 		res_pool = dce112_create_resource_pool(
227 				init_data->num_virtual_links, dc);
228 		break;
229 	case DCE_VERSION_12_0:
230 	case DCE_VERSION_12_1:
231 		res_pool = dce120_create_resource_pool(
232 				init_data->num_virtual_links, dc);
233 		break;
234 
235 #if defined(CONFIG_DRM_AMD_DC_DCN)
236 	case DCN_VERSION_1_0:
237 	case DCN_VERSION_1_01:
238 		res_pool = dcn10_create_resource_pool(init_data, dc);
239 		break;
240 	case DCN_VERSION_2_0:
241 		res_pool = dcn20_create_resource_pool(init_data, dc);
242 		break;
243 	case DCN_VERSION_2_1:
244 		res_pool = dcn21_create_resource_pool(init_data, dc);
245 		break;
246 	case DCN_VERSION_2_01:
247 		res_pool = dcn201_create_resource_pool(init_data, dc);
248 		break;
249 	case DCN_VERSION_3_0:
250 		res_pool = dcn30_create_resource_pool(init_data, dc);
251 		break;
252 	case DCN_VERSION_3_01:
253 		res_pool = dcn301_create_resource_pool(init_data, dc);
254 		break;
255 	case DCN_VERSION_3_02:
256 		res_pool = dcn302_create_resource_pool(init_data, dc);
257 		break;
258 	case DCN_VERSION_3_03:
259 		res_pool = dcn303_create_resource_pool(init_data, dc);
260 		break;
261 	case DCN_VERSION_3_1:
262 		res_pool = dcn31_create_resource_pool(init_data, dc);
263 		break;
264 	case DCN_VERSION_3_14:
265 		res_pool = dcn314_create_resource_pool(init_data, dc);
266 		break;
267 	case DCN_VERSION_3_15:
268 		res_pool = dcn315_create_resource_pool(init_data, dc);
269 		break;
270 	case DCN_VERSION_3_16:
271 		res_pool = dcn316_create_resource_pool(init_data, dc);
272 		break;
273 	case DCN_VERSION_3_2:
274 		res_pool = dcn32_create_resource_pool(init_data, dc);
275 		break;
276 	case DCN_VERSION_3_21:
277 		res_pool = dcn321_create_resource_pool(init_data, dc);
278 		break;
279 #endif
280 	default:
281 		break;
282 	}
283 
284 	if (res_pool != NULL) {
285 		if (dc->ctx->dc_bios->fw_info_valid) {
286 			res_pool->ref_clocks.xtalin_clock_inKhz =
287 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
288 			/* initialize with firmware data first, no all
289 			 * ASIC have DCCG SW component. FPGA or
290 			 * simulation need initialization of
291 			 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
292 			 * with xtalin_clock_inKhz
293 			 */
294 			res_pool->ref_clocks.dccg_ref_clock_inKhz =
295 				res_pool->ref_clocks.xtalin_clock_inKhz;
296 			res_pool->ref_clocks.dchub_ref_clock_inKhz =
297 				res_pool->ref_clocks.xtalin_clock_inKhz;
298 		} else
299 			ASSERT_CRITICAL(false);
300 	}
301 
302 	return res_pool;
303 }
304 
305 void dc_destroy_resource_pool(struct dc  *dc)
306 {
307 	if (dc) {
308 		if (dc->res_pool)
309 			dc->res_pool->funcs->destroy(&dc->res_pool);
310 
311 		kfree(dc->hwseq);
312 	}
313 }
314 
315 static void update_num_audio(
316 	const struct resource_straps *straps,
317 	unsigned int *num_audio,
318 	struct audio_support *aud_support)
319 {
320 	aud_support->dp_audio = true;
321 	aud_support->hdmi_audio_native = false;
322 	aud_support->hdmi_audio_on_dongle = false;
323 
324 	if (straps->hdmi_disable == 0) {
325 		if (straps->dc_pinstraps_audio & 0x2) {
326 			aud_support->hdmi_audio_on_dongle = true;
327 			aud_support->hdmi_audio_native = true;
328 		}
329 	}
330 
331 	switch (straps->audio_stream_number) {
332 	case 0: /* multi streams supported */
333 		break;
334 	case 1: /* multi streams not supported */
335 		*num_audio = 1;
336 		break;
337 	default:
338 		DC_ERR("DC: unexpected audio fuse!\n");
339 	}
340 }
341 
342 bool resource_construct(
343 	unsigned int num_virtual_links,
344 	struct dc  *dc,
345 	struct resource_pool *pool,
346 	const struct resource_create_funcs *create_funcs)
347 {
348 	struct dc_context *ctx = dc->ctx;
349 	const struct resource_caps *caps = pool->res_cap;
350 	int i;
351 	unsigned int num_audio = caps->num_audio;
352 	struct resource_straps straps = {0};
353 
354 	if (create_funcs->read_dce_straps)
355 		create_funcs->read_dce_straps(dc->ctx, &straps);
356 
357 	pool->audio_count = 0;
358 	if (create_funcs->create_audio) {
359 		/* find the total number of streams available via the
360 		 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
361 		 * registers (one for each pin) starting from pin 1
362 		 * up to the max number of audio pins.
363 		 * We stop on the first pin where
364 		 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
365 		 */
366 		update_num_audio(&straps, &num_audio, &pool->audio_support);
367 		for (i = 0; i < caps->num_audio; i++) {
368 			struct audio *aud = create_funcs->create_audio(ctx, i);
369 
370 			if (aud == NULL) {
371 				DC_ERR("DC: failed to create audio!\n");
372 				return false;
373 			}
374 			if (!aud->funcs->endpoint_valid(aud)) {
375 				aud->funcs->destroy(&aud);
376 				break;
377 			}
378 			pool->audios[i] = aud;
379 			pool->audio_count++;
380 		}
381 	}
382 
383 	pool->stream_enc_count = 0;
384 	if (create_funcs->create_stream_encoder) {
385 		for (i = 0; i < caps->num_stream_encoder; i++) {
386 			pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
387 			if (pool->stream_enc[i] == NULL)
388 				DC_ERR("DC: failed to create stream_encoder!\n");
389 			pool->stream_enc_count++;
390 		}
391 	}
392 
393 	pool->hpo_dp_stream_enc_count = 0;
394 	if (create_funcs->create_hpo_dp_stream_encoder) {
395 		for (i = 0; i < caps->num_hpo_dp_stream_encoder; i++) {
396 			pool->hpo_dp_stream_enc[i] = create_funcs->create_hpo_dp_stream_encoder(i+ENGINE_ID_HPO_DP_0, ctx);
397 			if (pool->hpo_dp_stream_enc[i] == NULL)
398 				DC_ERR("DC: failed to create HPO DP stream encoder!\n");
399 			pool->hpo_dp_stream_enc_count++;
400 
401 		}
402 	}
403 
404 	pool->hpo_dp_link_enc_count = 0;
405 	if (create_funcs->create_hpo_dp_link_encoder) {
406 		for (i = 0; i < caps->num_hpo_dp_link_encoder; i++) {
407 			pool->hpo_dp_link_enc[i] = create_funcs->create_hpo_dp_link_encoder(i, ctx);
408 			if (pool->hpo_dp_link_enc[i] == NULL)
409 				DC_ERR("DC: failed to create HPO DP link encoder!\n");
410 			pool->hpo_dp_link_enc_count++;
411 		}
412 	}
413 
414 	for (i = 0; i < caps->num_mpc_3dlut; i++) {
415 		pool->mpc_lut[i] = dc_create_3dlut_func();
416 		if (pool->mpc_lut[i] == NULL)
417 			DC_ERR("DC: failed to create MPC 3dlut!\n");
418 		pool->mpc_shaper[i] = dc_create_transfer_func();
419 		if (pool->mpc_shaper[i] == NULL)
420 			DC_ERR("DC: failed to create MPC shaper!\n");
421 	}
422 
423 	dc->caps.dynamic_audio = false;
424 	if (pool->audio_count < pool->stream_enc_count) {
425 		dc->caps.dynamic_audio = true;
426 	}
427 	for (i = 0; i < num_virtual_links; i++) {
428 		pool->stream_enc[pool->stream_enc_count] =
429 			virtual_stream_encoder_create(
430 					ctx, ctx->dc_bios);
431 		if (pool->stream_enc[pool->stream_enc_count] == NULL) {
432 			DC_ERR("DC: failed to create stream_encoder!\n");
433 			return false;
434 		}
435 		pool->stream_enc_count++;
436 	}
437 
438 	dc->hwseq = create_funcs->create_hwseq(ctx);
439 
440 	return true;
441 }
442 static int find_matching_clock_source(
443 		const struct resource_pool *pool,
444 		struct clock_source *clock_source)
445 {
446 
447 	int i;
448 
449 	for (i = 0; i < pool->clk_src_count; i++) {
450 		if (pool->clock_sources[i] == clock_source)
451 			return i;
452 	}
453 	return -1;
454 }
455 
456 void resource_unreference_clock_source(
457 		struct resource_context *res_ctx,
458 		const struct resource_pool *pool,
459 		struct clock_source *clock_source)
460 {
461 	int i = find_matching_clock_source(pool, clock_source);
462 
463 	if (i > -1)
464 		res_ctx->clock_source_ref_count[i]--;
465 
466 	if (pool->dp_clock_source == clock_source)
467 		res_ctx->dp_clock_source_ref_count--;
468 }
469 
470 void resource_reference_clock_source(
471 		struct resource_context *res_ctx,
472 		const struct resource_pool *pool,
473 		struct clock_source *clock_source)
474 {
475 	int i = find_matching_clock_source(pool, clock_source);
476 
477 	if (i > -1)
478 		res_ctx->clock_source_ref_count[i]++;
479 
480 	if (pool->dp_clock_source == clock_source)
481 		res_ctx->dp_clock_source_ref_count++;
482 }
483 
484 int resource_get_clock_source_reference(
485 		struct resource_context *res_ctx,
486 		const struct resource_pool *pool,
487 		struct clock_source *clock_source)
488 {
489 	int i = find_matching_clock_source(pool, clock_source);
490 
491 	if (i > -1)
492 		return res_ctx->clock_source_ref_count[i];
493 
494 	if (pool->dp_clock_source == clock_source)
495 		return res_ctx->dp_clock_source_ref_count;
496 
497 	return -1;
498 }
499 
500 bool resource_are_vblanks_synchronizable(
501 	struct dc_stream_state *stream1,
502 	struct dc_stream_state *stream2)
503 {
504 	uint32_t base60_refresh_rates[] = {10, 20, 5};
505 	uint8_t i;
506 	uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
507 	uint64_t frame_time_diff;
508 
509 	if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
510 		stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
511 		dc_is_dp_signal(stream1->signal) &&
512 		dc_is_dp_signal(stream2->signal) &&
513 		false == stream1->has_non_synchronizable_pclk &&
514 		false == stream2->has_non_synchronizable_pclk &&
515 		stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
516 		stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
517 		/* disable refresh rates higher than 60Hz for now */
518 		if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
519 				stream1->timing.v_total > 60)
520 			return false;
521 		if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
522 				stream2->timing.v_total > 60)
523 			return false;
524 		frame_time_diff = (uint64_t)10000 *
525 			stream1->timing.h_total *
526 			stream1->timing.v_total *
527 			stream2->timing.pix_clk_100hz;
528 		frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
529 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
530 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
531 		for (i = 0; i < rr_count; i++) {
532 			int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
533 
534 			if (diff < 0)
535 				diff = -diff;
536 			if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
537 				return true;
538 		}
539 	}
540 	return false;
541 }
542 
543 bool resource_are_streams_timing_synchronizable(
544 	struct dc_stream_state *stream1,
545 	struct dc_stream_state *stream2)
546 {
547 	if (stream1->timing.h_total != stream2->timing.h_total)
548 		return false;
549 
550 	if (stream1->timing.v_total != stream2->timing.v_total)
551 		return false;
552 
553 	if (stream1->timing.h_addressable
554 				!= stream2->timing.h_addressable)
555 		return false;
556 
557 	if (stream1->timing.v_addressable
558 				!= stream2->timing.v_addressable)
559 		return false;
560 
561 	if (stream1->timing.v_front_porch
562 				!= stream2->timing.v_front_porch)
563 		return false;
564 
565 	if (stream1->timing.pix_clk_100hz
566 				!= stream2->timing.pix_clk_100hz)
567 		return false;
568 
569 	if (stream1->clamping.c_depth != stream2->clamping.c_depth)
570 		return false;
571 
572 	if (stream1->phy_pix_clk != stream2->phy_pix_clk
573 			&& (!dc_is_dp_signal(stream1->signal)
574 			|| !dc_is_dp_signal(stream2->signal)))
575 		return false;
576 
577 	if (stream1->view_format != stream2->view_format)
578 		return false;
579 
580 	if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
581 		return false;
582 
583 	return true;
584 }
585 static bool is_dp_and_hdmi_sharable(
586 		struct dc_stream_state *stream1,
587 		struct dc_stream_state *stream2)
588 {
589 	if (stream1->ctx->dc->caps.disable_dp_clk_share)
590 		return false;
591 
592 	if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
593 		stream2->clamping.c_depth != COLOR_DEPTH_888)
594 		return false;
595 
596 	return true;
597 
598 }
599 
600 static bool is_sharable_clk_src(
601 	const struct pipe_ctx *pipe_with_clk_src,
602 	const struct pipe_ctx *pipe)
603 {
604 	if (pipe_with_clk_src->clock_source == NULL)
605 		return false;
606 
607 	if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
608 		return false;
609 
610 	if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
611 		(dc_is_dp_signal(pipe->stream->signal) &&
612 		!is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
613 				     pipe->stream)))
614 		return false;
615 
616 	if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
617 			&& dc_is_dual_link_signal(pipe->stream->signal))
618 		return false;
619 
620 	if (dc_is_hdmi_signal(pipe->stream->signal)
621 			&& dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
622 		return false;
623 
624 	if (!resource_are_streams_timing_synchronizable(
625 			pipe_with_clk_src->stream, pipe->stream))
626 		return false;
627 
628 	return true;
629 }
630 
631 struct clock_source *resource_find_used_clk_src_for_sharing(
632 					struct resource_context *res_ctx,
633 					struct pipe_ctx *pipe_ctx)
634 {
635 	int i;
636 
637 	for (i = 0; i < MAX_PIPES; i++) {
638 		if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
639 			return res_ctx->pipe_ctx[i].clock_source;
640 	}
641 
642 	return NULL;
643 }
644 
645 static enum pixel_format convert_pixel_format_to_dalsurface(
646 		enum surface_pixel_format surface_pixel_format)
647 {
648 	enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
649 
650 	switch (surface_pixel_format) {
651 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
652 		dal_pixel_format = PIXEL_FORMAT_INDEX8;
653 		break;
654 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
655 		dal_pixel_format = PIXEL_FORMAT_RGB565;
656 		break;
657 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
658 		dal_pixel_format = PIXEL_FORMAT_RGB565;
659 		break;
660 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
661 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
662 		break;
663 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
664 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
665 		break;
666 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
667 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
668 		break;
669 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
670 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
671 		break;
672 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
673 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
674 		break;
675 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
676 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
677 		dal_pixel_format = PIXEL_FORMAT_FP16;
678 		break;
679 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
680 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
681 		dal_pixel_format = PIXEL_FORMAT_420BPP8;
682 		break;
683 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
684 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
685 		dal_pixel_format = PIXEL_FORMAT_420BPP10;
686 		break;
687 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
688 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
689 	default:
690 		dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
691 		break;
692 	}
693 	return dal_pixel_format;
694 }
695 
696 static inline void get_vp_scan_direction(
697 	enum dc_rotation_angle rotation,
698 	bool horizontal_mirror,
699 	bool *orthogonal_rotation,
700 	bool *flip_vert_scan_dir,
701 	bool *flip_horz_scan_dir)
702 {
703 	*orthogonal_rotation = false;
704 	*flip_vert_scan_dir = false;
705 	*flip_horz_scan_dir = false;
706 	if (rotation == ROTATION_ANGLE_180) {
707 		*flip_vert_scan_dir = true;
708 		*flip_horz_scan_dir = true;
709 	} else if (rotation == ROTATION_ANGLE_90) {
710 		*orthogonal_rotation = true;
711 		*flip_horz_scan_dir = true;
712 	} else if (rotation == ROTATION_ANGLE_270) {
713 		*orthogonal_rotation = true;
714 		*flip_vert_scan_dir = true;
715 	}
716 
717 	if (horizontal_mirror)
718 		*flip_horz_scan_dir = !*flip_horz_scan_dir;
719 }
720 
721 int get_num_mpc_splits(struct pipe_ctx *pipe)
722 {
723 	int mpc_split_count = 0;
724 	struct pipe_ctx *other_pipe = pipe->bottom_pipe;
725 
726 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
727 		mpc_split_count++;
728 		other_pipe = other_pipe->bottom_pipe;
729 	}
730 	other_pipe = pipe->top_pipe;
731 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
732 		mpc_split_count++;
733 		other_pipe = other_pipe->top_pipe;
734 	}
735 
736 	return mpc_split_count;
737 }
738 
739 int get_num_odm_splits(struct pipe_ctx *pipe)
740 {
741 	int odm_split_count = 0;
742 	struct pipe_ctx *next_pipe = pipe->next_odm_pipe;
743 	while (next_pipe) {
744 		odm_split_count++;
745 		next_pipe = next_pipe->next_odm_pipe;
746 	}
747 	pipe = pipe->prev_odm_pipe;
748 	while (pipe) {
749 		odm_split_count++;
750 		pipe = pipe->prev_odm_pipe;
751 	}
752 	return odm_split_count;
753 }
754 
755 static void calculate_split_count_and_index(struct pipe_ctx *pipe_ctx, int *split_count, int *split_idx)
756 {
757 	*split_count = get_num_odm_splits(pipe_ctx);
758 	*split_idx = 0;
759 	if (*split_count == 0) {
760 		/*Check for mpc split*/
761 		struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
762 
763 		*split_count = get_num_mpc_splits(pipe_ctx);
764 		while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
765 			(*split_idx)++;
766 			split_pipe = split_pipe->top_pipe;
767 		}
768 
769 		/* MPO window on right side of ODM split */
770 		if (split_pipe && split_pipe->prev_odm_pipe && !pipe_ctx->prev_odm_pipe)
771 			(*split_idx)++;
772 	} else {
773 		/*Get odm split index*/
774 		struct pipe_ctx *split_pipe = pipe_ctx->prev_odm_pipe;
775 
776 		while (split_pipe) {
777 			(*split_idx)++;
778 			split_pipe = split_pipe->prev_odm_pipe;
779 		}
780 	}
781 }
782 
783 /*
784  * This is a preliminary vp size calculation to allow us to check taps support.
