1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 
28 #include "resource.h"
29 #include "include/irq_service_interface.h"
30 #include "link_encoder.h"
31 #include "stream_encoder.h"
32 #include "opp.h"
33 #include "timing_generator.h"
34 #include "transform.h"
35 #include "dccg.h"
36 #include "dchubbub.h"
37 #include "dpp.h"
38 #include "core_types.h"
39 #include "set_mode_types.h"
40 #include "virtual/virtual_stream_encoder.h"
41 #include "dpcd_defs.h"
42 #include "link_enc_cfg.h"
43 #include "dc_link_dp.h"
44 #include "virtual/virtual_link_hwss.h"
45 #include "link/link_hwss_dio.h"
46 #include "link/link_hwss_dpia.h"
47 #include "link/link_hwss_hpo_dp.h"
48 
49 #if defined(CONFIG_DRM_AMD_DC_SI)
50 #include "dce60/dce60_resource.h"
51 #endif
52 #include "dce80/dce80_resource.h"
53 #include "dce100/dce100_resource.h"
54 #include "dce110/dce110_resource.h"
55 #include "dce112/dce112_resource.h"
56 #include "dce120/dce120_resource.h"
57 #include "dcn10/dcn10_resource.h"
58 #include "dcn20/dcn20_resource.h"
59 #include "dcn21/dcn21_resource.h"
60 #include "dcn201/dcn201_resource.h"
61 #include "dcn30/dcn30_resource.h"
62 #include "dcn301/dcn301_resource.h"
63 #include "dcn302/dcn302_resource.h"
64 #include "dcn303/dcn303_resource.h"
65 #include "dcn31/dcn31_resource.h"
66 #include "dcn314/dcn314_resource.h"
67 #include "dcn315/dcn315_resource.h"
68 #include "dcn316/dcn316_resource.h"
69 #include "../dcn32/dcn32_resource.h"
70 #include "../dcn321/dcn321_resource.h"
71 
72 #define DC_LOGGER_INIT(logger)
73 
74 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
75 {
76 	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
77 
78 	switch (asic_id.chip_family) {
79 
80 #if defined(CONFIG_DRM_AMD_DC_SI)
81 	case FAMILY_SI:
82 		if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
83 		    ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
84 		    ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
85 			dc_version = DCE_VERSION_6_0;
86 		else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
87 			dc_version = DCE_VERSION_6_4;
88 		else
89 			dc_version = DCE_VERSION_6_1;
90 		break;
91 #endif
92 	case FAMILY_CI:
93 		dc_version = DCE_VERSION_8_0;
94 		break;
95 	case FAMILY_KV:
96 		if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
97 		    ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
98 		    ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
99 			dc_version = DCE_VERSION_8_3;
100 		else
101 			dc_version = DCE_VERSION_8_1;
102 		break;
103 	case FAMILY_CZ:
104 		dc_version = DCE_VERSION_11_0;
105 		break;
106 
107 	case FAMILY_VI:
108 		if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
109 				ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
110 			dc_version = DCE_VERSION_10_0;
111 			break;
112 		}
113 		if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
114 				ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
115 				ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
116 			dc_version = DCE_VERSION_11_2;
117 		}
118 		if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
119 			dc_version = DCE_VERSION_11_22;
120 		break;
121 	case FAMILY_AI:
122 		if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
123 			dc_version = DCE_VERSION_12_1;
124 		else
125 			dc_version = DCE_VERSION_12_0;
126 		break;
127 	case FAMILY_RV:
128 		dc_version = DCN_VERSION_1_0;
129 		if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
130 			dc_version = DCN_VERSION_1_01;
131 		if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
132 			dc_version = DCN_VERSION_2_1;
133 		if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
134 			dc_version = DCN_VERSION_2_1;
135 		break;
136 
137 	case FAMILY_NV:
138 		dc_version = DCN_VERSION_2_0;
139 		if (asic_id.chip_id == DEVICE_ID_NV_13FE || asic_id.chip_id == DEVICE_ID_NV_143F) {
140 			dc_version = DCN_VERSION_2_01;
141 			break;
142 		}
143 		if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
144 			dc_version = DCN_VERSION_3_0;
145 		if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
146 			dc_version = DCN_VERSION_3_02;
147 		if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
148 			dc_version = DCN_VERSION_3_03;
149 		break;
150 
151 	case FAMILY_VGH:
152 		dc_version = DCN_VERSION_3_01;
153 		break;
154 
155 	case FAMILY_YELLOW_CARP:
156 		if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
157 			dc_version = DCN_VERSION_3_1;
158 		break;
159 	case AMDGPU_FAMILY_GC_10_3_6:
160 		if (ASICREV_IS_GC_10_3_6(asic_id.hw_internal_rev))
161 			dc_version = DCN_VERSION_3_15;
162 		break;
163 	case AMDGPU_FAMILY_GC_10_3_7:
164 		if (ASICREV_IS_GC_10_3_7(asic_id.hw_internal_rev))
165 			dc_version = DCN_VERSION_3_16;
166 		break;
167 	case AMDGPU_FAMILY_GC_11_0_0:
168 		dc_version = DCN_VERSION_3_2;
169 		if (ASICREV_IS_GC_11_0_2(asic_id.hw_internal_rev))
