1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include <linux/slab.h>
27 
28 #include "dm_services.h"
29 
30 #include "resource.h"
31 #include "include/irq_service_interface.h"
32 #include "link_encoder.h"
33 #include "stream_encoder.h"
34 #include "opp.h"
35 #include "timing_generator.h"
36 #include "transform.h"
37 #include "dccg.h"
38 #include "dchubbub.h"
39 #include "dpp.h"
40 #include "core_types.h"
41 #include "set_mode_types.h"
42 #include "virtual/virtual_stream_encoder.h"
43 #include "dpcd_defs.h"
44 #include "link_enc_cfg.h"
45 #include "dc_link_dp.h"
46 
47 #if defined(CONFIG_DRM_AMD_DC_SI)
48 #include "dce60/dce60_resource.h"
49 #endif
50 #include "dce80/dce80_resource.h"
51 #include "dce100/dce100_resource.h"
52 #include "dce110/dce110_resource.h"
53 #include "dce112/dce112_resource.h"
54 #include "dce120/dce120_resource.h"
55 #if defined(CONFIG_DRM_AMD_DC_DCN)
56 #include "dcn10/dcn10_resource.h"
57 #include "dcn20/dcn20_resource.h"
58 #include "dcn21/dcn21_resource.h"
59 #include "dcn201/dcn201_resource.h"
60 #include "dcn30/dcn30_resource.h"
61 #include "dcn301/dcn301_resource.h"
62 #include "dcn302/dcn302_resource.h"
63 #include "dcn303/dcn303_resource.h"
64 #include "dcn31/dcn31_resource.h"
65 #endif
66 
67 #define DC_LOGGER_INIT(logger)
68 
69 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
70 {
71 	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
72 	switch (asic_id.chip_family) {
73 
74 #if defined(CONFIG_DRM_AMD_DC_SI)
75 	case FAMILY_SI:
76 		if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
77 		    ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
78 		    ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
79 			dc_version = DCE_VERSION_6_0;
80 		else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
81 			dc_version = DCE_VERSION_6_4;
82 		else
83 			dc_version = DCE_VERSION_6_1;
84 		break;
85 #endif
86 	case FAMILY_CI:
87 		dc_version = DCE_VERSION_8_0;
88 		break;
89 	case FAMILY_KV:
90 		if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
91 		    ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
92 		    ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
93 			dc_version = DCE_VERSION_8_3;
94 		else
95 			dc_version = DCE_VERSION_8_1;
96 		break;
97 	case FAMILY_CZ:
98 		dc_version = DCE_VERSION_11_0;
99 		break;
100 
101 	case FAMILY_VI:
102 		if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
103 				ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
104 			dc_version = DCE_VERSION_10_0;
105 			break;
106 		}
107 		if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
108 				ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
109 				ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
110 			dc_version = DCE_VERSION_11_2;
111 		}
112 		if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
113 			dc_version = DCE_VERSION_11_22;
114 		break;
115 	case FAMILY_AI:
116 		if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
117 			dc_version = DCE_VERSION_12_1;
118 		else
119 			dc_version = DCE_VERSION_12_0;
120 		break;
121 #if defined(CONFIG_DRM_AMD_DC_DCN)
122 	case FAMILY_RV:
123 		dc_version = DCN_VERSION_1_0;
124 		if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
125 			dc_version = DCN_VERSION_1_01;
126 		if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
127 			dc_version = DCN_VERSION_2_1;
128 		if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
129 			dc_version = DCN_VERSION_2_1;
130 		break;
131 
132 	case FAMILY_NV:
133 		dc_version = DCN_VERSION_2_0;
134 		if (asic_id.chip_id == DEVICE_ID_NV_13FE) {
135 			dc_version = DCN_VERSION_2_01;
136 			break;
137 		}
138 		if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
139 			dc_version = DCN_VERSION_3_0;
140 		if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
141 			dc_version = DCN_VERSION_3_02;
142 		if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
143 			dc_version = DCN_VERSION_3_03;
144 		break;
145 
146 	case FAMILY_VGH:
147 		dc_version = DCN_VERSION_3_01;
148 		break;
149 
150 	case FAMILY_YELLOW_CARP:
151 		if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
152 			dc_version = DCN_VERSION_3_1;
153 		break;
154 #endif
155 
156 	default:
157 		dc_version = DCE_VERSION_UNKNOWN;
158 		break;
159 	}
160 	return dc_version;
161 }
162 
163 struct resource_pool *dc_create_resource_pool(struct dc  *dc,
164 					      const struct dc_init_data *init_data,
165 					      enum dce_version dc_version)
166 {
167 	struct resource_pool *res_pool = NULL;
168 
169 	switch (dc_version) {
170 #if defined(CONFIG_DRM_AMD_DC_SI)
171 	case DCE_VERSION_6_0:
172 		res_pool = dce60_create_resource_pool(
173 			init_data->num_virtual_links, dc);
174 		break;
175 	case DCE_VERSION_6_1:
176 		res_pool = dce61_create_resource_pool(
177 			init_data->num_virtual_links, dc);
178 		break;
179 	case DCE_VERSION_6_4:
180 		res_pool = dce64_create_resource_pool(
181 			init_data->num_virtual_links, dc);
182 		break;
183 #endif
184 	case DCE_VERSION_8_0:
185 		res_pool = dce80_create_resource_pool(
186 				init_data->num_virtual_links, dc);
187 		break;
188 	case DCE_VERSION_8_1:
189 		res_pool = dce81_create_resource_pool(
190 				init_data->num_virtual_links, dc);
191 		break;
192 	case DCE_VERSION_8_3:
193 		res_pool = dce83_create_resource_pool(
194 				init_data->num_virtual_links, dc);
195 		break;
196 	case DCE_VERSION_10_0:
197 		res_pool = dce100_create_resource_pool(
198 				init_data->num_virtual_links, dc);
199 		break;
200 	case DCE_VERSION_11_0:
201 		res_pool = dce110_create_resource_pool(
202 				init_data->num_virtual_links, dc,
203 				init_data->asic_id);
204 		break;
205 	case DCE_VERSION_11_2:
206 	case DCE_VERSION_11_22:
207 		res_pool = dce112_create_resource_pool(
208 				init_data->num_virtual_links, dc);
209 		break;
210 	case DCE_VERSION_12_0:
211 	case DCE_VERSION_12_1:
212 		res_pool = dce120_create_resource_pool(
213 				init_data->num_virtual_links, dc);
214 		break;
215 
216 #if defined(CONFIG_DRM_AMD_DC_DCN)
217 	case DCN_VERSION_1_0:
218 	case DCN_VERSION_1_01:
219 		res_pool = dcn10_create_resource_pool(init_data, dc);
220 		break;
221 	case DCN_VERSION_2_0:
222 		res_pool = dcn20_create_resource_pool(init_data, dc);
223 		break;
224 	case DCN_VERSION_2_1:
225 		res_pool = dcn21_create_resource_pool(init_data, dc);
226 		break;
227 	case DCN_VERSION_2_01:
228 		res_pool = dcn201_create_resource_pool(init_data, dc);
229 		break;
230 	case DCN_VERSION_3_0:
231 		res_pool = dcn30_create_resource_pool(init_data, dc);
232 		break;
233 	case DCN_VERSION_3_01:
234 		res_pool = dcn301_create_resource_pool(init_data, dc);
235 		break;
236 	case DCN_VERSION_3_02:
237 		res_pool = dcn302_create_resource_pool(init_data, dc);
238 		break;
239 	case DCN_VERSION_3_03:
240 		res_pool = dcn303_create_resource_pool(init_data, dc);
241 		break;
242 	case DCN_VERSION_3_1:
243 		res_pool = dcn31_create_resource_pool(init_data, dc);
244 		break;
245 #endif
246 	default:
247 		break;
248 	}
249 
250 	if (res_pool != NULL) {
251 		if (dc->ctx->dc_bios->fw_info_valid) {
252 			res_pool->ref_clocks.xtalin_clock_inKhz =
253 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
254 			/* initialize with firmware data first, no all
255 			 * ASIC have DCCG SW component. FPGA or
256 			 * simulation need initialization of
257 			 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
258 			 * with xtalin_clock_inKhz
259 			 */
260 			res_pool->ref_clocks.dccg_ref_clock_inKhz =
261 				res_pool->ref_clocks.xtalin_clock_inKhz;
262 			res_pool->ref_clocks.dchub_ref_clock_inKhz =
263 				res_pool->ref_clocks.xtalin_clock_inKhz;
264 		} else
265 			ASSERT_CRITICAL(false);
266 	}
267 
268 	return res_pool;
269 }
270 
271 void dc_destroy_resource_pool(struct dc  *dc)
272 {
273 	if (dc) {
274 		if (dc->res_pool)
275 			dc->res_pool->funcs->destroy(&dc->res_pool);
276 
277 		kfree(dc->hwseq);
278 	}
279 }
280 
281 static void update_num_audio(
282 	const struct resource_straps *straps,
283 	unsigned int *num_audio,
284 	struct audio_support *aud_support)
285 {
286 	aud_support->dp_audio = true;
287 	aud_support->hdmi_audio_native = false;
288 	aud_support->hdmi_audio_on_dongle = false;
289 
290 	if (straps->hdmi_disable == 0) {
291 		if (straps->dc_pinstraps_audio & 0x2) {
292 			aud_support->hdmi_audio_on_dongle = true;
293 			aud_support->hdmi_audio_native = true;
294 		}
295 	}
296 
297 	switch (straps->audio_stream_number) {
298 	case 0: /* multi streams supported */
299 		break;
300 	case 1: /* multi streams not supported */
301 		*num_audio = 1;
302 		break;
303 	default:
304 		DC_ERR("DC: unexpected audio fuse!\n");
305 	}
306 }
307 
308 bool resource_construct(
309 	unsigned int num_virtual_links,
310 	struct dc  *dc,
311 	struct resource_pool *pool,
312 	const struct resource_create_funcs *create_funcs)
313 {
314 	struct dc_context *ctx = dc->ctx;
315 	const struct resource_caps *caps = pool->res_cap;
316 	int i;
317 	unsigned int num_audio = caps->num_audio;
318 	struct resource_straps straps = {0};
319 
320 	if (create_funcs->read_dce_straps)
321 		create_funcs->read_dce_straps(dc->ctx, &straps);
322 
323 	pool->audio_count = 0;
324 	if (create_funcs->create_audio) {
325 		/* find the total number of streams available via the
326 		 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
327 		 * registers (one for each pin) starting from pin 1
328 		 * up to the max number of audio pins.