785  * The result is completely overridden afterwards.
786  */
787 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
788 {
789 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
790 
791 	data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
792 	data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
793 	data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
794 	data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
795 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
796 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
797 		swap(data->viewport.width, data->viewport.height);
798 		swap(data->viewport_c.width, data->viewport_c.height);
799 	}
800 }
801 
802 static void calculate_recout(struct pipe_ctx *pipe_ctx)
803 {
804 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
805 	const struct dc_stream_state *stream = pipe_ctx->stream;
806 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
807 	struct rect surf_clip = plane_state->clip_rect;
808 	bool split_tb = stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
809 	int split_count, split_idx;
810 
811 	calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
812 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
813 		split_idx = 0;
814 
815 	/*
816 	 * Only the leftmost ODM pipe should be offset by a nonzero distance
817 	 */
818 	if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->prev_odm_pipe && !pipe_ctx->prev_odm_pipe) {
819 		/* MPO window on right side of ODM split */
820 		data->recout.x = stream->dst.x + (surf_clip.x - stream->src.x - stream->src.width/2) *
821 				stream->dst.width / stream->src.width;
822 	} else if (!pipe_ctx->prev_odm_pipe || split_idx == split_count) {
823 		data->recout.x = stream->dst.x;
824 		if (stream->src.x < surf_clip.x)
825 			data->recout.x += (surf_clip.x - stream->src.x) * stream->dst.width
826 						/ stream->src.width;
827 	} else
828 		data->recout.x = 0;
829 
830 	if (stream->src.x > surf_clip.x)
831 		surf_clip.width -= stream->src.x - surf_clip.x;
832 	data->recout.width = surf_clip.width * stream->dst.width / stream->src.width;
833 	if (data->recout.width + data->recout.x > stream->dst.x + stream->dst.width)
834 		data->recout.width = stream->dst.x + stream->dst.width - data->recout.x;
835 
836 	data->recout.y = stream->dst.y;
837 	if (stream->src.y < surf_clip.y)
838 		data->recout.y += (surf_clip.y - stream->src.y) * stream->dst.height
839 						/ stream->src.height;
840 	else if (stream->src.y > surf_clip.y)
841 		surf_clip.height -= stream->src.y - surf_clip.y;
842 
843 	data->recout.height = surf_clip.height * stream->dst.height / stream->src.height;
844 	if (data->recout.height + data->recout.y > stream->dst.y + stream->dst.height)
845 		data->recout.height = stream->dst.y + stream->dst.height - data->recout.y;
846 
847 	/* Handle h & v split */
848 	if (split_tb) {
849 		ASSERT(data->recout.height % 2 == 0);
850 		data->recout.height /= 2;
851 	} else if (split_count) {
852 		if (!pipe_ctx->next_odm_pipe && !pipe_ctx->prev_odm_pipe) {
853 			/* extra pixels in the division remainder need to go to pipes after
854 			 * the extra pixel index minus one(epimo) defined here as:
855 			 */
856 			int epimo = split_count - data->recout.width % (split_count + 1);
857 
858 			data->recout.x += (data->recout.width / (split_count + 1)) * split_idx;
859 			if (split_idx > epimo)
860 				data->recout.x += split_idx - epimo - 1;
861 			ASSERT(stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE || data->recout.width % 2 == 0);
862 			data->recout.width = data->recout.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
863 		} else {
864 			/* odm */
865 			if (split_idx == split_count) {
866 				/* rightmost pipe is the remainder recout */
867 				data->recout.width -= data->h_active * split_count - data->recout.x;
868 
869 				/* ODM combine cases with MPO we can get negative widths */
870 				if (data->recout.width < 0)
871 					data->recout.width = 0;
872 
873 				data->recout.x = 0;
874 			} else
875 				data->recout.width = data->h_active - data->recout.x;
876 		}
877 	}
878 }
879 
880 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
881 {
882 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
883 	const struct dc_stream_state *stream = pipe_ctx->stream;
884 	struct rect surf_src = plane_state->src_rect;
885 	const int in_w = stream->src.width;
886 	const int in_h = stream->src.height;
887 	const int out_w = stream->dst.width;
888 	const int out_h = stream->dst.height;
889 
890 	/*Swap surf_src height and width since scaling ratios are in recout rotation*/
891 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
892 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
893 		swap(surf_src.height, surf_src.width);
894 
895 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
896 					surf_src.width,
897 					plane_state->dst_rect.width);
898 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
899 					surf_src.height,
900 					plane_state->dst_rect.height);
901 
902 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
903 		pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
904 	else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
905 		pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
906 
907 	pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
908 		pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
909 	pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
910 		pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
911 
912 	pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
913 	pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
914 
915 	if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
916 			|| pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
917 		pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
918 		pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
919 	}
920 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
921 			pipe_ctx->plane_res.scl_data.ratios.horz, 19);
922 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
923 			pipe_ctx->plane_res.scl_data.ratios.vert, 19);
924 	pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
925 			pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
926 	pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
927 			pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
928 }
929 
930 
931 /*
932  * We completely calculate vp offset, size and inits here based entirely on scaling
933  * ratios and recout for pixel perfect pipe combine.
934  */
935 static void calculate_init_and_vp(
936 		bool flip_scan_dir,
937 		int recout_offset_within_recout_full,
938 		int recout_size,
939 		int src_size,
940 		int taps,
941 		struct fixed31_32 ratio,
942 		struct fixed31_32 *init,
943 		int *vp_offset,
944 		int *vp_size)
945 {
946 	struct fixed31_32 temp;
947 	int int_part;
948 
949 	/*
950 	 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
951 	 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
952 	 * All following calculations are based on this logic.
953 	 *
954 	 * Init calculated according to formula:
955 	 * 	init = (scaling_ratio + number_of_taps + 1) / 2
956 	 * 	init_bot = init + scaling_ratio
957 	 * 	to get pixel perfect combine add the fraction from calculating vp offset
958 	 */
959 	temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
960 	*vp_offset = dc_fixpt_floor(temp);
961 	temp.value &= 0xffffffff;
962 	*init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
963 			dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
964 	/*
965 	 * If viewport has non 0 offset and there are more taps than covered by init then
966 	 * we should decrease the offset and increase init so we are never sampling
967 	 * outside of viewport.
968 	 */
969 	int_part = dc_fixpt_floor(*init);
970 	if (int_part < taps) {
971 		int_part = taps - int_part;
972 		if (int_part > *vp_offset)
973 			int_part = *vp_offset;
974 		*vp_offset -= int_part;
975 		*init = dc_fixpt_add_int(*init, int_part);
976 	}
977 	/*
978 	 * If taps are sampling outside of viewport at end of recout and there are more pixels
979 	 * available in the surface we should increase the viewport size, regardless set vp to
980 	 * only what is used.
981 	 */
982 	temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
983 	*vp_size = dc_fixpt_floor(temp);
984 	if (*vp_size + *vp_offset > src_size)
985 		*vp_size = src_size - *vp_offset;
986 
987 	/* We did all the math assuming we are scanning same direction as display does,
988 	 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
989 	 * is flipped we simply need to calculate offset from the other side of plane.
990 	 * Note that outside of viewport all scaling hardware works in recout space.
991 	 */
992 	if (flip_scan_dir)
993 		*vp_offset = src_size - *vp_offset - *vp_size;
994 }
995 
996 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
997 {
998 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
999 	const struct dc_stream_state *stream = pipe_ctx->stream;
1000 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
1001 	struct rect src = plane_state->src_rect;
1002 	int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
1003 				|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
1004 	int split_count, split_idx, ro_lb, ro_tb, recout_full_x, recout_full_y;
1005 	bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
1006 
1007 	calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
1008 	/*
1009 	 * recout full is what the recout would have been if we didnt clip
1010 	 * the source plane at all. We only care about left(ro_lb) and top(ro_tb)
1011 	 * offsets of recout within recout full because those are the directions
1012 	 * we scan from and therefore the only ones that affect inits.
1013 	 */
1014 	recout_full_x = stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
1015 			* stream->dst.width / stream->src.width;
1016 	recout_full_y = stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
1017 			* stream->dst.height / stream->src.height;
1018 	if (pipe_ctx->prev_odm_pipe && split_idx)
1019 		ro_lb = data->h_active * split_idx - recout_full_x;
1020 	else if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->prev_odm_pipe)
1021 		ro_lb = data->h_active * split_idx - recout_full_x + data->recout.x;
1022 	else
1023 		ro_lb = data->recout.x - recout_full_x;
1024 	ro_tb = data->recout.y - recout_full_y;
1025 	ASSERT(ro_lb >= 0 && ro_tb >= 0);
1026 
1027 	/*
1028 	 * Work in recout rotation since that requires less transformations
1029 	 */
1030 	get_vp_scan_direction(
1031 			plane_state->rotation,
1032 			plane_state->horizontal_mirror,
1033 			&orthogonal_rotation,
1034 			&flip_vert_scan_dir,
1035 			&flip_horz_scan_dir);
1036 
1037 	if (orthogonal_rotation) {
1038 		swap(src.width, src.height);
1039 		swap(flip_vert_scan_dir, flip_horz_scan_dir);
1040 	}
1041 
1042 	calculate_init_and_vp(
1043 			flip_horz_scan_dir,
1044 			ro_lb,
1045 			data->recout.width,
1046 			src.width,
1047 			data->taps.h_taps,
1048 			data->ratios.horz,
1049 			&data->inits.h,
1050 			&data->viewport.x,
1051 			&data->viewport.width);
1052 	calculate_init_and_vp(
1053 			flip_horz_scan_dir,
1054 			ro_lb,
1055 			data->recout.width,
1056 			src.width / vpc_div,
1057 			data->taps.h_taps_c,
1058 			data->ratios.horz_c,
1059 			&data->inits.h_c,
1060 			&data->viewport_c.x,
1061 			&data->viewport_c.width);
1062 	calculate_init_and_vp(
1063 			flip_vert_scan_dir,
1064 			ro_tb,
1065 			data->recout.height,
1066 			src.height,
1067 			data->taps.v_taps,
1068 			data->ratios.vert,
1069 			&data->inits.v,
1070 			&data->viewport.y,
1071 			&data->viewport.height);
1072 	calculate_init_and_vp(
1073 			flip_vert_scan_dir,
1074 			ro_tb,
1075 			data->recout.height,
1076 			src.height / vpc_div,
1077 			data->taps.v_taps_c,
1078 			data->ratios.vert_c,
1079 			&data->inits.v_c,
1080 			&data->viewport_c.y,
1081 			&data->viewport_c.height);
1082 	if (orthogonal_rotation) {
1083 		swap(data->viewport.x, data->viewport.y);
1084 		swap(data->viewport.width, data->viewport.height);
1085 		swap(data->viewport_c.x, data->viewport_c.y);
1086 		swap(data->viewport_c.width, data->viewport_c.height);
1087 	}
1088 	data->viewport.x += src.x;
1089 	data->viewport.y += src.y;
1090 	ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1091 	data->viewport_c.x += src.x / vpc_div;
1092 	data->viewport_c.y += src.y / vpc_div;
1093 }
1094 
1095 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1096 {
1097 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1098 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1099 	bool res = false;
1100 	DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1101 
1102 	/* Invalid input */
1103 	if (!plane_state->dst_rect.width ||
1104 			!plane_state->dst_rect.height ||
1105 			!plane_state->src_rect.width ||
1106 			!plane_state->src_rect.height) {
1107 		ASSERT(0);
1108 		return false;
1109 	}
1110 
1111 	pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1112 			pipe_ctx->plane_state->format);
1113 
1114 	/* Timing borders are part of vactive that we are also supposed to skip in addition
1115 	 * to any stream dst offset. Since dm logic assumes dst is in addressable
1116 	 * space we need to add the left and top borders to dst offsets temporarily.
1117 	 * TODO: fix in DM, stream dst is supposed to be in vactive
1118 	 */
1119 	pipe_ctx->stream->dst.x += timing->h_border_left;
1120 	pipe_ctx->stream->dst.y += timing->v_border_top;
1121 
1122 	/* Calculate H and V active size */
1123 	pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable +
1124 			timing->h_border_left + timing->h_border_right;
1125 	pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable +
1126 		timing->v_border_top + timing->v_border_bottom;
1127 	if (pipe_ctx->next_odm_pipe || pipe_ctx->prev_odm_pipe) {
1128 		pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx) + 1;
1129 
1130 		DC_LOG_SCALER("%s pipe %d: next_odm_pipe:%d   prev_odm_pipe:%d\n",
1131 				__func__,
1132 				pipe_ctx->pipe_idx,
1133 				pipe_ctx->next_odm_pipe ? pipe_ctx->next_odm_pipe->pipe_idx : -1,
1134 				pipe_ctx->prev_odm_pipe ? pipe_ctx->prev_odm_pipe->pipe_idx : -1);
1135 	}	/* ODM + windows MPO, where window is on either right or left ODM half */
1136 	else if (pipe_ctx->top_pipe && (pipe_ctx->top_pipe->next_odm_pipe || pipe_ctx->top_pipe->prev_odm_pipe)) {
1137 
1138 		pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx->top_pipe) + 1;
1139 
1140 		DC_LOG_SCALER("%s ODM + windows MPO: pipe:%d top_pipe:%d   top_pipe->next_odm_pipe:%d   top_pipe->prev_odm_pipe:%d\n",
1141 				__func__,
1142 				pipe_ctx->pipe_idx,
1143 				pipe_ctx->top_pipe->pipe_idx,
1144 				pipe_ctx->top_pipe->next_odm_pipe ? pipe_ctx->top_pipe->next_odm_pipe->pipe_idx : -1,
1145 				pipe_ctx->top_pipe->prev_odm_pipe ? pipe_ctx->top_pipe->prev_odm_pipe->pipe_idx : -1);
1146 	}
1147 	/* depends on h_active */
1148 	calculate_recout(pipe_ctx);
1149 	/* depends on pixel format */
1150 	calculate_scaling_ratios(pipe_ctx);
1151 	/* depends on scaling ratios and recout, does not calculate offset yet */
1152 	calculate_viewport_size(pipe_ctx);
1153 
1154 	if (!pipe_ctx->stream->ctx->dc->config.enable_windowed_mpo_odm) {
1155 		/* Stopgap for validation of ODM + MPO on one side of screen case */
1156 		if (pipe_ctx->plane_res.scl_data.viewport.height < 1 ||
1157 				pipe_ctx->plane_res.scl_data.viewport.width < 1)
1158 			return false;
1159 	}
1160 
1161 	/*
1162 	 * LB calculations depend on vp size, h/v_active and scaling ratios
1163 	 * Setting line buffer pixel depth to 24bpp yields banding
1164 	 * on certain displays, such as the Sharp 4k. 36bpp is needed
1165 	 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1166 	 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1167 	 * precision on DCN display engines, but apparently not for DCE, as
1168 	 * far as testing on DCE-11.2 and DCE-8 showed. Various DCE parts have
1169 	 * problems: Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1170 	 * neither do DCE-8 at 4k resolution, or DCE-11.2 (broken identify pixel
1171 	 * passthrough). Therefore only use 36 bpp on DCN where it is actually needed.