170 			dc_version = DCN_VERSION_3_21;
171 		break;
172 	case AMDGPU_FAMILY_GC_11_0_2:
173 		dc_version = DCN_VERSION_3_14;
174 		break;
175 	default:
176 		dc_version = DCE_VERSION_UNKNOWN;
177 		break;
178 	}
179 	return dc_version;
180 }
181 
182 struct resource_pool *dc_create_resource_pool(struct dc  *dc,
183 					      const struct dc_init_data *init_data,
184 					      enum dce_version dc_version)
185 {
186 	struct resource_pool *res_pool = NULL;
187 
188 	switch (dc_version) {
189 #if defined(CONFIG_DRM_AMD_DC_SI)
190 	case DCE_VERSION_6_0:
191 		res_pool = dce60_create_resource_pool(
192 			init_data->num_virtual_links, dc);
193 		break;
194 	case DCE_VERSION_6_1:
195 		res_pool = dce61_create_resource_pool(
196 			init_data->num_virtual_links, dc);
197 		break;
198 	case DCE_VERSION_6_4:
199 		res_pool = dce64_create_resource_pool(
200 			init_data->num_virtual_links, dc);
201 		break;
202 #endif
203 	case DCE_VERSION_8_0:
204 		res_pool = dce80_create_resource_pool(
205 				init_data->num_virtual_links, dc);
206 		break;
207 	case DCE_VERSION_8_1:
208 		res_pool = dce81_create_resource_pool(
209 				init_data->num_virtual_links, dc);
210 		break;
211 	case DCE_VERSION_8_3:
212 		res_pool = dce83_create_resource_pool(
213 				init_data->num_virtual_links, dc);
214 		break;
215 	case DCE_VERSION_10_0:
216 		res_pool = dce100_create_resource_pool(
217 				init_data->num_virtual_links, dc);
218 		break;
219 	case DCE_VERSION_11_0:
220 		res_pool = dce110_create_resource_pool(
221 				init_data->num_virtual_links, dc,
222 				init_data->asic_id);
223 		break;
224 	case DCE_VERSION_11_2:
225 	case DCE_VERSION_11_22:
226 		res_pool = dce112_create_resource_pool(
227 				init_data->num_virtual_links, dc);
228 		break;
229 	case DCE_VERSION_12_0:
230 	case DCE_VERSION_12_1:
231 		res_pool = dce120_create_resource_pool(
232 				init_data->num_virtual_links, dc);
233 		break;
234 
235 #if defined(CONFIG_DRM_AMD_DC_DCN)
236 	case DCN_VERSION_1_0:
237 	case DCN_VERSION_1_01:
238 		res_pool = dcn10_create_resource_pool(init_data, dc);
239 		break;
240 	case DCN_VERSION_2_0:
241 		res_pool = dcn20_create_resource_pool(init_data, dc);
242 		break;
243 	case DCN_VERSION_2_1:
244 		res_pool = dcn21_create_resource_pool(init_data, dc);
245 		break;
246 	case DCN_VERSION_2_01:
247 		res_pool = dcn201_create_resource_pool(init_data, dc);
248 		break;
249 	case DCN_VERSION_3_0:
250 		res_pool = dcn30_create_resource_pool(init_data, dc);
251 		break;
252 	case DCN_VERSION_3_01:
253 		res_pool = dcn301_create_resource_pool(init_data, dc);
254 		break;
255 	case DCN_VERSION_3_02:
256 		res_pool = dcn302_create_resource_pool(init_data, dc);
257 		break;
258 	case DCN_VERSION_3_03:
259 		res_pool = dcn303_create_resource_pool(init_data, dc);
260 		break;
261 	case DCN_VERSION_3_1:
262 		res_pool = dcn31_create_resource_pool(init_data, dc);
263 		break;
264 	case DCN_VERSION_3_14:
265 		res_pool = dcn314_create_resource_pool(init_data, dc);
266 		break;
267 	case DCN_VERSION_3_15:
268 		res_pool = dcn315_create_resource_pool(init_data, dc);
269 		break;
270 	case DCN_VERSION_3_16:
271 		res_pool = dcn316_create_resource_pool(init_data, dc);
272 		break;
273 	case DCN_VERSION_3_2:
274 		res_pool = dcn32_create_resource_pool(init_data, dc);
275 		break;
276 	case DCN_VERSION_3_21:
277 		res_pool = dcn321_create_resource_pool(init_data, dc);
278 		break;
279 #endif
280 	default:
281 		break;
282 	}
283 
284 	if (res_pool != NULL) {
285 		if (dc->ctx->dc_bios->fw_info_valid) {
286 			res_pool->ref_clocks.xtalin_clock_inKhz =
287 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
288 			/* initialize with firmware data first, no all
289 			 * ASIC have DCCG SW component. FPGA or
290 			 * simulation need initialization of
291 			 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
292 			 * with xtalin_clock_inKhz
293 			 */
294 			res_pool->ref_clocks.dccg_ref_clock_inKhz =
295 				res_pool->ref_clocks.xtalin_clock_inKhz;
296 			res_pool->ref_clocks.dchub_ref_clock_inKhz =
297 				res_pool->ref_clocks.xtalin_clock_inKhz;
298 		} else
299 			ASSERT_CRITICAL(false);
300 	}
301 
302 	return res_pool;
303 }
304 
305 void dc_destroy_resource_pool(struct dc  *dc)
306 {
307 	if (dc) {
308 		if (dc->res_pool)
309 			dc->res_pool->funcs->destroy(&dc->res_pool);
310 
311 		kfree(dc->hwseq);
312 	}
313 }
314 
315 static void update_num_audio(
316 	const struct resource_straps *straps,
317 	unsigned int *num_audio,
318 	struct audio_support *aud_support)
319 {
320 	aud_support->dp_audio = true;
321 	aud_support->hdmi_audio_native = false;
322 	aud_support->hdmi_audio_on_dongle = false;
323 
324 	if (straps->hdmi_disable == 0) {
325 		if (straps->dc_pinstraps_audio & 0x2) {
326 			aud_support->hdmi_audio_on_dongle = true;
327 			aud_support->hdmi_audio_native = true;