329 		 * We stop on the first pin where
330 		 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
331 		 */
332 		update_num_audio(&straps, &num_audio, &pool->audio_support);
333 		for (i = 0; i < caps->num_audio; i++) {
334 			struct audio *aud = create_funcs->create_audio(ctx, i);
335 
336 			if (aud == NULL) {
337 				DC_ERR("DC: failed to create audio!\n");
338 				return false;
339 			}
340 			if (!aud->funcs->endpoint_valid(aud)) {
341 				aud->funcs->destroy(&aud);
342 				break;
343 			}
344 			pool->audios[i] = aud;
345 			pool->audio_count++;
346 		}
347 	}
348 
349 	pool->stream_enc_count = 0;
350 	if (create_funcs->create_stream_encoder) {
351 		for (i = 0; i < caps->num_stream_encoder; i++) {
352 			pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
353 			if (pool->stream_enc[i] == NULL)
354 				DC_ERR("DC: failed to create stream_encoder!\n");
355 			pool->stream_enc_count++;
356 		}
357 	}
358 
359 #if defined(CONFIG_DRM_AMD_DC_DCN)
360 	pool->hpo_dp_stream_enc_count = 0;
361 	if (create_funcs->create_hpo_dp_stream_encoder) {
362 		for (i = 0; i < caps->num_hpo_dp_stream_encoder; i++) {
363 			pool->hpo_dp_stream_enc[i] = create_funcs->create_hpo_dp_stream_encoder(i+ENGINE_ID_HPO_DP_0, ctx);
364 			if (pool->hpo_dp_stream_enc[i] == NULL)
365 				DC_ERR("DC: failed to create HPO DP stream encoder!\n");
366 			pool->hpo_dp_stream_enc_count++;
367 
368 		}
369 	}
370 
371 	pool->hpo_dp_link_enc_count = 0;
372 	if (create_funcs->create_hpo_dp_link_encoder) {
373 		for (i = 0; i < caps->num_hpo_dp_link_encoder; i++) {
374 			pool->hpo_dp_link_enc[i] = create_funcs->create_hpo_dp_link_encoder(i, ctx);
375 			if (pool->hpo_dp_link_enc[i] == NULL)
376 				DC_ERR("DC: failed to create HPO DP link encoder!\n");
377 			pool->hpo_dp_link_enc_count++;
378 		}
379 	}
380 #endif
381 
382 #if defined(CONFIG_DRM_AMD_DC_DCN)
383 	for (i = 0; i < caps->num_mpc_3dlut; i++) {
384 		pool->mpc_lut[i] = dc_create_3dlut_func();
385 		if (pool->mpc_lut[i] == NULL)
386 			DC_ERR("DC: failed to create MPC 3dlut!\n");
387 		pool->mpc_shaper[i] = dc_create_transfer_func();
388 		if (pool->mpc_shaper[i] == NULL)
389 			DC_ERR("DC: failed to create MPC shaper!\n");
390 	}
391 #endif
392 	dc->caps.dynamic_audio = false;
393 	if (pool->audio_count < pool->stream_enc_count) {
394 		dc->caps.dynamic_audio = true;
395 	}
396 	for (i = 0; i < num_virtual_links; i++) {
397 		pool->stream_enc[pool->stream_enc_count] =
398 			virtual_stream_encoder_create(
399 					ctx, ctx->dc_bios);
400 		if (pool->stream_enc[pool->stream_enc_count] == NULL) {
401 			DC_ERR("DC: failed to create stream_encoder!\n");
402 			return false;
403 		}
404 		pool->stream_enc_count++;
405 	}
406 
407 	dc->hwseq = create_funcs->create_hwseq(ctx);
408 
409 	return true;
410 }
411 static int find_matching_clock_source(
412 		const struct resource_pool *pool,
413 		struct clock_source *clock_source)
414 {
415 
416 	int i;
417 
418 	for (i = 0; i < pool->clk_src_count; i++) {
419 		if (pool->clock_sources[i] == clock_source)
420 			return i;
421 	}
422 	return -1;
423 }
424 
425 void resource_unreference_clock_source(
426 		struct resource_context *res_ctx,
427 		const struct resource_pool *pool,
428 		struct clock_source *clock_source)
429 {
430 	int i = find_matching_clock_source(pool, clock_source);
431 
432 	if (i > -1)
433 		res_ctx->clock_source_ref_count[i]--;
434 
435 	if (pool->dp_clock_source == clock_source)
436 		res_ctx->dp_clock_source_ref_count--;
437 }
438 
439 void resource_reference_clock_source(
440 		struct resource_context *res_ctx,
441 		const struct resource_pool *pool,
442 		struct clock_source *clock_source)
443 {
444 	int i = find_matching_clock_source(pool, clock_source);
445 
446 	if (i > -1)
447 		res_ctx->clock_source_ref_count[i]++;
448 
449 	if (pool->dp_clock_source == clock_source)
450 		res_ctx->dp_clock_source_ref_count++;
451 }
452 
453 int resource_get_clock_source_reference(
454 		struct resource_context *res_ctx,
455 		const struct resource_pool *pool,
456 		struct clock_source *clock_source)
457 {
458 	int i = find_matching_clock_source(pool, clock_source);
459 
460 	if (i > -1)
461 		return res_ctx->clock_source_ref_count[i];
462 
463 	if (pool->dp_clock_source == clock_source)
464 		return res_ctx->dp_clock_source_ref_count;
465 
466 	return -1;
467 }
468 
469 bool resource_are_vblanks_synchronizable(
470 	struct dc_stream_state *stream1,
471 	struct dc_stream_state *stream2)
472 {
473 	uint32_t base60_refresh_rates[] = {10, 20, 5};
474 	uint8_t i;
475 	uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
476 	uint64_t frame_time_diff;
477 
478 	if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
479 		stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
480 		dc_is_dp_signal(stream1->signal) &&
481 		dc_is_dp_signal(stream2->signal) &&
482 		false == stream1->has_non_synchronizable_pclk &&
483 		false == stream2->has_non_synchronizable_pclk &&
484 		stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
485 		stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
486 		/* disable refresh rates higher than 60Hz for now */
487 		if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
488 				stream1->timing.v_total > 60)
489 			return false;
490 		if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
491 				stream2->timing.v_total > 60)
492 			return false;
493 		frame_time_diff = (uint64_t)10000 *
494 			stream1->timing.h_total *
495 			stream1->timing.v_total *
496 			stream2->timing.pix_clk_100hz;
497 		frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
498 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
499 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
500 		for (i = 0; i < rr_count; i++) {
501 			int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
502 
503 			if (diff < 0)
504 				diff = -diff;
505 			if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
506 				return true;
507 		}
508 	}
509 	return false;
510 }
511 
512 bool resource_are_streams_timing_synchronizable(
513 	struct dc_stream_state *stream1,
514 	struct dc_stream_state *stream2)
515 {
516 	if (stream1->timing.h_total != stream2->timing.h_total)
517 		return false;
518 
519 	if (stream1->timing.v_total != stream2->timing.v_total)
520 		return false;
521 
522 	if (stream1->timing.h_addressable
523 				!= stream2->timing.h_addressable)
524 		return false;
525 
526 	if (stream1->timing.v_addressable
527 				!= stream2->timing.v_addressable)
528 		return false;
529 
530 	if (stream1->timing.v_front_porch
531 				!= stream2->timing.v_front_porch)
532 		return false;
533 
534 	if (stream1->timing.pix_clk_100hz
535 				!= stream2->timing.pix_clk_100hz)
536 		return false;
537 
538 	if (stream1->clamping.c_depth != stream2->clamping.c_depth)
539 		return false;
540 
541 	if (stream1->phy_pix_clk != stream2->phy_pix_clk
542 			&& (!dc_is_dp_signal(stream1->signal)
543 			|| !dc_is_dp_signal(stream2->signal)))
544 		return false;
545 
546 	if (stream1->view_format != stream2->view_format)
547 		return false;
548 
549 	if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
550 		return false;
551 
552 	return true;
553 }
554 static bool is_dp_and_hdmi_sharable(
555 		struct dc_stream_state *stream1,
556 		struct dc_stream_state *stream2)
557 {
558 	if (stream1->ctx->dc->caps.disable_dp_clk_share)
559 		return false;
560 
561 	if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
562 		stream2->clamping.c_depth != COLOR_DEPTH_888)
563 		return false;
564 
565 	return true;
566 
567 }
568 
569 static bool is_sharable_clk_src(
570 	const struct pipe_ctx *pipe_with_clk_src,
571 	const struct pipe_ctx *pipe)
572 {
573 	if (pipe_with_clk_src->clock_source == NULL)
574 		return false;
575 
576 	if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
577 		return false;
578 
579 	if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
580 		(dc_is_dp_signal(pipe->stream->signal) &&
581 		!is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
582 				     pipe->stream)))
583 		return false;
584 
585 	if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
586 			&& dc_is_dual_link_signal(pipe->stream->signal))
587 		return false;
588 
589 	if (dc_is_hdmi_signal(pipe->stream->signal)
590 			&& dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
591 		return false;
592 
593 	if (!resource_are_streams_timing_synchronizable(
594 			pipe_with_clk_src->stream, pipe->stream))
595 		return false;
596 
597 	return true;
598 }
599 
600 struct clock_source *resource_find_used_clk_src_for_sharing(
601 					struct resource_context *res_ctx,
602 					struct pipe_ctx *pipe_ctx)
603 {
604 	int i;
605 
606 	for (i = 0; i < MAX_PIPES; i++) {
607 		if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
608 			return res_ctx->pipe_ctx[i].clock_source;
609 	}
610 
611 	return NULL;
612 }
613 
614 static enum pixel_format convert_pixel_format_to_dalsurface(
615 		enum surface_pixel_format surface_pixel_format)
616 {
617 	enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
618 
619 	switch (surface_pixel_format) {
620 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
621 		dal_pixel_format = PIXEL_FORMAT_INDEX8;
622 		break;
623 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
624 		dal_pixel_format = PIXEL_FORMAT_RGB565;
625 		break;
626 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
627 		dal_pixel_format = PIXEL_FORMAT_RGB565;
628 		break;
629 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
630 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
631 		break;
632 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
633 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
634 		break;
635 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
636 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
637 		break;
638 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
639 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
640 		break;
641 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
642 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
643 		break;
644 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
645 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
646 		dal_pixel_format = PIXEL_FORMAT_FP16;
647 		break;
648 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
649 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
650 		dal_pixel_format = PIXEL_FORMAT_420BPP8;
651 		break;
652 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
653 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
654 		dal_pixel_format = PIXEL_FORMAT_420BPP10;
655 		break;
656 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
657 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
658 	default:
659 		dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
660 		break;
661 	}
662 	return dal_pixel_format;
663 }
664 
665 static inline void get_vp_scan_direction(
666 	enum dc_rotation_angle rotation,
667 	bool horizontal_mirror,
668 	bool *orthogonal_rotation,
669 	bool *flip_vert_scan_dir,
670 	bool *flip_horz_scan_dir)
671 {
672 	*orthogonal_rotation = false;
673 	*flip_vert_scan_dir = false;
674 	*flip_horz_scan_dir = false;
675 	if (rotation == ROTATION_ANGLE_180) {
676 		*flip_vert_scan_dir = true;
677 		*flip_horz_scan_dir = true;
678 	} else if (rotation == ROTATION_ANGLE_90) {
679 		*orthogonal_rotation = true;
680 		*flip_horz_scan_dir = true;
681 	} else if (rotation == ROTATION_ANGLE_270) {
682 		*orthogonal_rotation = true;
683 		*flip_vert_scan_dir = true;
684 	}
685 
686 	if (horizontal_mirror)
687 		*flip_horz_scan_dir = !*flip_horz_scan_dir;
688 }
689 
690 int get_num_mpc_splits(struct pipe_ctx *pipe)
691 {
692 	int mpc_split_count = 0;
693 	struct pipe_ctx *other_pipe = pipe->bottom_pipe;
694 
695 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
696 		mpc_split_count++;
697 		other_pipe = other_pipe->bottom_pipe;
698 	}
699 	other_pipe = pipe->top_pipe;
700 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
701 		mpc_split_count++;
702 		other_pipe = other_pipe->top_pipe;
703 	}
704 
705 	return mpc_split_count;
706 }
707 
708 int get_num_odm_splits(struct pipe_ctx *pipe)
709 {
710 	int odm_split_count = 0;
711 	struct pipe_ctx *next_pipe = pipe->next_odm_pipe;
712 	while (next_pipe) {
713 		odm_split_count++;
714 		next_pipe = next_pipe->next_odm_pipe;
715 	}
716 	pipe = pipe->prev_odm_pipe;
717 	while (pipe) {
718 		odm_split_count++;
719 		pipe = pipe->prev_odm_pipe;
720 	}
721 	return odm_split_count;
722 }
723 
724 static void calculate_split_count_and_index(struct pipe_ctx *pipe_ctx, int *split_count, int *split_idx)
725 {
726 	*split_count = get_num_odm_splits(pipe_ctx);
727 	*split_idx = 0;
728 	if (*split_count == 0) {
729 		/*Check for mpc split*/
730 		struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
731 
732 		*split_count = get_num_mpc_splits(pipe_ctx);
733 		while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
734 			(*split_idx)++;
735 			split_pipe = split_pipe->top_pipe;
736 		}
737 	} else {
738 		/*Get odm split index*/
739 		struct pipe_ctx *split_pipe = pipe_ctx->prev_odm_pipe;
740 
741 		while (split_pipe) {
742 			(*split_idx)++;
743 			split_pipe = split_pipe->prev_odm_pipe;
744 		}
745 	}
746 }
747 
748 /*
749  * This is a preliminary vp size calculation to allow us to check taps support.
750  * The result is completely overridden afterwards.
