1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include <linux/slab.h>
27 
28 #include "dm_services.h"
29 
30 #include "resource.h"
31 #include "include/irq_service_interface.h"
32 #include "link_encoder.h"
33 #include "stream_encoder.h"
34 #include "opp.h"
35 #include "timing_generator.h"
36 #include "transform.h"
37 #include "dccg.h"
38 #include "dchubbub.h"
39 #include "dpp.h"
40 #include "core_types.h"
41 #include "set_mode_types.h"
42 #include "virtual/virtual_stream_encoder.h"
43 #include "dpcd_defs.h"
44 
45 #if defined(CONFIG_DRM_AMD_DC_SI)
46 #include "dce60/dce60_resource.h"
47 #endif
48 #include "dce80/dce80_resource.h"
49 #include "dce100/dce100_resource.h"
50 #include "dce110/dce110_resource.h"
51 #include "dce112/dce112_resource.h"
52 #include "dce120/dce120_resource.h"
53 #if defined(CONFIG_DRM_AMD_DC_DCN)
54 #include "dcn10/dcn10_resource.h"
55 #include "dcn20/dcn20_resource.h"
56 #include "dcn21/dcn21_resource.h"
57 #include "dcn30/dcn30_resource.h"
58 #include "dcn301/dcn301_resource.h"
59 #include "dcn302/dcn302_resource.h"
60 #include "dcn303/dcn303_resource.h"
61 #endif
62 
63 #define DC_LOGGER_INIT(logger)
64 
65 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
66 {
67 	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
68 	switch (asic_id.chip_family) {
69 
70 #if defined(CONFIG_DRM_AMD_DC_SI)
71 	case FAMILY_SI:
72 		if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
73 		    ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
74 		    ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
75 			dc_version = DCE_VERSION_6_0;
76 		else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
77 			dc_version = DCE_VERSION_6_4;
78 		else
79 			dc_version = DCE_VERSION_6_1;
80 		break;
81 #endif
82 	case FAMILY_CI:
83 		dc_version = DCE_VERSION_8_0;
84 		break;
85 	case FAMILY_KV:
86 		if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
87 		    ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
88 		    ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
89 			dc_version = DCE_VERSION_8_3;
90 		else
91 			dc_version = DCE_VERSION_8_1;
92 		break;
93 	case FAMILY_CZ:
94 		dc_version = DCE_VERSION_11_0;
95 		break;
96 
97 	case FAMILY_VI:
98 		if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
99 				ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
100 			dc_version = DCE_VERSION_10_0;
101 			break;
102 		}
103 		if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
104 				ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
105 				ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
106 			dc_version = DCE_VERSION_11_2;
107 		}
108 		if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
109 			dc_version = DCE_VERSION_11_22;
110 		break;
111 	case FAMILY_AI:
112 		if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
113 			dc_version = DCE_VERSION_12_1;
114 		else
115 			dc_version = DCE_VERSION_12_0;
116 		break;
117 #if defined(CONFIG_DRM_AMD_DC_DCN)
118 	case FAMILY_RV:
119 		dc_version = DCN_VERSION_1_0;
120 		if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
121 			dc_version = DCN_VERSION_1_01;
122 		if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
123 			dc_version = DCN_VERSION_2_1;
124 		if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
125 			dc_version = DCN_VERSION_2_1;
126 		break;
127 
128 	case FAMILY_NV:
129 		dc_version = DCN_VERSION_2_0;
130 		if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
131 			dc_version = DCN_VERSION_3_0;
132 		if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
133 			dc_version = DCN_VERSION_3_02;
134 		if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
135 			dc_version = DCN_VERSION_3_03;
136 		break;
137 
138 	case FAMILY_VGH:
139 		dc_version = DCN_VERSION_3_01;
140 		break;
141 #endif
142 	default:
143 		dc_version = DCE_VERSION_UNKNOWN;
144 		break;
145 	}
146 	return dc_version;
147 }
148 
149 struct resource_pool *dc_create_resource_pool(struct dc  *dc,
150 					      const struct dc_init_data *init_data,
151 					      enum dce_version dc_version)
152 {
153 	struct resource_pool *res_pool = NULL;
154 
155 	switch (dc_version) {
156 #if defined(CONFIG_DRM_AMD_DC_SI)
157 	case DCE_VERSION_6_0:
158 		res_pool = dce60_create_resource_pool(
159 			init_data->num_virtual_links, dc);
160 		break;
161 	case DCE_VERSION_6_1:
162 		res_pool = dce61_create_resource_pool(
163 			init_data->num_virtual_links, dc);
164 		break;
165 	case DCE_VERSION_6_4:
166 		res_pool = dce64_create_resource_pool(
167 			init_data->num_virtual_links, dc);
168 		break;
169 #endif
170 	case DCE_VERSION_8_0:
171 		res_pool = dce80_create_resource_pool(
172 				init_data->num_virtual_links, dc);
173 		break;
174 	case DCE_VERSION_8_1:
175 		res_pool = dce81_create_resource_pool(
176 				init_data->num_virtual_links, dc);
177 		break;
178 	case DCE_VERSION_8_3:
179 		res_pool = dce83_create_resource_pool(
180 				init_data->num_virtual_links, dc);
181 		break;
182 	case DCE_VERSION_10_0:
183 		res_pool = dce100_create_resource_pool(
184 				init_data->num_virtual_links, dc);
185 		break;
186 	case DCE_VERSION_11_0:
187 		res_pool = dce110_create_resource_pool(
188 				init_data->num_virtual_links, dc,
189 				init_data->asic_id);
190 		break;
191 	case DCE_VERSION_11_2:
192 	case DCE_VERSION_11_22:
193 		res_pool = dce112_create_resource_pool(
194 				init_data->num_virtual_links, dc);
195 		break;
196 	case DCE_VERSION_12_0:
197 	case DCE_VERSION_12_1:
198 		res_pool = dce120_create_resource_pool(
199 				init_data->num_virtual_links, dc);
200 		break;
201 
202 #if defined(CONFIG_DRM_AMD_DC_DCN)
203 	case DCN_VERSION_1_0:
204 	case DCN_VERSION_1_01:
205 		res_pool = dcn10_create_resource_pool(init_data, dc);
206 		break;
207 	case DCN_VERSION_2_0:
208 		res_pool = dcn20_create_resource_pool(init_data, dc);
209 		break;
210 	case DCN_VERSION_2_1:
211 		res_pool = dcn21_create_resource_pool(init_data, dc);
212 		break;
213 	case DCN_VERSION_3_0:
214 		res_pool = dcn30_create_resource_pool(init_data, dc);
215 		break;
216 	case DCN_VERSION_3_01:
217 		res_pool = dcn301_create_resource_pool(init_data, dc);
218 		break;
219 	case DCN_VERSION_3_02:
220 		res_pool = dcn302_create_resource_pool(init_data, dc);
221 		break;
222 	case DCN_VERSION_3_03:
223 		res_pool = dcn303_create_resource_pool(init_data, dc);
224 		break;
225 #endif
226 	default:
227 		break;
228 	}
229 
230 	if (res_pool != NULL) {
231 		if (dc->ctx->dc_bios->fw_info_valid) {
232 			res_pool->ref_clocks.xtalin_clock_inKhz =
233 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
234 			/* initialize with firmware data first, no all
235 			 * ASIC have DCCG SW component. FPGA or
236 			 * simulation need initialization of
237 			 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
238 			 * with xtalin_clock_inKhz
239 			 */
240 			res_pool->ref_clocks.dccg_ref_clock_inKhz =
241 				res_pool->ref_clocks.xtalin_clock_inKhz;
242 			res_pool->ref_clocks.dchub_ref_clock_inKhz =
243 				res_pool->ref_clocks.xtalin_clock_inKhz;
244 		} else
245 			ASSERT_CRITICAL(false);
246 	}
247 
248 	return res_pool;
249 }
250 
251 void dc_destroy_resource_pool(struct dc  *dc)
252 {
253 	if (dc) {
254 		if (dc->res_pool)
255 			dc->res_pool->funcs->destroy(&dc->res_pool);
256 
257 		kfree(dc->hwseq);
258 	}
259 }
260 
261 static void update_num_audio(
262 	const struct resource_straps *straps,
263 	unsigned int *num_audio,
264 	struct audio_support *aud_support)
265 {
266 	aud_support->dp_audio = true;
267 	aud_support->hdmi_audio_native = false;
268 	aud_support->hdmi_audio_on_dongle = false;
269 
270 	if (straps->hdmi_disable == 0) {
271 		if (straps->dc_pinstraps_audio & 0x2) {
272 			aud_support->hdmi_audio_on_dongle = true;
273 			aud_support->hdmi_audio_native = true;
274 		}
275 	}
276 
277 	switch (straps->audio_stream_number) {
278 	case 0: /* multi streams supported */
279 		break;
280 	case 1: /* multi streams not supported */
281 		*num_audio = 1;
282 		break;
283 	default:
284 		DC_ERR("DC: unexpected audio fuse!\n");
285 	}
286 }
287 
288 bool resource_construct(
289 	unsigned int num_virtual_links,
290 	struct dc  *dc,
291 	struct resource_pool *pool,
292 	const struct resource_create_funcs *create_funcs)
293 {
294 	struct dc_context *ctx = dc->ctx;
295 	const struct resource_caps *caps = pool->res_cap;
296 	int i;
297 	unsigned int num_audio = caps->num_audio;
298 	struct resource_straps straps = {0};
299 
300 	if (create_funcs->read_dce_straps)
301 		create_funcs->read_dce_straps(dc->ctx, &straps);
302 
303 	pool->audio_count = 0;
304 	if (create_funcs->create_audio) {
305 		/* find the total number of streams available via the
306 		 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
307 		 * registers (one for each pin) starting from pin 1
308 		 * up to the max number of audio pins.