1172 	 */
1173 	if (plane_state->ctx->dce_version > DCE_VERSION_MAX)
1174 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1175 	else
1176 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1177 
1178 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1179 
1180 	if (pipe_ctx->plane_res.xfm != NULL)
1181 		res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1182 				pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1183 
1184 	if (pipe_ctx->plane_res.dpp != NULL)
1185 		res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1186 				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1187 
1188 
1189 	if (!res) {
1190 		/* Try 24 bpp linebuffer */
1191 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1192 
1193 		if (pipe_ctx->plane_res.xfm != NULL)
1194 			res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1195 					pipe_ctx->plane_res.xfm,
1196 					&pipe_ctx->plane_res.scl_data,
1197 					&plane_state->scaling_quality);
1198 
1199 		if (pipe_ctx->plane_res.dpp != NULL)
1200 			res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1201 					pipe_ctx->plane_res.dpp,
1202 					&pipe_ctx->plane_res.scl_data,
1203 					&plane_state->scaling_quality);
1204 	}
1205 
1206 	/*
1207 	 * Depends on recout, scaling ratios, h_active and taps
1208 	 * May need to re-check lb size after this in some obscure scenario
1209 	 */
1210 	if (res)
1211 		calculate_inits_and_viewports(pipe_ctx);
1212 
1213 	/*
1214 	 * Handle side by side and top bottom 3d recout offsets after vp calculation
1215 	 * since 3d is special and needs to calculate vp as if there is no recout offset
1216 	 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1217 	 */
1218 	if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1219 		ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1220 			(pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1221 				pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1222 		if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1223 			pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1224 		else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1225 			pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1226 	}
1227 
1228 	if (!pipe_ctx->stream->ctx->dc->config.enable_windowed_mpo_odm) {
1229 		if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE ||
1230 				pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1231 			res = false;
1232 	} else {
1233 		/* Clamp minimum viewport size */
1234 		if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE)
1235 			pipe_ctx->plane_res.scl_data.viewport.height = MIN_VIEWPORT_SIZE;
1236 		if (pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1237 			pipe_ctx->plane_res.scl_data.viewport.width = MIN_VIEWPORT_SIZE;
1238 	}
1239 
1240 	DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d  Recout: height:%d width:%d x:%d y:%d  HACTIVE:%d VACTIVE:%d\n"
1241 			"src_rect: height:%d width:%d x:%d y:%d  dst_rect: height:%d width:%d x:%d y:%d  clip_rect: height:%d width:%d x:%d y:%d\n",
1242 			__func__,
1243 			pipe_ctx->pipe_idx,
1244 			pipe_ctx->plane_res.scl_data.viewport.height,
1245 			pipe_ctx->plane_res.scl_data.viewport.width,
1246 			pipe_ctx->plane_res.scl_data.viewport.x,
1247 			pipe_ctx->plane_res.scl_data.viewport.y,
1248 			pipe_ctx->plane_res.scl_data.recout.height,
1249 			pipe_ctx->plane_res.scl_data.recout.width,
1250 			pipe_ctx->plane_res.scl_data.recout.x,
1251 			pipe_ctx->plane_res.scl_data.recout.y,
1252 			pipe_ctx->plane_res.scl_data.h_active,
1253 			pipe_ctx->plane_res.scl_data.v_active,
1254 			plane_state->src_rect.height,
1255 			plane_state->src_rect.width,
1256 			plane_state->src_rect.x,
1257 			plane_state->src_rect.y,
1258 			plane_state->dst_rect.height,
1259 			plane_state->dst_rect.width,
1260 			plane_state->dst_rect.x,
1261 			plane_state->dst_rect.y,
1262 			plane_state->clip_rect.height,
1263 			plane_state->clip_rect.width,
1264 			plane_state->clip_rect.x,
1265 			plane_state->clip_rect.y);
1266 
1267 	pipe_ctx->stream->dst.x -= timing->h_border_left;
1268 	pipe_ctx->stream->dst.y -= timing->v_border_top;
1269 
1270 	return res;
1271 }
1272 
1273 
1274 enum dc_status resource_build_scaling_params_for_context(
1275 	const struct dc  *dc,
1276 	struct dc_state *context)
1277 {
1278 	int i;
1279 
1280 	for (i = 0; i < MAX_PIPES; i++) {
1281 		if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1282 				context->res_ctx.pipe_ctx[i].stream != NULL)
1283 			if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1284 				return DC_FAIL_SCALING;
1285 	}
1286 
1287 	return DC_OK;
1288 }
1289 
1290 struct pipe_ctx *find_idle_secondary_pipe(
1291 		struct resource_context *res_ctx,
1292 		const struct resource_pool *pool,
1293 		const struct pipe_ctx *primary_pipe)
1294 {
1295 	int i;
1296 	struct pipe_ctx *secondary_pipe = NULL;
1297 
1298 	/*
1299 	 * We add a preferred pipe mapping to avoid the chance that
1300 	 * MPCCs already in use will need to be reassigned to other trees.
1301 	 * For example, if we went with the strict, assign backwards logic:
1302 	 *
1303 	 * (State 1)
1304 	 * Display A on, no surface, top pipe = 0
1305 	 * Display B on, no surface, top pipe = 1
1306 	 *
1307 	 * (State 2)
1308 	 * Display A on, no surface, top pipe = 0
1309 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1310 	 *
1311 	 * (State 3)
1312 	 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1313 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1314 	 *
1315 	 * The state 2->3 transition requires remapping MPCC 5 from display B
1316 	 * to display A.
1317 	 *
1318 	 * However, with the preferred pipe logic, state 2 would look like:
1319 	 *
1320 	 * (State 2)
1321 	 * Display A on, no surface, top pipe = 0
1322 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1323 	 *
1324 	 * This would then cause 2->3 to not require remapping any MPCCs.
1325 	 */
1326 	if (primary_pipe) {
1327 		int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1328 		if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1329 			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1330 			secondary_pipe->pipe_idx = preferred_pipe_idx;
1331 		}
1332 	}
1333 
1334 	/*
1335 	 * search backwards for the second pipe to keep pipe
1336 	 * assignment more consistent
1337 	 */
1338 	if (!secondary_pipe)
1339 		for (i = pool->pipe_count - 1; i >= 0; i--) {
1340 			if (res_ctx->pipe_ctx[i].stream == NULL) {
1341 				secondary_pipe = &res_ctx->pipe_ctx[i];
1342 				secondary_pipe->pipe_idx = i;
1343 				break;
1344 			}
1345 		}
1346 
1347 	return secondary_pipe;
1348 }
1349 
1350 struct pipe_ctx *resource_get_head_pipe_for_stream(
1351 		struct resource_context *res_ctx,
1352 		struct dc_stream_state *stream)
1353 {
1354 	int i;
1355 
1356 	for (i = 0; i < MAX_PIPES; i++) {
1357 		if (res_ctx->pipe_ctx[i].stream == stream
1358 				&& !res_ctx->pipe_ctx[i].top_pipe
1359 				&& !res_ctx->pipe_ctx[i].prev_odm_pipe)
1360 			return &res_ctx->pipe_ctx[i];
1361 	}
1362 	return NULL;
1363 }
1364 
1365 static struct pipe_ctx *resource_get_tail_pipe(
1366 		struct resource_context *res_ctx,
1367 		struct pipe_ctx *head_pipe)
1368 {
1369 	struct pipe_ctx *tail_pipe;
1370 
1371 	tail_pipe = head_pipe->bottom_pipe;
1372 
1373 	while (tail_pipe) {
1374 		head_pipe = tail_pipe;
1375 		tail_pipe = tail_pipe->bottom_pipe;
1376 	}
1377 
1378 	return head_pipe;
1379 }
1380 
1381 /*
1382  * A free_pipe for a stream is defined here as a pipe
1383  * that has no surface attached yet
1384  */
1385 static struct pipe_ctx *acquire_free_pipe_for_head(
1386 		struct dc_state *context,
1387 		const struct resource_pool *pool,
1388 		struct pipe_ctx *head_pipe)
1389 {
1390 	int i;
1391 	struct resource_context *res_ctx = &context->res_ctx;
1392 
1393 	if (!head_pipe->plane_state)
1394 		return head_pipe;
1395 
1396 	/* Re-use pipe already acquired for this stream if available*/
1397 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1398 		if (res_ctx->pipe_ctx[i].stream == head_pipe->stream &&
1399 				!res_ctx->pipe_ctx[i].plane_state) {
1400 			return &res_ctx->pipe_ctx[i];
1401 		}
1402 	}
1403 
1404 	/*
1405 	 * At this point we have no re-useable pipe for this stream and we need
1406 	 * to acquire an idle one to satisfy the request
1407 	 */
1408 
1409 	if (!pool->funcs->acquire_idle_pipe_for_layer) {
1410 		if (!pool->funcs->acquire_idle_pipe_for_head_pipe_in_layer)
1411 			return NULL;
1412 		else
1413 			return pool->funcs->acquire_idle_pipe_for_head_pipe_in_layer(context, pool, head_pipe->stream, head_pipe);
1414 	}
1415 
1416 	return pool->funcs->acquire_idle_pipe_for_layer(context, pool, head_pipe->stream);
1417 }
1418 
1419 static int acquire_first_split_pipe(
1420 		struct resource_context *res_ctx,
1421 		const struct resource_pool *pool,
1422 		struct dc_stream_state *stream)
1423 {
1424 	int i;
1425 
1426 	for (i = 0; i < pool->pipe_count; i++) {
1427 		struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1428 
1429 		if (split_pipe->top_pipe &&
1430 				split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1431 			split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1432 			if (split_pipe->bottom_pipe)
1433 				split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1434 
1435 			if (split_pipe->top_pipe->plane_state)
1436 				resource_build_scaling_params(split_pipe->top_pipe);
1437 
1438 			memset(split_pipe, 0, sizeof(*split_pipe));
1439 			split_pipe->stream_res.tg = pool->timing_generators[i];
1440 			split_pipe->plane_res.hubp = pool->hubps[i];
1441 			split_pipe->plane_res.ipp = pool->ipps[i];
1442 			split_pipe->plane_res.dpp = pool->dpps[i];
1443 			split_pipe->stream_res.opp = pool->opps[i];
1444 			split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1445 			split_pipe->pipe_idx = i;
1446 
1447 			split_pipe->stream = stream;
1448 			return i;
1449 		}
1450 	}
1451 	return -1;
1452 }
1453 
1454 bool dc_add_plane_to_context(
1455 		const struct dc *dc,
1456 		struct dc_stream_state *stream,
1457 		struct dc_plane_state *plane_state,
1458 		struct dc_state *context)
1459 {
1460 	int i;
1461 	struct resource_pool *pool = dc->res_pool;
1462 	struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1463 	struct dc_stream_status *stream_status = NULL;
1464 	struct pipe_ctx *prev_right_head = NULL;
1465 	struct pipe_ctx *free_right_pipe = NULL;
1466 	struct pipe_ctx *prev_left_head = NULL;
1467 
1468 	DC_LOGGER_INIT(stream->ctx->logger);
1469 	for (i = 0; i < context->stream_count; i++)
1470 		if (context->streams[i] == stream) {
1471 			stream_status = &context->stream_status[i];
1472 			break;
1473 		}
1474 	if (stream_status == NULL) {
1475 		dm_error("Existing stream not found; failed to attach surface!\n");
1476 		return false;
1477 	}
1478 
1479 
1480 	if (stream_status->plane_count == MAX_SURFACE_NUM) {
1481 		dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1482 				plane_state, MAX_SURFACE_NUM);
1483 		return false;
1484 	}
1485 
1486 	head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1487 
1488 	if (!head_pipe) {
1489 		dm_error("Head pipe not found for stream_state %p !\n", stream);
1490 		return false;
1491 	}
1492 
1493 	/* retain new surface, but only once per stream */
1494 	dc_plane_state_retain(plane_state);
1495 
1496 	while (head_pipe) {
1497 		free_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1498 
1499 		if (!free_pipe) {
1500 			int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1501 			if (pipe_idx >= 0)
1502 				free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1503 		}
1504 
1505 		if (!free_pipe) {
1506 			dc_plane_state_release(plane_state);
1507 			return false;
1508 		}
1509 
1510 		free_pipe->plane_state = plane_state;
1511 
1512 		if (head_pipe != free_pipe) {
1513 			tail_pipe = resource_get_tail_pipe(&context->res_ctx, head_pipe);
1514 			ASSERT(tail_pipe);
1515 
1516 			/* ODM + window MPO, where MPO window is on right half only */
1517 			if (free_pipe->plane_state &&
1518 				(free_pipe->plane_state->clip_rect.x >= free_pipe->stream->src.x + free_pipe->stream->src.width/2) &&
1519 				tail_pipe->next_odm_pipe) {
1520 
1521 				/* For ODM + window MPO, in 3 plane case, if we already have a MPO window on
1522 				 *  the right side, then we will invalidate a 2nd one on the right side
1523 				 */
1524 				if (head_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1525 					dc_plane_state_release(plane_state);
1526 					return false;
1527 				}
1528 
1529 				DC_LOG_SCALER("%s - ODM + window MPO(right). free_pipe:%d  tail_pipe->next_odm_pipe:%d\n",
1530 						__func__,
1531 						free_pipe->pipe_idx,
1532 						tail_pipe->next_odm_pipe ? tail_pipe->next_odm_pipe->pipe_idx : -1);
1533 
1534 				/*
1535 				 * We want to avoid the case where the right side already has a pipe assigned to
1536 				 *  it and is different from free_pipe ( which would cause trigger a pipe
1537 				 *  reallocation ).
1538 				 * Check the old context to see if the right side already has a pipe allocated
1539 				 * - If not, continue to use free_pipe
1540 				 * - If the right side already has a pipe, use that pipe instead if its available
1541 				 */
1542 
1543 				/*
1544 				 * We also want to avoid the case where with three plane ( 2 MPO videos ), we have
1545 				 *  both videos on the left side so one of the videos is invalidated.  Then we
1546 				 *  move the invalidated video back to the right side.  If the order of the plane
1547 				 *  states is such that the right MPO plane is processed first, the free pipe
1548 				 *  selected by the head will be the left MPO pipe. But since there was no right
1549 				 *  MPO pipe, it will assign the free pipe to the right MPO pipe instead and
1550 				 *  a pipe reallocation will occur.
1551 				 * Check the old context to see if the left side already has a pipe allocated
1552 				 * - If not, continue to use free_pipe
1553 				 * - If the left side is already using this pipe, then pick another pipe for right
1554 				 */
1555 
1556 				prev_right_head = &dc->current_state->res_ctx.pipe_ctx[tail_pipe->next_odm_pipe->pipe_idx];
1557 				if ((prev_right_head->bottom_pipe) &&
1558 					(free_pipe->pipe_idx != prev_right_head->bottom_pipe->pipe_idx)) {
1559 					free_right_pipe = acquire_free_pipe_for_head(context, pool, tail_pipe->next_odm_pipe);
1560 				} else {
1561 					prev_left_head = &dc->current_state->res_ctx.pipe_ctx[head_pipe->pipe_idx];
1562 					if ((prev_left_head->bottom_pipe) &&
1563 						(free_pipe->pipe_idx == prev_left_head->bottom_pipe->pipe_idx)) {
1564 						free_right_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1565 					}
1566 				}
1567 
1568 				if (free_right_pipe) {
1569 					free_pipe->stream = NULL;
1570 					memset(&free_pipe->stream_res, 0, sizeof(struct stream_resource));
1571 					memset(&free_pipe->plane_res, 0, sizeof(struct plane_resource));
1572 					free_pipe->plane_state = NULL;
1573 					free_pipe->pipe_idx = 0;
1574 					free_right_pipe->plane_state = plane_state;
1575 					free_pipe = free_right_pipe;
1576 				}
1577 
1578 				free_pipe->stream_res.tg = tail_pipe->next_odm_pipe->stream_res.tg;
1579 				free_pipe->stream_res.abm = tail_pipe->next_odm_pipe->stream_res.abm;
1580 				free_pipe->stream_res.opp = tail_pipe->next_odm_pipe->stream_res.opp;
1581 				free_pipe->stream_res.stream_enc = tail_pipe->next_odm_pipe->stream_res.stream_enc;
1582 				free_pipe->stream_res.audio = tail_pipe->next_odm_pipe->stream_res.audio;
1583 				free_pipe->clock_source = tail_pipe->next_odm_pipe->clock_source;
1584 
1585 				free_pipe->top_pipe = tail_pipe->next_odm_pipe;
1586 				tail_pipe->next_odm_pipe->bottom_pipe = free_pipe;
1587 			} else if (free_pipe->plane_state &&
1588 				(free_pipe->plane_state->clip_rect.x >= free_pipe->stream->src.x + free_pipe->stream->src.width/2)
1589 				&& head_pipe->next_odm_pipe) {
1590 
1591 				/* For ODM + window MPO, support 3 plane ( 2 MPO ) case.
1592 				 * Here we have a desktop ODM + left window MPO and a new MPO window appears
1593 				 *  on the right side only.  It fails the first case, because tail_pipe is the
1594 				 *  left window MPO, so it has no next_odm_pipe.  So in this scenario, we check
1595 				 *  for head_pipe->next_odm_pipe instead
1596 				 */
1597 				DC_LOG_SCALER("%s - ODM + win MPO (left) + win MPO (right). free_pipe:%d  head_pipe->next_odm:%d\n",
1598 						__func__,
1599 						free_pipe->pipe_idx,
1600 						head_pipe->next_odm_pipe ? head_pipe->next_odm_pipe->pipe_idx : -1);
1601 
1602 				/*
1603 				 * We want to avoid the case where the right side already has a pipe assigned to
1604 				 *  it and is different from free_pipe ( which would cause trigger a pipe
1605 				 *  reallocation ).