751  */
752 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
753 {
754 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
755 
756 	data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
757 	data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
758 	data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
759 	data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
760 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
761 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
762 		swap(data->viewport.width, data->viewport.height);
763 		swap(data->viewport_c.width, data->viewport_c.height);
764 	}
765 }
766 
767 static void calculate_recout(struct pipe_ctx *pipe_ctx)
768 {
769 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
770 	const struct dc_stream_state *stream = pipe_ctx->stream;
771 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
772 	struct rect surf_clip = plane_state->clip_rect;
773 	bool split_tb = stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
774 	int split_count, split_idx;
775 
776 	calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
777 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
778 		split_idx = 0;
779 
780 	/*
781 	 * Only the leftmost ODM pipe should be offset by a nonzero distance
782 	 */
783 	if (!pipe_ctx->prev_odm_pipe || split_idx == split_count) {
784 		data->recout.x = stream->dst.x;
785 		if (stream->src.x < surf_clip.x)
786 			data->recout.x += (surf_clip.x - stream->src.x) * stream->dst.width
787 						/ stream->src.width;
788 	} else
789 		data->recout.x = 0;
790 
791 	if (stream->src.x > surf_clip.x)
792 		surf_clip.width -= stream->src.x - surf_clip.x;
793 	data->recout.width = surf_clip.width * stream->dst.width / stream->src.width;
794 	if (data->recout.width + data->recout.x > stream->dst.x + stream->dst.width)
795 		data->recout.width = stream->dst.x + stream->dst.width - data->recout.x;
796 
797 	data->recout.y = stream->dst.y;
798 	if (stream->src.y < surf_clip.y)
799 		data->recout.y += (surf_clip.y - stream->src.y) * stream->dst.height
800 						/ stream->src.height;
801 	else if (stream->src.y > surf_clip.y)
802 		surf_clip.height -= stream->src.y - surf_clip.y;
803 
804 	data->recout.height = surf_clip.height * stream->dst.height / stream->src.height;
805 	if (data->recout.height + data->recout.y > stream->dst.y + stream->dst.height)
806 		data->recout.height = stream->dst.y + stream->dst.height - data->recout.y;
807 
808 	/* Handle h & v split */
809 	if (split_tb) {
810 		ASSERT(data->recout.height % 2 == 0);
811 		data->recout.height /= 2;
812 	} else if (split_count) {
813 		if (!pipe_ctx->next_odm_pipe && !pipe_ctx->prev_odm_pipe) {
814 			/* extra pixels in the division remainder need to go to pipes after
815 			 * the extra pixel index minus one(epimo) defined here as:
816 			 */
817 			int epimo = split_count - data->recout.width % (split_count + 1);
818 
819 			data->recout.x += (data->recout.width / (split_count + 1)) * split_idx;
820 			if (split_idx > epimo)
821 				data->recout.x += split_idx - epimo - 1;
822 			ASSERT(stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE || data->recout.width % 2 == 0);
823 			data->recout.width = data->recout.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
824 		} else {
825 			/* odm */
826 			if (split_idx == split_count) {
827 				/* rightmost pipe is the remainder recout */
828 				data->recout.width -= data->h_active * split_count - data->recout.x;
829 
830 				/* ODM combine cases with MPO we can get negative widths */
831 				if (data->recout.width < 0)
832 					data->recout.width = 0;
833 
834 				data->recout.x = 0;
835 			} else
836 				data->recout.width = data->h_active - data->recout.x;
837 		}
838 	}
839 }
840 
841 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
842 {
843 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
844 	const struct dc_stream_state *stream = pipe_ctx->stream;
845 	struct rect surf_src = plane_state->src_rect;
846 	const int in_w = stream->src.width;
847 	const int in_h = stream->src.height;
848 	const int out_w = stream->dst.width;
849 	const int out_h = stream->dst.height;
850 
851 	/*Swap surf_src height and width since scaling ratios are in recout rotation*/
852 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
853 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
854 		swap(surf_src.height, surf_src.width);
855 
856 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
857 					surf_src.width,
858 					plane_state->dst_rect.width);
859 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
860 					surf_src.height,
861 					plane_state->dst_rect.height);
862 
863 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
864 		pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
865 	else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
866 		pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
867 
868 	pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
869 		pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
870 	pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
871 		pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
872 
873 	pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
874 	pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
875 
876 	if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
877 			|| pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
878 		pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
879 		pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
880 	}
881 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
882 			pipe_ctx->plane_res.scl_data.ratios.horz, 19);
883 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
884 			pipe_ctx->plane_res.scl_data.ratios.vert, 19);
885 	pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
886 			pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
887 	pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
888 			pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
889 }
890 
891 
892 /*
893  * We completely calculate vp offset, size and inits here based entirely on scaling
894  * ratios and recout for pixel perfect pipe combine.
895  */
896 static void calculate_init_and_vp(
897 		bool flip_scan_dir,
898 		int recout_offset_within_recout_full,
899 		int recout_size,
900 		int src_size,
901 		int taps,
902 		struct fixed31_32 ratio,
903 		struct fixed31_32 *init,
904 		int *vp_offset,
905 		int *vp_size)
906 {
907 	struct fixed31_32 temp;
908 	int int_part;
909 
910 	/*
911 	 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
912 	 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
913 	 * All following calculations are based on this logic.
914 	 *
915 	 * Init calculated according to formula:
916 	 * 	init = (scaling_ratio + number_of_taps + 1) / 2
917 	 * 	init_bot = init + scaling_ratio
918 	 * 	to get pixel perfect combine add the fraction from calculating vp offset
919 	 */
920 	temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
921 	*vp_offset = dc_fixpt_floor(temp);
922 	temp.value &= 0xffffffff;
923 	*init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
924 			dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
925 	/*
926 	 * If viewport has non 0 offset and there are more taps than covered by init then
927 	 * we should decrease the offset and increase init so we are never sampling
928 	 * outside of viewport.
929 	 */
930 	int_part = dc_fixpt_floor(*init);
931 	if (int_part < taps) {
932 		int_part = taps - int_part;
933 		if (int_part > *vp_offset)
934 			int_part = *vp_offset;
935 		*vp_offset -= int_part;
936 		*init = dc_fixpt_add_int(*init, int_part);
937 	}
938 	/*
939 	 * If taps are sampling outside of viewport at end of recout and there are more pixels
940 	 * available in the surface we should increase the viewport size, regardless set vp to
941 	 * only what is used.
942 	 */
943 	temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
944 	*vp_size = dc_fixpt_floor(temp);
945 	if (*vp_size + *vp_offset > src_size)
946 		*vp_size = src_size - *vp_offset;
947 
948 	/* We did all the math assuming we are scanning same direction as display does,
949 	 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
950 	 * is flipped we simply need to calculate offset from the other side of plane.
951 	 * Note that outside of viewport all scaling hardware works in recout space.
952 	 */
953 	if (flip_scan_dir)
954 		*vp_offset = src_size - *vp_offset - *vp_size;
955 }
956 
957 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
958 {
959 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
960 	const struct dc_stream_state *stream = pipe_ctx->stream;
961 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
962 	struct rect src = plane_state->src_rect;
963 	int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
964 				|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
965 	int split_count, split_idx, ro_lb, ro_tb, recout_full_x, recout_full_y;
966 	bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
967 
968 	calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
969 	/*
970 	 * recout full is what the recout would have been if we didnt clip
971 	 * the source plane at all. We only care about left(ro_lb) and top(ro_tb)
972 	 * offsets of recout within recout full because those are the directions
973 	 * we scan from and therefore the only ones that affect inits.
974 	 */
975 	recout_full_x = stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
976 			* stream->dst.width / stream->src.width;
977 	recout_full_y = stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
978 			* stream->dst.height / stream->src.height;
979 	if (pipe_ctx->prev_odm_pipe && split_idx)
980 		ro_lb = data->h_active * split_idx - recout_full_x;
981 	else
982 		ro_lb = data->recout.x - recout_full_x;
983 	ro_tb = data->recout.y - recout_full_y;
984 	ASSERT(ro_lb >= 0 && ro_tb >= 0);
985 
986 	/*
987 	 * Work in recout rotation since that requires less transformations
988 	 */
989 	get_vp_scan_direction(
990 			plane_state->rotation,
991 			plane_state->horizontal_mirror,
992 			&orthogonal_rotation,
993 			&flip_vert_scan_dir,
994 			&flip_horz_scan_dir);
995 
996 	if (orthogonal_rotation) {
997 		swap(src.width, src.height);
998 		swap(flip_vert_scan_dir, flip_horz_scan_dir);
999 	}
1000 
1001 	calculate_init_and_vp(
1002 			flip_horz_scan_dir,
1003 			ro_lb,
1004 			data->recout.width,
1005 			src.width,
1006 			data->taps.h_taps,
1007 			data->ratios.horz,
1008 			&data->inits.h,
1009 			&data->viewport.x,
1010 			&data->viewport.width);
1011 	calculate_init_and_vp(
1012 			flip_horz_scan_dir,
1013 			ro_lb,
1014 			data->recout.width,
1015 			src.width / vpc_div,
1016 			data->taps.h_taps_c,
1017 			data->ratios.horz_c,
1018 			&data->inits.h_c,
1019 			&data->viewport_c.x,
1020 			&data->viewport_c.width);
1021 	calculate_init_and_vp(
1022 			flip_vert_scan_dir,
1023 			ro_tb,
1024 			data->recout.height,
1025 			src.height,
1026 			data->taps.v_taps,
1027 			data->ratios.vert,
1028 			&data->inits.v,
1029 			&data->viewport.y,
1030 			&data->viewport.height);
1031 	calculate_init_and_vp(
1032 			flip_vert_scan_dir,
1033 			ro_tb,
1034 			data->recout.height,
1035 			src.height / vpc_div,
1036 			data->taps.v_taps_c,
1037 			data->ratios.vert_c,
1038 			&data->inits.v_c,
1039 			&data->viewport_c.y,
1040 			&data->viewport_c.height);
1041 	if (orthogonal_rotation) {
1042 		swap(data->viewport.x, data->viewport.y);
1043 		swap(data->viewport.width, data->viewport.height);
1044 		swap(data->viewport_c.x, data->viewport_c.y);
1045 		swap(data->viewport_c.width, data->viewport_c.height);
1046 	}
1047 	data->viewport.x += src.x;
1048 	data->viewport.y += src.y;
1049 	ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1050 	data->viewport_c.x += src.x / vpc_div;
1051 	data->viewport_c.y += src.y / vpc_div;
1052 }
1053 
1054 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1055 {
1056 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1057 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1058 	bool res = false;
1059 	DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1060 
1061 	pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1062 			pipe_ctx->plane_state->format);
1063 
1064 	/* Timing borders are part of vactive that we are also supposed to skip in addition
1065 	 * to any stream dst offset. Since dm logic assumes dst is in addressable
1066 	 * space we need to add the left and top borders to dst offsets temporarily.
1067 	 * TODO: fix in DM, stream dst is supposed to be in vactive
1068 	 */
1069 	pipe_ctx->stream->dst.x += timing->h_border_left;
1070 	pipe_ctx->stream->dst.y += timing->v_border_top;
1071 
1072 	/* Calculate H and V active size */
1073 	pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable +
1074 			timing->h_border_left + timing->h_border_right;
1075 	pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable +
1076 		timing->v_border_top + timing->v_border_bottom;
1077 	if (pipe_ctx->next_odm_pipe || pipe_ctx->prev_odm_pipe)
1078 		pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx) + 1;
1079 
1080 	/* depends on h_active */
1081 	calculate_recout(pipe_ctx);
1082 	/* depends on pixel format */
1083 	calculate_scaling_ratios(pipe_ctx);
1084 	/* depends on scaling ratios and recout, does not calculate offset yet */
1085 	calculate_viewport_size(pipe_ctx);
1086 
1087 	/* Stopgap for validation of ODM + MPO on one side of screen case */
1088 	if (pipe_ctx->plane_res.scl_data.viewport.height < 1 ||
1089 			pipe_ctx->plane_res.scl_data.viewport.width < 1)
1090 		return false;
1091 
1092 	/*
1093 	 * LB calculations depend on vp size, h/v_active and scaling ratios
1094 	 * Setting line buffer pixel depth to 24bpp yields banding
1095 	 * on certain displays, such as the Sharp 4k. 36bpp is needed
1096 	 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1097 	 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1098 	 * precision on at least DCN display engines. However, at least
1099 	 * Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1100 	 * so use only 30 bpp on DCE_VERSION_11_0. Testing with DCE 11.2 and 8.3
1101 	 * did not show such problems, so this seems to be the exception.
1102 	 */
1103 	if (plane_state->ctx->dce_version > DCE_VERSION_11_0)
1104 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1105 	else
1106 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1107 
1108 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1109 
1110 	if (pipe_ctx->plane_res.xfm != NULL)
1111 		res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1112 				pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1113 
1114 	if (pipe_ctx->plane_res.dpp != NULL)
1115 		res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1116 				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1117 
1118 
1119 	if (!res) {
1120 		/* Try 24 bpp linebuffer */
1121 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1122 
1123 		if (pipe_ctx->plane_res.xfm != NULL)
1124 			res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1125 					pipe_ctx->plane_res.xfm,
1126 					&pipe_ctx->plane_res.scl_data,
1127 					&plane_state->scaling_quality);
1128 
1129 		if (pipe_ctx->plane_res.dpp != NULL)
1130 			res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1131 					pipe_ctx->plane_res.dpp,
1132 					&pipe_ctx->plane_res.scl_data,
1133 					&plane_state->scaling_quality);
1134 	}
1135 
1136 	/*
1137 	 * Depends on recout, scaling ratios, h_active and taps
1138 	 * May need to re-check lb size after this in some obscure scenario
1139 	 */
1140 	if (res)
1141 		calculate_inits_and_viewports(pipe_ctx);
1142 
1143 	/*
1144 	 * Handle side by side and top bottom 3d recout offsets after vp calculation
1145 	 * since 3d is special and needs to calculate vp as if there is no recout offset
1146 	 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1147 	 */
1148 	if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1149 		ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1150 			(pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1151 				pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1152 		if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1153 			pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1154 		else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1155 			pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1156 	}
1157 
1158 	if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE ||
1159 			pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1160 		res = false;
1161 
1162 	DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d  Recout: height:%d width:%d x:%d y:%d  HACTIVE:%d VACTIVE:%d\n"
1163 			"src_rect: height:%d width:%d x:%d y:%d  dst_rect: height:%d width:%d x:%d y:%d  clip_rect: height:%d width:%d x:%d y:%d\n",
1164 			__func__,
1165 			pipe_ctx->pipe_idx,
1166 			pipe_ctx->plane_res.scl_data.viewport.height,
1167 			pipe_ctx->plane_res.scl_data.viewport.width,
1168 			pipe_ctx->plane_res.scl_data.viewport.x,
1169 			pipe_ctx->plane_res.scl_data.viewport.y,
1170 			pipe_ctx->plane_res.scl_data.recout.height,
1171 			pipe_ctx->plane_res.scl_data.recout.width,
1172 			pipe_ctx->plane_res.scl_data.recout.x,
1173 			pipe_ctx->plane_res.scl_data.recout.y,
1174 			pipe_ctx->plane_res.scl_data.h_active,
1175 			pipe_ctx->plane_res.scl_data.v_active,
1176 			plane_state->src_rect.height,
1177 			plane_state->src_rect.width,
1178 			plane_state->src_rect.x,
1179 			plane_state->src_rect.y,
1180 			plane_state->dst_rect.height,
1181 			plane_state->dst_rect.width,
1182 			plane_state->dst_rect.x,
1183 			plane_state->dst_rect.y,
1184 			plane_state->clip_rect.height,
1185 			plane_state->clip_rect.width,
1186 			plane_state->clip_rect.x,
1187 			plane_state->clip_rect.y);
1188 
1189 	pipe_ctx->stream->dst.x -= timing->h_border_left;
1190 	pipe_ctx->stream->dst.y -= timing->v_border_top;
1191 
1192 	return res;
1193 }
1194 
1195 
1196 enum dc_status resource_build_scaling_params_for_context(
1197 	const struct dc  *dc,
1198 	struct dc_state *context)
1199 {
1200 	int i;
1201 
1202 	for (i = 0; i < MAX_PIPES; i++) {
1203 		if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1204 				context->res_ctx.pipe_ctx[i].stream != NULL)
1205 			if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1206 				return DC_FAIL_SCALING;
1207 	}
1208 
1209 	return DC_OK;
1210 }
1211 
1212 struct pipe_ctx *find_idle_secondary_pipe(
1213 		struct resource_context *res_ctx,
1214 		const struct resource_pool *pool,
1215 		const struct pipe_ctx *primary_pipe)
1216 {
1217 	int i;
1218 	struct pipe_ctx *secondary_pipe = NULL;
1219 
1220 	/*
1221 	 * We add a preferred pipe mapping to avoid the chance that
1222 	 * MPCCs already in use will need to be reassigned to other trees.