309 		 * We stop on the first pin where
310 		 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
311 		 */
312 		update_num_audio(&straps, &num_audio, &pool->audio_support);
313 		for (i = 0; i < caps->num_audio; i++) {
314 			struct audio *aud = create_funcs->create_audio(ctx, i);
315 
316 			if (aud == NULL) {
317 				DC_ERR("DC: failed to create audio!\n");
318 				return false;
319 			}
320 			if (!aud->funcs->endpoint_valid(aud)) {
321 				aud->funcs->destroy(&aud);
322 				break;
323 			}
324 			pool->audios[i] = aud;
325 			pool->audio_count++;
326 		}
327 	}
328 
329 	pool->stream_enc_count = 0;
330 	if (create_funcs->create_stream_encoder) {
331 		for (i = 0; i < caps->num_stream_encoder; i++) {
332 			pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
333 			if (pool->stream_enc[i] == NULL)
334 				DC_ERR("DC: failed to create stream_encoder!\n");
335 			pool->stream_enc_count++;
336 		}
337 	}
338 
339 #if defined(CONFIG_DRM_AMD_DC_DCN)
340 	for (i = 0; i < caps->num_mpc_3dlut; i++) {
341 		pool->mpc_lut[i] = dc_create_3dlut_func();
342 		if (pool->mpc_lut[i] == NULL)
343 			DC_ERR("DC: failed to create MPC 3dlut!\n");
344 		pool->mpc_shaper[i] = dc_create_transfer_func();
345 		if (pool->mpc_shaper[i] == NULL)
346 			DC_ERR("DC: failed to create MPC shaper!\n");
347 	}
348 #endif
349 	dc->caps.dynamic_audio = false;
350 	if (pool->audio_count < pool->stream_enc_count) {
351 		dc->caps.dynamic_audio = true;
352 	}
353 	for (i = 0; i < num_virtual_links; i++) {
354 		pool->stream_enc[pool->stream_enc_count] =
355 			virtual_stream_encoder_create(
356 					ctx, ctx->dc_bios);
357 		if (pool->stream_enc[pool->stream_enc_count] == NULL) {
358 			DC_ERR("DC: failed to create stream_encoder!\n");
359 			return false;
360 		}
361 		pool->stream_enc_count++;
362 	}
363 
364 	dc->hwseq = create_funcs->create_hwseq(ctx);
365 
366 	return true;
367 }
368 static int find_matching_clock_source(
369 		const struct resource_pool *pool,
370 		struct clock_source *clock_source)
371 {
372 
373 	int i;
374 
375 	for (i = 0; i < pool->clk_src_count; i++) {
376 		if (pool->clock_sources[i] == clock_source)
377 			return i;
378 	}
379 	return -1;
380 }
381 
382 void resource_unreference_clock_source(
383 		struct resource_context *res_ctx,
384 		const struct resource_pool *pool,
385 		struct clock_source *clock_source)
386 {
387 	int i = find_matching_clock_source(pool, clock_source);
388 
389 	if (i > -1)
390 		res_ctx->clock_source_ref_count[i]--;
391 
392 	if (pool->dp_clock_source == clock_source)
393 		res_ctx->dp_clock_source_ref_count--;
394 }
395 
396 void resource_reference_clock_source(
397 		struct resource_context *res_ctx,
398 		const struct resource_pool *pool,
399 		struct clock_source *clock_source)
400 {
401 	int i = find_matching_clock_source(pool, clock_source);
402 
403 	if (i > -1)
404 		res_ctx->clock_source_ref_count[i]++;
405 
406 	if (pool->dp_clock_source == clock_source)
407 		res_ctx->dp_clock_source_ref_count++;
408 }
409 
410 int resource_get_clock_source_reference(
411 		struct resource_context *res_ctx,
412 		const struct resource_pool *pool,
413 		struct clock_source *clock_source)
414 {
415 	int i = find_matching_clock_source(pool, clock_source);
416 
417 	if (i > -1)
418 		return res_ctx->clock_source_ref_count[i];
419 
420 	if (pool->dp_clock_source == clock_source)
421 		return res_ctx->dp_clock_source_ref_count;
422 
423 	return -1;
424 }
425 
426 bool resource_are_vblanks_synchronizable(
427 	struct dc_stream_state *stream1,
428 	struct dc_stream_state *stream2)
429 {
430 	uint32_t base60_refresh_rates[] = {10, 20, 5};
431 	uint8_t i;
432 	uint8_t rr_count = sizeof(base60_refresh_rates)/sizeof(base60_refresh_rates[0]);
433 	uint64_t frame_time_diff;
434 
435 	if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
436 		stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
437 		dc_is_dp_signal(stream1->signal) &&
438 		dc_is_dp_signal(stream2->signal) &&
439 		false == stream1->has_non_synchronizable_pclk &&
440 		false == stream2->has_non_synchronizable_pclk &&
441 		stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
442 		stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
443 		/* disable refresh rates higher than 60Hz for now */
444 		if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
445 				stream1->timing.v_total > 60)
446 			return false;
447 		if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
448 				stream2->timing.v_total > 60)
449 			return false;
450 		frame_time_diff = (uint64_t)10000 *
451 			stream1->timing.h_total *
452 			stream1->timing.v_total *
453 			stream2->timing.pix_clk_100hz;
454 		frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
455 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
456 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
457 		for (i = 0; i < rr_count; i++) {
458 			int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
459 
460 			if (diff < 0)
461 				diff = -diff;
462 			if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
463 				return true;
464 		}
465 	}
466 	return false;
467 }
468 
469 bool resource_are_streams_timing_synchronizable(
470 	struct dc_stream_state *stream1,
471 	struct dc_stream_state *stream2)
472 {
473 	if (stream1->timing.h_total != stream2->timing.h_total)
474 		return false;
475 
476 	if (stream1->timing.v_total != stream2->timing.v_total)
477 		return false;
478 
479 	if (stream1->timing.h_addressable
480 				!= stream2->timing.h_addressable)
481 		return false;
482 
483 	if (stream1->timing.v_addressable
484 				!= stream2->timing.v_addressable)
485 		return false;
486 
487 	if (stream1->timing.v_front_porch
488 				!= stream2->timing.v_front_porch)
489 		return false;
490 
491 	if (stream1->timing.pix_clk_100hz
492 				!= stream2->timing.pix_clk_100hz)
493 		return false;
494 
495 	if (stream1->clamping.c_depth != stream2->clamping.c_depth)
496 		return false;
497 
498 	if (stream1->phy_pix_clk != stream2->phy_pix_clk
499 			&& (!dc_is_dp_signal(stream1->signal)
500 			|| !dc_is_dp_signal(stream2->signal)))
501 		return false;
502 
503 	if (stream1->view_format != stream2->view_format)
504 		return false;
505 
506 	if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
507 		return false;
508 
509 	return true;
510 }
511 static bool is_dp_and_hdmi_sharable(
512 		struct dc_stream_state *stream1,
513 		struct dc_stream_state *stream2)
514 {
515 	if (stream1->ctx->dc->caps.disable_dp_clk_share)
516 		return false;
517 
518 	if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
519 		stream2->clamping.c_depth != COLOR_DEPTH_888)
520 		return false;
521 
522 	return true;
523 
524 }
525 
526 static bool is_sharable_clk_src(
527 	const struct pipe_ctx *pipe_with_clk_src,
528 	const struct pipe_ctx *pipe)
529 {
530 	if (pipe_with_clk_src->clock_source == NULL)
531 		return false;
532 
533 	if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
534 		return false;
535 
536 	if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
537 		(dc_is_dp_signal(pipe->stream->signal) &&
538 		!is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
539 				     pipe->stream)))
540 		return false;
541 
542 	if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
543 			&& dc_is_dual_link_signal(pipe->stream->signal))
544 		return false;
545 
546 	if (dc_is_hdmi_signal(pipe->stream->signal)
547 			&& dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
548 		return false;
549 
550 	if (!resource_are_streams_timing_synchronizable(
551 			pipe_with_clk_src->stream, pipe->stream))
552 		return false;
553 
554 	return true;
555 }
556 
557 struct clock_source *resource_find_used_clk_src_for_sharing(
558 					struct resource_context *res_ctx,
559 					struct pipe_ctx *pipe_ctx)
560 {
561 	int i;
562 
563 	for (i = 0; i < MAX_PIPES; i++) {
564 		if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
565 			return res_ctx->pipe_ctx[i].clock_source;
566 	}
567 
568 	return NULL;
569 }
570 
571 static enum pixel_format convert_pixel_format_to_dalsurface(
572 		enum surface_pixel_format surface_pixel_format)
573 {
574 	enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
575 
576 	switch (surface_pixel_format) {
577 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
578 		dal_pixel_format = PIXEL_FORMAT_INDEX8;
579 		break;
580 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
581 		dal_pixel_format = PIXEL_FORMAT_RGB565;
582 		break;
583 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
584 		dal_pixel_format = PIXEL_FORMAT_RGB565;
585 		break;
586 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
587 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
588 		break;
589 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
590 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
591 		break;
592 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
593 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
594 		break;
595 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
596 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
597 		break;
598 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
599 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
600 		break;
601 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
602 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
603 		dal_pixel_format = PIXEL_FORMAT_FP16;
604 		break;
605 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
606 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
607 		dal_pixel_format = PIXEL_FORMAT_420BPP8;
608 		break;
609 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
610 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
611 		dal_pixel_format = PIXEL_FORMAT_420BPP10;
612 		break;
613 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
614 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
615 	default:
616 		dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
617 		break;
618 	}
619 	return dal_pixel_format;
620 }
621 
622 static inline void get_vp_scan_direction(
623 	enum dc_rotation_angle rotation,
624 	bool horizontal_mirror,
625 	bool *orthogonal_rotation,
626 	bool *flip_vert_scan_dir,
627 	bool *flip_horz_scan_dir)
628 {
629 	*orthogonal_rotation = false;
630 	*flip_vert_scan_dir = false;
631 	*flip_horz_scan_dir = false;
632 	if (rotation == ROTATION_ANGLE_180) {
633 		*flip_vert_scan_dir = true;
634 		*flip_horz_scan_dir = true;
635 	} else if (rotation == ROTATION_ANGLE_90) {
636 		*orthogonal_rotation = true;
637 		*flip_horz_scan_dir = true;
638 	} else if (rotation == ROTATION_ANGLE_270) {
639 		*orthogonal_rotation = true;
640 		*flip_vert_scan_dir = true;
641 	}
642 
643 	if (horizontal_mirror)
644 		*flip_horz_scan_dir = !*flip_horz_scan_dir;
645 }
646 
647 int get_num_mpc_splits(struct pipe_ctx *pipe)
648 {
649 	int mpc_split_count = 0;
650 	struct pipe_ctx *other_pipe = pipe->bottom_pipe;
651 
652 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
653 		mpc_split_count++;
654 		other_pipe = other_pipe->bottom_pipe;
655 	}
656 	other_pipe = pipe->top_pipe;
657 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
658 		mpc_split_count++;
659 		other_pipe = other_pipe->top_pipe;
660 	}
661 
662 	return mpc_split_count;
663 }
664 
665 int get_num_odm_splits(struct pipe_ctx *pipe)
666 {
667 	int odm_split_count = 0;
668 	struct pipe_ctx *next_pipe = pipe->next_odm_pipe;
669 	while (next_pipe) {
670 		odm_split_count++;
671 		next_pipe = next_pipe->next_odm_pipe;
672 	}
673 	pipe = pipe->prev_odm_pipe;
674 	while (pipe) {
675 		odm_split_count++;
676 		pipe = pipe->prev_odm_pipe;
677 	}
678 	return odm_split_count;
679 }
680 
681 static void calculate_split_count_and_index(struct pipe_ctx *pipe_ctx, int *split_count, int *split_idx)
682 {
683 	*split_count = get_num_odm_splits(pipe_ctx);
684 	*split_idx = 0;
685 	if (*split_count == 0) {
686 		/*Check for mpc split*/
687 		struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
688 
689 		*split_count = get_num_mpc_splits(pipe_ctx);
690 		while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
691 			(*split_idx)++;
692 			split_pipe = split_pipe->top_pipe;
693 		}
694 	} else {
695 		/*Get odm split index*/
696 		struct pipe_ctx *split_pipe = pipe_ctx->prev_odm_pipe;
697 
698 		while (split_pipe) {
699 			(*split_idx)++;
700 			split_pipe = split_pipe->prev_odm_pipe;
701 		}
702 	}
703 }
704 
705 /*
706  * This is a preliminary vp size calculation to allow us to check taps support.
707  * The result is completely overridden afterwards.