1606 				 * Check the old context to see if the right side already has a pipe allocated
1607 				 * - If not, continue to use free_pipe
1608 				 * - If the right side already has a pipe, use that pipe instead if its available
1609 				 */
1610 				prev_right_head = &dc->current_state->res_ctx.pipe_ctx[head_pipe->next_odm_pipe->pipe_idx];
1611 				if ((prev_right_head->bottom_pipe) &&
1612 					(free_pipe->pipe_idx != prev_right_head->bottom_pipe->pipe_idx)) {
1613 					free_right_pipe = acquire_free_pipe_for_head(context, pool, head_pipe->next_odm_pipe);
1614 					if (free_right_pipe) {
1615 						free_pipe->stream = NULL;
1616 						memset(&free_pipe->stream_res, 0, sizeof(struct stream_resource));
1617 						memset(&free_pipe->plane_res, 0, sizeof(struct plane_resource));
1618 						free_pipe->plane_state = NULL;
1619 						free_pipe->pipe_idx = 0;
1620 						free_right_pipe->plane_state = plane_state;
1621 						free_pipe = free_right_pipe;
1622 					}
1623 				}
1624 
1625 				free_pipe->stream_res.tg = head_pipe->next_odm_pipe->stream_res.tg;
1626 				free_pipe->stream_res.abm = head_pipe->next_odm_pipe->stream_res.abm;
1627 				free_pipe->stream_res.opp = head_pipe->next_odm_pipe->stream_res.opp;
1628 				free_pipe->stream_res.stream_enc = head_pipe->next_odm_pipe->stream_res.stream_enc;
1629 				free_pipe->stream_res.audio = head_pipe->next_odm_pipe->stream_res.audio;
1630 				free_pipe->clock_source = head_pipe->next_odm_pipe->clock_source;
1631 
1632 				free_pipe->top_pipe = head_pipe->next_odm_pipe;
1633 				head_pipe->next_odm_pipe->bottom_pipe = free_pipe;
1634 			} else {
1635 
1636 				/* For ODM + window MPO, in 3 plane case, if we already have a MPO window on
1637 				 *  the left side, then we will invalidate a 2nd one on the left side
1638 				 */
1639 				if (head_pipe->next_odm_pipe && tail_pipe->top_pipe) {
1640 					dc_plane_state_release(plane_state);
1641 					return false;
1642 				}
1643 
1644 				free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1645 				free_pipe->stream_res.abm = tail_pipe->stream_res.abm;
1646 				free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1647 				free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1648 				free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1649 				free_pipe->clock_source = tail_pipe->clock_source;
1650 
1651 				free_pipe->top_pipe = tail_pipe;
1652 				tail_pipe->bottom_pipe = free_pipe;
1653 
1654 				/* Connect MPO pipes together if MPO window is in the centre */
1655 				if (!(free_pipe->plane_state &&
1656 						(free_pipe->plane_state->clip_rect.x + free_pipe->plane_state->clip_rect.width <=
1657 						free_pipe->stream->src.x + free_pipe->stream->src.width/2))) {
1658 					if (!free_pipe->next_odm_pipe &&
1659 						tail_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1660 						free_pipe->next_odm_pipe = tail_pipe->next_odm_pipe->bottom_pipe;
1661 						tail_pipe->next_odm_pipe->bottom_pipe->prev_odm_pipe = free_pipe;
1662 					}
1663 					if (!free_pipe->prev_odm_pipe &&
1664 						tail_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe->bottom_pipe) {
1665 						free_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1666 						tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = free_pipe;
1667 					}
1668 				}
1669 			}
1670 		}
1671 
1672 		/* ODM + window MPO, where MPO window is on left half only */
1673 		if (free_pipe->plane_state &&
1674 			(free_pipe->plane_state->clip_rect.x + free_pipe->plane_state->clip_rect.width <=
1675 			free_pipe->stream->src.x + free_pipe->stream->src.width/2)) {
1676 			DC_LOG_SCALER("%s - ODM + window MPO(left). free_pipe:%d\n",
1677 					__func__,
1678 					free_pipe->pipe_idx);
1679 			break;
1680 		}
1681 		/* ODM + window MPO, where MPO window is on right half only */
1682 		if (free_pipe->plane_state &&
1683 			(free_pipe->plane_state->clip_rect.x >= free_pipe->stream->src.x + free_pipe->stream->src.width/2)) {
1684 			DC_LOG_SCALER("%s - ODM + window MPO(right). free_pipe:%d\n",
1685 					__func__,
1686 					free_pipe->pipe_idx);
1687 			break;
1688 		}
1689 
1690 		head_pipe = head_pipe->next_odm_pipe;
1691 	}
1692 	/* assign new surfaces*/
1693 	stream_status->plane_states[stream_status->plane_count] = plane_state;
1694 
1695 	stream_status->plane_count++;
1696 
1697 	return true;
1698 }
1699 
1700 bool dc_remove_plane_from_context(
1701 		const struct dc *dc,
1702 		struct dc_stream_state *stream,
1703 		struct dc_plane_state *plane_state,
1704 		struct dc_state *context)
1705 {
1706 	int i;
1707 	struct dc_stream_status *stream_status = NULL;
1708 	struct resource_pool *pool = dc->res_pool;
1709 
1710 	for (i = 0; i < context->stream_count; i++)
1711 		if (context->streams[i] == stream) {
1712 			stream_status = &context->stream_status[i];
1713 			break;
1714 		}
1715 
1716 	if (stream_status == NULL) {
1717 		dm_error("Existing stream not found; failed to remove plane.\n");
1718 		return false;
1719 	}
1720 
1721 	/* release pipe for plane*/
1722 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1723 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1724 
1725 		if (pipe_ctx->plane_state == plane_state) {
1726 			if (pipe_ctx->top_pipe)
1727 				pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1728 
1729 			/* Second condition is to avoid setting NULL to top pipe
1730 			 * of tail pipe making it look like head pipe in subsequent
1731 			 * deletes
1732 			 */
1733 			if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1734 				pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1735 
1736 			/*
1737 			 * For head pipe detach surfaces from pipe for tail
1738 			 * pipe just zero it out
1739 			 */
1740 			if (!pipe_ctx->top_pipe)
1741 				pipe_ctx->plane_state = NULL;
1742 			else
1743 				memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1744 		}
1745 	}
1746 
1747 
1748 	for (i = 0; i < stream_status->plane_count; i++) {
1749 		if (stream_status->plane_states[i] == plane_state) {
1750 			dc_plane_state_release(stream_status->plane_states[i]);
1751 			break;
1752 		}
1753 	}
1754 
1755 	if (i == stream_status->plane_count) {
1756 		dm_error("Existing plane_state not found; failed to detach it!\n");
1757 		return false;
1758 	}
1759 
1760 	stream_status->plane_count--;
1761 
1762 	/* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1763 	for (; i < stream_status->plane_count; i++)
1764 		stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1765 
1766 	stream_status->plane_states[stream_status->plane_count] = NULL;
1767 
1768 	return true;
1769 }
1770 
1771 /**
1772  * dc_rem_all_planes_for_stream - Remove planes attached to the target stream.
1773  *
1774  * @dc: Current dc state.
1775  * @stream: Target stream, which we want to remove the attached plans.
1776  * @context: New context.
1777  *
1778  * Return:
1779  * Return true if DC was able to remove all planes from the target
1780  * stream, otherwise, return false.
1781  */
1782 bool dc_rem_all_planes_for_stream(
1783 		const struct dc *dc,
1784 		struct dc_stream_state *stream,
1785 		struct dc_state *context)
1786 {
1787 	int i, old_plane_count;
1788 	struct dc_stream_status *stream_status = NULL;
1789 	struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1790 
1791 	for (i = 0; i < context->stream_count; i++)
1792 			if (context->streams[i] == stream) {
1793 				stream_status = &context->stream_status[i];
1794 				break;
1795 			}
1796 
1797 	if (stream_status == NULL) {
1798 		dm_error("Existing stream %p not found!\n", stream);
1799 		return false;
1800 	}
1801 
1802 	old_plane_count = stream_status->plane_count;
1803 
1804 	for (i = 0; i < old_plane_count; i++)
1805 		del_planes[i] = stream_status->plane_states[i];
1806 
1807 	for (i = 0; i < old_plane_count; i++)
1808 		if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1809 			return false;
1810 
1811 	return true;
1812 }
1813 
1814 static bool add_all_planes_for_stream(
1815 		const struct dc *dc,
1816 		struct dc_stream_state *stream,
1817 		const struct dc_validation_set set[],
1818 		int set_count,
1819 		struct dc_state *context)
1820 {
1821 	int i, j;
1822 
1823 	for (i = 0; i < set_count; i++)
1824 		if (set[i].stream == stream)
1825 			break;
1826 
1827 	if (i == set_count) {
1828 		dm_error("Stream %p not found in set!\n", stream);
1829 		return false;
1830 	}
1831 
1832 	for (j = 0; j < set[i].plane_count; j++)
1833 		if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1834 			return false;
1835 
1836 	return true;
1837 }
1838 
1839 bool dc_add_all_planes_for_stream(
1840 		const struct dc *dc,
1841 		struct dc_stream_state *stream,
1842 		struct dc_plane_state * const *plane_states,
1843 		int plane_count,
1844 		struct dc_state *context)
1845 {
1846 	struct dc_validation_set set;
1847 	int i;
1848 
1849 	set.stream = stream;
1850 	set.plane_count = plane_count;
1851 
1852 	for (i = 0; i < plane_count; i++)
1853 		set.plane_states[i] = plane_states[i];
1854 
1855 	return add_all_planes_for_stream(dc, stream, &set, 1, context);
1856 }
1857 
1858 bool is_timing_changed(struct dc_stream_state *cur_stream,
1859 		       struct dc_stream_state *new_stream)
1860 {
1861 	if (cur_stream == NULL)
1862 		return true;
1863 
1864 	/* If output color space is changed, need to reprogram info frames */
1865 	if (cur_stream->output_color_space != new_stream->output_color_space)
1866 		return true;
1867 
1868 	return memcmp(
1869 		&cur_stream->timing,
1870 		&new_stream->timing,
1871 		sizeof(struct dc_crtc_timing)) != 0;
1872 }
1873 
1874 static bool are_stream_backends_same(
1875 	struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1876 {
1877 	if (stream_a == stream_b)
1878 		return true;
1879 
1880 	if (stream_a == NULL || stream_b == NULL)
1881 		return false;
1882 
1883 	if (is_timing_changed(stream_a, stream_b))
1884 		return false;
1885 
1886 	if (stream_a->signal != stream_b->signal)
1887 		return false;
1888 
1889 	if (stream_a->dpms_off != stream_b->dpms_off)
1890 		return false;
1891 
1892 	return true;
1893 }
1894 
1895 /*
1896  * dc_is_stream_unchanged() - Compare two stream states for equivalence.
1897  *
1898  * Checks if there a difference between the two states
1899  * that would require a mode change.
1900  *
1901  * Does not compare cursor position or attributes.
1902  */
1903 bool dc_is_stream_unchanged(
1904 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1905 {
1906 
1907 	if (!are_stream_backends_same(old_stream, stream))
1908 		return false;
1909 
1910 	if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
1911 		return false;
1912 
1913 	/*compare audio info*/
1914 	if (memcmp(&old_stream->audio_info, &stream->audio_info, sizeof(stream->audio_info)) != 0)
1915 		return false;
1916 
1917 	return true;
1918 }
1919 
1920 /*
1921  * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
1922  */
1923 bool dc_is_stream_scaling_unchanged(struct dc_stream_state *old_stream,
1924 				    struct dc_stream_state *stream)
1925 {
1926 	if (old_stream == stream)
1927 		return true;
1928 
1929 	if (old_stream == NULL || stream == NULL)
1930 		return false;
1931 
1932 	if (memcmp(&old_stream->src,
1933 			&stream->src,
1934 			sizeof(struct rect)) != 0)
1935 		return false;
1936 
1937 	if (memcmp(&old_stream->dst,
1938 			&stream->dst,
1939 			sizeof(struct rect)) != 0)
1940 		return false;
1941 
1942 	return true;
1943 }
1944 
1945 static void update_stream_engine_usage(
1946 		struct resource_context *res_ctx,
1947 		const struct resource_pool *pool,
1948 		struct stream_encoder *stream_enc,
1949 		bool acquired)
1950 {
1951 	int i;
1952 
1953 	for (i = 0; i < pool->stream_enc_count; i++) {
1954 		if (pool->stream_enc[i] == stream_enc)
1955 			res_ctx->is_stream_enc_acquired[i] = acquired;
1956 	}
1957 }
1958 
1959 static void update_hpo_dp_stream_engine_usage(
1960 		struct resource_context *res_ctx,
1961 		const struct resource_pool *pool,
1962 		struct hpo_dp_stream_encoder *hpo_dp_stream_enc,
1963 		bool acquired)
1964 {
1965 	int i;
1966 
1967 	for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
1968 		if (pool->hpo_dp_stream_enc[i] == hpo_dp_stream_enc)
1969 			res_ctx->is_hpo_dp_stream_enc_acquired[i] = acquired;
1970 	}
1971 }
1972 
1973 static inline int find_acquired_hpo_dp_link_enc_for_link(
1974 		const struct resource_context *res_ctx,
1975 		const struct dc_link *link)
1976 {
1977 	int i;
1978 
1979 	for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_to_link_idx); i++)
1980 		if (res_ctx->hpo_dp_link_enc_ref_cnts[i] > 0 &&
1981 				res_ctx->hpo_dp_link_enc_to_link_idx[i] == link->link_index)
1982 			return i;
1983 
1984 	return -1;
1985 }
1986 
1987 static inline int find_free_hpo_dp_link_enc(const struct resource_context *res_ctx,
1988 		const struct resource_pool *pool)
1989 {
1990 	int i;
1991 
1992 	for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts); i++)
1993 		if (res_ctx->hpo_dp_link_enc_ref_cnts[i] == 0)
1994 			break;
1995 
1996 	return (i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts) &&
1997 			i < pool->hpo_dp_link_enc_count) ? i : -1;
1998 }
1999 
2000 static inline void acquire_hpo_dp_link_enc(
2001 		struct resource_context *res_ctx,
2002 		unsigned int link_index,
2003 		int enc_index)
2004 {
2005 	res_ctx->hpo_dp_link_enc_to_link_idx[enc_index] = link_index;
2006 	res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] = 1;
2007 }
2008 
2009 static inline void retain_hpo_dp_link_enc(
2010 		struct resource_context *res_ctx,
2011 		int enc_index)
2012 {
2013 	res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]++;
2014 }
2015 
2016 static inline void release_hpo_dp_link_enc(
2017 		struct resource_context *res_ctx,
2018 		int enc_index)
2019 {
2020 	ASSERT(res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] > 0);
2021 	res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]--;
2022 }
2023 
2024 static bool add_hpo_dp_link_enc_to_ctx(struct resource_context *res_ctx,
2025 		const struct resource_pool *pool,
2026 		struct pipe_ctx *pipe_ctx,
2027 		struct dc_stream_state *stream)
2028 {
2029 	int enc_index;
2030 
2031 	enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2032 
2033 	if (enc_index >= 0) {
2034 		retain_hpo_dp_link_enc(res_ctx, enc_index);
2035 	} else {
2036 		enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
2037 		if (enc_index >= 0)
2038 			acquire_hpo_dp_link_enc(res_ctx, stream->link->link_index, enc_index);
2039 	}
2040 
2041 	if (enc_index >= 0)
2042 		pipe_ctx->link_res.hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
2043 
2044 	return pipe_ctx->link_res.hpo_dp_link_enc != NULL;
2045 }
2046 
2047 static void remove_hpo_dp_link_enc_from_ctx(struct resource_context *res_ctx,
2048 		struct pipe_ctx *pipe_ctx,
2049 		struct dc_stream_state *stream)
2050 {
2051 	int enc_index;
2052 
2053 	enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2054 
2055 	if (enc_index >= 0) {
2056 		release_hpo_dp_link_enc(res_ctx, enc_index);
2057 		pipe_ctx->link_res.hpo_dp_link_enc = NULL;
2058 	}
2059 }
2060 
2061 /* TODO: release audio object */
2062 void update_audio_usage(
2063 		struct resource_context *res_ctx,
2064 		const struct resource_pool *pool,
2065 		struct audio *audio,
2066 		bool acquired)
2067 {
2068 	int i;
2069 	for (i = 0; i < pool->audio_count; i++) {
2070 		if (pool->audios[i] == audio)
2071 			res_ctx->is_audio_acquired[i] = acquired;
2072 	}
2073 }
2074 
2075 static int acquire_first_free_pipe(
2076 		struct resource_context *res_ctx,
2077 		const struct resource_pool *pool,
2078 		struct dc_stream_state *stream)
2079 {
2080 	int i;
2081 
2082 	for (i = 0; i < pool->pipe_count; i++) {
2083 		if (!res_ctx->pipe_ctx[i].stream) {
2084 			struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
2085 
2086 			pipe_ctx->stream_res.tg = pool->timing_generators[i];
2087 			pipe_ctx->plane_res.mi = pool->mis[i];
2088 			pipe_ctx->plane_res.hubp = pool->hubps[i];
2089 			pipe_ctx->plane_res.ipp = pool->ipps[i];
2090 			pipe_ctx->plane_res.xfm = pool->transforms[i];
2091 			pipe_ctx->plane_res.dpp = pool->dpps[i];
2092 			pipe_ctx->stream_res.opp = pool->opps[i];
2093 			if (pool->dpps[i])
2094 				pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
2095 			pipe_ctx->pipe_idx = i;
2096 
2097 			if (i >= pool->timing_generator_count) {
2098 				int tg_inst = pool->timing_generator_count - 1;
2099 
2100 				pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2101 				pipe_ctx->stream_res.opp = pool->opps[tg_inst];
2102 			}
2103 
2104 			pipe_ctx->stream = stream;
2105 			return i;
2106 		}
2107 	}
2108 	return -1;
2109 }
2110 
2111 static struct hpo_dp_stream_encoder *find_first_free_match_hpo_dp_stream_enc_for_link(
2112 		struct resource_context *res_ctx,
2113 		const struct resource_pool *pool,
2114 		struct dc_stream_state *stream)
2115 {
2116 	int i;
2117 
2118 	for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
2119 		if (!res_ctx->is_hpo_dp_stream_enc_acquired[i] &&
2120 				pool->hpo_dp_stream_enc[i]) {
2121 
2122 			return pool->hpo_dp_stream_enc[i];
2123 		}
2124 	}