328 		}
329 	}
330 
331 	switch (straps->audio_stream_number) {
332 	case 0: /* multi streams supported */
333 		break;
334 	case 1: /* multi streams not supported */
335 		*num_audio = 1;
336 		break;
337 	default:
338 		DC_ERR("DC: unexpected audio fuse!\n");
339 	}
340 }
341 
342 bool resource_construct(
343 	unsigned int num_virtual_links,
344 	struct dc  *dc,
345 	struct resource_pool *pool,
346 	const struct resource_create_funcs *create_funcs)
347 {
348 	struct dc_context *ctx = dc->ctx;
349 	const struct resource_caps *caps = pool->res_cap;
350 	int i;
351 	unsigned int num_audio = caps->num_audio;
352 	struct resource_straps straps = {0};
353 
354 	if (create_funcs->read_dce_straps)
355 		create_funcs->read_dce_straps(dc->ctx, &straps);
356 
357 	pool->audio_count = 0;
358 	if (create_funcs->create_audio) {
359 		/* find the total number of streams available via the
360 		 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
361 		 * registers (one for each pin) starting from pin 1
362 		 * up to the max number of audio pins.
363 		 * We stop on the first pin where
364 		 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
365 		 */
366 		update_num_audio(&straps, &num_audio, &pool->audio_support);
367 		for (i = 0; i < caps->num_audio; i++) {
368 			struct audio *aud = create_funcs->create_audio(ctx, i);
369 
370 			if (aud == NULL) {
371 				DC_ERR("DC: failed to create audio!\n");
372 				return false;
373 			}
374 			if (!aud->funcs->endpoint_valid(aud)) {
375 				aud->funcs->destroy(&aud);
376 				break;
377 			}
378 			pool->audios[i] = aud;
379 			pool->audio_count++;
380 		}
381 	}
382 
383 	pool->stream_enc_count = 0;
384 	if (create_funcs->create_stream_encoder) {
385 		for (i = 0; i < caps->num_stream_encoder; i++) {
386 			pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
387 			if (pool->stream_enc[i] == NULL)
388 				DC_ERR("DC: failed to create stream_encoder!\n");
389 			pool->stream_enc_count++;
390 		}
391 	}
392 
393 	pool->hpo_dp_stream_enc_count = 0;
394 	if (create_funcs->create_hpo_dp_stream_encoder) {
395 		for (i = 0; i < caps->num_hpo_dp_stream_encoder; i++) {
396 			pool->hpo_dp_stream_enc[i] = create_funcs->create_hpo_dp_stream_encoder(i+ENGINE_ID_HPO_DP_0, ctx);
397 			if (pool->hpo_dp_stream_enc[i] == NULL)
398 				DC_ERR("DC: failed to create HPO DP stream encoder!\n");
399 			pool->hpo_dp_stream_enc_count++;
400 
401 		}
402 	}
403 
404 	pool->hpo_dp_link_enc_count = 0;
405 	if (create_funcs->create_hpo_dp_link_encoder) {
406 		for (i = 0; i < caps->num_hpo_dp_link_encoder; i++) {
407 			pool->hpo_dp_link_enc[i] = create_funcs->create_hpo_dp_link_encoder(i, ctx);
408 			if (pool->hpo_dp_link_enc[i] == NULL)
409 				DC_ERR("DC: failed to create HPO DP link encoder!\n");
410 			pool->hpo_dp_link_enc_count++;
411 		}
412 	}
413 
414 	for (i = 0; i < caps->num_mpc_3dlut; i++) {
415 		pool->mpc_lut[i] = dc_create_3dlut_func();
416 		if (pool->mpc_lut[i] == NULL)
417 			DC_ERR("DC: failed to create MPC 3dlut!\n");
418 		pool->mpc_shaper[i] = dc_create_transfer_func();
419 		if (pool->mpc_shaper[i] == NULL)
420 			DC_ERR("DC: failed to create MPC shaper!\n");
421 	}
422 
423 	dc->caps.dynamic_audio = false;
424 	if (pool->audio_count < pool->stream_enc_count) {
425 		dc->caps.dynamic_audio = true;
426 	}
427 	for (i = 0; i < num_virtual_links; i++) {
428 		pool->stream_enc[pool->stream_enc_count] =
429 			virtual_stream_encoder_create(
430 					ctx, ctx->dc_bios);
431 		if (pool->stream_enc[pool->stream_enc_count] == NULL) {
432 			DC_ERR("DC: failed to create stream_encoder!\n");
433 			return false;
434 		}
435 		pool->stream_enc_count++;
436 	}
437 
438 	dc->hwseq = create_funcs->create_hwseq(ctx);
439 
440 	return true;
441 }
442 static int find_matching_clock_source(
443 		const struct resource_pool *pool,
444 		struct clock_source *clock_source)
445 {
446 
447 	int i;
448 
449 	for (i = 0; i < pool->clk_src_count; i++) {
450 		if (pool->clock_sources[i] == clock_source)
451 			return i;
452 	}
453 	return -1;
454 }
455 
456 void resource_unreference_clock_source(
457 		struct resource_context *res_ctx,
458 		const struct resource_pool *pool,
459 		struct clock_source *clock_source)
460 {
461 	int i = find_matching_clock_source(pool, clock_source);
462 
463 	if (i > -1)
464 		res_ctx->clock_source_ref_count[i]--;
465 
466 	if (pool->dp_clock_source == clock_source)
467 		res_ctx->dp_clock_source_ref_count--;
468 }
469 
470 void resource_reference_clock_source(
471 		struct resource_context *res_ctx,
472 		const struct resource_pool *pool,
473 		struct clock_source *clock_source)
474 {
475 	int i = find_matching_clock_source(pool, clock_source);
476 
477 	if (i > -1)
478 		res_ctx->clock_source_ref_count[i]++;
479 
480 	if (pool->dp_clock_source == clock_source)
481 		res_ctx->dp_clock_source_ref_count++;
482 }