708  */
709 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
710 {
711 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
712 
713 	data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
714 	data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
715 	data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
716 	data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
717 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
718 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
719 		swap(data->viewport.width, data->viewport.height);
720 		swap(data->viewport_c.width, data->viewport_c.height);
721 	}
722 }
723 
724 static void calculate_recout(struct pipe_ctx *pipe_ctx)
725 {
726 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
727 	const struct dc_stream_state *stream = pipe_ctx->stream;
728 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
729 	struct rect surf_clip = plane_state->clip_rect;
730 	bool split_tb = stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
731 	int split_count, split_idx;
732 
733 	calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
734 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
735 		split_idx = 0;
736 
737 	/*
738 	 * Only the leftmost ODM pipe should be offset by a nonzero distance
739 	 */
740 	if (!pipe_ctx->prev_odm_pipe || split_idx == split_count) {
741 		data->recout.x = stream->dst.x;
742 		if (stream->src.x < surf_clip.x)
743 			data->recout.x += (surf_clip.x - stream->src.x) * stream->dst.width
744 						/ stream->src.width;
745 	} else
746 		data->recout.x = 0;
747 
748 	if (stream->src.x > surf_clip.x)
749 		surf_clip.width -= stream->src.x - surf_clip.x;
750 	data->recout.width = surf_clip.width * stream->dst.width / stream->src.width;
751 	if (data->recout.width + data->recout.x > stream->dst.x + stream->dst.width)
752 		data->recout.width = stream->dst.x + stream->dst.width - data->recout.x;
753 
754 	data->recout.y = stream->dst.y;
755 	if (stream->src.y < surf_clip.y)
756 		data->recout.y += (surf_clip.y - stream->src.y) * stream->dst.height
757 						/ stream->src.height;
758 	else if (stream->src.y > surf_clip.y)
759 		surf_clip.height -= stream->src.y - surf_clip.y;
760 
761 	data->recout.height = surf_clip.height * stream->dst.height / stream->src.height;
762 	if (data->recout.height + data->recout.y > stream->dst.y + stream->dst.height)
763 		data->recout.height = stream->dst.y + stream->dst.height - data->recout.y;
764 
765 	/* Handle h & v split */
766 	if (split_tb) {
767 		ASSERT(data->recout.height % 2 == 0);
768 		data->recout.height /= 2;
769 	} else if (split_count) {
770 		if (!pipe_ctx->next_odm_pipe && !pipe_ctx->prev_odm_pipe) {
771 			/* extra pixels in the division remainder need to go to pipes after
772 			 * the extra pixel index minus one(epimo) defined here as:
773 			 */
774 			int epimo = split_count - data->recout.width % (split_count + 1);
775 
776 			data->recout.x += (data->recout.width / (split_count + 1)) * split_idx;
777 			if (split_idx > epimo)
778 				data->recout.x += split_idx - epimo - 1;
779 			ASSERT(stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE || data->recout.width % 2 == 0);
780 			data->recout.width = data->recout.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
781 		} else {
782 			/* odm */
783 			if (split_idx == split_count) {
784 				/* rightmost pipe is the remainder recout */
785 				data->recout.width -= data->h_active * split_count - data->recout.x;
786 				data->recout.x = 0;
787 			} else
788 				data->recout.width = data->h_active - data->recout.x;
789 		}
790 	}
791 }
792 
793 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
794 {
795 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
796 	const struct dc_stream_state *stream = pipe_ctx->stream;
797 	struct rect surf_src = plane_state->src_rect;
798 	const int in_w = stream->src.width;
799 	const int in_h = stream->src.height;
800 	const int out_w = stream->dst.width;
801 	const int out_h = stream->dst.height;
802 
803 	/*Swap surf_src height and width since scaling ratios are in recout rotation*/
804 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
805 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
806 		swap(surf_src.height, surf_src.width);
807 
808 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
809 					surf_src.width,
810 					plane_state->dst_rect.width);
811 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
812 					surf_src.height,
813 					plane_state->dst_rect.height);
814 
815 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
816 		pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
817 	else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
818 		pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
819 
820 	pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
821 		pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
822 	pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
823 		pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
824 
825 	pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
826 	pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
827 
828 	if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
829 			|| pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
830 		pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
831 		pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
832 	}
833 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
834 			pipe_ctx->plane_res.scl_data.ratios.horz, 19);
835 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
836 			pipe_ctx->plane_res.scl_data.ratios.vert, 19);
837 	pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
838 			pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
839 	pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
840 			pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
841 }
842 
843 
844 /*
845  * We completely calculate vp offset, size and inits here based entirely on scaling
846  * ratios and recout for pixel perfect pipe combine.
847  */
848 static void calculate_init_and_vp(
849 		bool flip_scan_dir,
850 		int recout_offset_within_recout_full,
851 		int recout_size,
852 		int src_size,
853 		int taps,
854 		struct fixed31_32 ratio,
855 		struct fixed31_32 *init,
856 		int *vp_offset,
857 		int *vp_size)
858 {
859 	struct fixed31_32 temp;
860 	int int_part;
861 
862 	/*
863 	 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
864 	 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
865 	 * All following calculations are based on this logic.
866 	 *
867 	 * Init calculated according to formula:
868 	 * 	init = (scaling_ratio + number_of_taps + 1) / 2
869 	 * 	init_bot = init + scaling_ratio
870 	 * 	to get pixel perfect combine add the fraction from calculating vp offset
871 	 */
872 	temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
873 	*vp_offset = dc_fixpt_floor(temp);
874 	temp.value &= 0xffffffff;
875 	*init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
876 			dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
877 	/*
878 	 * If viewport has non 0 offset and there are more taps than covered by init then
879 	 * we should decrease the offset and increase init so we are never sampling
880 	 * outside of viewport.
881 	 */
882 	int_part = dc_fixpt_floor(*init);
883 	if (int_part < taps) {
884 		int_part = taps - int_part;
885 		if (int_part > *vp_offset)
886 			int_part = *vp_offset;
887 		*vp_offset -= int_part;
888 		*init = dc_fixpt_add_int(*init, int_part);
889 	}
890 	/*
891 	 * If taps are sampling outside of viewport at end of recout and there are more pixels
892 	 * available in the surface we should increase the viewport size, regardless set vp to
893 	 * only what is used.
894 	 */
895 	temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
896 	*vp_size = dc_fixpt_floor(temp);
897 	if (*vp_size + *vp_offset > src_size)
898 		*vp_size = src_size - *vp_offset;
899 
900 	/* We did all the math assuming we are scanning same direction as display does,
901 	 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
902 	 * is flipped we simply need to calculate offset from the other side of plane.
903 	 * Note that outside of viewport all scaling hardware works in recout space.
904 	 */
905 	if (flip_scan_dir)
906 		*vp_offset = src_size - *vp_offset - *vp_size;
907 }
908 
909 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
910 {
911 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
912 	const struct dc_stream_state *stream = pipe_ctx->stream;
913 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
914 	struct rect src = plane_state->src_rect;
915 	int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
916 				|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
917 	int split_count, split_idx, ro_lb, ro_tb, recout_full_x, recout_full_y;
918 	bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
919 
920 	calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
921 	/*
922 	 * recout full is what the recout would have been if we didnt clip
923 	 * the source plane at all. We only care about left(ro_lb) and top(ro_tb)
924 	 * offsets of recout within recout full because those are the directions
925 	 * we scan from and therefore the only ones that affect inits.
926 	 */
927 	recout_full_x = stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
928 			* stream->dst.width / stream->src.width;
929 	recout_full_y = stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
930 			* stream->dst.height / stream->src.height;
931 	if (pipe_ctx->prev_odm_pipe && split_idx)
932 		ro_lb = data->h_active * split_idx - recout_full_x;
933 	else
934 		ro_lb = data->recout.x - recout_full_x;
935 	ro_tb = data->recout.y - recout_full_y;
936 	ASSERT(ro_lb >= 0 && ro_tb >= 0);
937 
938 	/*
939 	 * Work in recout rotation since that requires less transformations
940 	 */
941 	get_vp_scan_direction(
942 			plane_state->rotation,
943 			plane_state->horizontal_mirror,
944 			&orthogonal_rotation,
945 			&flip_vert_scan_dir,
946 			&flip_horz_scan_dir);
947 
948 	if (orthogonal_rotation) {
949 		swap(src.width, src.height);
950 		swap(flip_vert_scan_dir, flip_horz_scan_dir);
951 	}
952 
953 	calculate_init_and_vp(
954 			flip_horz_scan_dir,
955 			ro_lb,
956 			data->recout.width,
957 			src.width,
958 			data->taps.h_taps,
959 			data->ratios.horz,
960 			&data->inits.h,
961 			&data->viewport.x,
962 			&data->viewport.width);
963 	calculate_init_and_vp(
964 			flip_horz_scan_dir,
965 			ro_lb,
966 			data->recout.width,
967 			src.width / vpc_div,
968 			data->taps.h_taps_c,
969 			data->ratios.horz_c,
970 			&data->inits.h_c,
971 			&data->viewport_c.x,
972 			&data->viewport_c.width);
973 	calculate_init_and_vp(
974 			flip_vert_scan_dir,
975 			ro_tb,
976 			data->recout.height,
977 			src.height,
978 			data->taps.v_taps,
979 			data->ratios.vert,
980 			&data->inits.v,
981 			&data->viewport.y,
982 			&data->viewport.height);
983 	calculate_init_and_vp(
984 			flip_vert_scan_dir,
985 			ro_tb,
986 			data->recout.height,
987 			src.height / vpc_div,
988 			data->taps.v_taps_c,
989 			data->ratios.vert_c,
990 			&data->inits.v_c,
991 			&data->viewport_c.y,
992 			&data->viewport_c.height);
993 	if (orthogonal_rotation) {
994 		swap(data->viewport.x, data->viewport.y);
995 		swap(data->viewport.width, data->viewport.height);
996 		swap(data->viewport_c.x, data->viewport_c.y);
997 		swap(data->viewport_c.width, data->viewport_c.height);
998 	}
999 	data->viewport.x += src.x;
1000 	data->viewport.y += src.y;
1001 	ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1002 	data->viewport_c.x += src.x / vpc_div;
1003 	data->viewport_c.y += src.y / vpc_div;
1004 }
1005 
1006 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1007 {
1008 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1009 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1010 	bool res = false;
1011 	DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1012 
1013 	pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1014 			pipe_ctx->plane_state->format);
1015 
1016 	/* Timing borders are part of vactive that we are also supposed to skip in addition
1017 	 * to any stream dst offset. Since dm logic assumes dst is in addressable
1018 	 * space we need to add the the left and top borders to dst offsets temporarily.
1019 	 * TODO: fix in DM, stream dst is supposed to be in vactive
1020 	 */
1021 	pipe_ctx->stream->dst.x += timing->h_border_left;
1022 	pipe_ctx->stream->dst.y += timing->v_border_top;
1023 
1024 	/* Calculate H and V active size */
1025 	pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable +
1026 			timing->h_border_left + timing->h_border_right;
1027 	pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable +
1028 		timing->v_border_top + timing->v_border_bottom;
1029 	if (pipe_ctx->next_odm_pipe || pipe_ctx->prev_odm_pipe)
1030 		pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx) + 1;
1031 
1032 	/* depends on h_active */
1033 	calculate_recout(pipe_ctx);
1034 	/* depends on pixel format */
1035 	calculate_scaling_ratios(pipe_ctx);
1036 	/* depends on scaling ratios and recout, does not calculate offset yet */
1037 	calculate_viewport_size(pipe_ctx);
1038 
1039 	/*
1040 	 * LB calculations depend on vp size, h/v_active and scaling ratios
1041 	 * Setting line buffer pixel depth to 24bpp yields banding
1042 	 * on certain displays, such as the Sharp 4k. 36bpp is needed
1043 	 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1044 	 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1045 	 * precision on at least DCN display engines.
1046 	 */
1047 	pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1048 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1049 
1050 	if (pipe_ctx->plane_res.xfm != NULL)
1051 		res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1052 				pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1053 
1054 	if (pipe_ctx->plane_res.dpp != NULL)
1055 		res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1056 				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1057 
1058 
1059 	if (!res) {
1060 		/* Try 24 bpp linebuffer */
1061 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1062 
1063 		if (pipe_ctx->plane_res.xfm != NULL)
1064 			res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1065 					pipe_ctx->plane_res.xfm,
1066 					&pipe_ctx->plane_res.scl_data,
1067 					&plane_state->scaling_quality);
1068 
1069 		if (pipe_ctx->plane_res.dpp != NULL)
1070 			res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1071 					pipe_ctx->plane_res.dpp,
1072 					&pipe_ctx->plane_res.scl_data,
1073 					&plane_state->scaling_quality);
1074 	}
1075 
1076 	/*
1077 	 * Depends on recout, scaling ratios, h_active and taps
1078 	 * May need to re-check lb size after this in some obscure scenario
1079 	 */
1080 	if (res)
1081 		calculate_inits_and_viewports(pipe_ctx);
1082 
1083 	/*
1084 	 * Handle side by side and top bottom 3d recout offsets after vp calculation
1085 	 * since 3d is special and needs to calculate vp as if there is no recout offset
1086 	 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1087 	 */
1088 	if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1089 		ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1090 			(pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1091 				pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1092 		if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1093 			pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1094 		else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1095 			pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1096 	}
1097 
1098 	if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE ||
1099 			pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1100 		res = false;
1101 
1102 	DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d  Recout: height:%d width:%d x:%d y:%d  HACTIVE:%d VACTIVE:%d\n"
1103 			"src_rect: height:%d width:%d x:%d y:%d  dst_rect: height:%d width:%d x:%d y:%d  clip_rect: height:%d width:%d x:%d y:%d\n",
1104 			__func__,
1105 			pipe_ctx->pipe_idx,
1106 			pipe_ctx->plane_res.scl_data.viewport.height,
1107 			pipe_ctx->plane_res.scl_data.viewport.width,
1108 			pipe_ctx->plane_res.scl_data.viewport.x,
1109 			pipe_ctx->plane_res.scl_data.viewport.y,
1110 			pipe_ctx->plane_res.scl_data.recout.height,
1111 			pipe_ctx->plane_res.scl_data.recout.width,
1112 			pipe_ctx->plane_res.scl_data.recout.x,
1113 			pipe_ctx->plane_res.scl_data.recout.y,
1114 			pipe_ctx->plane_res.scl_data.h_active,
1115 			pipe_ctx->plane_res.scl_data.v_active,
1116 			plane_state->src_rect.height,
1117 			plane_state->src_rect.width,
1118 			plane_state->src_rect.x,
1119 			plane_state->src_rect.y,
1120 			plane_state->dst_rect.height,
1121 			plane_state->dst_rect.width,
1122 			plane_state->dst_rect.x,
1123 			plane_state->dst_rect.y,
1124 			plane_state->clip_rect.height,
1125 			plane_state->clip_rect.width,
1126 			plane_state->clip_rect.x,
1127 			plane_state->clip_rect.y);
1128 
1129 	pipe_ctx->stream->dst.x -= timing->h_border_left;
1130 	pipe_ctx->stream->dst.y -= timing->v_border_top;
1131 
1132 	return res;
1133 }
1134 
1135 
1136 enum dc_status resource_build_scaling_params_for_context(
1137 	const struct dc  *dc,
1138 	struct dc_state *context)
1139 {
1140 	int i;
1141 
1142 	for (i = 0; i < MAX_PIPES; i++) {
1143 		if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1144 				context->res_ctx.pipe_ctx[i].stream != NULL)
1145 			if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1146 				return DC_FAIL_SCALING;
1147 	}
1148 
1149 	return DC_OK;
1150 }
1151 
1152 struct pipe_ctx *find_idle_secondary_pipe(
1153 		struct resource_context *res_ctx,
1154 		const struct resource_pool *pool,
1155 		const struct pipe_ctx *primary_pipe)
1156 {
1157 	int i;
1158 	struct pipe_ctx *secondary_pipe = NULL;
1159 
1160 	/*
1161 	 * We add a preferred pipe mapping to avoid the chance that
1162 	 * MPCCs already in use will need to be reassigned to other trees.