1223 	 * For example, if we went with the strict, assign backwards logic:
1224 	 *
1225 	 * (State 1)
1226 	 * Display A on, no surface, top pipe = 0
1227 	 * Display B on, no surface, top pipe = 1
1228 	 *
1229 	 * (State 2)
1230 	 * Display A on, no surface, top pipe = 0
1231 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1232 	 *
1233 	 * (State 3)
1234 	 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1235 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1236 	 *
1237 	 * The state 2->3 transition requires remapping MPCC 5 from display B
1238 	 * to display A.
1239 	 *
1240 	 * However, with the preferred pipe logic, state 2 would look like:
1241 	 *
1242 	 * (State 2)
1243 	 * Display A on, no surface, top pipe = 0
1244 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1245 	 *
1246 	 * This would then cause 2->3 to not require remapping any MPCCs.
1247 	 */
1248 	if (primary_pipe) {
1249 		int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1250 		if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1251 			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1252 			secondary_pipe->pipe_idx = preferred_pipe_idx;
1253 		}
1254 	}
1255 
1256 	/*
1257 	 * search backwards for the second pipe to keep pipe
1258 	 * assignment more consistent
1259 	 */
1260 	if (!secondary_pipe)
1261 		for (i = pool->pipe_count - 1; i >= 0; i--) {
1262 			if (res_ctx->pipe_ctx[i].stream == NULL) {
1263 				secondary_pipe = &res_ctx->pipe_ctx[i];
1264 				secondary_pipe->pipe_idx = i;
1265 				break;
1266 			}
1267 		}
1268 
1269 	return secondary_pipe;
1270 }
1271 
1272 struct pipe_ctx *resource_get_head_pipe_for_stream(
1273 		struct resource_context *res_ctx,
1274 		struct dc_stream_state *stream)
1275 {
1276 	int i;
1277 
1278 	for (i = 0; i < MAX_PIPES; i++) {
1279 		if (res_ctx->pipe_ctx[i].stream == stream
1280 				&& !res_ctx->pipe_ctx[i].top_pipe
1281 				&& !res_ctx->pipe_ctx[i].prev_odm_pipe)
1282 			return &res_ctx->pipe_ctx[i];
1283 	}
1284 	return NULL;
1285 }
1286 
1287 static struct pipe_ctx *resource_get_tail_pipe(
1288 		struct resource_context *res_ctx,
1289 		struct pipe_ctx *head_pipe)
1290 {
1291 	struct pipe_ctx *tail_pipe;
1292 
1293 	tail_pipe = head_pipe->bottom_pipe;
1294 
1295 	while (tail_pipe) {
1296 		head_pipe = tail_pipe;
1297 		tail_pipe = tail_pipe->bottom_pipe;
1298 	}
1299 
1300 	return head_pipe;
1301 }
1302 
1303 /*
1304  * A free_pipe for a stream is defined here as a pipe
1305  * that has no surface attached yet
1306  */
1307 static struct pipe_ctx *acquire_free_pipe_for_head(
1308 		struct dc_state *context,
1309 		const struct resource_pool *pool,
1310 		struct pipe_ctx *head_pipe)
1311 {
1312 	int i;
1313 	struct resource_context *res_ctx = &context->res_ctx;
1314 
1315 	if (!head_pipe->plane_state)
1316 		return head_pipe;
1317 
1318 	/* Re-use pipe already acquired for this stream if available*/
1319 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1320 		if (res_ctx->pipe_ctx[i].stream == head_pipe->stream &&
1321 				!res_ctx->pipe_ctx[i].plane_state) {
1322 			return &res_ctx->pipe_ctx[i];
1323 		}
1324 	}
1325 
1326 	/*
1327 	 * At this point we have no re-useable pipe for this stream and we need
1328 	 * to acquire an idle one to satisfy the request
1329 	 */
1330 
1331 	if (!pool->funcs->acquire_idle_pipe_for_layer)
1332 		return NULL;
1333 
1334 	return pool->funcs->acquire_idle_pipe_for_layer(context, pool, head_pipe->stream);
1335 }
1336 
1337 #if defined(CONFIG_DRM_AMD_DC_DCN)
1338 static int acquire_first_split_pipe(
1339 		struct resource_context *res_ctx,
1340 		const struct resource_pool *pool,
1341 		struct dc_stream_state *stream)
1342 {
1343 	int i;
1344 
1345 	for (i = 0; i < pool->pipe_count; i++) {
1346 		struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1347 
1348 		if (split_pipe->top_pipe &&
1349 				split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1350 			split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1351 			if (split_pipe->bottom_pipe)
1352 				split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1353 
1354 			if (split_pipe->top_pipe->plane_state)
1355 				resource_build_scaling_params(split_pipe->top_pipe);
1356 
1357 			memset(split_pipe, 0, sizeof(*split_pipe));
1358 			split_pipe->stream_res.tg = pool->timing_generators[i];
1359 			split_pipe->plane_res.hubp = pool->hubps[i];
1360 			split_pipe->plane_res.ipp = pool->ipps[i];
1361 			split_pipe->plane_res.dpp = pool->dpps[i];
1362 			split_pipe->stream_res.opp = pool->opps[i];
1363 			split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1364 			split_pipe->pipe_idx = i;
1365 
1366 			split_pipe->stream = stream;
1367 			return i;
1368 		}
1369 	}
1370 	return -1;
1371 }
1372 #endif
1373 
1374 bool dc_add_plane_to_context(
1375 		const struct dc *dc,
1376 		struct dc_stream_state *stream,
1377 		struct dc_plane_state *plane_state,
1378 		struct dc_state *context)
1379 {
1380 	int i;
1381 	struct resource_pool *pool = dc->res_pool;
1382 	struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1383 	struct dc_stream_status *stream_status = NULL;
1384 
1385 	for (i = 0; i < context->stream_count; i++)
1386 		if (context->streams[i] == stream) {
1387 			stream_status = &context->stream_status[i];
1388 			break;
1389 		}
1390 	if (stream_status == NULL) {
1391 		dm_error("Existing stream not found; failed to attach surface!\n");
1392 		return false;
1393 	}
1394 
1395 
1396 	if (stream_status->plane_count == MAX_SURFACE_NUM) {
1397 		dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1398 				plane_state, MAX_SURFACE_NUM);
1399 		return false;
1400 	}
1401 
1402 	head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1403 
1404 	if (!head_pipe) {
1405 		dm_error("Head pipe not found for stream_state %p !\n", stream);
1406 		return false;
1407 	}
1408 
1409 	/* retain new surface, but only once per stream */
1410 	dc_plane_state_retain(plane_state);
1411 
1412 	while (head_pipe) {
1413 		free_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1414 
1415 	#if defined(CONFIG_DRM_AMD_DC_DCN)
1416 		if (!free_pipe) {
1417 			int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1418 			if (pipe_idx >= 0)
1419 				free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1420 		}
1421 	#endif
1422 		if (!free_pipe) {
1423 			dc_plane_state_release(plane_state);
1424 			return false;
1425 		}
1426 
1427 		free_pipe->plane_state = plane_state;
1428 
1429 		if (head_pipe != free_pipe) {
1430 			tail_pipe = resource_get_tail_pipe(&context->res_ctx, head_pipe);
1431 			ASSERT(tail_pipe);
1432 			free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1433 			free_pipe->stream_res.abm = tail_pipe->stream_res.abm;
1434 			free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1435 			free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1436 			free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1437 			free_pipe->clock_source = tail_pipe->clock_source;
1438 			free_pipe->top_pipe = tail_pipe;
1439 			tail_pipe->bottom_pipe = free_pipe;
1440 			if (!free_pipe->next_odm_pipe && tail_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1441 				free_pipe->next_odm_pipe = tail_pipe->next_odm_pipe->bottom_pipe;
1442 				tail_pipe->next_odm_pipe->bottom_pipe->prev_odm_pipe = free_pipe;
1443 			}
1444 			if (!free_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe->bottom_pipe) {
1445 				free_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1446 				tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = free_pipe;
1447 			}
1448 		}
1449 		head_pipe = head_pipe->next_odm_pipe;
1450 	}
1451 	/* assign new surfaces*/
1452 	stream_status->plane_states[stream_status->plane_count] = plane_state;
1453 
1454 	stream_status->plane_count++;
1455 
1456 	return true;
1457 }
1458 
1459 bool dc_remove_plane_from_context(
1460 		const struct dc *dc,
1461 		struct dc_stream_state *stream,
1462 		struct dc_plane_state *plane_state,
1463 		struct dc_state *context)
1464 {
1465 	int i;
1466 	struct dc_stream_status *stream_status = NULL;
1467 	struct resource_pool *pool = dc->res_pool;
1468 
1469 	for (i = 0; i < context->stream_count; i++)
1470 		if (context->streams[i] == stream) {
1471 			stream_status = &context->stream_status[i];
1472 			break;
1473 		}
1474 
1475 	if (stream_status == NULL) {
1476 		dm_error("Existing stream not found; failed to remove plane.\n");
1477 		return false;
1478 	}
1479 
1480 	/* release pipe for plane*/
1481 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1482 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1483 
1484 		if (pipe_ctx->plane_state == plane_state) {
1485 			if (pipe_ctx->top_pipe)
1486 				pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1487 
1488 			/* Second condition is to avoid setting NULL to top pipe
1489 			 * of tail pipe making it look like head pipe in subsequent
1490 			 * deletes
1491 			 */
1492 			if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1493 				pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1494 
1495 			/*
1496 			 * For head pipe detach surfaces from pipe for tail
1497 			 * pipe just zero it out
1498 			 */
1499 			if (!pipe_ctx->top_pipe)
1500 				pipe_ctx->plane_state = NULL;
1501 			else
1502 				memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1503 		}
1504 	}
1505 
1506 
1507 	for (i = 0; i < stream_status->plane_count; i++) {
1508 		if (stream_status->plane_states[i] == plane_state) {
1509 
1510 			dc_plane_state_release(stream_status->plane_states[i]);
1511 			break;
1512 		}
1513 	}
1514 
1515 	if (i == stream_status->plane_count) {
1516 		dm_error("Existing plane_state not found; failed to detach it!\n");
1517 		return false;
1518 	}
1519 
1520 	stream_status->plane_count--;
1521 
1522 	/* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1523 	for (; i < stream_status->plane_count; i++)
1524 		stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1525 
1526 	stream_status->plane_states[stream_status->plane_count] = NULL;
1527 
1528 	return true;
1529 }
1530 
1531 bool dc_rem_all_planes_for_stream(
1532 		const struct dc *dc,
1533 		struct dc_stream_state *stream,
1534 		struct dc_state *context)
1535 {
1536 	int i, old_plane_count;
1537 	struct dc_stream_status *stream_status = NULL;
1538 	struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1539 
1540 	for (i = 0; i < context->stream_count; i++)
1541 			if (context->streams[i] == stream) {
1542 				stream_status = &context->stream_status[i];
1543 				break;
1544 			}
1545 
1546 	if (stream_status == NULL) {
1547 		dm_error("Existing stream %p not found!\n", stream);
1548 		return false;
1549 	}
1550 
1551 	old_plane_count = stream_status->plane_count;
1552 
1553 	for (i = 0; i < old_plane_count; i++)
1554 		del_planes[i] = stream_status->plane_states[i];
1555 
1556 	for (i = 0; i < old_plane_count; i++)
1557 		if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1558 			return false;
1559 
1560 	return true;
1561 }
1562 
1563 static bool add_all_planes_for_stream(
1564 		const struct dc *dc,
1565 		struct dc_stream_state *stream,
1566 		const struct dc_validation_set set[],
1567 		int set_count,
1568 		struct dc_state *context)
1569 {
1570 	int i, j;
1571 
1572 	for (i = 0; i < set_count; i++)
1573 		if (set[i].stream == stream)
1574 			break;
1575 
1576 	if (i == set_count) {
1577 		dm_error("Stream %p not found in set!\n", stream);
1578 		return false;
1579 	}
1580 
1581 	for (j = 0; j < set[i].plane_count; j++)
1582 		if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1583 			return false;
1584 
1585 	return true;
1586 }
1587 
1588 bool dc_add_all_planes_for_stream(
1589 		const struct dc *dc,
1590 		struct dc_stream_state *stream,
1591 		struct dc_plane_state * const *plane_states,
1592 		int plane_count,
1593 		struct dc_state *context)
1594 {
1595 	struct dc_validation_set set;
1596 	int i;
1597 
1598 	set.stream = stream;
1599 	set.plane_count = plane_count;
1600 
1601 	for (i = 0; i < plane_count; i++)
1602 		set.plane_states[i] = plane_states[i];
1603 
1604 	return add_all_planes_for_stream(dc, stream, &set, 1, context);
1605 }
1606 
1607 static bool is_timing_changed(struct dc_stream_state *cur_stream,
1608 		struct dc_stream_state *new_stream)
1609 {
1610 	if (cur_stream == NULL)
1611 		return true;
1612 
1613 	/* If output color space is changed, need to reprogram info frames */
1614 	if (cur_stream->output_color_space != new_stream->output_color_space)
1615 		return true;
1616 
1617 	return memcmp(
1618 		&cur_stream->timing,
1619 		&new_stream->timing,
1620 		sizeof(struct dc_crtc_timing)) != 0;
1621 }
1622 
1623 static bool are_stream_backends_same(
1624 	struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1625 {
1626 	if (stream_a == stream_b)
1627 		return true;
1628 
1629 	if (stream_a == NULL || stream_b == NULL)
1630 		return false;
1631 
1632 	if (is_timing_changed(stream_a, stream_b))
1633 		return false;
1634 
1635 	if (stream_a->dpms_off != stream_b->dpms_off)
1636 		return false;
1637 
1638 	return true;
1639 }
1640 
1641 /*
1642  * dc_is_stream_unchanged() - Compare two stream states for equivalence.