2125 
2126 	return NULL;
2127 }
2128 
2129 static struct audio *find_first_free_audio(
2130 		struct resource_context *res_ctx,
2131 		const struct resource_pool *pool,
2132 		enum engine_id id,
2133 		enum dce_version dc_version)
2134 {
2135 	int i, available_audio_count;
2136 
2137 	available_audio_count = pool->audio_count;
2138 
2139 	for (i = 0; i < available_audio_count; i++) {
2140 		if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
2141 			/*we have enough audio endpoint, find the matching inst*/
2142 			if (id != i)
2143 				continue;
2144 			return pool->audios[i];
2145 		}
2146 	}
2147 
2148 	/* use engine id to find free audio */
2149 	if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
2150 		return pool->audios[id];
2151 	}
2152 	/*not found the matching one, first come first serve*/
2153 	for (i = 0; i < available_audio_count; i++) {
2154 		if (res_ctx->is_audio_acquired[i] == false) {
2155 			return pool->audios[i];
2156 		}
2157 	}
2158 	return NULL;
2159 }
2160 
2161 /*
2162  * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
2163  */
2164 enum dc_status dc_add_stream_to_ctx(
2165 		struct dc *dc,
2166 		struct dc_state *new_ctx,
2167 		struct dc_stream_state *stream)
2168 {
2169 	enum dc_status res;
2170 	DC_LOGGER_INIT(dc->ctx->logger);
2171 
2172 	if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
2173 		DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
2174 		return DC_ERROR_UNEXPECTED;
2175 	}
2176 
2177 	new_ctx->streams[new_ctx->stream_count] = stream;
2178 	dc_stream_retain(stream);
2179 	new_ctx->stream_count++;
2180 
2181 	res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
2182 	if (res != DC_OK)
2183 		DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
2184 
2185 	return res;
2186 }
2187 
2188 /*
2189  * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
2190  */
2191 enum dc_status dc_remove_stream_from_ctx(
2192 			struct dc *dc,
2193 			struct dc_state *new_ctx,
2194 			struct dc_stream_state *stream)
2195 {
2196 	int i;
2197 	struct dc_context *dc_ctx = dc->ctx;
2198 	struct pipe_ctx *del_pipe = resource_get_head_pipe_for_stream(&new_ctx->res_ctx, stream);
2199 	struct pipe_ctx *odm_pipe;
2200 
2201 	if (!del_pipe) {
2202 		DC_ERROR("Pipe not found for stream %p !\n", stream);
2203 		return DC_ERROR_UNEXPECTED;
2204 	}
2205 
2206 	odm_pipe = del_pipe->next_odm_pipe;
2207 
2208 	/* Release primary pipe */
2209 	ASSERT(del_pipe->stream_res.stream_enc);
2210 	update_stream_engine_usage(
2211 			&new_ctx->res_ctx,
2212 				dc->res_pool,
2213 			del_pipe->stream_res.stream_enc,
2214 			false);
2215 
2216 	if (link_is_dp_128b_132b_signal(del_pipe)) {
2217 		update_hpo_dp_stream_engine_usage(
2218 			&new_ctx->res_ctx, dc->res_pool,
2219 			del_pipe->stream_res.hpo_dp_stream_enc,
2220 			false);
2221 		remove_hpo_dp_link_enc_from_ctx(&new_ctx->res_ctx, del_pipe, del_pipe->stream);
2222 	}
2223 
2224 	if (del_pipe->stream_res.audio)
2225 		update_audio_usage(
2226 			&new_ctx->res_ctx,
2227 			dc->res_pool,
2228 			del_pipe->stream_res.audio,
2229 			false);
2230 
2231 	resource_unreference_clock_source(&new_ctx->res_ctx,
2232 					  dc->res_pool,
2233 					  del_pipe->clock_source);
2234 
2235 	if (dc->res_pool->funcs->remove_stream_from_ctx)
2236 		dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
2237 
2238 	while (odm_pipe) {
2239 		struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
2240 
2241 		memset(odm_pipe, 0, sizeof(*odm_pipe));
2242 		odm_pipe = next_odm_pipe;
2243 	}
2244 	memset(del_pipe, 0, sizeof(*del_pipe));
2245 
2246 	for (i = 0; i < new_ctx->stream_count; i++)
2247 		if (new_ctx->streams[i] == stream)
2248 			break;
2249 
2250 	if (new_ctx->streams[i] != stream) {
2251 		DC_ERROR("Context doesn't have stream %p !\n", stream);
2252 		return DC_ERROR_UNEXPECTED;
2253 	}
2254 
2255 	dc_stream_release(new_ctx->streams[i]);
2256 	new_ctx->stream_count--;
2257 
2258 	/* Trim back arrays */
2259 	for (; i < new_ctx->stream_count; i++) {
2260 		new_ctx->streams[i] = new_ctx->streams[i + 1];
2261 		new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
2262 	}
2263 
2264 	new_ctx->streams[new_ctx->stream_count] = NULL;
2265 	memset(
2266 			&new_ctx->stream_status[new_ctx->stream_count],
2267 			0,
2268 			sizeof(new_ctx->stream_status[0]));
2269 
2270 	return DC_OK;
2271 }
2272 
2273 static struct dc_stream_state *find_pll_sharable_stream(
2274 		struct dc_stream_state *stream_needs_pll,
2275 		struct dc_state *context)
2276 {
2277 	int i;
2278 
2279 	for (i = 0; i < context->stream_count; i++) {
2280 		struct dc_stream_state *stream_has_pll = context->streams[i];
2281 
2282 		/* We are looking for non dp, non virtual stream */
2283 		if (resource_are_streams_timing_synchronizable(
2284 			stream_needs_pll, stream_has_pll)
2285 			&& !dc_is_dp_signal(stream_has_pll->signal)
2286 			&& stream_has_pll->link->connector_signal
2287 			!= SIGNAL_TYPE_VIRTUAL)
2288 			return stream_has_pll;
2289 
2290 	}
2291 
2292 	return NULL;
2293 }
2294 
2295 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
2296 {
2297 	uint32_t pix_clk = timing->pix_clk_100hz;
2298 	uint32_t normalized_pix_clk = pix_clk;
2299 
2300 	if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
2301 		pix_clk /= 2;
2302 	if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
2303 		switch (timing->display_color_depth) {
2304 		case COLOR_DEPTH_666:
2305 		case COLOR_DEPTH_888:
2306 			normalized_pix_clk = pix_clk;
2307 			break;
2308 		case COLOR_DEPTH_101010:
2309 			normalized_pix_clk = (pix_clk * 30) / 24;
2310 			break;
2311 		case COLOR_DEPTH_121212:
2312 			normalized_pix_clk = (pix_clk * 36) / 24;
2313 		break;
2314 		case COLOR_DEPTH_161616:
2315 			normalized_pix_clk = (pix_clk * 48) / 24;
2316 		break;
2317 		default:
2318 			ASSERT(0);
2319 		break;
2320 		}
2321 	}
2322 	return normalized_pix_clk;
2323 }
2324 
2325 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
2326 {
2327 	/* update actual pixel clock on all streams */
2328 	if (dc_is_hdmi_signal(stream->signal))
2329 		stream->phy_pix_clk = get_norm_pix_clk(
2330 			&stream->timing) / 10;
2331 	else
2332 		stream->phy_pix_clk =
2333 			stream->timing.pix_clk_100hz / 10;
2334 
2335 	if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
2336 		stream->phy_pix_clk *= 2;
2337 }
2338 
2339 static int acquire_resource_from_hw_enabled_state(
2340 		struct resource_context *res_ctx,
2341 		const struct resource_pool *pool,
2342 		struct dc_stream_state *stream)
2343 {
2344 	struct dc_link *link = stream->link;
2345 	unsigned int i, inst, tg_inst = 0;
2346 	uint32_t numPipes = 1;
2347 	uint32_t id_src[4] = {0};
2348 
2349 	/* Check for enabled DIG to identify enabled display */
2350 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
2351 		return -1;
2352 
2353 	inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
2354 
2355 	if (inst == ENGINE_ID_UNKNOWN)
2356 		return -1;
2357 
2358 	for (i = 0; i < pool->stream_enc_count; i++) {
2359 		if (pool->stream_enc[i]->id == inst) {
2360 			tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
2361 				pool->stream_enc[i]);
2362 			break;
2363 		}
2364 	}
2365 
2366 	// tg_inst not found
2367 	if (i == pool->stream_enc_count)
2368 		return -1;
2369 
2370 	if (tg_inst >= pool->timing_generator_count)
2371 		return -1;
2372 
2373 	if (!res_ctx->pipe_ctx[tg_inst].stream) {
2374 		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
2375 
2376 		pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2377 		id_src[0] = tg_inst;
2378 
2379 		if (pipe_ctx->stream_res.tg->funcs->get_optc_source)
2380 			pipe_ctx->stream_res.tg->funcs->get_optc_source(pipe_ctx->stream_res.tg,
2381 						&numPipes, &id_src[0], &id_src[1]);
2382 
2383 		if (id_src[0] == 0xf && id_src[1] == 0xf) {
2384 			id_src[0] = tg_inst;
2385 			numPipes = 1;
2386 		}
2387 
2388 		for (i = 0; i < numPipes; i++) {
2389 			//Check if src id invalid
2390 			if (id_src[i] == 0xf)
2391 				return -1;
2392 
2393 			pipe_ctx = &res_ctx->pipe_ctx[id_src[i]];
2394 
2395 			pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2396 			pipe_ctx->plane_res.mi = pool->mis[id_src[i]];
2397 			pipe_ctx->plane_res.hubp = pool->hubps[id_src[i]];
2398 			pipe_ctx->plane_res.ipp = pool->ipps[id_src[i]];
2399 			pipe_ctx->plane_res.xfm = pool->transforms[id_src[i]];
2400 			pipe_ctx->plane_res.dpp = pool->dpps[id_src[i]];
2401 			pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
2402 
2403 			if (pool->dpps[id_src[i]]) {
2404 				pipe_ctx->plane_res.mpcc_inst = pool->dpps[id_src[i]]->inst;
2405 
2406 				if (pool->mpc->funcs->read_mpcc_state) {
2407 					struct mpcc_state s = {0};
2408 
2409 					pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
2410 
2411 					if (s.dpp_id < MAX_MPCC)
2412 						pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id =
2413 								s.dpp_id;
2414 
2415 					if (s.bot_mpcc_id < MAX_MPCC)
2416 						pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
2417 								&pool->mpc->mpcc_array[s.bot_mpcc_id];
2418 
2419 					if (s.opp_id < MAX_OPP)
2420 						pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
2421 				}
2422 			}
2423 			pipe_ctx->pipe_idx = id_src[i];
2424 
2425 			if (id_src[i] >= pool->timing_generator_count) {
2426 				id_src[i] = pool->timing_generator_count - 1;
2427 
2428 				pipe_ctx->stream_res.tg = pool->timing_generators[id_src[i]];
2429 				pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
2430 			}
2431 
2432 			pipe_ctx->stream = stream;
2433 		}
2434 
2435 		if (numPipes == 2) {
2436 			stream->apply_boot_odm_mode = dm_odm_combine_policy_2to1;
2437 			res_ctx->pipe_ctx[id_src[0]].next_odm_pipe = &res_ctx->pipe_ctx[id_src[1]];
2438 			res_ctx->pipe_ctx[id_src[0]].prev_odm_pipe = NULL;
2439 			res_ctx->pipe_ctx[id_src[1]].next_odm_pipe = NULL;
2440 			res_ctx->pipe_ctx[id_src[1]].prev_odm_pipe = &res_ctx->pipe_ctx[id_src[0]];
2441 		} else
2442 			stream->apply_boot_odm_mode = dm_odm_combine_mode_disabled;
2443 
2444 		return id_src[0];
2445 	}
2446 
2447 	return -1;
2448 }
2449 
2450 static void mark_seamless_boot_stream(
2451 		const struct dc  *dc,
2452 		struct dc_stream_state *stream)
2453 {
2454 	struct dc_bios *dcb = dc->ctx->dc_bios;
2455 
2456 	if (dc->config.allow_seamless_boot_optimization &&
2457 			!dcb->funcs->is_accelerated_mode(dcb)) {
2458 		if (dc_validate_boot_timing(dc, stream->sink, &stream->timing))
2459 			stream->apply_seamless_boot_optimization = true;
2460 	}
2461 }
2462 
2463 enum dc_status resource_map_pool_resources(
2464 		const struct dc  *dc,
2465 		struct dc_state *context,
2466 		struct dc_stream_state *stream)
2467 {
2468 	const struct resource_pool *pool = dc->res_pool;
2469 	int i;
2470 	struct dc_context *dc_ctx = dc->ctx;
2471 	struct pipe_ctx *pipe_ctx = NULL;
2472 	int pipe_idx = -1;
2473 
2474 	calculate_phy_pix_clks(stream);
2475 
2476 	mark_seamless_boot_stream(dc, stream);
2477 
2478 	if (stream->apply_seamless_boot_optimization) {
2479 		pipe_idx = acquire_resource_from_hw_enabled_state(
2480 				&context->res_ctx,
2481 				pool,
2482 				stream);
2483 		if (pipe_idx < 0)
2484 			/* hw resource was assigned to other stream */
2485 			stream->apply_seamless_boot_optimization = false;
2486 	}
2487 
2488 	if (pipe_idx < 0)
2489 		/* acquire new resources */
2490 		pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2491 
2492 	if (pipe_idx < 0)
2493 		pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2494 
2495 	if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2496 		return DC_NO_CONTROLLER_RESOURCE;
2497 
2498 	pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2499 
2500 	pipe_ctx->stream_res.stream_enc =
2501 		dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2502 			&context->res_ctx, pool, stream);
2503 
2504 	if (!pipe_ctx->stream_res.stream_enc)
2505 		return DC_NO_STREAM_ENC_RESOURCE;
2506 
2507 	update_stream_engine_usage(
2508 		&context->res_ctx, pool,
2509 		pipe_ctx->stream_res.stream_enc,
2510 		true);
2511 
2512 	/* Allocate DP HPO Stream Encoder based on signal, hw capabilities
2513 	 * and link settings
2514 	 */
2515 	if (dc_is_dp_signal(stream->signal)) {
2516 		if (!link_decide_link_settings(stream, &pipe_ctx->link_config.dp_link_settings))
2517 			return DC_FAIL_DP_LINK_BANDWIDTH;
2518 		if (link_dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
2519 			pipe_ctx->stream_res.hpo_dp_stream_enc =
2520 					find_first_free_match_hpo_dp_stream_enc_for_link(
2521 							&context->res_ctx, pool, stream);
2522 
2523 			if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
2524 				return DC_NO_STREAM_ENC_RESOURCE;
2525 
2526 			update_hpo_dp_stream_engine_usage(
2527 					&context->res_ctx, pool,
2528 					pipe_ctx->stream_res.hpo_dp_stream_enc,
2529 					true);
2530 			if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, pool, pipe_ctx, stream))
2531 				return DC_NO_LINK_ENC_RESOURCE;
2532 		}
2533 	}
2534 
2535 	/* TODO: Add check if ASIC support and EDID audio */
2536 	if (!stream->converter_disable_audio &&
2537 	    dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2538 	    stream->audio_info.mode_count && stream->audio_info.flags.all) {
2539 		pipe_ctx->stream_res.audio = find_first_free_audio(
2540 		&context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2541 
2542 		/*
2543 		 * Audio assigned in order first come first get.
2544 		 * There are asics which has number of audio
2545 		 * resources less then number of pipes
2546 		 */
2547 		if (pipe_ctx->stream_res.audio)
2548 			update_audio_usage(&context->res_ctx, pool,
2549 					   pipe_ctx->stream_res.audio, true);
2550 	}
2551 
2552 	/* Add ABM to the resource if on EDP */
2553 	if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2554 		if (pool->abm)
2555 			pipe_ctx->stream_res.abm = pool->abm;
2556 		else
2557 			pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2558 	}
2559 
2560 	for (i = 0; i < context->stream_count; i++)
2561 		if (context->streams[i] == stream) {
2562 			context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2563 			context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2564 			context->stream_status[i].audio_inst =
2565 				pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2566 
2567 			return DC_OK;
2568 		}
2569 
2570 	DC_ERROR("Stream %p not found in new ctx!\n", stream);
2571 	return DC_ERROR_UNEXPECTED;
2572 }
2573 
2574 /**
2575  * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2576  *
2577  * @dc: copy out of dc->current_state
2578  * @dst_ctx: copy into this
2579  *
2580  * This function makes a shallow copy of the current DC state and increments
2581  * refcounts on existing streams and planes.
2582  */
2583 void dc_resource_state_copy_construct_current(
2584 		const struct dc *dc,
2585 		struct dc_state *dst_ctx)
2586 {
2587 	dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2588 }
2589 
2590 
2591 void dc_resource_state_construct(
2592 		const struct dc *dc,
2593 		struct dc_state *dst_ctx)
2594 {
2595 	dst_ctx->clk_mgr = dc->clk_mgr;
2596 
2597 	/* Initialise DIG link encoder resource tracking variables. */
2598 	link_enc_cfg_init(dc, dst_ctx);
2599 }
2600 
2601 
2602 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2603 {
2604 	if (dc->res_pool == NULL)
2605 		return false;
2606 
2607 	return dc->res_pool->res_cap->num_dsc > 0;
2608 }
2609 
2610 static bool planes_changed_for_existing_stream(struct dc_state *context,
2611 					       struct dc_stream_state *stream,
2612 					       const struct dc_validation_set set[],
2613 					       int set_count)
2614 {
2615 	int i, j;
2616 	struct dc_stream_status *stream_status = NULL;
2617 
2618 	for (i = 0; i < context->stream_count; i++) {
2619 		if (context->streams[i] == stream) {
2620 			stream_status = &context->stream_status[i];
2621 			break;
2622 		}
2623 	}
2624 
2625 	if (!stream_status)
2626 		ASSERT(0);
2627 
2628 	for (i = 0; i < set_count; i++)
2629 		if (set[i].stream == stream)
2630 			break;
2631 
2632 	if (i == set_count)
2633 		ASSERT(0);
2634 
2635 	if (set[i].plane_count != stream_status->plane_count)
2636 		return true;
2637 
2638 	for (j = 0; j < set[i].plane_count; j++)
2639 		if (set[i].plane_states[j] != stream_status->plane_states[j])
2640 			return true;
2641 
2642 	return false;
2643 }
2644 
2645 /**
2646  * dc_validate_with_context - Validate and update the potential new stream in the context object
2647  *
2648  * @dc: Used to get the current state status
2649  * @set: An array of dc_validation_set with all the current streams reference
2650  * @set_count: Total of streams
2651  * @context: New context
2652  * @fast_validate: Enable or disable fast validation
2653  *
2654  * This function updates the potential new stream in the context object. It
2655  * creates multiple lists for the add, remove, and unchanged streams. In
2656  * particular, if the unchanged streams have a plane that changed, it is
2657  * necessary to remove all planes from the unchanged streams. In summary, this
2658  * function is responsible for validating the new context.