483 
484 int resource_get_clock_source_reference(
485 		struct resource_context *res_ctx,
486 		const struct resource_pool *pool,
487 		struct clock_source *clock_source)
488 {
489 	int i = find_matching_clock_source(pool, clock_source);
490 
491 	if (i > -1)
492 		return res_ctx->clock_source_ref_count[i];
493 
494 	if (pool->dp_clock_source == clock_source)
495 		return res_ctx->dp_clock_source_ref_count;
496 
497 	return -1;
498 }
499 
500 bool resource_are_vblanks_synchronizable(
501 	struct dc_stream_state *stream1,
502 	struct dc_stream_state *stream2)
503 {
504 	uint32_t base60_refresh_rates[] = {10, 20, 5};
505 	uint8_t i;
506 	uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
507 	uint64_t frame_time_diff;
508 
509 	if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
510 		stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
511 		dc_is_dp_signal(stream1->signal) &&
512 		dc_is_dp_signal(stream2->signal) &&
513 		false == stream1->has_non_synchronizable_pclk &&
514 		false == stream2->has_non_synchronizable_pclk &&
515 		stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
516 		stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
517 		/* disable refresh rates higher than 60Hz for now */
518 		if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
519 				stream1->timing.v_total > 60)
520 			return false;
521 		if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
522 				stream2->timing.v_total > 60)
523 			return false;
524 		frame_time_diff = (uint64_t)10000 *
525 			stream1->timing.h_total *
526 			stream1->timing.v_total *
527 			stream2->timing.pix_clk_100hz;
528 		frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
529 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
530 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
531 		for (i = 0; i < rr_count; i++) {
532 			int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
533 
534 			if (diff < 0)
535 				diff = -diff;
536 			if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
537 				return true;
538 		}
539 	}
540 	return false;
541 }
542 
543 bool resource_are_streams_timing_synchronizable(
544 	struct dc_stream_state *stream1,
545 	struct dc_stream_state *stream2)
546 {
547 	if (stream1->timing.h_total != stream2->timing.h_total)
548 		return false;
549 
550 	if (stream1->timing.v_total != stream2->timing.v_total)
551 		return false;
552 
553 	if (stream1->timing.h_addressable
554 				!= stream2->timing.h_addressable)
555 		return false;
556 
557 	if (stream1->timing.v_addressable
558 				!= stream2->timing.v_addressable)
559 		return false;
560 
561 	if (stream1->timing.v_front_porch
562 				!= stream2->timing.v_front_porch)
563 		return false;
564 
565 	if (stream1->timing.pix_clk_100hz
566 				!= stream2->timing.pix_clk_100hz)
567 		return false;
568 
569 	if (stream1->clamping.c_depth != stream2->clamping.c_depth)
570 		return false;
571 
572 	if (stream1->phy_pix_clk != stream2->phy_pix_clk
573 			&& (!dc_is_dp_signal(stream1->signal)
574 			|| !dc_is_dp_signal(stream2->signal)))
575 		return false;
576 
577 	if (stream1->view_format != stream2->view_format)
578 		return false;
579 
580 	if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
581 		return false;
582 
583 	return true;
584 }
585 static bool is_dp_and_hdmi_sharable(
586 		struct dc_stream_state *stream1,
587 		struct dc_stream_state *stream2)
588 {
589 	if (stream1->ctx->dc->caps.disable_dp_clk_share)
590 		return false;
591 
592 	if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
593 		stream2->clamping.c_depth != COLOR_DEPTH_888)
594 		return false;
595 
596 	return true;
597 
598 }
599 
600 static bool is_sharable_clk_src(
601 	const struct pipe_ctx *pipe_with_clk_src,
602 	const struct pipe_ctx *pipe)
603 {
604 	if (pipe_with_clk_src->clock_source == NULL)
605 		return false;
606 
607 	if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
608 		return false;
609 
610 	if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
611 		(dc_is_dp_signal(pipe->stream->signal) &&
612 		!is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
613 				     pipe->stream)))
614 		return false;
615 
616 	if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
617 			&& dc_is_dual_link_signal(pipe->stream->signal))
618 		return false;
619 
620 	if (dc_is_hdmi_signal(pipe->stream->signal)
621 			&& dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
622 		return false;
623 
624 	if (!resource_are_streams_timing_synchronizable(
625 			pipe_with_clk_src->stream, pipe->stream))
626 		return false;
627 
628 	return true;
629 }
630 
631 struct clock_source *resource_find_used_clk_src_for_sharing(
632 					struct resource_context *res_ctx,
633 					struct pipe_ctx *pipe_ctx)
634 {
635 	int i;
636 
637 	for (i = 0; i < MAX_PIPES; i++) {
638 		if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