1643  *
1644  * Checks if there a difference between the two states
1645  * that would require a mode change.
1646  *
1647  * Does not compare cursor position or attributes.
1648  */
1649 bool dc_is_stream_unchanged(
1650 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1651 {
1652 
1653 	if (!are_stream_backends_same(old_stream, stream))
1654 		return false;
1655 
1656 	if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
1657 		return false;
1658 
1659 	return true;
1660 }
1661 
1662 /*
1663  * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
1664  */
1665 bool dc_is_stream_scaling_unchanged(
1666 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1667 {
1668 	if (old_stream == stream)
1669 		return true;
1670 
1671 	if (old_stream == NULL || stream == NULL)
1672 		return false;
1673 
1674 	if (memcmp(&old_stream->src,
1675 			&stream->src,
1676 			sizeof(struct rect)) != 0)
1677 		return false;
1678 
1679 	if (memcmp(&old_stream->dst,
1680 			&stream->dst,
1681 			sizeof(struct rect)) != 0)
1682 		return false;
1683 
1684 	return true;
1685 }
1686 
1687 static void update_stream_engine_usage(
1688 		struct resource_context *res_ctx,
1689 		const struct resource_pool *pool,
1690 		struct stream_encoder *stream_enc,
1691 		bool acquired)
1692 {
1693 	int i;
1694 
1695 	for (i = 0; i < pool->stream_enc_count; i++) {
1696 		if (pool->stream_enc[i] == stream_enc)
1697 			res_ctx->is_stream_enc_acquired[i] = acquired;
1698 	}
1699 }
1700 
1701 #if defined(CONFIG_DRM_AMD_DC_DCN)
1702 static void update_hpo_dp_stream_engine_usage(
1703 		struct resource_context *res_ctx,
1704 		const struct resource_pool *pool,
1705 		struct hpo_dp_stream_encoder *hpo_dp_stream_enc,
1706 		bool acquired)
1707 {
1708 	int i;
1709 
1710 	for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
1711 		if (pool->hpo_dp_stream_enc[i] == hpo_dp_stream_enc)
1712 			res_ctx->is_hpo_dp_stream_enc_acquired[i] = acquired;
1713 	}
1714 }
1715 #endif
1716 
1717 /* TODO: release audio object */
1718 void update_audio_usage(
1719 		struct resource_context *res_ctx,
1720 		const struct resource_pool *pool,
1721 		struct audio *audio,
1722 		bool acquired)
1723 {
1724 	int i;
1725 	for (i = 0; i < pool->audio_count; i++) {
1726 		if (pool->audios[i] == audio)
1727 			res_ctx->is_audio_acquired[i] = acquired;
1728 	}
1729 }
1730 
1731 static int acquire_first_free_pipe(
1732 		struct resource_context *res_ctx,
1733 		const struct resource_pool *pool,
1734 		struct dc_stream_state *stream)
1735 {
1736 	int i;
1737 
1738 	for (i = 0; i < pool->pipe_count; i++) {
1739 		if (!res_ctx->pipe_ctx[i].stream) {
1740 			struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
1741 
1742 			pipe_ctx->stream_res.tg = pool->timing_generators[i];
1743 			pipe_ctx->plane_res.mi = pool->mis[i];
1744 			pipe_ctx->plane_res.hubp = pool->hubps[i];
1745 			pipe_ctx->plane_res.ipp = pool->ipps[i];
1746 			pipe_ctx->plane_res.xfm = pool->transforms[i];
1747 			pipe_ctx->plane_res.dpp = pool->dpps[i];
1748 			pipe_ctx->stream_res.opp = pool->opps[i];
1749 			if (pool->dpps[i])
1750 				pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
1751 			pipe_ctx->pipe_idx = i;
1752 
1753 
1754 			pipe_ctx->stream = stream;
1755 			return i;
1756 		}
1757 	}
1758 	return -1;
1759 }
1760 
1761 #if defined(CONFIG_DRM_AMD_DC_DCN)
1762 static struct hpo_dp_stream_encoder *find_first_free_match_hpo_dp_stream_enc_for_link(
1763 		struct resource_context *res_ctx,
1764 		const struct resource_pool *pool,
1765 		struct dc_stream_state *stream)
1766 {
1767 	int i;
1768 
1769 	for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
1770 		if (!res_ctx->is_hpo_dp_stream_enc_acquired[i] &&
1771 				pool->hpo_dp_stream_enc[i]) {
1772 
1773 			return pool->hpo_dp_stream_enc[i];
1774 		}
1775 	}
1776 
1777 	return NULL;
1778 }
1779 #endif
1780 
1781 static struct audio *find_first_free_audio(
1782 		struct resource_context *res_ctx,
1783 		const struct resource_pool *pool,
1784 		enum engine_id id,
1785 		enum dce_version dc_version)
1786 {
1787 	int i, available_audio_count;
1788 
1789 	available_audio_count = pool->audio_count;
1790 
1791 	for (i = 0; i < available_audio_count; i++) {
1792 		if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
1793 			/*we have enough audio endpoint, find the matching inst*/
1794 			if (id != i)
1795 				continue;
1796 			return pool->audios[i];
1797 		}
1798 	}
1799 
1800 	/* use engine id to find free audio */
1801 	if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
1802 		return pool->audios[id];
1803 	}
1804 	/*not found the matching one, first come first serve*/
1805 	for (i = 0; i < available_audio_count; i++) {
1806 		if (res_ctx->is_audio_acquired[i] == false) {
1807 			return pool->audios[i];
1808 		}
1809 	}
1810 	return 0;
1811 }
1812 
1813 /*
1814  * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
1815  */
1816 enum dc_status dc_add_stream_to_ctx(
1817 		struct dc *dc,
1818 		struct dc_state *new_ctx,
1819 		struct dc_stream_state *stream)
1820 {
1821 	enum dc_status res;
1822 	DC_LOGGER_INIT(dc->ctx->logger);
1823 
1824 	if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
1825 		DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
1826 		return DC_ERROR_UNEXPECTED;
1827 	}
1828 
1829 	new_ctx->streams[new_ctx->stream_count] = stream;
1830 	dc_stream_retain(stream);
1831 	new_ctx->stream_count++;
1832 
1833 	res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
1834 	if (res != DC_OK)
1835 		DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
1836 
1837 	return res;
1838 }
1839 
1840 /*
1841  * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
1842  */
1843 enum dc_status dc_remove_stream_from_ctx(
1844 			struct dc *dc,
1845 			struct dc_state *new_ctx,
1846 			struct dc_stream_state *stream)
1847 {
1848 	int i;
1849 	struct dc_context *dc_ctx = dc->ctx;
1850 	struct pipe_ctx *del_pipe = resource_get_head_pipe_for_stream(&new_ctx->res_ctx, stream);
1851 	struct pipe_ctx *odm_pipe;
1852 
1853 	if (!del_pipe) {
1854 		DC_ERROR("Pipe not found for stream %p !\n", stream);
1855 		return DC_ERROR_UNEXPECTED;
1856 	}
1857 
1858 	odm_pipe = del_pipe->next_odm_pipe;
1859 
1860 	/* Release primary pipe */
1861 	ASSERT(del_pipe->stream_res.stream_enc);
1862 	update_stream_engine_usage(
1863 			&new_ctx->res_ctx,
1864 				dc->res_pool,
1865 			del_pipe->stream_res.stream_enc,
1866 			false);
1867 	/* Release link encoder from stream in new dc_state. */
1868 	if (dc->res_pool->funcs->link_enc_unassign)
1869 		dc->res_pool->funcs->link_enc_unassign(new_ctx, del_pipe->stream);
1870 
1871 #if defined(CONFIG_DRM_AMD_DC_DCN)
1872 	if (is_dp_128b_132b_signal(del_pipe)) {
1873 		update_hpo_dp_stream_engine_usage(
1874 			&new_ctx->res_ctx, dc->res_pool,
1875 			del_pipe->stream_res.hpo_dp_stream_enc,
1876 			false);
1877 	}
1878 #endif
1879 
1880 	if (del_pipe->stream_res.audio)
1881 		update_audio_usage(
1882 			&new_ctx->res_ctx,
1883 			dc->res_pool,
1884 			del_pipe->stream_res.audio,
1885 			false);
1886 
1887 	resource_unreference_clock_source(&new_ctx->res_ctx,
1888 					  dc->res_pool,
1889 					  del_pipe->clock_source);
1890 
1891 	if (dc->res_pool->funcs->remove_stream_from_ctx)
1892 		dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
1893 
1894 	while (odm_pipe) {
1895 		struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1896 
1897 		memset(odm_pipe, 0, sizeof(*odm_pipe));
1898 		odm_pipe = next_odm_pipe;
1899 	}
1900 	memset(del_pipe, 0, sizeof(*del_pipe));
1901 
1902 	for (i = 0; i < new_ctx->stream_count; i++)
1903 		if (new_ctx->streams[i] == stream)
1904 			break;
1905 
1906 	if (new_ctx->streams[i] != stream) {
1907 		DC_ERROR("Context doesn't have stream %p !\n", stream);
1908 		return DC_ERROR_UNEXPECTED;
1909 	}
1910 
1911 	dc_stream_release(new_ctx->streams[i]);
1912 	new_ctx->stream_count--;
1913 
1914 	/* Trim back arrays */
1915 	for (; i < new_ctx->stream_count; i++) {
1916 		new_ctx->streams[i] = new_ctx->streams[i + 1];
1917 		new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
1918 	}
1919 
1920 	new_ctx->streams[new_ctx->stream_count] = NULL;
1921 	memset(
1922 			&new_ctx->stream_status[new_ctx->stream_count],
1923 			0,
1924 			sizeof(new_ctx->stream_status[0]));
1925 
1926 	return DC_OK;
1927 }
1928 
1929 static struct dc_stream_state *find_pll_sharable_stream(
1930 		struct dc_stream_state *stream_needs_pll,
1931 		struct dc_state *context)
1932 {
1933 	int i;
1934 
1935 	for (i = 0; i < context->stream_count; i++) {
1936 		struct dc_stream_state *stream_has_pll = context->streams[i];
1937 
1938 		/* We are looking for non dp, non virtual stream */
1939 		if (resource_are_streams_timing_synchronizable(
1940 			stream_needs_pll, stream_has_pll)
1941 			&& !dc_is_dp_signal(stream_has_pll->signal)
1942 			&& stream_has_pll->link->connector_signal
1943 			!= SIGNAL_TYPE_VIRTUAL)
1944 			return stream_has_pll;
1945 
1946 	}
1947 
1948 	return NULL;
1949 }
1950 
1951 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
1952 {
1953 	uint32_t pix_clk = timing->pix_clk_100hz;
1954 	uint32_t normalized_pix_clk = pix_clk;
1955 
1956 	if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
1957 		pix_clk /= 2;
1958 	if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
1959 		switch (timing->display_color_depth) {
1960 		case COLOR_DEPTH_666:
1961 		case COLOR_DEPTH_888:
1962 			normalized_pix_clk = pix_clk;
1963 			break;
1964 		case COLOR_DEPTH_101010:
1965 			normalized_pix_clk = (pix_clk * 30) / 24;
1966 			break;
1967 		case COLOR_DEPTH_121212:
1968 			normalized_pix_clk = (pix_clk * 36) / 24;
1969 		break;
1970 		case COLOR_DEPTH_161616:
1971 			normalized_pix_clk = (pix_clk * 48) / 24;
1972 		break;
1973 		default:
1974 			ASSERT(0);
1975 		break;
1976 		}
1977 	}
1978 	return normalized_pix_clk;
1979 }
1980 
1981 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