1163 	 * For example, if we went with the strict, assign backwards logic:
1164 	 *
1165 	 * (State 1)
1166 	 * Display A on, no surface, top pipe = 0
1167 	 * Display B on, no surface, top pipe = 1
1168 	 *
1169 	 * (State 2)
1170 	 * Display A on, no surface, top pipe = 0
1171 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1172 	 *
1173 	 * (State 3)
1174 	 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1175 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1176 	 *
1177 	 * The state 2->3 transition requires remapping MPCC 5 from display B
1178 	 * to display A.
1179 	 *
1180 	 * However, with the preferred pipe logic, state 2 would look like:
1181 	 *
1182 	 * (State 2)
1183 	 * Display A on, no surface, top pipe = 0
1184 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1185 	 *
1186 	 * This would then cause 2->3 to not require remapping any MPCCs.
1187 	 */
1188 	if (primary_pipe) {
1189 		int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1190 		if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1191 			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1192 			secondary_pipe->pipe_idx = preferred_pipe_idx;
1193 		}
1194 	}
1195 
1196 	/*
1197 	 * search backwards for the second pipe to keep pipe
1198 	 * assignment more consistent
1199 	 */
1200 	if (!secondary_pipe)
1201 		for (i = pool->pipe_count - 1; i >= 0; i--) {
1202 			if (res_ctx->pipe_ctx[i].stream == NULL) {
1203 				secondary_pipe = &res_ctx->pipe_ctx[i];
1204 				secondary_pipe->pipe_idx = i;
1205 				break;
1206 			}
1207 		}
1208 
1209 	return secondary_pipe;
1210 }
1211 
1212 struct pipe_ctx *resource_get_head_pipe_for_stream(
1213 		struct resource_context *res_ctx,
1214 		struct dc_stream_state *stream)
1215 {
1216 	int i;
1217 
1218 	for (i = 0; i < MAX_PIPES; i++) {
1219 		if (res_ctx->pipe_ctx[i].stream == stream
1220 				&& !res_ctx->pipe_ctx[i].top_pipe
1221 				&& !res_ctx->pipe_ctx[i].prev_odm_pipe)
1222 			return &res_ctx->pipe_ctx[i];
1223 	}
1224 	return NULL;
1225 }
1226 
1227 static struct pipe_ctx *resource_get_tail_pipe(
1228 		struct resource_context *res_ctx,
1229 		struct pipe_ctx *head_pipe)
1230 {
1231 	struct pipe_ctx *tail_pipe;
1232 
1233 	tail_pipe = head_pipe->bottom_pipe;
1234 
1235 	while (tail_pipe) {
1236 		head_pipe = tail_pipe;
1237 		tail_pipe = tail_pipe->bottom_pipe;
1238 	}
1239 
1240 	return head_pipe;
1241 }
1242 
1243 /*
1244  * A free_pipe for a stream is defined here as a pipe
1245  * that has no surface attached yet
1246  */
1247 static struct pipe_ctx *acquire_free_pipe_for_head(
1248 		struct dc_state *context,
1249 		const struct resource_pool *pool,
1250 		struct pipe_ctx *head_pipe)
1251 {
1252 	int i;
1253 	struct resource_context *res_ctx = &context->res_ctx;
1254 
1255 	if (!head_pipe->plane_state)
1256 		return head_pipe;
1257 
1258 	/* Re-use pipe already acquired for this stream if available*/
1259 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1260 		if (res_ctx->pipe_ctx[i].stream == head_pipe->stream &&
1261 				!res_ctx->pipe_ctx[i].plane_state) {
1262 			return &res_ctx->pipe_ctx[i];
1263 		}
1264 	}
1265 
1266 	/*
1267 	 * At this point we have no re-useable pipe for this stream and we need
1268 	 * to acquire an idle one to satisfy the request
1269 	 */
1270 
1271 	if (!pool->funcs->acquire_idle_pipe_for_layer)
1272 		return NULL;
1273 
1274 	return pool->funcs->acquire_idle_pipe_for_layer(context, pool, head_pipe->stream);
1275 }
1276 
1277 #if defined(CONFIG_DRM_AMD_DC_DCN)
1278 static int acquire_first_split_pipe(
1279 		struct resource_context *res_ctx,
1280 		const struct resource_pool *pool,
1281 		struct dc_stream_state *stream)
1282 {
1283 	int i;
1284 
1285 	for (i = 0; i < pool->pipe_count; i++) {
1286 		struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1287 
1288 		if (split_pipe->top_pipe &&
1289 				split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1290 			split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1291 			if (split_pipe->bottom_pipe)
1292 				split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1293 
1294 			if (split_pipe->top_pipe->plane_state)
1295 				resource_build_scaling_params(split_pipe->top_pipe);
1296 
1297 			memset(split_pipe, 0, sizeof(*split_pipe));
1298 			split_pipe->stream_res.tg = pool->timing_generators[i];
1299 			split_pipe->plane_res.hubp = pool->hubps[i];
1300 			split_pipe->plane_res.ipp = pool->ipps[i];
1301 			split_pipe->plane_res.dpp = pool->dpps[i];
1302 			split_pipe->stream_res.opp = pool->opps[i];
1303 			split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1304 			split_pipe->pipe_idx = i;
1305 
1306 			split_pipe->stream = stream;
1307 			return i;
1308 		}
1309 	}
1310 	return -1;
1311 }
1312 #endif
1313 
1314 bool dc_add_plane_to_context(
1315 		const struct dc *dc,
1316 		struct dc_stream_state *stream,
1317 		struct dc_plane_state *plane_state,
1318 		struct dc_state *context)
1319 {
1320 	int i;
1321 	struct resource_pool *pool = dc->res_pool;
1322 	struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1323 	struct dc_stream_status *stream_status = NULL;
1324 
1325 	for (i = 0; i < context->stream_count; i++)
1326 		if (context->streams[i] == stream) {
1327 			stream_status = &context->stream_status[i];
1328 			break;
1329 		}
1330 	if (stream_status == NULL) {
1331 		dm_error("Existing stream not found; failed to attach surface!\n");
1332 		return false;
1333 	}
1334 
1335 
1336 	if (stream_status->plane_count == MAX_SURFACE_NUM) {
1337 		dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1338 				plane_state, MAX_SURFACE_NUM);
1339 		return false;
1340 	}
1341 
1342 	head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1343 
1344 	if (!head_pipe) {
1345 		dm_error("Head pipe not found for stream_state %p !\n", stream);
1346 		return false;
1347 	}
1348 
1349 	/* retain new surface, but only once per stream */
1350 	dc_plane_state_retain(plane_state);
1351 
1352 	while (head_pipe) {
1353 		free_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1354 
1355 	#if defined(CONFIG_DRM_AMD_DC_DCN)
1356 		if (!free_pipe) {
1357 			int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1358 			if (pipe_idx >= 0)
1359 				free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1360 		}
1361 	#endif
1362 		if (!free_pipe) {
1363 			dc_plane_state_release(plane_state);
1364 			return false;
1365 		}
1366 
1367 		free_pipe->plane_state = plane_state;
1368 
1369 		if (head_pipe != free_pipe) {
1370 			tail_pipe = resource_get_tail_pipe(&context->res_ctx, head_pipe);
1371 			ASSERT(tail_pipe);
1372 			free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1373 			free_pipe->stream_res.abm = tail_pipe->stream_res.abm;
1374 			free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1375 			free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1376 			free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1377 			free_pipe->clock_source = tail_pipe->clock_source;
1378 			free_pipe->top_pipe = tail_pipe;
1379 			tail_pipe->bottom_pipe = free_pipe;
1380 			if (!free_pipe->next_odm_pipe && tail_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1381 				free_pipe->next_odm_pipe = tail_pipe->next_odm_pipe->bottom_pipe;
1382 				tail_pipe->next_odm_pipe->bottom_pipe->prev_odm_pipe = free_pipe;
1383 			}
1384 			if (!free_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe->bottom_pipe) {
1385 				free_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1386 				tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = free_pipe;
1387 			}
1388 		}
1389 		head_pipe = head_pipe->next_odm_pipe;
1390 	}
1391 	/* assign new surfaces*/
1392 	stream_status->plane_states[stream_status->plane_count] = plane_state;
1393 
1394 	stream_status->plane_count++;
1395 
1396 	return true;
1397 }
1398 
1399 bool dc_remove_plane_from_context(
1400 		const struct dc *dc,
1401 		struct dc_stream_state *stream,
1402 		struct dc_plane_state *plane_state,
1403 		struct dc_state *context)
1404 {
1405 	int i;
1406 	struct dc_stream_status *stream_status = NULL;
1407 	struct resource_pool *pool = dc->res_pool;
1408 
1409 	for (i = 0; i < context->stream_count; i++)
1410 		if (context->streams[i] == stream) {
1411 			stream_status = &context->stream_status[i];
1412 			break;
1413 		}
1414 
1415 	if (stream_status == NULL) {
1416 		dm_error("Existing stream not found; failed to remove plane.\n");
1417 		return false;
1418 	}
1419 
1420 	/* release pipe for plane*/
1421 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1422 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1423 
1424 		if (pipe_ctx->plane_state == plane_state) {
1425 			if (pipe_ctx->top_pipe)
1426 				pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1427 
1428 			/* Second condition is to avoid setting NULL to top pipe
1429 			 * of tail pipe making it look like head pipe in subsequent
1430 			 * deletes
1431 			 */
1432 			if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1433 				pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1434 
1435 			/*
1436 			 * For head pipe detach surfaces from pipe for tail
1437 			 * pipe just zero it out
1438 			 */
1439 			if (!pipe_ctx->top_pipe)
1440 				pipe_ctx->plane_state = NULL;
1441 			else
1442 				memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1443 		}
1444 	}
1445 
1446 
1447 	for (i = 0; i < stream_status->plane_count; i++) {
1448 		if (stream_status->plane_states[i] == plane_state) {
1449 
1450 			dc_plane_state_release(stream_status->plane_states[i]);
1451 			break;
1452 		}
1453 	}
1454 
1455 	if (i == stream_status->plane_count) {
1456 		dm_error("Existing plane_state not found; failed to detach it!\n");
1457 		return false;
1458 	}
1459 
1460 	stream_status->plane_count--;
1461 
1462 	/* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1463 	for (; i < stream_status->plane_count; i++)
1464 		stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1465 
1466 	stream_status->plane_states[stream_status->plane_count] = NULL;
1467 
1468 	return true;
1469 }
1470 
1471 bool dc_rem_all_planes_for_stream(
1472 		const struct dc *dc,
1473 		struct dc_stream_state *stream,
1474 		struct dc_state *context)
1475 {
1476 	int i, old_plane_count;
1477 	struct dc_stream_status *stream_status = NULL;
1478 	struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1479 
1480 	for (i = 0; i < context->stream_count; i++)
1481 			if (context->streams[i] == stream) {
1482 				stream_status = &context->stream_status[i];
1483 				break;
1484 			}
1485 
1486 	if (stream_status == NULL) {
1487 		dm_error("Existing stream %p not found!\n", stream);
1488 		return false;
1489 	}
1490 
1491 	old_plane_count = stream_status->plane_count;
1492 
1493 	for (i = 0; i < old_plane_count; i++)
1494 		del_planes[i] = stream_status->plane_states[i];
1495 
1496 	for (i = 0; i < old_plane_count; i++)
1497 		if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1498 			return false;
1499 
1500 	return true;
1501 }
1502 
1503 static bool add_all_planes_for_stream(
1504 		const struct dc *dc,
1505 		struct dc_stream_state *stream,
1506 		const struct dc_validation_set set[],
1507 		int set_count,
1508 		struct dc_state *context)
1509 {
1510 	int i, j;
1511 
1512 	for (i = 0; i < set_count; i++)
1513 		if (set[i].stream == stream)
1514 			break;
1515 
1516 	if (i == set_count) {
1517 		dm_error("Stream %p not found in set!\n", stream);
1518 		return false;
1519 	}
1520 
1521 	for (j = 0; j < set[i].plane_count; j++)
1522 		if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1523 			return false;
1524 
1525 	return true;
1526 }
1527 
1528 bool dc_add_all_planes_for_stream(
1529 		const struct dc *dc,
1530 		struct dc_stream_state *stream,
1531 		struct dc_plane_state * const *plane_states,
1532 		int plane_count,
1533 		struct dc_state *context)
1534 {
1535 	struct dc_validation_set set;
1536 	int i;
1537 
1538 	set.stream = stream;
1539 	set.plane_count = plane_count;
1540 
1541 	for (i = 0; i < plane_count; i++)
1542 		set.plane_states[i] = plane_states[i];
1543 
1544 	return add_all_planes_for_stream(dc, stream, &set, 1, context);
1545 }
1546 
1547 static bool is_timing_changed(struct dc_stream_state *cur_stream,
1548 		struct dc_stream_state *new_stream)
1549 {
1550 	if (cur_stream == NULL)
1551 		return true;
1552 
1553 	/* If output color space is changed, need to reprogram info frames */
1554 	if (cur_stream->output_color_space != new_stream->output_color_space)
1555 		return true;
1556 
1557 	return memcmp(
1558 		&cur_stream->timing,
1559 		&new_stream->timing,
1560 		sizeof(struct dc_crtc_timing)) != 0;
1561 }
1562 
1563 static bool are_stream_backends_same(
1564 	struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1565 {
1566 	if (stream_a == stream_b)
1567 		return true;
1568 
1569 	if (stream_a == NULL || stream_b == NULL)
1570 		return false;
1571 
1572 	if (is_timing_changed(stream_a, stream_b))
1573 		return false;
1574 
1575 	if (stream_a->dpms_off != stream_b->dpms_off)
1576 		return false;
1577 
1578 	return true;
1579 }
1580 
1581 /*
1582  * dc_is_stream_unchanged() - Compare two stream states for equivalence.