2659  *
2660  * Return:
2661  * In case of success, return DC_OK (1), otherwise, return a DC error.
2662  */
2663 enum dc_status dc_validate_with_context(struct dc *dc,
2664 					const struct dc_validation_set set[],
2665 					int set_count,
2666 					struct dc_state *context,
2667 					bool fast_validate)
2668 {
2669 	struct dc_stream_state *unchanged_streams[MAX_PIPES] = { 0 };
2670 	struct dc_stream_state *del_streams[MAX_PIPES] = { 0 };
2671 	struct dc_stream_state *add_streams[MAX_PIPES] = { 0 };
2672 	int old_stream_count = context->stream_count;
2673 	enum dc_status res = DC_ERROR_UNEXPECTED;
2674 	int unchanged_streams_count = 0;
2675 	int del_streams_count = 0;
2676 	int add_streams_count = 0;
2677 	bool found = false;
2678 	int i, j, k;
2679 
2680 	DC_LOGGER_INIT(dc->ctx->logger);
2681 
2682 	/* First build a list of streams to be remove from current context */
2683 	for (i = 0; i < old_stream_count; i++) {
2684 		struct dc_stream_state *stream = context->streams[i];
2685 
2686 		for (j = 0; j < set_count; j++) {
2687 			if (stream == set[j].stream) {
2688 				found = true;
2689 				break;
2690 			}
2691 		}
2692 
2693 		if (!found)
2694 			del_streams[del_streams_count++] = stream;
2695 
2696 		found = false;
2697 	}
2698 
2699 	/* Second, build a list of new streams */
2700 	for (i = 0; i < set_count; i++) {
2701 		struct dc_stream_state *stream = set[i].stream;
2702 
2703 		for (j = 0; j < old_stream_count; j++) {
2704 			if (stream == context->streams[j]) {
2705 				found = true;
2706 				break;
2707 			}
2708 		}
2709 
2710 		if (!found)
2711 			add_streams[add_streams_count++] = stream;
2712 
2713 		found = false;
2714 	}
2715 
2716 	/* Build a list of unchanged streams which is necessary for handling
2717 	 * planes change such as added, removed, and updated.
2718 	 */
2719 	for (i = 0; i < set_count; i++) {
2720 		/* Check if stream is part of the delete list */
2721 		for (j = 0; j < del_streams_count; j++) {
2722 			if (set[i].stream == del_streams[j]) {
2723 				found = true;
2724 				break;
2725 			}
2726 		}
2727 
2728 		if (!found) {
2729 			/* Check if stream is part of the add list */
2730 			for (j = 0; j < add_streams_count; j++) {
2731 				if (set[i].stream == add_streams[j]) {
2732 					found = true;
2733 					break;
2734 				}
2735 			}
2736 		}
2737 
2738 		if (!found)
2739 			unchanged_streams[unchanged_streams_count++] = set[i].stream;
2740 
2741 		found = false;
2742 	}
2743 
2744 	/* Remove all planes for unchanged streams if planes changed */
2745 	for (i = 0; i < unchanged_streams_count; i++) {
2746 		if (planes_changed_for_existing_stream(context,
2747 						       unchanged_streams[i],
2748 						       set,
2749 						       set_count)) {
2750 			if (!dc_rem_all_planes_for_stream(dc,
2751 							  unchanged_streams[i],
2752 							  context)) {
2753 				res = DC_FAIL_DETACH_SURFACES;
2754 				goto fail;
2755 			}
2756 		}
2757 	}
2758 
2759 	/* Remove all planes for removed streams and then remove the streams */
2760 	for (i = 0; i < del_streams_count; i++) {
2761 		/* Need to cpy the dwb data from the old stream in order to efc to work */
2762 		if (del_streams[i]->num_wb_info > 0) {
2763 			for (j = 0; j < add_streams_count; j++) {
2764 				if (del_streams[i]->sink == add_streams[j]->sink) {
2765 					add_streams[j]->num_wb_info = del_streams[i]->num_wb_info;
2766 					for (k = 0; k < del_streams[i]->num_wb_info; k++)
2767 						add_streams[j]->writeback_info[k] = del_streams[i]->writeback_info[k];
2768 				}
2769 			}
2770 		}
2771 
2772 		if (!dc_rem_all_planes_for_stream(dc, del_streams[i], context)) {
2773 			res = DC_FAIL_DETACH_SURFACES;
2774 			goto fail;
2775 		}
2776 
2777 		res = dc_remove_stream_from_ctx(dc, context, del_streams[i]);
2778 		if (res != DC_OK)
2779 			goto fail;
2780 	}
2781 
2782 	/* Swap seamless boot stream to pipe 0 (if needed) to ensure pipe_ctx
2783 	 * matches. This may change in the future if seamless_boot_stream can be
2784 	 * multiple.
2785 	 */
2786 	for (i = 0; i < add_streams_count; i++) {
2787 		mark_seamless_boot_stream(dc, add_streams[i]);
2788 		if (add_streams[i]->apply_seamless_boot_optimization && i != 0) {
2789 			struct dc_stream_state *temp = add_streams[0];
2790 
2791 			add_streams[0] = add_streams[i];
2792 			add_streams[i] = temp;
2793 			break;
2794 		}
2795 	}
2796 
2797 	/* Add new streams and then add all planes for the new stream */
2798 	for (i = 0; i < add_streams_count; i++) {
2799 		calculate_phy_pix_clks(add_streams[i]);
2800 		res = dc_add_stream_to_ctx(dc, context, add_streams[i]);
2801 		if (res != DC_OK)
2802 			goto fail;
2803 
2804 		if (!add_all_planes_for_stream(dc, add_streams[i], set, set_count, context)) {
2805 			res = DC_FAIL_ATTACH_SURFACES;
2806 			goto fail;
2807 		}
2808 	}
2809 
2810 	/* Add all planes for unchanged streams if planes changed */
2811 	for (i = 0; i < unchanged_streams_count; i++) {
2812 		if (planes_changed_for_existing_stream(context,
2813 						       unchanged_streams[i],
2814 						       set,
2815 						       set_count)) {
2816 			if (!add_all_planes_for_stream(dc, unchanged_streams[i], set, set_count, context)) {
2817 				res = DC_FAIL_ATTACH_SURFACES;
2818 				goto fail;
2819 			}
2820 		}
2821 	}
2822 
2823 	res = dc_validate_global_state(dc, context, fast_validate);
2824 
2825 fail:
2826 	if (res != DC_OK)
2827 		DC_LOG_WARNING("%s:resource validation failed, dc_status:%d\n",
2828 			       __func__,
2829 			       res);
2830 
2831 	return res;
2832 }
2833 
2834 /**
2835  * dc_validate_global_state() - Determine if hardware can support a given state
2836  *
2837  * @dc: dc struct for this driver
2838  * @new_ctx: state to be validated
2839  * @fast_validate: set to true if only yes/no to support matters
2840  *
2841  * Checks hardware resource availability and bandwidth requirement.
2842  *
2843  * Return:
2844  * DC_OK if the result can be programmed. Otherwise, an error code.
2845  */
2846 enum dc_status dc_validate_global_state(
2847 		struct dc *dc,
2848 		struct dc_state *new_ctx,
2849 		bool fast_validate)
2850 {
2851 	enum dc_status result = DC_ERROR_UNEXPECTED;
2852 	int i, j;
2853 
2854 	if (!new_ctx)
2855 		return DC_ERROR_UNEXPECTED;
2856 
2857 	if (dc->res_pool->funcs->validate_global) {
2858 		result = dc->res_pool->funcs->validate_global(dc, new_ctx);
2859 		if (result != DC_OK)
2860 			return result;
2861 	}
2862 
2863 	for (i = 0; i < new_ctx->stream_count; i++) {
2864 		struct dc_stream_state *stream = new_ctx->streams[i];
2865 
2866 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
2867 			struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
2868 
2869 			if (pipe_ctx->stream != stream)
2870 				continue;
2871 
2872 			if (dc->res_pool->funcs->patch_unknown_plane_state &&
2873 					pipe_ctx->plane_state &&
2874 					pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
2875 				result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
2876 				if (result != DC_OK)
2877 					return result;
2878 			}
2879 
2880 			/* Switch to dp clock source only if there is
2881 			 * no non dp stream that shares the same timing
2882 			 * with the dp stream.
2883 			 */
2884 			if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
2885 				!find_pll_sharable_stream(stream, new_ctx)) {
2886 
2887 				resource_unreference_clock_source(
2888 						&new_ctx->res_ctx,
2889 						dc->res_pool,
2890 						pipe_ctx->clock_source);
2891 
2892 				pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
2893 				resource_reference_clock_source(
2894 						&new_ctx->res_ctx,
2895 						dc->res_pool,
2896 						 pipe_ctx->clock_source);
2897 			}
2898 		}
2899 	}
2900 
2901 	result = resource_build_scaling_params_for_context(dc, new_ctx);
2902 
2903 	if (result == DC_OK)
2904 		if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
2905 			result = DC_FAIL_BANDWIDTH_VALIDATE;
2906 
2907 	/*
2908 	 * Only update link encoder to stream assignment after bandwidth validation passed.
2909 	 * TODO: Split out assignment and validation.
2910 	 */
2911 	if (result == DC_OK && dc->res_pool->funcs->link_encs_assign && fast_validate == false)
2912 		dc->res_pool->funcs->link_encs_assign(
2913 			dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
2914 
2915 	return result;
2916 }
2917 
2918 static void patch_gamut_packet_checksum(
2919 		struct dc_info_packet *gamut_packet)
2920 {
2921 	/* For gamut we recalc checksum */
2922 	if (gamut_packet->valid) {
2923 		uint8_t chk_sum = 0;
2924 		uint8_t *ptr;
2925 		uint8_t i;
2926 
2927 		/*start of the Gamut data. */
2928 		ptr = &gamut_packet->sb[3];
2929 
2930 		for (i = 0; i <= gamut_packet->sb[1]; i++)
2931 			chk_sum += ptr[i];
2932 
2933 		gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
2934 	}
2935 }
2936 
2937 static void set_avi_info_frame(
2938 		struct dc_info_packet *info_packet,
2939 		struct pipe_ctx *pipe_ctx)
2940 {
2941 	struct dc_stream_state *stream = pipe_ctx->stream;
2942 	enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
2943 	uint32_t pixel_encoding = 0;
2944 	enum scanning_type scan_type = SCANNING_TYPE_NODATA;
2945 	enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
2946 	bool itc = false;
2947 	uint8_t itc_value = 0;
2948 	uint8_t cn0_cn1 = 0;
2949 	unsigned int cn0_cn1_value = 0;
2950 	uint8_t *check_sum = NULL;
2951 	uint8_t byte_index = 0;
2952 	union hdmi_info_packet hdmi_info;
2953 	union display_content_support support = {0};
2954 	unsigned int vic = pipe_ctx->stream->timing.vic;
2955 	unsigned int rid = pipe_ctx->stream->timing.rid;
2956 	unsigned int fr_ind = pipe_ctx->stream->timing.fr_index;
2957 	enum dc_timing_3d_format format;
2958 
2959 	memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
2960 
2961 	color_space = pipe_ctx->stream->output_color_space;
2962 	if (color_space == COLOR_SPACE_UNKNOWN)
2963 		color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
2964 			COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
2965 
2966 	/* Initialize header */
2967 	hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
2968 	/* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
2969 	* not be used in HDMI 2.0 (Section 10.1) */
2970 	hdmi_info.bits.header.version = 2;
2971 	hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
2972 
2973 	/*
2974 	 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
2975 	 * according to HDMI 2.0 spec (Section 10.1)
2976 	 */
2977 
2978 	switch (stream->timing.pixel_encoding) {
2979 	case PIXEL_ENCODING_YCBCR422:
2980 		pixel_encoding = 1;
2981 		break;
2982 
2983 	case PIXEL_ENCODING_YCBCR444:
2984 		pixel_encoding = 2;
2985 		break;
2986 	case PIXEL_ENCODING_YCBCR420:
2987 		pixel_encoding = 3;
2988 		break;
2989 
2990 	case PIXEL_ENCODING_RGB:
2991 	default:
2992 		pixel_encoding = 0;
2993 	}
2994 
2995 	/* Y0_Y1_Y2 : The pixel encoding */
2996 	/* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
2997 	hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
2998 
2999 	/* A0 = 1 Active Format Information valid */
3000 	hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
3001 
3002 	/* B0, B1 = 3; Bar info data is valid */
3003 	hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
3004 
3005 	hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
3006 
3007 	/* S0, S1 : Underscan / Overscan */
3008 	/* TODO: un-hardcode scan type */
3009 	scan_type = SCANNING_TYPE_UNDERSCAN;
3010 	hdmi_info.bits.S0_S1 = scan_type;
3011 
3012 	/* C0, C1 : Colorimetry */
3013 	if (color_space == COLOR_SPACE_YCBCR709 ||
3014 			color_space == COLOR_SPACE_YCBCR709_LIMITED)
3015 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
3016 	else if (color_space == COLOR_SPACE_YCBCR601 ||
3017 			color_space == COLOR_SPACE_YCBCR601_LIMITED)
3018 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
3019 	else {
3020 		hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
3021 	}
3022 	if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
3023 			color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
3024 			color_space == COLOR_SPACE_2020_YCBCR) {
3025 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
3026 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
3027 	} else if (color_space == COLOR_SPACE_ADOBERGB) {
3028 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
3029 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
3030 	}
3031 
3032 	if (pixel_encoding && color_space == COLOR_SPACE_2020_YCBCR &&
3033 			stream->out_transfer_func->tf == TRANSFER_FUNCTION_GAMMA22) {
3034 		hdmi_info.bits.EC0_EC2 = 0;
3035 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
3036 	}
3037 
3038 	/* TODO: un-hardcode aspect ratio */
3039 	aspect = stream->timing.aspect_ratio;
3040 
3041 	switch (aspect) {
3042 	case ASPECT_RATIO_4_3:
3043 	case ASPECT_RATIO_16_9:
3044 		hdmi_info.bits.M0_M1 = aspect;
3045 		break;
3046 
3047 	case ASPECT_RATIO_NO_DATA:
3048 	case ASPECT_RATIO_64_27:
3049 	case ASPECT_RATIO_256_135:
3050 	default:
3051 		hdmi_info.bits.M0_M1 = 0;
3052 	}
3053 
3054 	/* Active Format Aspect ratio - same as Picture Aspect Ratio. */
3055 	hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
3056 
3057 	/* TODO: un-hardcode cn0_cn1 and itc */
3058 
3059 	cn0_cn1 = 0;
3060 	cn0_cn1_value = 0;
3061 
3062 	itc = true;
3063 	itc_value = 1;
3064 
3065 	support = stream->content_support;
3066 
3067 	if (itc) {
3068 		if (!support.bits.valid_content_type) {
3069 			cn0_cn1_value = 0;
3070 		} else {
3071 			if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
3072 				if (support.bits.graphics_content == 1) {
3073 					cn0_cn1_value = 0;
3074 				}
3075 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
3076 				if (support.bits.photo_content == 1) {
3077 					cn0_cn1_value = 1;
3078 				} else {
3079 					cn0_cn1_value = 0;
3080 					itc_value = 0;
3081 				}
3082 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
3083 				if (support.bits.cinema_content == 1) {
3084 					cn0_cn1_value = 2;
3085 				} else {
3086 					cn0_cn1_value = 0;
3087 					itc_value = 0;
3088 				}
3089 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
3090 				if (support.bits.game_content == 1) {
3091 					cn0_cn1_value = 3;
3092 				} else {
3093 					cn0_cn1_value = 0;
3094 					itc_value = 0;
3095 				}
3096 			}
3097 		}
3098 		hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
3099 		hdmi_info.bits.ITC = itc_value;
3100 	}
3101 
3102 	if (stream->qs_bit == 1) {
3103 		if (color_space == COLOR_SPACE_SRGB ||
3104 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
3105 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_FULL_RANGE;
3106 		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
3107 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
3108 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_LIMITED_RANGE;
3109 		else
3110 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
3111 	} else
3112 		hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
3113 
3114 	/* TODO : We should handle YCC quantization */
3115 	/* but we do not have matrix calculation */
3116 	hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
3117 
3118 	///VIC
3119 	if (pipe_ctx->stream->timing.hdmi_vic != 0)
3120 		vic = 0;
3121 	format = stream->timing.timing_3d_format;
3122 	/*todo, add 3DStereo support*/
3123 	if (format != TIMING_3D_FORMAT_NONE) {
3124 		// Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
3125 		switch (pipe_ctx->stream->timing.hdmi_vic) {
3126 		case 1:
3127 			vic = 95;
3128 			break;
3129 		case 2:
3130 			vic = 94;
3131 			break;
3132 		case 3:
3133 			vic = 93;
3134 			break;
3135 		case 4:
3136 			vic = 98;
3137 			break;
3138 		default:
3139 			break;
3140 		}
3141 	}
3142 	/* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
3143 	hdmi_info.bits.VIC0_VIC7 = vic;
3144 	if (vic >= 128)
3145 		hdmi_info.bits.header.version = 3;
3146 	/* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
3147 	 * the Source shall use 20 AVI InfoFrame Version 4
3148 	 */
3149 	if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
3150 			hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
3151 		hdmi_info.bits.header.version = 4;
3152 		hdmi_info.bits.header.length = 14;
3153 	}
3154 
3155 	if (rid != 0 && fr_ind != 0) {
3156 		hdmi_info.bits.header.version = 5;
3157 		hdmi_info.bits.header.length = 15;
3158 
3159 		hdmi_info.bits.FR0_FR3 = fr_ind & 0xF;
3160 		hdmi_info.bits.FR4 = (fr_ind >> 4) & 0x1;
3161 		hdmi_info.bits.RID0_RID5 = rid;
3162 	}
3163 
3164 	/* pixel repetition
3165 	 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
3166 	 * repetition start from 1 */
3167 	hdmi_info.bits.PR0_PR3 = 0;
3168 
3169 	/* Bar Info
3170 	 * barTop:    Line Number of End of Top Bar.