639 			return res_ctx->pipe_ctx[i].clock_source;
640 	}
641 
642 	return NULL;
643 }
644 
645 static enum pixel_format convert_pixel_format_to_dalsurface(
646 		enum surface_pixel_format surface_pixel_format)
647 {
648 	enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
649 
650 	switch (surface_pixel_format) {
651 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
652 		dal_pixel_format = PIXEL_FORMAT_INDEX8;
653 		break;
654 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
655 		dal_pixel_format = PIXEL_FORMAT_RGB565;
656 		break;
657 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
658 		dal_pixel_format = PIXEL_FORMAT_RGB565;
659 		break;
660 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
661 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
662 		break;
663 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
664 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
665 		break;
666 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
667 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
668 		break;
669 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
670 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
671 		break;
672 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
673 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
674 		break;
675 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
676 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
677 		dal_pixel_format = PIXEL_FORMAT_FP16;
678 		break;
679 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
680 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
681 		dal_pixel_format = PIXEL_FORMAT_420BPP8;
682 		break;
683 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
684 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
685 		dal_pixel_format = PIXEL_FORMAT_420BPP10;
686 		break;
687 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
688 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
689 	default:
690 		dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
691 		break;
692 	}
693 	return dal_pixel_format;
694 }
695 
696 static inline void get_vp_scan_direction(
697 	enum dc_rotation_angle rotation,
698 	bool horizontal_mirror,
699 	bool *orthogonal_rotation,
700 	bool *flip_vert_scan_dir,
701 	bool *flip_horz_scan_dir)
702 {
703 	*orthogonal_rotation = false;
704 	*flip_vert_scan_dir = false;
705 	*flip_horz_scan_dir = false;
706 	if (rotation == ROTATION_ANGLE_180) {
707 		*flip_vert_scan_dir = true;
708 		*flip_horz_scan_dir = true;
709 	} else if (rotation == ROTATION_ANGLE_90) {
710 		*orthogonal_rotation = true;
711 		*flip_horz_scan_dir = true;
712 	} else if (rotation == ROTATION_ANGLE_270) {
713 		*orthogonal_rotation = true;
714 		*flip_vert_scan_dir = true;
715 	}
716 
717 	if (horizontal_mirror)
718 		*flip_horz_scan_dir = !*flip_horz_scan_dir;
719 }
720 
721 int get_num_mpc_splits(struct pipe_ctx *pipe)
722 {
723 	int mpc_split_count = 0;
724 	struct pipe_ctx *other_pipe = pipe->bottom_pipe;
725 
726 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
727 		mpc_split_count++;
728 		other_pipe = other_pipe->bottom_pipe;
729 	}
730 	other_pipe = pipe->top_pipe;
731 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
732 		mpc_split_count++;
733 		other_pipe = other_pipe->top_pipe;
734 	}
735 
736 	return mpc_split_count;
737 }
738 
739 int get_num_odm_splits(struct pipe_ctx *pipe)
740 {
741 	int odm_split_count = 0;
742 	struct pipe_ctx *next_pipe = pipe->next_odm_pipe;
743 	while (next_pipe) {
744 		odm_split_count++;
745 		next_pipe = next_pipe->next_odm_pipe;
746 	}
747 	pipe = pipe->prev_odm_pipe;
748 	while (pipe) {
749 		odm_split_count++;
750 		pipe = pipe->prev_odm_pipe;
751 	}
752 	return odm_split_count;
753 }
754 
755 static void calculate_split_count_and_index(struct pipe_ctx *pipe_ctx, int *split_count, int *split_idx)
756 {
757 	*split_count = get_num_odm_splits(pipe_ctx);
758 	*split_idx = 0;
759 	if (*split_count == 0) {
760 		/*Check for mpc split*/
761 		struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
762 
763 		*split_count = get_num_mpc_splits(pipe_ctx);
764 		while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
765 			(*split_idx)++;
766 			split_pipe = split_pipe->top_pipe;
767 		}
768 
769 		/* MPO window on right side of ODM split */
770 		if (split_pipe && split_pipe->prev_odm_pipe && !pipe_ctx->prev_odm_pipe)
771 			(*split_idx)++;
772 	} else {
773 		/*Get odm split index*/
774 		struct pipe_ctx *split_pipe = pipe_ctx->prev_odm_pipe;
775 
776 		while (split_pipe) {
777 			(*split_idx)++;
778 			split_pipe = split_pipe->prev_odm_pipe;
779 		}
780 	}
781 }
782 
783 /*
784  * This is a preliminary vp size calculation to allow us to check taps support.
785  * The result is completely overridden afterwards.
786  */
787 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