1583  *
1584  * Checks if there a difference between the two states
1585  * that would require a mode change.
1586  *
1587  * Does not compare cursor position or attributes.
1588  */
1589 bool dc_is_stream_unchanged(
1590 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1591 {
1592 
1593 	if (!are_stream_backends_same(old_stream, stream))
1594 		return false;
1595 
1596 	if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
1597 		return false;
1598 
1599 	return true;
1600 }
1601 
1602 /*
1603  * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
1604  */
1605 bool dc_is_stream_scaling_unchanged(
1606 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1607 {
1608 	if (old_stream == stream)
1609 		return true;
1610 
1611 	if (old_stream == NULL || stream == NULL)
1612 		return false;
1613 
1614 	if (memcmp(&old_stream->src,
1615 			&stream->src,
1616 			sizeof(struct rect)) != 0)
1617 		return false;
1618 
1619 	if (memcmp(&old_stream->dst,
1620 			&stream->dst,
1621 			sizeof(struct rect)) != 0)
1622 		return false;
1623 
1624 	return true;
1625 }
1626 
1627 static void update_stream_engine_usage(
1628 		struct resource_context *res_ctx,
1629 		const struct resource_pool *pool,
1630 		struct stream_encoder *stream_enc,
1631 		bool acquired)
1632 {
1633 	int i;
1634 
1635 	for (i = 0; i < pool->stream_enc_count; i++) {
1636 		if (pool->stream_enc[i] == stream_enc)
1637 			res_ctx->is_stream_enc_acquired[i] = acquired;
1638 	}
1639 }
1640 
1641 /* TODO: release audio object */
1642 void update_audio_usage(
1643 		struct resource_context *res_ctx,
1644 		const struct resource_pool *pool,
1645 		struct audio *audio,
1646 		bool acquired)
1647 {
1648 	int i;
1649 	for (i = 0; i < pool->audio_count; i++) {
1650 		if (pool->audios[i] == audio)
1651 			res_ctx->is_audio_acquired[i] = acquired;
1652 	}
1653 }
1654 
1655 static int acquire_first_free_pipe(
1656 		struct resource_context *res_ctx,
1657 		const struct resource_pool *pool,
1658 		struct dc_stream_state *stream)
1659 {
1660 	int i;
1661 
1662 	for (i = 0; i < pool->pipe_count; i++) {
1663 		if (!res_ctx->pipe_ctx[i].stream) {
1664 			struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
1665 
1666 			pipe_ctx->stream_res.tg = pool->timing_generators[i];
1667 			pipe_ctx->plane_res.mi = pool->mis[i];
1668 			pipe_ctx->plane_res.hubp = pool->hubps[i];
1669 			pipe_ctx->plane_res.ipp = pool->ipps[i];
1670 			pipe_ctx->plane_res.xfm = pool->transforms[i];
1671 			pipe_ctx->plane_res.dpp = pool->dpps[i];
1672 			pipe_ctx->stream_res.opp = pool->opps[i];
1673 			if (pool->dpps[i])
1674 				pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
1675 			pipe_ctx->pipe_idx = i;
1676 
1677 
1678 			pipe_ctx->stream = stream;
1679 			return i;
1680 		}
1681 	}
1682 	return -1;
1683 }
1684 
1685 static struct audio *find_first_free_audio(
1686 		struct resource_context *res_ctx,
1687 		const struct resource_pool *pool,
1688 		enum engine_id id,
1689 		enum dce_version dc_version)
1690 {
1691 	int i, available_audio_count;
1692 
1693 	available_audio_count = pool->audio_count;
1694 
1695 	for (i = 0; i < available_audio_count; i++) {
1696 		if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
1697 			/*we have enough audio endpoint, find the matching inst*/
1698 			if (id != i)
1699 				continue;
1700 			return pool->audios[i];
1701 		}
1702 	}
1703 
1704 	/* use engine id to find free audio */
1705 	if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
1706 		return pool->audios[id];
1707 	}
1708 	/*not found the matching one, first come first serve*/
1709 	for (i = 0; i < available_audio_count; i++) {
1710 		if (res_ctx->is_audio_acquired[i] == false) {
1711 			return pool->audios[i];
1712 		}
1713 	}
1714 	return 0;
1715 }
1716 
1717 /*
1718  * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
1719  */
1720 enum dc_status dc_add_stream_to_ctx(
1721 		struct dc *dc,
1722 		struct dc_state *new_ctx,
1723 		struct dc_stream_state *stream)
1724 {
1725 	enum dc_status res;
1726 	DC_LOGGER_INIT(dc->ctx->logger);
1727 
1728 	if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
1729 		DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
1730 		return DC_ERROR_UNEXPECTED;
1731 	}
1732 
1733 	new_ctx->streams[new_ctx->stream_count] = stream;
1734 	dc_stream_retain(stream);
1735 	new_ctx->stream_count++;
1736 
1737 	res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
1738 	if (res != DC_OK)
1739 		DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
1740 
1741 	return res;
1742 }
1743 
1744 /*
1745  * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
1746  */
1747 enum dc_status dc_remove_stream_from_ctx(
1748 			struct dc *dc,
1749 			struct dc_state *new_ctx,
1750 			struct dc_stream_state *stream)
1751 {
1752 	int i;
1753 	struct dc_context *dc_ctx = dc->ctx;
1754 	struct pipe_ctx *del_pipe = resource_get_head_pipe_for_stream(&new_ctx->res_ctx, stream);
1755 	struct pipe_ctx *odm_pipe;
1756 
1757 	if (!del_pipe) {
1758 		DC_ERROR("Pipe not found for stream %p !\n", stream);
1759 		return DC_ERROR_UNEXPECTED;
1760 	}
1761 
1762 	odm_pipe = del_pipe->next_odm_pipe;
1763 
1764 	/* Release primary pipe */
1765 	ASSERT(del_pipe->stream_res.stream_enc);
1766 	update_stream_engine_usage(
1767 			&new_ctx->res_ctx,
1768 				dc->res_pool,
1769 			del_pipe->stream_res.stream_enc,
1770 			false);
1771 	/* Release link encoder from stream in new dc_state. */
1772 	if (dc->res_pool->funcs->link_enc_unassign)
1773 		dc->res_pool->funcs->link_enc_unassign(new_ctx, del_pipe->stream);
1774 
1775 	if (del_pipe->stream_res.audio)
1776 		update_audio_usage(
1777 			&new_ctx->res_ctx,
1778 			dc->res_pool,
1779 			del_pipe->stream_res.audio,
1780 			false);
1781 
1782 	resource_unreference_clock_source(&new_ctx->res_ctx,
1783 					  dc->res_pool,
1784 					  del_pipe->clock_source);
1785 
1786 	if (dc->res_pool->funcs->remove_stream_from_ctx)
1787 		dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
1788 
1789 	while (odm_pipe) {
1790 		struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1791 
1792 		memset(odm_pipe, 0, sizeof(*odm_pipe));
1793 		odm_pipe = next_odm_pipe;
1794 	}
1795 	memset(del_pipe, 0, sizeof(*del_pipe));
1796 
1797 	for (i = 0; i < new_ctx->stream_count; i++)
1798 		if (new_ctx->streams[i] == stream)
1799 			break;
1800 
1801 	if (new_ctx->streams[i] != stream) {
1802 		DC_ERROR("Context doesn't have stream %p !\n", stream);
1803 		return DC_ERROR_UNEXPECTED;
1804 	}
1805 
1806 	dc_stream_release(new_ctx->streams[i]);
1807 	new_ctx->stream_count--;
1808 
1809 	/* Trim back arrays */
1810 	for (; i < new_ctx->stream_count; i++) {
1811 		new_ctx->streams[i] = new_ctx->streams[i + 1];
1812 		new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
1813 	}
1814 
1815 	new_ctx->streams[new_ctx->stream_count] = NULL;
1816 	memset(
1817 			&new_ctx->stream_status[new_ctx->stream_count],
1818 			0,
1819 			sizeof(new_ctx->stream_status[0]));
1820 
1821 	return DC_OK;
1822 }
1823 
1824 static struct dc_stream_state *find_pll_sharable_stream(
1825 		struct dc_stream_state *stream_needs_pll,
1826 		struct dc_state *context)
1827 {
1828 	int i;
1829 
1830 	for (i = 0; i < context->stream_count; i++) {
1831 		struct dc_stream_state *stream_has_pll = context->streams[i];
1832 
1833 		/* We are looking for non dp, non virtual stream */
1834 		if (resource_are_streams_timing_synchronizable(
1835 			stream_needs_pll, stream_has_pll)
1836 			&& !dc_is_dp_signal(stream_has_pll->signal)
1837 			&& stream_has_pll->link->connector_signal
1838 			!= SIGNAL_TYPE_VIRTUAL)
1839 			return stream_has_pll;
1840 
1841 	}
1842 
1843 	return NULL;
1844 }
1845 
1846 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
1847 {
1848 	uint32_t pix_clk = timing->pix_clk_100hz;
1849 	uint32_t normalized_pix_clk = pix_clk;
1850 
1851 	if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
1852 		pix_clk /= 2;
1853 	if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
1854 		switch (timing->display_color_depth) {
1855 		case COLOR_DEPTH_666:
1856 		case COLOR_DEPTH_888:
1857 			normalized_pix_clk = pix_clk;
1858 			break;
1859 		case COLOR_DEPTH_101010:
1860 			normalized_pix_clk = (pix_clk * 30) / 24;
1861 			break;
1862 		case COLOR_DEPTH_121212:
1863 			normalized_pix_clk = (pix_clk * 36) / 24;
1864 		break;
1865 		case COLOR_DEPTH_161616:
1866 			normalized_pix_clk = (pix_clk * 48) / 24;
1867 		break;
1868 		default:
1869 			ASSERT(0);
1870 		break;
1871 		}
1872 	}
1873 	return normalized_pix_clk;
1874 }
1875 
1876 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
1877 {