3171 	 * barBottom: Line Number of Start of Bottom Bar.
3172 	 * barLeft:   Pixel Number of End of Left Bar.
3173 	 * barRight:  Pixel Number of Start of Right Bar. */
3174 	hdmi_info.bits.bar_top = stream->timing.v_border_top;
3175 	hdmi_info.bits.bar_bottom = (stream->timing.v_total
3176 			- stream->timing.v_border_bottom + 1);
3177 	hdmi_info.bits.bar_left  = stream->timing.h_border_left;
3178 	hdmi_info.bits.bar_right = (stream->timing.h_total
3179 			- stream->timing.h_border_right + 1);
3180 
3181     /* Additional Colorimetry Extension
3182      * Used in conduction with C0-C1 and EC0-EC2
3183      * 0 = DCI-P3 RGB (D65)
3184      * 1 = DCI-P3 RGB (theater)
3185      */
3186 	hdmi_info.bits.ACE0_ACE3 = 0;
3187 
3188 	/* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
3189 	check_sum = &hdmi_info.packet_raw_data.sb[0];
3190 
3191 	*check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
3192 
3193 	for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
3194 		*check_sum += hdmi_info.packet_raw_data.sb[byte_index];
3195 
3196 	/* one byte complement */
3197 	*check_sum = (uint8_t) (0x100 - *check_sum);
3198 
3199 	/* Store in hw_path_mode */
3200 	info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
3201 	info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
3202 	info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
3203 
3204 	for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
3205 		info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
3206 
3207 	info_packet->valid = true;
3208 }
3209 
3210 static void set_vendor_info_packet(
3211 		struct dc_info_packet *info_packet,
3212 		struct dc_stream_state *stream)
3213 {
3214 	/* SPD info packet for FreeSync */
3215 
3216 	/* Check if Freesync is supported. Return if false. If true,
3217 	 * set the corresponding bit in the info packet
3218 	 */
3219 	if (!stream->vsp_infopacket.valid)
3220 		return;
3221 
3222 	*info_packet = stream->vsp_infopacket;
3223 }
3224 
3225 static void set_spd_info_packet(
3226 		struct dc_info_packet *info_packet,
3227 		struct dc_stream_state *stream)
3228 {
3229 	/* SPD info packet for FreeSync */
3230 
3231 	/* Check if Freesync is supported. Return if false. If true,
3232 	 * set the corresponding bit in the info packet
3233 	 */
3234 	if (!stream->vrr_infopacket.valid)
3235 		return;
3236 
3237 	*info_packet = stream->vrr_infopacket;
3238 }
3239 
3240 static void set_hdr_static_info_packet(
3241 		struct dc_info_packet *info_packet,
3242 		struct dc_stream_state *stream)
3243 {
3244 	/* HDR Static Metadata info packet for HDR10 */
3245 
3246 	if (!stream->hdr_static_metadata.valid ||
3247 			stream->use_dynamic_meta)
3248 		return;
3249 
3250 	*info_packet = stream->hdr_static_metadata;
3251 }
3252 
3253 static void set_vsc_info_packet(
3254 		struct dc_info_packet *info_packet,
3255 		struct dc_stream_state *stream)
3256 {
3257 	if (!stream->vsc_infopacket.valid)
3258 		return;
3259 
3260 	*info_packet = stream->vsc_infopacket;
3261 }
3262 static void set_hfvs_info_packet(
3263 		struct dc_info_packet *info_packet,
3264 		struct dc_stream_state *stream)
3265 {
3266 	if (!stream->hfvsif_infopacket.valid)
3267 		return;
3268 
3269 	*info_packet = stream->hfvsif_infopacket;
3270 }
3271 
3272 static void adaptive_sync_override_dp_info_packets_sdp_line_num(
3273 		const struct dc_crtc_timing *timing,
3274 		struct enc_sdp_line_num *sdp_line_num,
3275 		struct _vcs_dpi_display_pipe_dest_params_st *pipe_dlg_param)
3276 {
3277 	uint32_t asic_blank_start = 0;
3278 	uint32_t asic_blank_end   = 0;
3279 	uint32_t v_update = 0;
3280 
3281 	const struct dc_crtc_timing *tg = timing;
3282 
3283 	/* blank_start = frame end - front porch */
3284 	asic_blank_start = tg->v_total - tg->v_front_porch;
3285 
3286 	/* blank_end = blank_start - active */
3287 	asic_blank_end = (asic_blank_start - tg->v_border_bottom -
3288 						tg->v_addressable - tg->v_border_top);
3289 
3290 	if (pipe_dlg_param->vstartup_start > asic_blank_end) {
3291 		v_update = (tg->v_total - (pipe_dlg_param->vstartup_start - asic_blank_end));
3292 		sdp_line_num->adaptive_sync_line_num_valid = true;
3293 		sdp_line_num->adaptive_sync_line_num = (tg->v_total - v_update - 1);
3294 	} else {
3295 		sdp_line_num->adaptive_sync_line_num_valid = false;
3296 		sdp_line_num->adaptive_sync_line_num = 0;
3297 	}
3298 }
3299 
3300 static void set_adaptive_sync_info_packet(
3301 		struct dc_info_packet *info_packet,
3302 		const struct dc_stream_state *stream,
3303 		struct encoder_info_frame *info_frame,
3304 		struct _vcs_dpi_display_pipe_dest_params_st *pipe_dlg_param)
3305 {
3306 	if (!stream->adaptive_sync_infopacket.valid)
3307 		return;
3308 
3309 	adaptive_sync_override_dp_info_packets_sdp_line_num(
3310 			&stream->timing,
3311 			&info_frame->sdp_line_num,
3312 			pipe_dlg_param);
3313 
3314 	*info_packet = stream->adaptive_sync_infopacket;
3315 }
3316 
3317 static void set_vtem_info_packet(
3318 		struct dc_info_packet *info_packet,
3319 		struct dc_stream_state *stream)
3320 {
3321 	if (!stream->vtem_infopacket.valid)
3322 		return;
3323 
3324 	*info_packet = stream->vtem_infopacket;
3325 }
3326 
3327 void dc_resource_state_destruct(struct dc_state *context)
3328 {
3329 	int i, j;
3330 
3331 	for (i = 0; i < context->stream_count; i++) {
3332 		for (j = 0; j < context->stream_status[i].plane_count; j++)
3333 			dc_plane_state_release(
3334 				context->stream_status[i].plane_states[j]);
3335 
3336 		context->stream_status[i].plane_count = 0;
3337 		dc_stream_release(context->streams[i]);
3338 		context->streams[i] = NULL;
3339 	}
3340 	context->stream_count = 0;
3341 }
3342 
3343 void dc_resource_state_copy_construct(
3344 		const struct dc_state *src_ctx,
3345 		struct dc_state *dst_ctx)
3346 {
3347 	int i, j;
3348 	struct kref refcount = dst_ctx->refcount;
3349 
3350 	*dst_ctx = *src_ctx;
3351 
3352 	for (i = 0; i < MAX_PIPES; i++) {
3353 		struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
3354 
3355 		if (cur_pipe->top_pipe)
3356 			cur_pipe->top_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
3357 
3358 		if (cur_pipe->bottom_pipe)
3359 			cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
3360 
3361 		if (cur_pipe->next_odm_pipe)
3362 			cur_pipe->next_odm_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
3363 
3364 		if (cur_pipe->prev_odm_pipe)
3365 			cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
3366 	}
3367 
3368 	for (i = 0; i < dst_ctx->stream_count; i++) {
3369 		dc_stream_retain(dst_ctx->streams[i]);
3370 		for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
3371 			dc_plane_state_retain(
3372 				dst_ctx->stream_status[i].plane_states[j]);
3373 	}
3374 
3375 	/* context refcount should not be overridden */
3376 	dst_ctx->refcount = refcount;
3377 
3378 }
3379 
3380 struct clock_source *dc_resource_find_first_free_pll(
3381 		struct resource_context *res_ctx,
3382 		const struct resource_pool *pool)
3383 {
3384 	int i;
3385 
3386 	for (i = 0; i < pool->clk_src_count; ++i) {
3387 		if (res_ctx->clock_source_ref_count[i] == 0)
3388 			return pool->clock_sources[i];
3389 	}
3390 
3391 	return NULL;
3392 }
3393 
3394 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
3395 {
3396 	enum signal_type signal = SIGNAL_TYPE_NONE;
3397 	struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
3398 
3399 	/* default all packets to invalid */
3400 	info->avi.valid = false;
3401 	info->gamut.valid = false;
3402 	info->vendor.valid = false;
3403 	info->spd.valid = false;
3404 	info->hdrsmd.valid = false;
3405 	info->vsc.valid = false;
3406 	info->hfvsif.valid = false;
3407 	info->vtem.valid = false;
3408 	info->adaptive_sync.valid = false;
3409 	signal = pipe_ctx->stream->signal;
3410 
3411 	/* HDMi and DP have different info packets*/
3412 	if (dc_is_hdmi_signal(signal)) {
3413 		set_avi_info_frame(&info->avi, pipe_ctx);
3414 
3415 		set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
3416 		set_hfvs_info_packet(&info->hfvsif, pipe_ctx->stream);
3417 		set_vtem_info_packet(&info->vtem, pipe_ctx->stream);
3418 
3419 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
3420 
3421 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
3422 
3423 	} else if (dc_is_dp_signal(signal)) {
3424 		set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
3425 
3426 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
3427 
3428 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
3429 		set_adaptive_sync_info_packet(&info->adaptive_sync,
3430 										pipe_ctx->stream,
3431 										info,
3432 										&pipe_ctx->pipe_dlg_param);
3433 	}
3434 
3435 	patch_gamut_packet_checksum(&info->gamut);
3436 }
3437 
3438 enum dc_status resource_map_clock_resources(
3439 		const struct dc  *dc,
3440 		struct dc_state *context,
3441 		struct dc_stream_state *stream)
3442 {
3443 	/* acquire new resources */
3444 	const struct resource_pool *pool = dc->res_pool;
3445 	struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
3446 				&context->res_ctx, stream);
3447 
3448 	if (!pipe_ctx)
3449 		return DC_ERROR_UNEXPECTED;
3450 
3451 	if (dc_is_dp_signal(pipe_ctx->stream->signal)
3452 		|| pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
3453 		pipe_ctx->clock_source = pool->dp_clock_source;
3454 	else {
3455 		pipe_ctx->clock_source = NULL;
3456 
3457 		if (!dc->config.disable_disp_pll_sharing)
3458 			pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
3459 				&context->res_ctx,
3460 				pipe_ctx);
3461 
3462 		if (pipe_ctx->clock_source == NULL)
3463 			pipe_ctx->clock_source =
3464 				dc_resource_find_first_free_pll(
3465 					&context->res_ctx,
3466 					pool);
3467 	}
3468 
3469 	if (pipe_ctx->clock_source == NULL)
3470 		return DC_NO_CLOCK_SOURCE_RESOURCE;
3471 
3472 	resource_reference_clock_source(
3473 		&context->res_ctx, pool,
3474 		pipe_ctx->clock_source);
3475 
3476 	return DC_OK;
3477 }
3478 
3479 /*
3480  * Note: We need to disable output if clock sources change,
3481  * since bios does optimization and doesn't apply if changing
3482  * PHY when not already disabled.
3483  */
3484 bool pipe_need_reprogram(
3485 		struct pipe_ctx *pipe_ctx_old,
3486 		struct pipe_ctx *pipe_ctx)
3487 {
3488 	if (!pipe_ctx_old->stream)
3489 		return false;
3490 
3491 	if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
3492 		return true;
3493 
3494 	if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
3495 		return true;
3496 
3497 	if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
3498 		return true;
3499 
3500 	if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
3501 			&& pipe_ctx_old->stream != pipe_ctx->stream)
3502 		return true;
3503 
3504 	if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
3505 		return true;
3506 
3507 	if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
3508 		return true;
3509 
3510 	if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
3511 		return true;
3512 
3513 	if (false == pipe_ctx_old->stream->link->link_state_valid &&
3514 		false == pipe_ctx_old->stream->dpms_off)
3515 		return true;
3516 
3517 	if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
3518 		return true;
3519 
3520 	if (pipe_ctx_old->stream_res.hpo_dp_stream_enc != pipe_ctx->stream_res.hpo_dp_stream_enc)
3521 		return true;
3522 	if (pipe_ctx_old->link_res.hpo_dp_link_enc != pipe_ctx->link_res.hpo_dp_link_enc)
3523 		return true;
3524 
3525 	/* DIG link encoder resource assignment for stream changed. */
3526 	if (pipe_ctx_old->stream->ctx->dc->res_pool->funcs->link_encs_assign) {
3527 		bool need_reprogram = false;
3528 		struct dc *dc = pipe_ctx_old->stream->ctx->dc;
3529 		struct link_encoder *link_enc_prev =
3530 			link_enc_cfg_get_link_enc_used_by_stream_current(dc, pipe_ctx_old->stream);
3531 
3532 		if (link_enc_prev != pipe_ctx->stream->link_enc)
3533 			need_reprogram = true;
3534 
3535 		return need_reprogram;
3536 	}
3537 
3538 	return false;
3539 }
3540 
3541 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
3542 		struct bit_depth_reduction_params *fmt_bit_depth)
3543 {
3544 	enum dc_dither_option option = stream->dither_option;
3545 	enum dc_pixel_encoding pixel_encoding =
3546 			stream->timing.pixel_encoding;
3547 
3548 	memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
3549 
3550 	if (option == DITHER_OPTION_DEFAULT) {
3551 		switch (stream->timing.display_color_depth) {
3552 		case COLOR_DEPTH_666:
3553 			option = DITHER_OPTION_SPATIAL6;
3554 			break;
3555 		case COLOR_DEPTH_888:
3556 			option = DITHER_OPTION_SPATIAL8;
3557 			break;
3558 		case COLOR_DEPTH_101010:
3559 			option = DITHER_OPTION_SPATIAL10;
3560 			break;
3561 		default:
3562 			option = DITHER_OPTION_DISABLE;
3563 		}
3564 	}
3565 
3566 	if (option == DITHER_OPTION_DISABLE)
3567 		return;
3568 
3569 	if (option == DITHER_OPTION_TRUN6) {
3570 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3571 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
3572 	} else if (option == DITHER_OPTION_TRUN8 ||
3573 			option == DITHER_OPTION_TRUN8_SPATIAL6 ||
3574 			option == DITHER_OPTION_TRUN8_FM6) {
3575 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3576 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
3577 	} else if (option == DITHER_OPTION_TRUN10        ||
3578 			option == DITHER_OPTION_TRUN10_SPATIAL6   ||
3579 			option == DITHER_OPTION_TRUN10_SPATIAL8   ||
3580 			option == DITHER_OPTION_TRUN10_FM8     ||
3581 			option == DITHER_OPTION_TRUN10_FM6     ||
3582 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3583 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3584 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
3585 	}
3586 
3587 	/* special case - Formatter can only reduce by 4 bits at most.
3588 	 * When reducing from 12 to 6 bits,
3589 	 * HW recommends we use trunc with round mode
3590 	 * (if we did nothing, trunc to 10 bits would be used)
3591 	 * note that any 12->10 bit reduction is ignored prior to DCE8,
3592 	 * as the input was 10 bits.