788 {
789 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
790 
791 	data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
792 	data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
793 	data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
794 	data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
795 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
796 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
797 		swap(data->viewport.width, data->viewport.height);
798 		swap(data->viewport_c.width, data->viewport_c.height);
799 	}
800 }
801 
802 static void calculate_recout(struct pipe_ctx *pipe_ctx)
803 {
804 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
805 	const struct dc_stream_state *stream = pipe_ctx->stream;
806 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
807 	struct rect surf_clip = plane_state->clip_rect;
808 	bool split_tb = stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
809 	int split_count, split_idx;
810 
811 	calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
812 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
813 		split_idx = 0;
814 
815 	/*
816 	 * Only the leftmost ODM pipe should be offset by a nonzero distance
817 	 */
818 	if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->prev_odm_pipe && !pipe_ctx->prev_odm_pipe) {
819 		/* MPO window on right side of ODM split */
820 		data->recout.x = stream->dst.x + (surf_clip.x - stream->src.x - stream->src.width/2) *
821 				stream->dst.width / stream->src.width;
822 	} else if (!pipe_ctx->prev_odm_pipe || split_idx == split_count) {
823 		data->recout.x = stream->dst.x;
824 		if (stream->src.x < surf_clip.x)
825 			data->recout.x += (surf_clip.x - stream->src.x) * stream->dst.width
826 						/ stream->src.width;
827 	} else
828 		data->recout.x = 0;
829 
830 	if (stream->src.x > surf_clip.x)
831 		surf_clip.width -= stream->src.x - surf_clip.x;
832 	data->recout.width = surf_clip.width * stream->dst.width / stream->src.width;
833 	if (data->recout.width + data->recout.x > stream->dst.x + stream->dst.width)
834 		data->recout.width = stream->dst.x + stream->dst.width - data->recout.x;
835 
836 	data->recout.y = stream->dst.y;
837 	if (stream->src.y < surf_clip.y)
838 		data->recout.y += (surf_clip.y - stream->src.y) * stream->dst.height
839 						/ stream->src.height;
840 	else if (stream->src.y > surf_clip.y)
841 		surf_clip.height -= stream->src.y - surf_clip.y;
842 
843 	data->recout.height = surf_clip.height * stream->dst.height / stream->src.height;
844 	if (data->recout.height + data->recout.y > stream->dst.y + stream->dst.height)
845 		data->recout.height = stream->dst.y + stream->dst.height - data->recout.y;
846 
847 	/* Handle h & v split */
848 	if (split_tb) {
849 		ASSERT(data->recout.height % 2 == 0);
850 		data->recout.height /= 2;
851 	} else if (split_count) {
852 		if (!pipe_ctx->next_odm_pipe && !pipe_ctx->prev_odm_pipe) {
853 			/* extra pixels in the division remainder need to go to pipes after
854 			 * the extra pixel index minus one(epimo) defined here as:
855 			 */
856 			int epimo = split_count - data->recout.width % (split_count + 1);
857 
858 			data->recout.x += (data->recout.width / (split_count + 1)) * split_idx;
859 			if (split_idx > epimo)
860 				data->recout.x += split_idx - epimo - 1;
861 			ASSERT(stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE || data->recout.width % 2 == 0);
862 			data->recout.width = data->recout.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
863 		} else {
864 			/* odm */
865 			if (split_idx == split_count) {
866 				/* rightmost pipe is the remainder recout */
867 				data->recout.width -= data->h_active * split_count - data->recout.x;
868 
869 				/* ODM combine cases with MPO we can get negative widths */
870 				if (data->recout.width < 0)
871 					data->recout.width = 0;
872 
873 				data->recout.x = 0;
874 			} else
875 				data->recout.width = data->h_active - data->recout.x;
876 		}
877 	}
878 }
879 
880 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
881 {
882 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
883 	const struct dc_stream_state *stream = pipe_ctx->stream;
884 	struct rect surf_src = plane_state->src_rect;
885 	const int in_w = stream->src.width;
886 	const int in_h = stream->src.height;
887 	const int out_w = stream->dst.width;
888 	const int out_h = stream->dst.height;
889 
890 	/*Swap surf_src height and width since scaling ratios are in recout rotation*/
891 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
892 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
893 		swap(surf_src.height, surf_src.width);
894 
895 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
896 					surf_src.width,
897 					plane_state->dst_rect.width);
898 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