1878 	/* update actual pixel clock on all streams */
1879 	if (dc_is_hdmi_signal(stream->signal))
1880 		stream->phy_pix_clk = get_norm_pix_clk(
1881 			&stream->timing) / 10;
1882 	else
1883 		stream->phy_pix_clk =
1884 			stream->timing.pix_clk_100hz / 10;
1885 
1886 	if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
1887 		stream->phy_pix_clk *= 2;
1888 }
1889 
1890 static int acquire_resource_from_hw_enabled_state(
1891 		struct resource_context *res_ctx,
1892 		const struct resource_pool *pool,
1893 		struct dc_stream_state *stream)
1894 {
1895 	struct dc_link *link = stream->link;
1896 	unsigned int i, inst, tg_inst = 0;
1897 
1898 	/* Check for enabled DIG to identify enabled display */
1899 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1900 		return -1;
1901 
1902 	inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1903 
1904 	if (inst == ENGINE_ID_UNKNOWN)
1905 		return -1;
1906 
1907 	for (i = 0; i < pool->stream_enc_count; i++) {
1908 		if (pool->stream_enc[i]->id == inst) {
1909 			tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
1910 				pool->stream_enc[i]);
1911 			break;
1912 		}
1913 	}
1914 
1915 	// tg_inst not found
1916 	if (i == pool->stream_enc_count)
1917 		return -1;
1918 
1919 	if (tg_inst >= pool->timing_generator_count)
1920 		return -1;
1921 
1922 	if (!res_ctx->pipe_ctx[tg_inst].stream) {
1923 		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
1924 
1925 		pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
1926 		pipe_ctx->plane_res.mi = pool->mis[tg_inst];
1927 		pipe_ctx->plane_res.hubp = pool->hubps[tg_inst];
1928 		pipe_ctx->plane_res.ipp = pool->ipps[tg_inst];
1929 		pipe_ctx->plane_res.xfm = pool->transforms[tg_inst];
1930 		pipe_ctx->plane_res.dpp = pool->dpps[tg_inst];
1931 		pipe_ctx->stream_res.opp = pool->opps[tg_inst];
1932 
1933 		if (pool->dpps[tg_inst]) {
1934 			pipe_ctx->plane_res.mpcc_inst = pool->dpps[tg_inst]->inst;
1935 
1936 			// Read DPP->MPCC->OPP Pipe from HW State
1937 			if (pool->mpc->funcs->read_mpcc_state) {
1938 				struct mpcc_state s = {0};
1939 
1940 				pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
1941 
1942 				if (s.dpp_id < MAX_MPCC)
1943 					pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id = s.dpp_id;
1944 
1945 				if (s.bot_mpcc_id < MAX_MPCC)
1946 					pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
1947 							&pool->mpc->mpcc_array[s.bot_mpcc_id];
1948 
1949 				if (s.opp_id < MAX_OPP)
1950 					pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
1951 			}
1952 		}
1953 		pipe_ctx->pipe_idx = tg_inst;
1954 
1955 		pipe_ctx->stream = stream;
1956 		return tg_inst;
1957 	}
1958 
1959 	return -1;
1960 }
1961 
1962 static void mark_seamless_boot_stream(
1963 		const struct dc  *dc,
1964 		struct dc_stream_state *stream)
1965 {
1966 	struct dc_bios *dcb = dc->ctx->dc_bios;
1967 
1968 	/* TODO: Check Linux */
1969 	if (dc->config.allow_seamless_boot_optimization &&
1970 			!dcb->funcs->is_accelerated_mode(dcb)) {
1971 		if (dc_validate_seamless_boot_timing(dc, stream->sink, &stream->timing))
1972 			stream->apply_seamless_boot_optimization = true;
1973 	}
1974 }
1975 
1976 enum dc_status resource_map_pool_resources(
1977 		const struct dc  *dc,
1978 		struct dc_state *context,
1979 		struct dc_stream_state *stream)
1980 {
1981 	const struct resource_pool *pool = dc->res_pool;
1982 	int i;
1983 	struct dc_context *dc_ctx = dc->ctx;
1984 	struct pipe_ctx *pipe_ctx = NULL;
1985 	int pipe_idx = -1;
1986 
1987 	calculate_phy_pix_clks(stream);
1988 
1989 	mark_seamless_boot_stream(dc, stream);
1990 
1991 	if (stream->apply_seamless_boot_optimization) {
1992 		pipe_idx = acquire_resource_from_hw_enabled_state(
1993 				&context->res_ctx,
1994 				pool,
1995 				stream);
1996 		if (pipe_idx < 0)
1997 			/* hw resource was assigned to other stream */
1998 			stream->apply_seamless_boot_optimization = false;
1999 	}
2000 
2001 	if (pipe_idx < 0)
2002 		/* acquire new resources */
2003 		pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2004 
2005 #ifdef CONFIG_DRM_AMD_DC_DCN
2006 	if (pipe_idx < 0)
2007 		pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2008 #endif
2009 
2010 	if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2011 		return DC_NO_CONTROLLER_RESOURCE;
2012 
2013 	pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2014 
2015 	pipe_ctx->stream_res.stream_enc =
2016 		dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2017 			&context->res_ctx, pool, stream);
2018 
2019 	if (!pipe_ctx->stream_res.stream_enc)
2020 		return DC_NO_STREAM_ENC_RESOURCE;
2021 
2022 	update_stream_engine_usage(
2023 		&context->res_ctx, pool,
2024 		pipe_ctx->stream_res.stream_enc,
2025 		true);
2026 
2027 	/* TODO: Add check if ASIC support and EDID audio */
2028 	if (!stream->converter_disable_audio &&
2029 	    dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2030 	    stream->audio_info.mode_count && stream->audio_info.flags.all) {
2031 		pipe_ctx->stream_res.audio = find_first_free_audio(
2032 		&context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2033 
2034 		/*
2035 		 * Audio assigned in order first come first get.
2036 		 * There are asics which has number of audio
2037 		 * resources less then number of pipes
2038 		 */
2039 		if (pipe_ctx->stream_res.audio)
2040 			update_audio_usage(&context->res_ctx, pool,
2041 					   pipe_ctx->stream_res.audio, true);
2042 	}
2043 
2044 	/* Add ABM to the resource if on EDP */
2045 	if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2046 #if defined(CONFIG_DRM_AMD_DC_DCN)
2047 		if (pool->abm)
2048 			pipe_ctx->stream_res.abm = pool->abm;
2049 		else
2050 			pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2051 #else
2052 		pipe_ctx->stream_res.abm = pool->abm;
2053 #endif
2054 	}
2055 
2056 	for (i = 0; i < context->stream_count; i++)
2057 		if (context->streams[i] == stream) {
2058 			context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2059 			context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2060 			context->stream_status[i].audio_inst =
2061 				pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2062 
2063 			return DC_OK;
2064 		}
2065 
2066 	DC_ERROR("Stream %p not found in new ctx!\n", stream);
2067 	return DC_ERROR_UNEXPECTED;
2068 }
2069 
2070 /**
2071  * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2072  * Is a shallow copy.  Increments refcounts on existing streams and planes.
2073  * @dc: copy out of dc->current_state
2074  * @dst_ctx: copy into this
2075  */
2076 void dc_resource_state_copy_construct_current(
2077 		const struct dc *dc,
2078 		struct dc_state *dst_ctx)
2079 {
2080 	dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2081 }
2082 
2083 
2084 void dc_resource_state_construct(
2085 		const struct dc *dc,
2086 		struct dc_state *dst_ctx)
2087 {
2088 	dst_ctx->clk_mgr = dc->clk_mgr;
2089 }
2090 
2091 
2092 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2093 {
2094 	return dc->res_pool->res_cap->num_dsc > 0;
2095 }
2096 
2097 
2098 /**
2099  * dc_validate_global_state() - Determine if HW can support a given state
2100  * Checks HW resource availability and bandwidth requirement.
2101  * @dc: dc struct for this driver
2102  * @new_ctx: state to be validated
2103  * @fast_validate: set to true if only yes/no to support matters
2104  *
2105  * Return: DC_OK if the result can be programmed.  Otherwise, an error code.
2106  */
2107 enum dc_status dc_validate_global_state(
2108 		struct dc *dc,
2109 		struct dc_state *new_ctx,
2110 		bool fast_validate)
2111 {
2112 	enum dc_status result = DC_ERROR_UNEXPECTED;
2113 	int i, j;
2114 
2115 	if (!new_ctx)
2116 		return DC_ERROR_UNEXPECTED;
2117 
2118 	if (dc->res_pool->funcs->validate_global) {
2119 		result = dc->res_pool->funcs->validate_global(dc, new_ctx);
2120 		if (result != DC_OK)
2121 			return result;
2122 	}
2123 
2124 	for (i = 0; i < new_ctx->stream_count; i++) {
2125 		struct dc_stream_state *stream = new_ctx->streams[i];
2126 
2127 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
2128 			struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
2129 
2130 			if (pipe_ctx->stream != stream)
2131 				continue;
2132 
2133 			if (dc->res_pool->funcs->patch_unknown_plane_state &&
2134 					pipe_ctx->plane_state &&
2135 					pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
2136 				result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
2137 				if (result != DC_OK)
2138 					return result;
2139 			}
2140 
2141 			/* Switch to dp clock source only if there is
2142 			 * no non dp stream that shares the same timing
2143 			 * with the dp stream.