3593 	 */
3594 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
3595 			option == DITHER_OPTION_SPATIAL6 ||
3596 			option == DITHER_OPTION_FM6) {
3597 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3598 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
3599 		fmt_bit_depth->flags.TRUNCATE_MODE = 1;
3600 	}
3601 
3602 	/* spatial dither
3603 	 * note that spatial modes 1-3 are never used
3604 	 */
3605 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM            ||
3606 			option == DITHER_OPTION_SPATIAL6 ||
3607 			option == DITHER_OPTION_TRUN10_SPATIAL6      ||
3608 			option == DITHER_OPTION_TRUN8_SPATIAL6) {
3609 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3610 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
3611 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3612 		fmt_bit_depth->flags.RGB_RANDOM =
3613 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3614 	} else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM            ||
3615 			option == DITHER_OPTION_SPATIAL8 ||
3616 			option == DITHER_OPTION_SPATIAL8_FM6        ||
3617 			option == DITHER_OPTION_TRUN10_SPATIAL8      ||
3618 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3619 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3620 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
3621 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3622 		fmt_bit_depth->flags.RGB_RANDOM =
3623 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3624 	} else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
3625 			option == DITHER_OPTION_SPATIAL10 ||
3626 			option == DITHER_OPTION_SPATIAL10_FM8 ||
3627 			option == DITHER_OPTION_SPATIAL10_FM6) {
3628 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3629 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
3630 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3631 		fmt_bit_depth->flags.RGB_RANDOM =
3632 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3633 	}
3634 
3635 	if (option == DITHER_OPTION_SPATIAL6 ||
3636 			option == DITHER_OPTION_SPATIAL8 ||
3637 			option == DITHER_OPTION_SPATIAL10) {
3638 		fmt_bit_depth->flags.FRAME_RANDOM = 0;
3639 	} else {
3640 		fmt_bit_depth->flags.FRAME_RANDOM = 1;
3641 	}
3642 
3643 	//////////////////////
3644 	//// temporal dither
3645 	//////////////////////
3646 	if (option == DITHER_OPTION_FM6           ||
3647 			option == DITHER_OPTION_SPATIAL8_FM6     ||
3648 			option == DITHER_OPTION_SPATIAL10_FM6     ||
3649 			option == DITHER_OPTION_TRUN10_FM6     ||
3650 			option == DITHER_OPTION_TRUN8_FM6      ||
3651 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3652 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3653 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
3654 	} else if (option == DITHER_OPTION_FM8        ||
3655 			option == DITHER_OPTION_SPATIAL10_FM8  ||
3656 			option == DITHER_OPTION_TRUN10_FM8) {
3657 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3658 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
3659 	} else if (option == DITHER_OPTION_FM10) {
3660 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3661 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
3662 	}
3663 
3664 	fmt_bit_depth->pixel_encoding = pixel_encoding;
3665 }
3666 
3667 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
3668 {
3669 	struct dc_link *link = stream->link;
3670 	struct timing_generator *tg = dc->res_pool->timing_generators[0];
3671 	enum dc_status res = DC_OK;
3672 
3673 	calculate_phy_pix_clks(stream);
3674 
3675 	if (!tg->funcs->validate_timing(tg, &stream->timing))
3676 		res = DC_FAIL_CONTROLLER_VALIDATE;
3677 
3678 	if (res == DC_OK) {
3679 		if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
3680 				!link->link_enc->funcs->validate_output_with_stream(
3681 						link->link_enc, stream))
3682 			res = DC_FAIL_ENC_VALIDATE;
3683 	}
3684 
3685 	/* TODO: validate audio ASIC caps, encoder */
3686 
3687 	if (res == DC_OK)
3688 		res = link_validate_mode_timing(stream,
3689 		      link,
3690 		      &stream->timing);
3691 
3692 	return res;
3693 }
3694 
3695 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
3696 {
3697 	enum dc_status res = DC_OK;
3698 
3699 	/* check if surface has invalid dimensions */
3700 	if (plane_state->src_rect.width == 0 || plane_state->src_rect.height == 0 ||
3701 		plane_state->dst_rect.width == 0 || plane_state->dst_rect.height == 0)
3702 		return DC_FAIL_SURFACE_VALIDATE;
3703 
3704 	/* TODO For now validates pixel format only */
3705 	if (dc->res_pool->funcs->validate_plane)
3706 		return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
3707 
3708 	return res;
3709 }
3710 
3711 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
3712 {
3713 	switch (format) {
3714 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
3715 		return 8;
3716 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
3717 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
3718 		return 12;
3719 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
3720 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
3721 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
3722 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
3723 		return 16;
3724 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
3725 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
3726 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
3727 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
3728 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
3729 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
3730 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
3731 		return 32;
3732 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
3733 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
3734 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
3735 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
3736 		return 64;
3737 	default:
3738 		ASSERT_CRITICAL(false);
3739 		return -1;
3740 	}
3741 }
3742 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
3743 {
3744 	if (modes) {
3745 		if (modes->sample_rates.rate.RATE_192)
3746 			return 192000;
3747 		if (modes->sample_rates.rate.RATE_176_4)
3748 			return 176400;
3749 		if (modes->sample_rates.rate.RATE_96)
3750 			return 96000;
3751 		if (modes->sample_rates.rate.RATE_88_2)
3752 			return 88200;
3753 		if (modes->sample_rates.rate.RATE_48)
3754 			return 48000;
3755 		if (modes->sample_rates.rate.RATE_44_1)
3756 			return 44100;
3757 		if (modes->sample_rates.rate.RATE_32)
3758 			return 32000;
3759 	}
3760 	/*original logic when no audio info*/
3761 	return 441000;
3762 }
3763 
3764 void get_audio_check(struct audio_info *aud_modes,
3765 	struct audio_check *audio_chk)
3766 {
3767 	unsigned int i;
3768 	unsigned int max_sample_rate = 0;
3769 
3770 	if (aud_modes) {
3771 		audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
3772 
3773 		audio_chk->max_audiosample_rate = 0;
3774 		for (i = 0; i < aud_modes->mode_count; i++) {
3775 			max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
3776 			if (audio_chk->max_audiosample_rate < max_sample_rate)
3777 				audio_chk->max_audiosample_rate = max_sample_rate;
3778 			/*dts takes the same as type 2: AP = 0.25*/
3779 		}
3780 		/*check which one take more bandwidth*/
3781 		if (audio_chk->max_audiosample_rate > 192000)
3782 			audio_chk->audio_packet_type = 0x9;/*AP =1*/
3783 		audio_chk->acat = 0;/*not support*/
3784 	}
3785 }
3786 
3787 static struct hpo_dp_link_encoder *get_temp_hpo_dp_link_enc(
3788 		const struct resource_context *res_ctx,
3789 		const struct resource_pool *const pool,
3790 		const struct dc_link *link)
3791 {
3792 	struct hpo_dp_link_encoder *hpo_dp_link_enc = NULL;
3793 	int enc_index;
3794 
3795 	enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, link);
3796 
3797 	if (enc_index < 0)
3798 		enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
3799 
3800 	if (enc_index >= 0)
3801 		hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
3802 
3803 	return hpo_dp_link_enc;
3804 }
3805 
3806 bool get_temp_dp_link_res(struct dc_link *link,
3807 		struct link_resource *link_res,
3808 		struct dc_link_settings *link_settings)
3809 {
3810 	const struct dc *dc  = link->dc;
3811 	const struct resource_context *res_ctx = &dc->current_state->res_ctx;
3812 
3813 	memset(link_res, 0, sizeof(*link_res));
3814 
3815 	if (link_dp_get_encoding_format(link_settings) == DP_128b_132b_ENCODING) {
3816 		link_res->hpo_dp_link_enc = get_temp_hpo_dp_link_enc(res_ctx,
3817 				dc->res_pool, link);
3818 		if (!link_res->hpo_dp_link_enc)
3819 			return false;
3820 	}
3821 	return true;
3822 }
3823 
3824 void reset_syncd_pipes_from_disabled_pipes(struct dc *dc,
3825 		struct dc_state *context)
3826 {
3827 	int i, j;
3828 	struct pipe_ctx *pipe_ctx_old, *pipe_ctx, *pipe_ctx_syncd;
3829 
3830 	/* If pipe backend is reset, need to reset pipe syncd status */
3831 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3832 		pipe_ctx_old =	&dc->current_state->res_ctx.pipe_ctx[i];
3833 		pipe_ctx = &context->res_ctx.pipe_ctx[i];
3834 
3835 		if (!pipe_ctx_old->stream)
3836 			continue;
3837 
3838 		if (pipe_ctx_old->top_pipe || pipe_ctx_old->prev_odm_pipe)
3839 			continue;
3840 
3841 		if (!pipe_ctx->stream ||
3842 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
3843 
3844 			/* Reset all the syncd pipes from the disabled pipe */
3845 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3846 				pipe_ctx_syncd = &context->res_ctx.pipe_ctx[j];
3847 				if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_syncd) == pipe_ctx_old->pipe_idx) ||
3848 					!IS_PIPE_SYNCD_VALID(pipe_ctx_syncd))
3849 					SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_syncd, j);
3850 			}
3851 		}
3852 	}
3853 }
3854 
3855 void check_syncd_pipes_for_disabled_master_pipe(struct dc *dc,
3856 	struct dc_state *context,
3857 	uint8_t disabled_master_pipe_idx)
3858 {
3859 	int i;
3860 	struct pipe_ctx *pipe_ctx, *pipe_ctx_check;
3861 
3862 	pipe_ctx = &context->res_ctx.pipe_ctx[disabled_master_pipe_idx];
3863 	if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx) != disabled_master_pipe_idx) ||
3864 		!IS_PIPE_SYNCD_VALID(pipe_ctx))
3865 		SET_PIPE_SYNCD_TO_PIPE(pipe_ctx, disabled_master_pipe_idx);
3866 
3867 	/* for the pipe disabled, check if any slave pipe exists and assert */
3868 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3869 		pipe_ctx_check = &context->res_ctx.pipe_ctx[i];
3870 
3871 		if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_check) == disabled_master_pipe_idx) &&
3872 		    IS_PIPE_SYNCD_VALID(pipe_ctx_check) && (i != disabled_master_pipe_idx)) {
3873 			struct pipe_ctx *first_pipe = pipe_ctx_check;
3874 
3875 			while (first_pipe->prev_odm_pipe)
3876 				first_pipe = first_pipe->prev_odm_pipe;
3877 			/* When ODM combine is enabled, this case is expected. If the disabled pipe
3878 			 * is part of the ODM tree, then we should not print an error.
3879 			 * */
3880 			if (first_pipe->pipe_idx == disabled_master_pipe_idx)
3881 				continue;
3882 
3883 			DC_ERR("DC: Failure: pipe_idx[%d] syncd with disabled master pipe_idx[%d]\n",
3884 				   i, disabled_master_pipe_idx);
3885 		}
3886 	}
3887 }
3888 
3889 void reset_sync_context_for_pipe(const struct dc *dc,
3890 	struct dc_state *context,
3891 	uint8_t pipe_idx)
3892 {
3893 	int i;
3894 	struct pipe_ctx *pipe_ctx_reset;
3895 
3896 	/* reset the otg sync context for the pipe and its slave pipes if any */
3897 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3898 		pipe_ctx_reset = &context->res_ctx.pipe_ctx[i];
3899 
3900 		if (((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_reset) == pipe_idx) &&
3901 			IS_PIPE_SYNCD_VALID(pipe_ctx_reset)) || (i == pipe_idx))
3902 			SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_reset, i);
3903 	}
3904 }
3905 
3906 uint8_t resource_transmitter_to_phy_idx(const struct dc *dc, enum transmitter transmitter)
3907 {
3908 	/* TODO - get transmitter to phy idx mapping from DMUB */
3909 	uint8_t phy_idx = transmitter - TRANSMITTER_UNIPHY_A;
3910 
3911 	if (dc->ctx->dce_version == DCN_VERSION_3_1 &&
3912 			dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0) {
3913 		switch (transmitter) {
3914 		case TRANSMITTER_UNIPHY_A:
3915 			phy_idx = 0;
3916 			break;
3917 		case TRANSMITTER_UNIPHY_B:
3918 			phy_idx = 1;
3919 			break;
3920 		case TRANSMITTER_UNIPHY_C:
3921 			phy_idx = 5;
3922 			break;
3923 		case TRANSMITTER_UNIPHY_D:
3924 			phy_idx = 6;
3925 			break;
3926 		case TRANSMITTER_UNIPHY_E:
3927 			phy_idx = 4;
3928 			break;
3929 		default:
3930 			phy_idx = 0;
3931 			break;
3932 		}
3933 	}
3934 
3935 	return phy_idx;
3936 }
3937 
3938 const struct link_hwss *get_link_hwss(const struct dc_link *link,
3939 		const struct link_resource *link_res)
3940 {
3941 	/* Link_hwss is only accessible by getter function instead of accessing
3942 	 * by pointers in dc with the intent to protect against breaking polymorphism.
3943 	 */
3944 	if (can_use_hpo_dp_link_hwss(link, link_res))
3945 		/* TODO: some assumes that if decided link settings is 128b/132b
3946 		 * channel coding format hpo_dp_link_enc should be used.
3947 		 * Others believe that if hpo_dp_link_enc is available in link
3948 		 * resource then hpo_dp_link_enc must be used. This bound between
3949 		 * hpo_dp_link_enc != NULL and decided link settings is loosely coupled
3950 		 * with a premise that both hpo_dp_link_enc pointer and decided link
3951 		 * settings are determined based on single policy function like
3952 		 * "decide_link_settings" from upper layer. This "convention"
3953 		 * cannot be maintained and enforced at current level.
3954 		 * Therefore a refactor is due so we can enforce a strong bound
3955 		 * between those two parameters at this level.
3956 		 *
3957 		 * To put it simple, we want to make enforcement at low level so that
3958 		 * we will not return link hwss if caller plans to do 8b/10b
3959 		 * with an hpo encoder. Or we can return a very dummy one that doesn't
3960 		 * do work for all functions
3961 		 */
3962 		return get_hpo_dp_link_hwss();
3963 	else if (can_use_dpia_link_hwss(link, link_res))
3964 		return get_dpia_link_hwss();
3965 	else if (can_use_dio_link_hwss(link, link_res))
3966 		return get_dio_link_hwss();
3967 	else
3968 		return get_virtual_link_hwss();
3969 }
3970 
3971 bool is_h_timing_divisible_by_2(struct dc_stream_state *stream)
3972 {
3973 	bool divisible = false;
3974 	uint16_t h_blank_start = 0;
3975 	uint16_t h_blank_end = 0;
3976 
3977 	if (stream) {
3978 		h_blank_start = stream->timing.h_total - stream->timing.h_front_porch;
3979 		h_blank_end = h_blank_start - stream->timing.h_addressable;
3980 
3981 		/* HTOTAL, Hblank start/end, and Hsync start/end all must be
3982 		 * divisible by 2 in order for the horizontal timing params
3983 		 * to be considered divisible by 2. Hsync start is always 0.
3984 		 */
3985 		divisible = (stream->timing.h_total % 2 == 0) &&
3986 				(h_blank_start % 2 == 0) &&
3987 				(h_blank_end % 2 == 0) &&
3988 				(stream->timing.h_sync_width % 2 == 0);
3989 	}
3990 	return divisible;
3991 }
3992 
3993 bool dc_resource_acquire_secondary_pipe_for_mpc_odm(
3994 		const struct dc *dc,
3995 		struct dc_state *state,
3996 		struct pipe_ctx *pri_pipe,
3997 		struct pipe_ctx *sec_pipe,
3998 		bool odm)
3999 {
4000 	int pipe_idx = sec_pipe->pipe_idx;
4001 	struct pipe_ctx *sec_top, *sec_bottom, *sec_next, *sec_prev;
4002 	const struct resource_pool *pool = dc->res_pool;
4003 
4004 	sec_top = sec_pipe->top_pipe;
4005 	sec_bottom = sec_pipe->bottom_pipe;
4006 	sec_next = sec_pipe->next_odm_pipe;
4007 	sec_prev = sec_pipe->prev_odm_pipe;
4008 
4009 	*sec_pipe = *pri_pipe;
4010 
4011 	sec_pipe->top_pipe = sec_top;
4012 	sec_pipe->bottom_pipe = sec_bottom;
4013 	sec_pipe->next_odm_pipe = sec_next;
4014 	sec_pipe->prev_odm_pipe = sec_prev;
4015 
4016 	sec_pipe->pipe_idx = pipe_idx;
4017 	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
4018 	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
4019 	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
4020 	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
4021 	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
4022 	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
4023 	sec_pipe->stream_res.dsc = NULL;
4024 	if (odm) {
4025 		if (!sec_pipe->top_pipe)
4026 			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
4027 		else
4028 			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
4029 		if (sec_pipe->stream->timing.flags.DSC == 1) {
4030 #if defined(CONFIG_DRM_AMD_DC_DCN)
4031 			dcn20_acquire_dsc(dc, &state->res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
4032 #endif
4033 			ASSERT(sec_pipe->stream_res.dsc);
4034 			if (sec_pipe->stream_res.dsc == NULL)
4035 				return false;
4036 		}
4037 #if defined(CONFIG_DRM_AMD_DC_DCN)
4038 		dcn20_build_mapped_resource(dc, state, sec_pipe->stream);
4039 #endif
4040 	}
4041 
4042 	return true;
4043 }
4044 
4045 enum dc_status update_dp_encoder_resources_for_test_harness(const struct dc *dc,
4046 		struct dc_state *context,
4047 		struct pipe_ctx *pipe_ctx)
4048 {
4049 	if (link_dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
4050 		if (pipe_ctx->stream_res.hpo_dp_stream_enc == NULL) {
4051 			pipe_ctx->stream_res.hpo_dp_stream_enc =
4052 					find_first_free_match_hpo_dp_stream_enc_for_link(
4053 							&context->res_ctx, dc->res_pool, pipe_ctx->stream);
4054 
4055 			if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
4056 				return DC_NO_STREAM_ENC_RESOURCE;
4057 
4058 			update_hpo_dp_stream_engine_usage(
4059 					&context->res_ctx, dc->res_pool,
4060 					pipe_ctx->stream_res.hpo_dp_stream_enc,
4061 					true);
4062 		}
4063 
4064 		if (pipe_ctx->link_res.hpo_dp_link_enc == NULL) {
4065 			if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, dc->res_pool, pipe_ctx, pipe_ctx->stream))
4066 				return DC_NO_LINK_ENC_RESOURCE;
4067 		}
4068 	} else {
4069 		if (pipe_ctx->stream_res.hpo_dp_stream_enc) {
4070 			update_hpo_dp_stream_engine_usage(
4071 					&context->res_ctx, dc->res_pool,
4072 					pipe_ctx->stream_res.hpo_dp_stream_enc,
4073 					false);
4074 			pipe_ctx->stream_res.hpo_dp_stream_enc = NULL;
4075 		}
4076 		if (pipe_ctx->link_res.hpo_dp_link_enc)
4077 			remove_hpo_dp_link_enc_from_ctx(&context->res_ctx, pipe_ctx, pipe_ctx->stream);
4078 	}
4079 
4080 	return DC_OK;
4081 }
4082 
4083