899 					surf_src.height,
900 					plane_state->dst_rect.height);
901 
902 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
903 		pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
904 	else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
905 		pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
906 
907 	pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
908 		pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
909 	pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
910 		pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
911 
912 	pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
913 	pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
914 
915 	if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
916 			|| pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
917 		pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
918 		pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
919 	}
920 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
921 			pipe_ctx->plane_res.scl_data.ratios.horz, 19);
922 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
923 			pipe_ctx->plane_res.scl_data.ratios.vert, 19);
924 	pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
925 			pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
926 	pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
927 			pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
928 }
929 
930 
931 /*
932  * We completely calculate vp offset, size and inits here based entirely on scaling
933  * ratios and recout for pixel perfect pipe combine.
934  */
935 static void calculate_init_and_vp(
936 		bool flip_scan_dir,
937 		int recout_offset_within_recout_full,
938 		int recout_size,
939 		int src_size,
940 		int taps,
941 		struct fixed31_32 ratio,
942 		struct fixed31_32 *init,
943 		int *vp_offset,
944 		int *vp_size)
945 {
946 	struct fixed31_32 temp;
947 	int int_part;
948 
949 	/*
950 	 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
951 	 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
952 	 * All following calculations are based on this logic.
953 	 *
954 	 * Init calculated according to formula:
955 	 * 	init = (scaling_ratio + number_of_taps + 1) / 2
956 	 * 	init_bot = init + scaling_ratio
957 	 * 	to get pixel perfect combine add the fraction from calculating vp offset
958 	 */
959 	temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
960 	*vp_offset = dc_fixpt_floor(temp);
961 	temp.value &= 0xffffffff;
962 	*init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
963 			dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
964 	/*
965 	 * If viewport has non 0 offset and there are more taps than covered by init then
966 	 * we should decrease the offset and increase init so we are never sampling
967 	 * outside of viewport.
968 	 */
969 	int_part = dc_fixpt_floor(*init);
970 	if (int_part < taps) {
971 		int_part = taps - int_part;
972 		if (int_part > *vp_offset)
973 			int_part = *vp_offset;
974 		*vp_offset -= int_part;
975 		*init = dc_fixpt_add_int(*init, int_part);
976 	}
977 	/*
978 	 * If taps are sampling outside of viewport at end of recout and there are more pixels
979 	 * available in the surface we should increase the viewport size, regardless set vp to
980 	 * only what is used.
981 	 */
982 	temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
983 	*vp_size = dc_fixpt_floor(temp);
984 	if (*vp_size + *vp_offset > src_size)
985 		*vp_size = src_size - *vp_offset;
986 
987 	/* We did all the math assuming we are scanning same direction as display does,
988 	 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
989 	 * is flipped we simply need to calculate offset from the other side of plane.
990 	 * Note that outside of viewport all scaling hardware works in recout space.
991 	 */
992 	if (flip_scan_dir)
993 		*vp_offset = src_size - *vp_offset - *vp_size;
994 }
995 
996 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
997 {
998 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
999 	const struct dc_stream_state *stream = pipe_ctx->stream;
1000 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
1001 	struct rect src = plane_state->src_rect;
1002 	int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
1003 				|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
1004 	int split_count, split_idx, ro_lb, ro_tb, recout_full_x, recout_full_y;
1005 	bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
1006 
1007 	calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
1008 	/*
1009 	 * recout full is what the recout would have been if we didnt clip
1010 	 * the source plane at all. We only care about left(ro_lb) and top(ro_tb)
1011 	 * offsets of recout within recout full because those are the directions
1012 	 * we scan from and therefore the only ones that affect inits.