2144 			 */
2145 			if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
2146 				!find_pll_sharable_stream(stream, new_ctx)) {
2147 
2148 				resource_unreference_clock_source(
2149 						&new_ctx->res_ctx,
2150 						dc->res_pool,
2151 						pipe_ctx->clock_source);
2152 
2153 				pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
2154 				resource_reference_clock_source(
2155 						&new_ctx->res_ctx,
2156 						dc->res_pool,
2157 						 pipe_ctx->clock_source);
2158 			}
2159 		}
2160 	}
2161 
2162 	result = resource_build_scaling_params_for_context(dc, new_ctx);
2163 
2164 	if (result == DC_OK)
2165 		if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
2166 			result = DC_FAIL_BANDWIDTH_VALIDATE;
2167 
2168 	return result;
2169 }
2170 
2171 static void patch_gamut_packet_checksum(
2172 		struct dc_info_packet *gamut_packet)
2173 {
2174 	/* For gamut we recalc checksum */
2175 	if (gamut_packet->valid) {
2176 		uint8_t chk_sum = 0;
2177 		uint8_t *ptr;
2178 		uint8_t i;
2179 
2180 		/*start of the Gamut data. */
2181 		ptr = &gamut_packet->sb[3];
2182 
2183 		for (i = 0; i <= gamut_packet->sb[1]; i++)
2184 			chk_sum += ptr[i];
2185 
2186 		gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
2187 	}
2188 }
2189 
2190 static void set_avi_info_frame(
2191 		struct dc_info_packet *info_packet,
2192 		struct pipe_ctx *pipe_ctx)
2193 {
2194 	struct dc_stream_state *stream = pipe_ctx->stream;
2195 	enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
2196 	uint32_t pixel_encoding = 0;
2197 	enum scanning_type scan_type = SCANNING_TYPE_NODATA;
2198 	enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
2199 	bool itc = false;
2200 	uint8_t itc_value = 0;
2201 	uint8_t cn0_cn1 = 0;
2202 	unsigned int cn0_cn1_value = 0;
2203 	uint8_t *check_sum = NULL;
2204 	uint8_t byte_index = 0;
2205 	union hdmi_info_packet hdmi_info;
2206 	union display_content_support support = {0};
2207 	unsigned int vic = pipe_ctx->stream->timing.vic;
2208 	enum dc_timing_3d_format format;
2209 
2210 	memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
2211 
2212 	color_space = pipe_ctx->stream->output_color_space;
2213 	if (color_space == COLOR_SPACE_UNKNOWN)
2214 		color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
2215 			COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
2216 
2217 	/* Initialize header */
2218 	hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
2219 	/* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
2220 	* not be used in HDMI 2.0 (Section 10.1) */
2221 	hdmi_info.bits.header.version = 2;
2222 	hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
2223 
2224 	/*
2225 	 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
2226 	 * according to HDMI 2.0 spec (Section 10.1)
2227 	 */
2228 
2229 	switch (stream->timing.pixel_encoding) {
2230 	case PIXEL_ENCODING_YCBCR422:
2231 		pixel_encoding = 1;
2232 		break;
2233 
2234 	case PIXEL_ENCODING_YCBCR444:
2235 		pixel_encoding = 2;
2236 		break;
2237 	case PIXEL_ENCODING_YCBCR420:
2238 		pixel_encoding = 3;
2239 		break;
2240 
2241 	case PIXEL_ENCODING_RGB:
2242 	default:
2243 		pixel_encoding = 0;
2244 	}
2245 
2246 	/* Y0_Y1_Y2 : The pixel encoding */
2247 	/* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
2248 	hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
2249 
2250 	/* A0 = 1 Active Format Information valid */
2251 	hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
2252 
2253 	/* B0, B1 = 3; Bar info data is valid */
2254 	hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
2255 
2256 	hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
2257 
2258 	/* S0, S1 : Underscan / Overscan */
2259 	/* TODO: un-hardcode scan type */
2260 	scan_type = SCANNING_TYPE_UNDERSCAN;
2261 	hdmi_info.bits.S0_S1 = scan_type;
2262 
2263 	/* C0, C1 : Colorimetry */
2264 	if (color_space == COLOR_SPACE_YCBCR709 ||
2265 			color_space == COLOR_SPACE_YCBCR709_LIMITED)
2266 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
2267 	else if (color_space == COLOR_SPACE_YCBCR601 ||
2268 			color_space == COLOR_SPACE_YCBCR601_LIMITED)
2269 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
2270 	else {
2271 		hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
2272 	}
2273 	if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
2274 			color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
2275 			color_space == COLOR_SPACE_2020_YCBCR) {
2276 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
2277 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2278 	} else if (color_space == COLOR_SPACE_ADOBERGB) {
2279 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
2280 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2281 	}
2282 
2283 	/* TODO: un-hardcode aspect ratio */
2284 	aspect = stream->timing.aspect_ratio;
2285 
2286 	switch (aspect) {
2287 	case ASPECT_RATIO_4_3:
2288 	case ASPECT_RATIO_16_9:
2289 		hdmi_info.bits.M0_M1 = aspect;
2290 		break;
2291 
2292 	case ASPECT_RATIO_NO_DATA:
2293 	case ASPECT_RATIO_64_27:
2294 	case ASPECT_RATIO_256_135:
2295 	default:
2296 		hdmi_info.bits.M0_M1 = 0;
2297 	}
2298 
2299 	/* Active Format Aspect ratio - same as Picture Aspect Ratio. */
2300 	hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
2301 
2302 	/* TODO: un-hardcode cn0_cn1 and itc */
2303 
2304 	cn0_cn1 = 0;
2305 	cn0_cn1_value = 0;
2306 
2307 	itc = true;
2308 	itc_value = 1;
2309 
2310 	support = stream->content_support;
2311 
2312 	if (itc) {
2313 		if (!support.bits.valid_content_type) {
2314 			cn0_cn1_value = 0;
2315 		} else {
2316 			if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
2317 				if (support.bits.graphics_content == 1) {
2318 					cn0_cn1_value = 0;
2319 				}
2320 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
2321 				if (support.bits.photo_content == 1) {
2322 					cn0_cn1_value = 1;
2323 				} else {
2324 					cn0_cn1_value = 0;
2325 					itc_value = 0;
2326 				}
2327 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
2328 				if (support.bits.cinema_content == 1) {
2329 					cn0_cn1_value = 2;
2330 				} else {
2331 					cn0_cn1_value = 0;
2332 					itc_value = 0;
2333 				}
2334 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
2335 				if (support.bits.game_content == 1) {
2336 					cn0_cn1_value = 3;
2337 				} else {
2338 					cn0_cn1_value = 0;
2339 					itc_value = 0;
2340 				}
2341 			}
2342 		}
2343 		hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
2344 		hdmi_info.bits.ITC = itc_value;
2345 	}
2346 
2347 	if (stream->qs_bit == 1) {
2348 		if (color_space == COLOR_SPACE_SRGB ||
2349 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2350 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_FULL_RANGE;
2351 		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2352 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2353 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_LIMITED_RANGE;
2354 		else
2355 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2356 	} else
2357 		hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2358 
2359 	/* TODO : We should handle YCC quantization */
2360 	/* but we do not have matrix calculation */
2361 	if (stream->qy_bit == 1) {
2362 		if (color_space == COLOR_SPACE_SRGB ||
2363 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2364 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2365 		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2366 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2367 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2368 		else
2369 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2370 	} else
2371 		hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2372 
2373 	///VIC
2374 	format = stream->timing.timing_3d_format;
2375 	/*todo, add 3DStereo support*/
2376 	if (format != TIMING_3D_FORMAT_NONE) {
2377 		// Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
2378 		switch (pipe_ctx->stream->timing.hdmi_vic) {
2379 		case 1:
2380 			vic = 95;
2381 			break;
2382 		case 2:
2383 			vic = 94;
2384 			break;
2385 		case 3:
2386 			vic = 93;
2387 			break;
2388 		case 4:
2389 			vic = 98;
2390 			break;
2391 		default:
2392 			break;
2393 		}
2394 	}
2395 	/* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
2396 	hdmi_info.bits.VIC0_VIC7 = vic;
2397 	if (vic >= 128)
2398 		hdmi_info.bits.header.version = 3;
2399 	/* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
2400 	 * the Source shall use 20 AVI InfoFrame Version 4
2401 	 */
2402 	if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
2403 			hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
2404 		hdmi_info.bits.header.version = 4;
2405 		hdmi_info.bits.header.length = 14;
2406 	}
2407 
2408 	/* pixel repetition
2409 	 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
2410 	 * repetition start from 1 */
2411 	hdmi_info.bits.PR0_PR3 = 0;
2412 
2413 	/* Bar Info
2414 	 * barTop:    Line Number of End of Top Bar.
2415 	 * barBottom: Line Number of Start of Bottom Bar.
2416 	 * barLeft:   Pixel Number of End of Left Bar.
2417 	 * barRight:  Pixel Number of Start of Right Bar. */
2418 	hdmi_info.bits.bar_top = stream->timing.v_border_top;
2419 	hdmi_info.bits.bar_bottom = (stream->timing.v_total
2420 			- stream->timing.v_border_bottom + 1);
2421 	hdmi_info.bits.bar_left  = stream->timing.h_border_left;
2422 	hdmi_info.bits.bar_right = (stream->timing.h_total
2423 			- stream->timing.h_border_right + 1);
2424 
2425     /* Additional Colorimetry Extension
2426      * Used in conduction with C0-C1 and EC0-EC2
2427      * 0 = DCI-P3 RGB (D65)
2428      * 1 = DCI-P3 RGB (theater)
2429      */
2430 	hdmi_info.bits.ACE0_ACE3 = 0;
2431 
2432 	/* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
2433 	check_sum = &hdmi_info.packet_raw_data.sb[0];
2434 
2435 	*check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
2436 
2437 	for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
2438 		*check_sum += hdmi_info.packet_raw_data.sb[byte_index];
2439 
2440 	/* one byte complement */
2441 	*check_sum = (uint8_t) (0x100 - *check_sum);
2442 
2443 	/* Store in hw_path_mode */
2444 	info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
2445 	info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
2446 	info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
2447 
2448 	for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
2449 		info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
2450 
2451 	info_packet->valid = true;
2452 }
2453 
2454 static void set_vendor_info_packet(
2455 		struct dc_info_packet *info_packet,
2456 		struct dc_stream_state *stream)
2457 {
2458 	/* SPD info packet for FreeSync */
2459 
2460 	/* Check if Freesync is supported. Return if false. If true,
2461 	 * set the corresponding bit in the info packet
2462 	 */
2463 	if (!stream->vsp_infopacket.valid)
2464 		return;
2465 
2466 	*info_packet = stream->vsp_infopacket;
2467 }
2468 
2469 static void set_spd_info_packet(
2470 		struct dc_info_packet *info_packet,
2471 		struct dc_stream_state *stream)
2472 {
2473 	/* SPD info packet for FreeSync */
2474 
2475 	/* Check if Freesync is supported. Return if false. If true,
2476 	 * set the corresponding bit in the info packet
2477 	 */
2478 	if (!stream->vrr_infopacket.valid)
2479 		return;
2480 
2481 	*info_packet = stream->vrr_infopacket;
2482 }
2483 
2484 static void set_hdr_static_info_packet(
2485 		struct dc_info_packet *info_packet,
2486 		struct dc_stream_state *stream)
2487 {
2488 	/* HDR Static Metadata info packet for HDR10 */
2489 
2490 	if (!stream->hdr_static_metadata.valid ||
2491 			stream->use_dynamic_meta)
2492 		return;
2493 
2494 	*info_packet = stream->hdr_static_metadata;
2495 }
2496 
2497 static void set_vsc_info_packet(
2498 		struct dc_info_packet *info_packet,
2499 		struct dc_stream_state *stream)
2500 {
2501 	if (!stream->vsc_infopacket.valid)
2502 		return;
2503 
2504 	*info_packet = stream->vsc_infopacket;
2505 }
2506 
2507 void dc_resource_state_destruct(struct dc_state *context)
2508 {
2509 	int i, j;
2510 
2511 	for (i = 0; i < context->stream_count; i++) {
2512 		for (j = 0; j < context->stream_status[i].plane_count; j++)
2513 			dc_plane_state_release(
2514 				context->stream_status[i].plane_states[j]);
2515 
2516 		context->stream_status[i].plane_count = 0;
2517 		dc_stream_release(context->streams[i]);
2518 		context->streams[i] = NULL;
2519 	}
2520 	context->stream_count = 0;
2521 }
2522 
2523 void dc_resource_state_copy_construct(
2524 		const struct dc_state *src_ctx,
2525 		struct dc_state *dst_ctx)
2526 {
2527 	int i, j;
2528 	struct kref refcount = dst_ctx->refcount;
2529 
2530 	*dst_ctx = *src_ctx;
2531 
2532 	for (i = 0; i < MAX_PIPES; i++) {
2533 		struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
2534 
2535 		if (cur_pipe->top_pipe)
2536 			cur_pipe->top_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2537 
2538 		if (cur_pipe->bottom_pipe)
2539 			cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2540 
2541 		if (cur_pipe->next_odm_pipe)
2542 			cur_pipe->next_odm_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2543 
2544 		if (cur_pipe->prev_odm_pipe)
2545 			cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2546 	}
2547 
2548 	for (i = 0; i < dst_ctx->stream_count; i++) {
2549 		dc_stream_retain(dst_ctx->streams[i]);
2550 		for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
2551 			dc_plane_state_retain(
2552 				dst_ctx->stream_status[i].plane_states[j]);
2553 	}
2554 
2555 	/* context refcount should not be overridden */
2556 	dst_ctx->refcount = refcount;
2557 
2558 }
2559 
2560 struct clock_source *dc_resource_find_first_free_pll(
2561 		struct resource_context *res_ctx,
2562 		const struct resource_pool *pool)
2563 {
2564 	int i;
2565 
2566 	for (i = 0; i < pool->clk_src_count; ++i) {
2567 		if (res_ctx->clock_source_ref_count[i] == 0)
2568 			return pool->clock_sources[i];
2569 	}
2570 
2571 	return NULL;
2572 }
2573 
2574 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
2575 {
2576 	enum signal_type signal = SIGNAL_TYPE_NONE;
2577 	struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
2578 
2579 	/* default all packets to invalid */
2580 	info->avi.valid = false;
2581 	info->gamut.valid = false;
2582 	info->vendor.valid = false;
2583 	info->spd.valid = false;
2584 	info->hdrsmd.valid = false;
2585 	info->vsc.valid = false;
2586 
2587 	signal = pipe_ctx->stream->signal;
2588 
2589 	/* HDMi and DP have different info packets*/
2590 	if (dc_is_hdmi_signal(signal)) {
2591 		set_avi_info_frame(&info->avi, pipe_ctx);
2592 
2593 		set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
2594 
2595 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
2596 
2597 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2598 
2599 	} else if (dc_is_dp_signal(signal)) {
2600 		set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
2601 
2602 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
2603 
2604 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2605 	}
2606 
2607 	patch_gamut_packet_checksum(&info->gamut);
2608 }
2609 
2610 enum dc_status resource_map_clock_resources(
2611 		const struct dc  *dc,
2612 		struct dc_state *context,
2613 		struct dc_stream_state *stream)
2614 {
2615 	/* acquire new resources */
2616 	const struct resource_pool *pool = dc->res_pool;
2617 	struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
2618 				&context->res_ctx, stream);
2619 
2620 	if (!pipe_ctx)
2621 		return DC_ERROR_UNEXPECTED;
2622 
2623 	if (dc_is_dp_signal(pipe_ctx->stream->signal)
2624 		|| pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
2625 		pipe_ctx->clock_source = pool->dp_clock_source;
2626 	else {
2627 		pipe_ctx->clock_source = NULL;
2628 
2629 		if (!dc->config.disable_disp_pll_sharing)
2630 			pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
2631 				&context->res_ctx,
2632 				pipe_ctx);
2633 
2634 		if (pipe_ctx->clock_source == NULL)
2635 			pipe_ctx->clock_source =
2636 				dc_resource_find_first_free_pll(
2637 					&context->res_ctx,
2638 					pool);
2639 	}
2640 
2641 	if (pipe_ctx->clock_source == NULL)
2642 		return DC_NO_CLOCK_SOURCE_RESOURCE;
2643 
2644 	resource_reference_clock_source(
2645 		&context->res_ctx, pool,
2646 		pipe_ctx->clock_source);
2647 
2648 	return DC_OK;
2649 }
2650 
2651 /*
2652  * Note: We need to disable output if clock sources change,
2653  * since bios does optimization and doesn't apply if changing
2654  * PHY when not already disabled.