1982 {
1983 	/* update actual pixel clock on all streams */
1984 	if (dc_is_hdmi_signal(stream->signal))
1985 		stream->phy_pix_clk = get_norm_pix_clk(
1986 			&stream->timing) / 10;
1987 	else
1988 		stream->phy_pix_clk =
1989 			stream->timing.pix_clk_100hz / 10;
1990 
1991 	if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
1992 		stream->phy_pix_clk *= 2;
1993 }
1994 
1995 static int acquire_resource_from_hw_enabled_state(
1996 		struct resource_context *res_ctx,
1997 		const struct resource_pool *pool,
1998 		struct dc_stream_state *stream)
1999 {
2000 	struct dc_link *link = stream->link;
2001 	unsigned int i, inst, tg_inst = 0;
2002 
2003 	/* Check for enabled DIG to identify enabled display */
2004 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
2005 		return -1;
2006 
2007 	inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
2008 
2009 	if (inst == ENGINE_ID_UNKNOWN)
2010 		return -1;
2011 
2012 	for (i = 0; i < pool->stream_enc_count; i++) {
2013 		if (pool->stream_enc[i]->id == inst) {
2014 			tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
2015 				pool->stream_enc[i]);
2016 			break;
2017 		}
2018 	}
2019 
2020 	// tg_inst not found
2021 	if (i == pool->stream_enc_count)
2022 		return -1;
2023 
2024 	if (tg_inst >= pool->timing_generator_count)
2025 		return -1;
2026 
2027 	if (!res_ctx->pipe_ctx[tg_inst].stream) {
2028 		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
2029 
2030 		pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2031 		pipe_ctx->plane_res.mi = pool->mis[tg_inst];
2032 		pipe_ctx->plane_res.hubp = pool->hubps[tg_inst];
2033 		pipe_ctx->plane_res.ipp = pool->ipps[tg_inst];
2034 		pipe_ctx->plane_res.xfm = pool->transforms[tg_inst];
2035 		pipe_ctx->plane_res.dpp = pool->dpps[tg_inst];
2036 		pipe_ctx->stream_res.opp = pool->opps[tg_inst];
2037 
2038 		if (pool->dpps[tg_inst]) {
2039 			pipe_ctx->plane_res.mpcc_inst = pool->dpps[tg_inst]->inst;
2040 
2041 			// Read DPP->MPCC->OPP Pipe from HW State
2042 			if (pool->mpc->funcs->read_mpcc_state) {
2043 				struct mpcc_state s = {0};
2044 
2045 				pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
2046 
2047 				if (s.dpp_id < MAX_MPCC)
2048 					pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id = s.dpp_id;
2049 
2050 				if (s.bot_mpcc_id < MAX_MPCC)
2051 					pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
2052 							&pool->mpc->mpcc_array[s.bot_mpcc_id];
2053 
2054 				if (s.opp_id < MAX_OPP)
2055 					pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
2056 			}
2057 		}
2058 		pipe_ctx->pipe_idx = tg_inst;
2059 
2060 		pipe_ctx->stream = stream;
2061 		return tg_inst;
2062 	}
2063 
2064 	return -1;
2065 }
2066 
2067 static void mark_seamless_boot_stream(
2068 		const struct dc  *dc,
2069 		struct dc_stream_state *stream)
2070 {
2071 	struct dc_bios *dcb = dc->ctx->dc_bios;
2072 
2073 	/* TODO: Check Linux */
2074 	if (dc->config.allow_seamless_boot_optimization &&
2075 			!dcb->funcs->is_accelerated_mode(dcb)) {
2076 		if (dc_validate_seamless_boot_timing(dc, stream->sink, &stream->timing))
2077 			stream->apply_seamless_boot_optimization = true;
2078 	}
2079 }
2080 
2081 enum dc_status resource_map_pool_resources(
2082 		const struct dc  *dc,
2083 		struct dc_state *context,
2084 		struct dc_stream_state *stream)
2085 {
2086 	const struct resource_pool *pool = dc->res_pool;
2087 	int i;
2088 	struct dc_context *dc_ctx = dc->ctx;
2089 	struct pipe_ctx *pipe_ctx = NULL;
2090 	int pipe_idx = -1;
2091 
2092 	calculate_phy_pix_clks(stream);
2093 
2094 	mark_seamless_boot_stream(dc, stream);
2095 
2096 	if (stream->apply_seamless_boot_optimization) {
2097 		pipe_idx = acquire_resource_from_hw_enabled_state(
2098 				&context->res_ctx,
2099 				pool,
2100 				stream);
2101 		if (pipe_idx < 0)
2102 			/* hw resource was assigned to other stream */
2103 			stream->apply_seamless_boot_optimization = false;
2104 	}
2105 
2106 	if (pipe_idx < 0)
2107 		/* acquire new resources */
2108 		pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2109 
2110 #ifdef CONFIG_DRM_AMD_DC_DCN
2111 	if (pipe_idx < 0)
2112 		pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2113 #endif
2114 
2115 	if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2116 		return DC_NO_CONTROLLER_RESOURCE;
2117 
2118 	pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2119 
2120 	pipe_ctx->stream_res.stream_enc =
2121 		dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2122 			&context->res_ctx, pool, stream);
2123 
2124 	if (!pipe_ctx->stream_res.stream_enc)
2125 		return DC_NO_STREAM_ENC_RESOURCE;
2126 
2127 	update_stream_engine_usage(
2128 		&context->res_ctx, pool,
2129 		pipe_ctx->stream_res.stream_enc,
2130 		true);
2131 
2132 #if defined(CONFIG_DRM_AMD_DC_DCN)
2133 	/* Allocate DP HPO Stream Encoder based on signal, hw capabilities
2134 	 * and link settings
2135 	 */
2136 	if (dc_is_dp_signal(stream->signal) &&
2137 			dc->caps.dp_hpo) {
2138 		struct dc_link_settings link_settings = {0};
2139 
2140 		decide_link_settings(stream, &link_settings);
2141 		if (dp_get_link_encoding_format(&link_settings) == DP_128b_132b_ENCODING) {
2142 			pipe_ctx->stream_res.hpo_dp_stream_enc =
2143 					find_first_free_match_hpo_dp_stream_enc_for_link(
2144 							&context->res_ctx, pool, stream);
2145 
2146 			if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
2147 				return DC_NO_STREAM_ENC_RESOURCE;
2148 
2149 			update_hpo_dp_stream_engine_usage(
2150 					&context->res_ctx, pool,
2151 					pipe_ctx->stream_res.hpo_dp_stream_enc,
2152 					true);
2153 		}
2154 	}
2155 #endif
2156 
2157 	/* TODO: Add check if ASIC support and EDID audio */
2158 	if (!stream->converter_disable_audio &&
2159 	    dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2160 	    stream->audio_info.mode_count && stream->audio_info.flags.all) {
2161 		pipe_ctx->stream_res.audio = find_first_free_audio(
2162 		&context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2163 
2164 		/*
2165 		 * Audio assigned in order first come first get.
2166 		 * There are asics which has number of audio
2167 		 * resources less then number of pipes
2168 		 */
2169 		if (pipe_ctx->stream_res.audio)
2170 			update_audio_usage(&context->res_ctx, pool,
2171 					   pipe_ctx->stream_res.audio, true);
2172 	}
2173 
2174 	/* Add ABM to the resource if on EDP */
2175 	if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2176 #if defined(CONFIG_DRM_AMD_DC_DCN)
2177 		if (pool->abm)
2178 			pipe_ctx->stream_res.abm = pool->abm;
2179 		else
2180 			pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2181 #else
2182 		pipe_ctx->stream_res.abm = pool->abm;
2183 #endif
2184 	}
2185 
2186 	for (i = 0; i < context->stream_count; i++)
2187 		if (context->streams[i] == stream) {
2188 			context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2189 			context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2190 			context->stream_status[i].audio_inst =
2191 				pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2192 
2193 			return DC_OK;
2194 		}
2195 
2196 	DC_ERROR("Stream %p not found in new ctx!\n", stream);
2197 	return DC_ERROR_UNEXPECTED;
2198 }
2199 
2200 /**
2201  * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2202  * Is a shallow copy.  Increments refcounts on existing streams and planes.
2203  * @dc: copy out of dc->current_state
2204  * @dst_ctx: copy into this
2205  */
2206 void dc_resource_state_copy_construct_current(
2207 		const struct dc *dc,
2208 		struct dc_state *dst_ctx)
2209 {
2210 	dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2211 }
2212 
2213 
2214 void dc_resource_state_construct(
2215 		const struct dc *dc,
2216 		struct dc_state *dst_ctx)
2217 {
2218 	dst_ctx->clk_mgr = dc->clk_mgr;
2219 }
2220 
2221 
2222 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2223 {
2224 	return dc->res_pool->res_cap->num_dsc > 0;
2225 }
2226 
2227 
2228 /**
2229  * dc_validate_global_state() - Determine if HW can support a given state
2230  * Checks HW resource availability and bandwidth requirement.
2231  * @dc: dc struct for this driver
2232  * @new_ctx: state to be validated
2233  * @fast_validate: set to true if only yes/no to support matters
2234  *
2235  * Return: DC_OK if the result can be programmed.  Otherwise, an error code.
2236  */
2237 enum dc_status dc_validate_global_state(
2238 		struct dc *dc,
2239 		struct dc_state *new_ctx,
2240 		bool fast_validate)
2241 {
2242 	enum dc_status result = DC_ERROR_UNEXPECTED;
2243 	int i, j;
2244 
2245 	if (!new_ctx)
2246 		return DC_ERROR_UNEXPECTED;
2247 #if defined(CONFIG_DRM_AMD_DC_DCN)
2248 
2249 	/*
2250 	 * Update link encoder to stream assignment.
2251 	 * TODO: Split out reason allocation from validation.
2252 	 */
2253 	if (dc->res_pool->funcs->link_encs_assign && fast_validate == false)
2254 		dc->res_pool->funcs->link_encs_assign(
2255 			dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
2256 #endif
2257 
2258 	if (dc->res_pool->funcs->validate_global) {
2259 		result = dc->res_pool->funcs->validate_global(dc, new_ctx);
2260 		if (result != DC_OK)
2261 			return result;
2262 	}
2263 
2264 	for (i = 0; i < new_ctx->stream_count; i++) {
2265 		struct dc_stream_state *stream = new_ctx->streams[i];
2266 
2267 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
2268 			struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
2269 
2270 			if (pipe_ctx->stream != stream)
2271 				continue;
2272 
2273 			if (dc->res_pool->funcs->patch_unknown_plane_state &&
2274 					pipe_ctx->plane_state &&
2275 					pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
2276 				result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
2277 				if (result != DC_OK)
2278 					return result;
2279 			}
2280 
2281 			/* Switch to dp clock source only if there is
2282 			 * no non dp stream that shares the same timing
2283 			 * with the dp stream.
2284 			 */
2285 			if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
2286 				!find_pll_sharable_stream(stream, new_ctx)) {
2287 
2288 				resource_unreference_clock_source(
2289 						&new_ctx->res_ctx,
2290 						dc->res_pool,
2291 						pipe_ctx->clock_source);
2292 
2293 				pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
2294 				resource_reference_clock_source(
2295 						&new_ctx->res_ctx,
2296 						dc->res_pool,
2297 						 pipe_ctx->clock_source);
2298 			}
2299 		}
2300 	}
2301 
2302 	result = resource_build_scaling_params_for_context(dc, new_ctx);
2303 
2304 	if (result == DC_OK)
2305 		if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
2306 			result = DC_FAIL_BANDWIDTH_VALIDATE;
2307 
2308 	return result;
2309 }
2310 
2311 static void patch_gamut_packet_checksum(
2312 		struct dc_info_packet *gamut_packet)
2313 {
2314 	/* For gamut we recalc checksum */
2315 	if (gamut_packet->valid) {
2316 		uint8_t chk_sum = 0;
2317 		uint8_t *ptr;
2318 		uint8_t i;
2319 
2320 		/*start of the Gamut data. */
2321 		ptr = &gamut_packet->sb[3];
2322 
2323 		for (i = 0; i <= gamut_packet->sb[1]; i++)
2324 			chk_sum += ptr[i];
2325 
2326 		gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
2327 	}
2328 }
2329 
2330 static void set_avi_info_frame(
2331 		struct dc_info_packet *info_packet,
2332 		struct pipe_ctx *pipe_ctx)
2333 {
2334 	struct dc_stream_state *stream = pipe_ctx->stream;
2335 	enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
2336 	uint32_t pixel_encoding = 0;
2337 	enum scanning_type scan_type = SCANNING_TYPE_NODATA;
2338 	enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
2339 	bool itc = false;
2340 	uint8_t itc_value = 0;
2341 	uint8_t cn0_cn1 = 0;
2342 	unsigned int cn0_cn1_value = 0;
2343 	uint8_t *check_sum = NULL;
2344 	uint8_t byte_index = 0;
2345 	union hdmi_info_packet hdmi_info;
2346 	union display_content_support support = {0};
2347 	unsigned int vic = pipe_ctx->stream->timing.vic;
2348 	enum dc_timing_3d_format format;
2349 
2350 	memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
2351 
2352 	color_space = pipe_ctx->stream->output_color_space;
2353 	if (color_space == COLOR_SPACE_UNKNOWN)
2354 		color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
2355 			COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
2356 
2357 	/* Initialize header */
2358 	hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
2359 	/* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
2360 	* not be used in HDMI 2.0 (Section 10.1) */
2361 	hdmi_info.bits.header.version = 2;
2362 	hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
2363 
2364 	/*
2365 	 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
2366 	 * according to HDMI 2.0 spec (Section 10.1)
2367 	 */
2368 
2369 	switch (stream->timing.pixel_encoding) {
2370 	case PIXEL_ENCODING_YCBCR422:
2371 		pixel_encoding = 1;
2372 		break;
2373 
2374 	case PIXEL_ENCODING_YCBCR444:
2375 		pixel_encoding = 2;
2376 		break;
2377 	case PIXEL_ENCODING_YCBCR420:
2378 		pixel_encoding = 3;
2379 		break;
2380 
2381 	case PIXEL_ENCODING_RGB:
2382 	default:
2383 		pixel_encoding = 0;
2384 	}
2385 
2386 	/* Y0_Y1_Y2 : The pixel encoding */
2387 	/* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
2388 	hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
2389 
2390 	/* A0 = 1 Active Format Information valid */
2391 	hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
2392 
2393 	/* B0, B1 = 3; Bar info data is valid */
2394 	hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
2395 
2396 	hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
2397 
2398 	/* S0, S1 : Underscan / Overscan */
2399 	/* TODO: un-hardcode scan type */
2400 	scan_type = SCANNING_TYPE_UNDERSCAN;
2401 	hdmi_info.bits.S0_S1 = scan_type;
2402 
2403 	/* C0, C1 : Colorimetry */
2404 	if (color_space == COLOR_SPACE_YCBCR709 ||
2405 			color_space == COLOR_SPACE_YCBCR709_LIMITED)
2406 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
2407 	else if (color_space == COLOR_SPACE_YCBCR601 ||
2408 			color_space == COLOR_SPACE_YCBCR601_LIMITED)
2409 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
2410 	else {
2411 		hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
2412 	}
2413 	if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
2414 			color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
2415 			color_space == COLOR_SPACE_2020_YCBCR) {
2416 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
2417 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2418 	} else if (color_space == COLOR_SPACE_ADOBERGB) {
2419 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
2420 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2421 	}
2422 
2423 	/* TODO: un-hardcode aspect ratio */
2424 	aspect = stream->timing.aspect_ratio;
2425 
2426 	switch (aspect) {
2427 	case ASPECT_RATIO_4_3:
2428 	case ASPECT_RATIO_16_9:
2429 		hdmi_info.bits.M0_M1 = aspect;
2430 		break;
2431 
2432 	case ASPECT_RATIO_NO_DATA:
2433 	case ASPECT_RATIO_64_27:
2434 	case ASPECT_RATIO_256_135:
2435 	default:
2436 		hdmi_info.bits.M0_M1 = 0;
2437 	}
2438 
2439 	/* Active Format Aspect ratio - same as Picture Aspect Ratio. */
2440 	hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
2441 
2442 	/* TODO: un-hardcode cn0_cn1 and itc */
2443 
2444 	cn0_cn1 = 0;
2445 	cn0_cn1_value = 0;
2446 
2447 	itc = true;
2448 	itc_value = 1;
2449 
2450 	support = stream->content_support;
2451 
2452 	if (itc) {
2453 		if (!support.bits.valid_content_type) {
2454 			cn0_cn1_value = 0;
2455 		} else {
2456 			if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
2457 				if (support.bits.graphics_content == 1) {
2458 					cn0_cn1_value = 0;
2459 				}
2460 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
2461 				if (support.bits.photo_content == 1) {
2462 					cn0_cn1_value = 1;
2463 				} else {
2464 					cn0_cn1_value = 0;
2465 					itc_value = 0;
2466 				}
2467 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
2468 				if (support.bits.cinema_content == 1) {
2469 					cn0_cn1_value = 2;
2470 				} else {
2471 					cn0_cn1_value = 0;
2472 					itc_value = 0;
2473 				}
2474 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
2475 				if (support.bits.game_content == 1) {
2476 					cn0_cn1_value = 3;
2477 				} else {
2478 					cn0_cn1_value = 0;
2479 					itc_value = 0;
2480 				}
2481 			}
2482 		}
2483 		hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
2484 		hdmi_info.bits.ITC = itc_value;
2485 	}
2486 
2487 	if (stream->qs_bit == 1) {
2488 		if (color_space == COLOR_SPACE_SRGB ||
2489 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2490 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_FULL_RANGE;
2491 		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2492 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2493 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_LIMITED_RANGE;
2494 		else
2495 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2496 	} else
2497 		hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2498 
2499 	/* TODO : We should handle YCC quantization */
2500 	/* but we do not have matrix calculation */
2501 	if (stream->qy_bit == 1) {
2502 		if (color_space == COLOR_SPACE_SRGB ||
2503 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2504 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2505 		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2506 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2507 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2508 		else
2509 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2510 	} else
2511 		hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2512 
2513 	///VIC
2514 	format = stream->timing.timing_3d_format;
2515 	/*todo, add 3DStereo support*/
2516 	if (format != TIMING_3D_FORMAT_NONE) {
2517 		// Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
2518 		switch (pipe_ctx->stream->timing.hdmi_vic) {
2519 		case 1:
2520 			vic = 95;
2521 			break;
2522 		case 2:
2523 			vic = 94;
2524 			break;
2525 		case 3:
2526 			vic = 93;
2527 			break;
2528 		case 4:
2529 			vic = 98;
2530 			break;
2531 		default:
2532 			break;
2533 		}
2534 	}
2535 	/* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
2536 	hdmi_info.bits.VIC0_VIC7 = vic;
2537 	if (vic >= 128)
2538 		hdmi_info.bits.header.version = 3;
2539 	/* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
2540 	 * the Source shall use 20 AVI InfoFrame Version 4
2541 	 */
2542 	if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
2543 			hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
2544 		hdmi_info.bits.header.version = 4;
2545 		hdmi_info.bits.header.length = 14;
2546 	}
2547 
2548 	/* pixel repetition
2549 	 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
2550 	 * repetition start from 1 */
2551 	hdmi_info.bits.PR0_PR3 = 0;
2552 
2553 	/* Bar Info
2554 	 * barTop:    Line Number of End of Top Bar.
2555 	 * barBottom: Line Number of Start of Bottom Bar.
2556 	 * barLeft:   Pixel Number of End of Left Bar.
2557 	 * barRight:  Pixel Number of Start of Right Bar. */
2558 	hdmi_info.bits.bar_top = stream->timing.v_border_top;
2559 	hdmi_info.bits.bar_bottom = (stream->timing.v_total
2560 			- stream->timing.v_border_bottom + 1);
2561 	hdmi_info.bits.bar_left  = stream->timing.h_border_left;
2562 	hdmi_info.bits.bar_right = (stream->timing.h_total
2563 			- stream->timing.h_border_right + 1);
2564 
2565     /* Additional Colorimetry Extension
2566      * Used in conduction with C0-C1 and EC0-EC2
2567      * 0 = DCI-P3 RGB (D65)
2568      * 1 = DCI-P3 RGB (theater)
2569      */
2570 	hdmi_info.bits.ACE0_ACE3 = 0;
2571 
2572 	/* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
2573 	check_sum = &hdmi_info.packet_raw_data.sb[0];
2574 
2575 	*check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
2576 
2577 	for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
2578 		*check_sum += hdmi_info.packet_raw_data.sb[byte_index];
2579 
2580 	/* one byte complement */
2581 	*check_sum = (uint8_t) (0x100 - *check_sum);
2582 
2583 	/* Store in hw_path_mode */
2584 	info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
2585 	info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
2586 	info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
2587 
2588 	for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
2589 		info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
2590 
2591 	info_packet->valid = true;
2592 }
2593 
2594 static void set_vendor_info_packet(
2595 		struct dc_info_packet *info_packet,
2596 		struct dc_stream_state *stream)
2597 {
2598 	/* SPD info packet for FreeSync */
2599 
2600 	/* Check if Freesync is supported. Return if false. If true,
2601 	 * set the corresponding bit in the info packet
2602 	 */
2603 	if (!stream->vsp_infopacket.valid)
2604 		return;
2605 
2606 	*info_packet = stream->vsp_infopacket;
2607 }
2608 
2609 static void set_spd_info_packet(
2610 		struct dc_info_packet *info_packet,
2611 		struct dc_stream_state *stream)
2612 {
2613 	/* SPD info packet for FreeSync */
2614 
2615 	/* Check if Freesync is supported. Return if false. If true,
2616 	 * set the corresponding bit in the info packet
2617 	 */
2618 	if (!stream->vrr_infopacket.valid)
2619 		return;
2620 
2621 	*info_packet = stream->vrr_infopacket;
2622 }
2623 
2624 static void set_hdr_static_info_packet(
2625 		struct dc_info_packet *info_packet,
2626 		struct dc_stream_state *stream)
2627 {
2628 	/* HDR Static Metadata info packet for HDR10 */
2629 
2630 	if (!stream->hdr_static_metadata.valid ||
2631 			stream->use_dynamic_meta)
2632 		return;
2633 
2634 	*info_packet = stream->hdr_static_metadata;
2635 }
2636 
2637 static void set_vsc_info_packet(
2638 		struct dc_info_packet *info_packet,
2639 		struct dc_stream_state *stream)
2640 {
2641 	if (!stream->vsc_infopacket.valid)
2642 		return;
2643 
2644 	*info_packet = stream->vsc_infopacket;
2645 }
2646 
2647 void dc_resource_state_destruct(struct dc_state *context)
2648 {
2649 	int i, j;
2650 
2651 	for (i = 0; i < context->stream_count; i++) {
2652 		for (j = 0; j < context->stream_status[i].plane_count; j++)
2653 			dc_plane_state_release(
2654 				context->stream_status[i].plane_states[j]);
2655 
2656 		context->stream_status[i].plane_count = 0;
2657 		dc_stream_release(context->streams[i]);
2658 		context->streams[i] = NULL;
2659 	}
2660 	context->stream_count = 0;
2661 }
2662 
2663 void dc_resource_state_copy_construct(
2664 		const struct dc_state *src_ctx,
2665 		struct dc_state *dst_ctx)
2666 {
2667 	int i, j;
2668 	struct kref refcount = dst_ctx->refcount;
2669 
2670 	*dst_ctx = *src_ctx;
2671 
2672 	for (i = 0; i < MAX_PIPES; i++) {
2673 		struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
2674 
2675 		if (cur_pipe->top_pipe)
2676 			cur_pipe->top_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2677 
2678 		if (cur_pipe->bottom_pipe)
2679 			cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2680 
2681 		if (cur_pipe->next_odm_pipe)
2682 			cur_pipe->next_odm_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2683 
2684 		if (cur_pipe->prev_odm_pipe)
2685 			cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2686 	}
2687 
2688 	for (i = 0; i < dst_ctx->stream_count; i++) {
2689 		dc_stream_retain(dst_ctx->streams[i]);
2690 		for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
2691 			dc_plane_state_retain(
2692 				dst_ctx->stream_status[i].plane_states[j]);
2693 	}
2694 
2695 	/* context refcount should not be overridden */
2696 	dst_ctx->refcount = refcount;
2697 
2698 }
2699 
2700 struct clock_source *dc_resource_find_first_free_pll(
2701 		struct resource_context *res_ctx,
2702 		const struct resource_pool *pool)
2703 {
2704 	int i;
2705 
2706 	for (i = 0; i < pool->clk_src_count; ++i) {
2707 		if (res_ctx->clock_source_ref_count[i] == 0)
2708 			return pool->clock_sources[i];
2709 	}
2710 
2711 	return NULL;
2712 }
2713 
2714 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
2715 {
2716 	enum signal_type signal = SIGNAL_TYPE_NONE;
2717 	struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
2718 
2719 	/* default all packets to invalid */
2720 	info->avi.valid = false;
2721 	info->gamut.valid = false;
2722 	info->vendor.valid = false;
2723 	info->spd.valid = false;
2724 	info->hdrsmd.valid = false;
2725 	info->vsc.valid = false;
2726 
2727 	signal = pipe_ctx->stream->signal;
2728 
2729 	/* HDMi and DP have different info packets*/
2730 	if (dc_is_hdmi_signal(signal)) {
2731 		set_avi_info_frame(&info->avi, pipe_ctx);
2732 
2733 		set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
2734 
2735 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
2736 
2737 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2738 
2739 	} else if (dc_is_dp_signal(signal)) {
2740 		set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
2741 
2742 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
2743 
2744 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2745 	}
2746 
2747 	patch_gamut_packet_checksum(&info->gamut);
2748 }
2749 
2750 enum dc_status resource_map_clock_resources(
2751 		const struct dc  *dc,
2752 		struct dc_state *context,
2753 		struct dc_stream_state *stream)
2754 {
2755 	/* acquire new resources */
2756 	const struct resource_pool *pool = dc->res_pool;
2757 	struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
2758 				&context->res_ctx, stream);
2759 
2760 	if (!pipe_ctx)
2761 		return DC_ERROR_UNEXPECTED;
2762 
2763 	if (dc_is_dp_signal(pipe_ctx->stream->signal)
2764 		|| pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
2765 		pipe_ctx->clock_source = pool->dp_clock_source;
2766 	else {
2767 		pipe_ctx->clock_source = NULL;
2768 
2769 		if (!dc->config.disable_disp_pll_sharing)
2770 			pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
2771 				&context->res_ctx,
2772 				pipe_ctx);
2773 
2774 		if (pipe_ctx->clock_source == NULL)
2775 			pipe_ctx->clock_source =
2776 				dc_resource_find_first_free_pll(
2777 					&context->res_ctx,
2778 					pool);
2779 	}
2780 
2781 	if (pipe_ctx->clock_source == NULL)
2782 		return DC_NO_CLOCK_SOURCE_RESOURCE;
2783 
2784 	resource_reference_clock_source(
2785 		&context->res_ctx, pool,
2786 		pipe_ctx->clock_source);
2787 
2788 	return DC_OK;
2789 }
2790 
2791 /*
2792  * Note: We need to disable output if clock sources change,
2793  * since bios does optimization and doesn't apply if changing
2794  * PHY when not already disabled.