2655  */
2656 bool pipe_need_reprogram(
2657 		struct pipe_ctx *pipe_ctx_old,
2658 		struct pipe_ctx *pipe_ctx)
2659 {
2660 	if (!pipe_ctx_old->stream)
2661 		return false;
2662 
2663 	if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
2664 		return true;
2665 
2666 	if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
2667 		return true;
2668 
2669 	if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
2670 		return true;
2671 
2672 	if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
2673 			&& pipe_ctx_old->stream != pipe_ctx->stream)
2674 		return true;
2675 
2676 	if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
2677 		return true;
2678 
2679 	if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
2680 		return true;
2681 
2682 	if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
2683 		return true;
2684 
2685 	if (false == pipe_ctx_old->stream->link->link_state_valid &&
2686 		false == pipe_ctx_old->stream->dpms_off)
2687 		return true;
2688 
2689 	if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
2690 		return true;
2691 
2692 	/* DIG link encoder resource assignment for stream changed. */
2693 	if (pipe_ctx_old->stream->link_enc != pipe_ctx->stream->link_enc)
2694 		return true;
2695 
2696 	return false;
2697 }
2698 
2699 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
2700 		struct bit_depth_reduction_params *fmt_bit_depth)
2701 {
2702 	enum dc_dither_option option = stream->dither_option;
2703 	enum dc_pixel_encoding pixel_encoding =
2704 			stream->timing.pixel_encoding;
2705 
2706 	memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
2707 
2708 	if (option == DITHER_OPTION_DEFAULT) {
2709 		switch (stream->timing.display_color_depth) {
2710 		case COLOR_DEPTH_666:
2711 			option = DITHER_OPTION_SPATIAL6;
2712 			break;
2713 		case COLOR_DEPTH_888:
2714 			option = DITHER_OPTION_SPATIAL8;
2715 			break;
2716 		case COLOR_DEPTH_101010:
2717 			option = DITHER_OPTION_SPATIAL10;
2718 			break;
2719 		default:
2720 			option = DITHER_OPTION_DISABLE;
2721 		}
2722 	}
2723 
2724 	if (option == DITHER_OPTION_DISABLE)
2725 		return;
2726 
2727 	if (option == DITHER_OPTION_TRUN6) {
2728 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2729 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
2730 	} else if (option == DITHER_OPTION_TRUN8 ||
2731 			option == DITHER_OPTION_TRUN8_SPATIAL6 ||
2732 			option == DITHER_OPTION_TRUN8_FM6) {
2733 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2734 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
2735 	} else if (option == DITHER_OPTION_TRUN10        ||
2736 			option == DITHER_OPTION_TRUN10_SPATIAL6   ||
2737 			option == DITHER_OPTION_TRUN10_SPATIAL8   ||
2738 			option == DITHER_OPTION_TRUN10_FM8     ||
2739 			option == DITHER_OPTION_TRUN10_FM6     ||
2740 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2741 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2742 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2743 	}
2744 
2745 	/* special case - Formatter can only reduce by 4 bits at most.
2746 	 * When reducing from 12 to 6 bits,
2747 	 * HW recommends we use trunc with round mode
2748 	 * (if we did nothing, trunc to 10 bits would be used)
2749 	 * note that any 12->10 bit reduction is ignored prior to DCE8,
2750 	 * as the input was 10 bits.
2751 	 */
2752 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
2753 			option == DITHER_OPTION_SPATIAL6 ||
2754 			option == DITHER_OPTION_FM6) {
2755 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2756 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2757 		fmt_bit_depth->flags.TRUNCATE_MODE = 1;
2758 	}
2759 
2760 	/* spatial dither
2761 	 * note that spatial modes 1-3 are never used
2762 	 */
2763 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM            ||
2764 			option == DITHER_OPTION_SPATIAL6 ||
2765 			option == DITHER_OPTION_TRUN10_SPATIAL6      ||
2766 			option == DITHER_OPTION_TRUN8_SPATIAL6) {
2767 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2768 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
2769 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2770 		fmt_bit_depth->flags.RGB_RANDOM =
2771 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2772 	} else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM            ||
2773 			option == DITHER_OPTION_SPATIAL8 ||
2774 			option == DITHER_OPTION_SPATIAL8_FM6        ||
2775 			option == DITHER_OPTION_TRUN10_SPATIAL8      ||
2776 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2777 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2778 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
2779 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2780 		fmt_bit_depth->flags.RGB_RANDOM =
2781 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2782 	} else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
2783 			option == DITHER_OPTION_SPATIAL10 ||
2784 			option == DITHER_OPTION_SPATIAL10_FM8 ||
2785 			option == DITHER_OPTION_SPATIAL10_FM6) {
2786 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2787 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
2788 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2789 		fmt_bit_depth->flags.RGB_RANDOM =
2790 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2791 	}
2792 
2793 	if (option == DITHER_OPTION_SPATIAL6 ||
2794 			option == DITHER_OPTION_SPATIAL8 ||
2795 			option == DITHER_OPTION_SPATIAL10) {
2796 		fmt_bit_depth->flags.FRAME_RANDOM = 0;
2797 	} else {
2798 		fmt_bit_depth->flags.FRAME_RANDOM = 1;
2799 	}
2800 
2801 	//////////////////////
2802 	//// temporal dither
2803 	//////////////////////
2804 	if (option == DITHER_OPTION_FM6           ||
2805 			option == DITHER_OPTION_SPATIAL8_FM6     ||
2806 			option == DITHER_OPTION_SPATIAL10_FM6     ||
2807 			option == DITHER_OPTION_TRUN10_FM6     ||
2808 			option == DITHER_OPTION_TRUN8_FM6      ||
2809 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2810 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2811 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
2812 	} else if (option == DITHER_OPTION_FM8        ||
2813 			option == DITHER_OPTION_SPATIAL10_FM8  ||
2814 			option == DITHER_OPTION_TRUN10_FM8) {
2815 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2816 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
2817 	} else if (option == DITHER_OPTION_FM10) {
2818 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2819 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
2820 	}
2821 
2822 	fmt_bit_depth->pixel_encoding = pixel_encoding;
2823 }
2824 
2825 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
2826 {
2827 	struct dc_link *link = stream->link;
2828 	struct timing_generator *tg = dc->res_pool->timing_generators[0];
2829 	enum dc_status res = DC_OK;
2830 
2831 	calculate_phy_pix_clks(stream);
2832 
2833 	if (!tg->funcs->validate_timing(tg, &stream->timing))
2834 		res = DC_FAIL_CONTROLLER_VALIDATE;
2835 
2836 	if (res == DC_OK) {
2837 		if (!link->link_enc->funcs->validate_output_with_stream(
2838 						link->link_enc, stream))
2839 			res = DC_FAIL_ENC_VALIDATE;
2840 	}
2841 
2842 	/* TODO: validate audio ASIC caps, encoder */
2843 
2844 	if (res == DC_OK)
2845 		res = dc_link_validate_mode_timing(stream,
2846 		      link,
2847 		      &stream->timing);
2848 
2849 	return res;
2850 }
2851 
2852 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
2853 {
2854 	enum dc_status res = DC_OK;
2855 
2856 	/* TODO For now validates pixel format only */
2857 	if (dc->res_pool->funcs->validate_plane)
2858 		return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
2859 
2860 	return res;
2861 }
2862 
2863 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
2864 {
2865 	switch (format) {
2866 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
2867 		return 8;
2868 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
2869 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
2870 		return 12;
2871 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
2872 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
2873 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
2874 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
2875 		return 16;
2876 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
2877 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
2878 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
2879 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
2880 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
2881 #if defined(CONFIG_DRM_AMD_DC_DCN)
2882 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
2883 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
2884 #endif
2885 		return 32;
2886 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
2887 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
2888 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
2889 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
2890 		return 64;
2891 	default:
2892 		ASSERT_CRITICAL(false);
2893 		return -1;
2894 	}
2895 }
2896 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
2897 {
2898 	if (modes) {
2899 		if (modes->sample_rates.rate.RATE_192)
2900 			return 192000;
2901 		if (modes->sample_rates.rate.RATE_176_4)
2902 			return 176400;
2903 		if (modes->sample_rates.rate.RATE_96)
2904 			return 96000;
2905 		if (modes->sample_rates.rate.RATE_88_2)
2906 			return 88200;
2907 		if (modes->sample_rates.rate.RATE_48)
2908 			return 48000;
2909 		if (modes->sample_rates.rate.RATE_44_1)
2910 			return 44100;
2911 		if (modes->sample_rates.rate.RATE_32)
2912 			return 32000;
2913 	}
2914 	/*original logic when no audio info*/
2915 	return 441000;
2916 }
2917 
2918 void get_audio_check(struct audio_info *aud_modes,
2919 	struct audio_check *audio_chk)
2920 {
2921 	unsigned int i;
2922 	unsigned int max_sample_rate = 0;
2923 
2924 	if (aud_modes) {
2925 		audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
2926 
2927 		audio_chk->max_audiosample_rate = 0;
2928 		for (i = 0; i < aud_modes->mode_count; i++) {
2929 			max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
2930 			if (audio_chk->max_audiosample_rate < max_sample_rate)
2931 				audio_chk->max_audiosample_rate = max_sample_rate;
2932 			/*dts takes the same as type 2: AP = 0.25*/
2933 		}
2934 		/*check which one take more bandwidth*/
2935 		if (audio_chk->max_audiosample_rate > 192000)
2936 			audio_chk->audio_packet_type = 0x9;/*AP =1*/
2937 		audio_chk->acat = 0;/*not support*/
2938 	}
2939 }
2940 
2941