2795  */
2796 bool pipe_need_reprogram(
2797 		struct pipe_ctx *pipe_ctx_old,
2798 		struct pipe_ctx *pipe_ctx)
2799 {
2800 	if (!pipe_ctx_old->stream)
2801 		return false;
2802 
2803 	if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
2804 		return true;
2805 
2806 	if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
2807 		return true;
2808 
2809 	if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
2810 		return true;
2811 
2812 	if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
2813 			&& pipe_ctx_old->stream != pipe_ctx->stream)
2814 		return true;
2815 
2816 	if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
2817 		return true;
2818 
2819 	if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
2820 		return true;
2821 
2822 	if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
2823 		return true;
2824 
2825 	if (false == pipe_ctx_old->stream->link->link_state_valid &&
2826 		false == pipe_ctx_old->stream->dpms_off)
2827 		return true;
2828 
2829 	if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
2830 		return true;
2831 
2832 #if defined(CONFIG_DRM_AMD_DC_DCN)
2833 	if (pipe_ctx_old->stream_res.hpo_dp_stream_enc != pipe_ctx->stream_res.hpo_dp_stream_enc)
2834 		return true;
2835 #endif
2836 
2837 	/* DIG link encoder resource assignment for stream changed. */
2838 	if (pipe_ctx_old->stream->ctx->dc->res_pool->funcs->link_encs_assign) {
2839 		bool need_reprogram = false;
2840 		struct dc *dc = pipe_ctx_old->stream->ctx->dc;
2841 		enum link_enc_cfg_mode mode = dc->current_state->res_ctx.link_enc_cfg_ctx.mode;
2842 
2843 		dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
2844 		if (link_enc_cfg_get_link_enc_used_by_stream(dc, pipe_ctx_old->stream) != pipe_ctx->stream->link_enc)
2845 			need_reprogram = true;
2846 		dc->current_state->res_ctx.link_enc_cfg_ctx.mode = mode;
2847 
2848 		return need_reprogram;
2849 	}
2850 
2851 	return false;
2852 }
2853 
2854 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
2855 		struct bit_depth_reduction_params *fmt_bit_depth)
2856 {
2857 	enum dc_dither_option option = stream->dither_option;
2858 	enum dc_pixel_encoding pixel_encoding =
2859 			stream->timing.pixel_encoding;
2860 
2861 	memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
2862 
2863 	if (option == DITHER_OPTION_DEFAULT) {
2864 		switch (stream->timing.display_color_depth) {
2865 		case COLOR_DEPTH_666:
2866 			option = DITHER_OPTION_SPATIAL6;
2867 			break;
2868 		case COLOR_DEPTH_888:
2869 			option = DITHER_OPTION_SPATIAL8;
2870 			break;
2871 		case COLOR_DEPTH_101010:
2872 			option = DITHER_OPTION_SPATIAL10;
2873 			break;
2874 		default:
2875 			option = DITHER_OPTION_DISABLE;
2876 		}
2877 	}
2878 
2879 	if (option == DITHER_OPTION_DISABLE)
2880 		return;
2881 
2882 	if (option == DITHER_OPTION_TRUN6) {
2883 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2884 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
2885 	} else if (option == DITHER_OPTION_TRUN8 ||
2886 			option == DITHER_OPTION_TRUN8_SPATIAL6 ||
2887 			option == DITHER_OPTION_TRUN8_FM6) {
2888 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2889 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
2890 	} else if (option == DITHER_OPTION_TRUN10        ||
2891 			option == DITHER_OPTION_TRUN10_SPATIAL6   ||
2892 			option == DITHER_OPTION_TRUN10_SPATIAL8   ||
2893 			option == DITHER_OPTION_TRUN10_FM8     ||
2894 			option == DITHER_OPTION_TRUN10_FM6     ||
2895 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2896 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2897 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2898 	}
2899 
2900 	/* special case - Formatter can only reduce by 4 bits at most.
2901 	 * When reducing from 12 to 6 bits,
2902 	 * HW recommends we use trunc with round mode
2903 	 * (if we did nothing, trunc to 10 bits would be used)
2904 	 * note that any 12->10 bit reduction is ignored prior to DCE8,
2905 	 * as the input was 10 bits.
2906 	 */
2907 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
2908 			option == DITHER_OPTION_SPATIAL6 ||
2909 			option == DITHER_OPTION_FM6) {
2910 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2911 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2912 		fmt_bit_depth->flags.TRUNCATE_MODE = 1;
2913 	}
2914 
2915 	/* spatial dither
2916 	 * note that spatial modes 1-3 are never used
2917 	 */
2918 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM            ||
2919 			option == DITHER_OPTION_SPATIAL6 ||
2920 			option == DITHER_OPTION_TRUN10_SPATIAL6      ||
2921 			option == DITHER_OPTION_TRUN8_SPATIAL6) {
2922 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2923 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
2924 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2925 		fmt_bit_depth->flags.RGB_RANDOM =
2926 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2927 	} else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM            ||
2928 			option == DITHER_OPTION_SPATIAL8 ||
2929 			option == DITHER_OPTION_SPATIAL8_FM6        ||
2930 			option == DITHER_OPTION_TRUN10_SPATIAL8      ||
2931 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2932 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2933 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
2934 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2935 		fmt_bit_depth->flags.RGB_RANDOM =
2936 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2937 	} else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
2938 			option == DITHER_OPTION_SPATIAL10 ||
2939 			option == DITHER_OPTION_SPATIAL10_FM8 ||
2940 			option == DITHER_OPTION_SPATIAL10_FM6) {
2941 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2942 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
2943 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2944 		fmt_bit_depth->flags.RGB_RANDOM =
2945 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2946 	}
2947 
2948 	if (option == DITHER_OPTION_SPATIAL6 ||
2949 			option == DITHER_OPTION_SPATIAL8 ||
2950 			option == DITHER_OPTION_SPATIAL10) {
2951 		fmt_bit_depth->flags.FRAME_RANDOM = 0;
2952 	} else {
2953 		fmt_bit_depth->flags.FRAME_RANDOM = 1;
2954 	}
2955 
2956 	//////////////////////
2957 	//// temporal dither
2958 	//////////////////////
2959 	if (option == DITHER_OPTION_FM6           ||
2960 			option == DITHER_OPTION_SPATIAL8_FM6     ||
2961 			option == DITHER_OPTION_SPATIAL10_FM6     ||
2962 			option == DITHER_OPTION_TRUN10_FM6     ||
2963 			option == DITHER_OPTION_TRUN8_FM6      ||
2964 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2965 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2966 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
2967 	} else if (option == DITHER_OPTION_FM8        ||
2968 			option == DITHER_OPTION_SPATIAL10_FM8  ||
2969 			option == DITHER_OPTION_TRUN10_FM8) {
2970 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2971 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
2972 	} else if (option == DITHER_OPTION_FM10) {
2973 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2974 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
2975 	}
2976 
2977 	fmt_bit_depth->pixel_encoding = pixel_encoding;
2978 }
2979 
2980 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
2981 {
2982 	struct dc_link *link = stream->link;
2983 	struct timing_generator *tg = dc->res_pool->timing_generators[0];
2984 	enum dc_status res = DC_OK;
2985 
2986 	calculate_phy_pix_clks(stream);
2987 
2988 	if (!tg->funcs->validate_timing(tg, &stream->timing))
2989 		res = DC_FAIL_CONTROLLER_VALIDATE;
2990 
2991 	if (res == DC_OK) {
2992 		if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
2993 				!link->link_enc->funcs->validate_output_with_stream(
2994 						link->link_enc, stream))
2995 			res = DC_FAIL_ENC_VALIDATE;
2996 	}
2997 
2998 	/* TODO: validate audio ASIC caps, encoder */
2999 
3000 	if (res == DC_OK)
3001 		res = dc_link_validate_mode_timing(stream,
3002 		      link,
3003 		      &stream->timing);
3004 
3005 	return res;
3006 }
3007 
3008 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
3009 {
3010 	enum dc_status res = DC_OK;
3011 
3012 	/* check if surface has invalid dimensions */
3013 	if (plane_state->src_rect.width == 0 || plane_state->src_rect.height == 0 ||
3014 		plane_state->dst_rect.width == 0 || plane_state->dst_rect.height == 0)
3015 		return DC_FAIL_SURFACE_VALIDATE;
3016 
3017 	/* TODO For now validates pixel format only */
3018 	if (dc->res_pool->funcs->validate_plane)
3019 		return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
3020 
3021 	return res;
3022 }
3023 
3024 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
3025 {
3026 	switch (format) {
3027 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
3028 		return 8;
3029 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
3030 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
3031 		return 12;
3032 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
3033 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
3034 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
3035 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
3036 		return 16;
3037 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
3038 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
3039 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
3040 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
3041 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
3042 #if defined(CONFIG_DRM_AMD_DC_DCN)
3043 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
3044 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
3045 #endif
3046 		return 32;
3047 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
3048 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
3049 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
3050 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
3051 		return 64;
3052 	default:
3053 		ASSERT_CRITICAL(false);
3054 		return -1;
3055 	}
3056 }
3057 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
3058 {
3059 	if (modes) {
3060 		if (modes->sample_rates.rate.RATE_192)
3061 			return 192000;
3062 		if (modes->sample_rates.rate.RATE_176_4)
3063 			return 176400;
3064 		if (modes->sample_rates.rate.RATE_96)
3065 			return 96000;
3066 		if (modes->sample_rates.rate.RATE_88_2)
3067 			return 88200;
3068 		if (modes->sample_rates.rate.RATE_48)
3069 			return 48000;
3070 		if (modes->sample_rates.rate.RATE_44_1)
3071 			return 44100;
3072 		if (modes->sample_rates.rate.RATE_32)
3073 			return 32000;
3074 	}
3075 	/*original logic when no audio info*/
3076 	return 441000;
3077 }
3078 
3079 void get_audio_check(struct audio_info *aud_modes,
3080 	struct audio_check *audio_chk)
3081 {
3082 	unsigned int i;
3083 	unsigned int max_sample_rate = 0;
3084 
3085 	if (aud_modes) {
3086 		audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
3087 
3088 		audio_chk->max_audiosample_rate = 0;
3089 		for (i = 0; i < aud_modes->mode_count; i++) {
3090 			max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
3091 			if (audio_chk->max_audiosample_rate < max_sample_rate)
3092 				audio_chk->max_audiosample_rate = max_sample_rate;
3093 			/*dts takes the same as type 2: AP = 0.25*/
3094 		}
3095 		/*check which one take more bandwidth*/
3096 		if (audio_chk->max_audiosample_rate > 192000)
3097 			audio_chk->audio_packet_type = 0x9;/*AP =1*/
3098 		audio_chk->acat = 0;/*not support*/
3099 	}
3100 }
3101 
3102 #if defined(CONFIG_DRM_AMD_DC_DCN)
3103 struct hpo_dp_link_encoder *resource_get_unused_hpo_dp_link_encoder(
3104 		const struct resource_pool *pool)
3105 {
3106 	uint8_t i;
3107 	struct hpo_dp_link_encoder *enc = NULL;
3108 
3109 	ASSERT(pool->hpo_dp_link_enc_count <= MAX_HPO_DP2_LINK_ENCODERS);
3110 
3111 	for (i = 0; i < pool->hpo_dp_link_enc_count; i++) {
3112 		if (pool->hpo_dp_link_enc[i]->transmitter == TRANSMITTER_UNKNOWN) {
3113 			enc = pool->hpo_dp_link_enc[i];
3114 			break;
3115 		}
3116 	}
3117 
3118 	return enc;
3119 }
3120 #endif
3121