1013 	 */
1014 	recout_full_x = stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
1015 			* stream->dst.width / stream->src.width;
1016 	recout_full_y = stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
1017 			* stream->dst.height / stream->src.height;
1018 	if (pipe_ctx->prev_odm_pipe && split_idx)
1019 		ro_lb = data->h_active * split_idx - recout_full_x;
1020 	else if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->prev_odm_pipe)
1021 		ro_lb = data->h_active * split_idx - recout_full_x + data->recout.x;
1022 	else
1023 		ro_lb = data->recout.x - recout_full_x;
1024 	ro_tb = data->recout.y - recout_full_y;
1025 	ASSERT(ro_lb >= 0 && ro_tb >= 0);
1026 
1027 	/*
1028 	 * Work in recout rotation since that requires less transformations
1029 	 */
1030 	get_vp_scan_direction(
1031 			plane_state->rotation,
1032 			plane_state->horizontal_mirror,
1033 			&orthogonal_rotation,
1034 			&flip_vert_scan_dir,
1035 			&flip_horz_scan_dir);
1036 
1037 	if (orthogonal_rotation) {
1038 		swap(src.width, src.height);
1039 		swap(flip_vert_scan_dir, flip_horz_scan_dir);
1040 	}
1041 
1042 	calculate_init_and_vp(
1043 			flip_horz_scan_dir,
1044 			ro_lb,
1045 			data->recout.width,
1046 			src.width,
1047 			data->taps.h_taps,
1048 			data->ratios.horz,
1049 			&data->inits.h,
1050 			&data->viewport.x,
1051 			&data->viewport.width);
1052 	calculate_init_and_vp(
1053 			flip_horz_scan_dir,
1054 			ro_lb,
1055 			data->recout.width,
1056 			src.width / vpc_div,
1057 			data->taps.h_taps_c,
1058 			data->ratios.horz_c,
1059 			&data->inits.h_c,
1060 			&data->viewport_c.x,
1061 			&data->viewport_c.width);
1062 	calculate_init_and_vp(
1063 			flip_vert_scan_dir,
1064 			ro_tb,
1065 			data->recout.height,
1066 			src.height,
1067 			data->taps.v_taps,
1068 			data->ratios.vert,
1069 			&data->inits.v,
1070 			&data->viewport.y,
1071 			&data->viewport.height);
1072 	calculate_init_and_vp(
1073 			flip_vert_scan_dir,
1074 			ro_tb,
1075 			data->recout.height,
1076 			src.height / vpc_div,
1077 			data->taps.v_taps_c,
1078 			data->ratios.vert_c,
1079 			&data->inits.v_c,
1080 			&data->viewport_c.y,
1081 			&data->viewport_c.height);
1082 	if (orthogonal_rotation) {
1083 		swap(data->viewport.x, data->viewport.y);
1084 		swap(data->viewport.width, data->viewport.height);
1085 		swap(data->viewport_c.x, data->viewport_c.y);
1086 		swap(data->viewport_c.width, data->viewport_c.height);
1087 	}
1088 	data->viewport.x += src.x;
1089 	data->viewport.y += src.y;
1090 	ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1091 	data->viewport_c.x += src.x / vpc_div;
1092 	data->viewport_c.y += src.y / vpc_div;
1093 }
1094 
1095 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1096 {
1097 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1098 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1099 	bool res = false;
1100 	DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1101 
1102 	/* Invalid input */
1103 	if (!plane_state->dst_rect.width ||
1104 			!plane_state->dst_rect.height ||
1105 			!plane_state->src_rect.width ||
1106 			!plane_state->src_rect.height) {
1107 		ASSERT(0);
1108 		return false;
1109 	}
1110 
1111 	pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1112 			pipe_ctx->plane_state->format);
1113 
1114 	/* Timing borders are part of vactive that we are also supposed to skip in addition
1115 	 * to any stream dst offset. Since dm logic assumes dst is in addressable
1116 	 * space we need to add the left and top borders to dst offsets temporarily.
1117 	 * TODO: fix in DM, stream dst is supposed to be in vactive
1118 	 */
1119 	pipe_ctx->stream->dst.x += timing->h_border_left;
1120 	pipe_ctx->stream->dst.y += timing->v_border_top;
1121 
1122 	/* Calculate H and V active size */
1123 	pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable +
1124 			timing->h_border_left + timing->h_border_right;
1125 	pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable +
1126 		timing->v_border_top + timing->v_border_bottom;
1127 	if (pipe_ctx->next_odm_pipe || pipe_ctx->prev_odm_pipe) {
1128 		pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx) + 1;
1129 
1130 		DC_LOG_SCALER("%s pipe %d: next_odm_pipe:%d   prev_odm_pipe:%d\n",
1131 				__func__,
1132 				pipe_ctx->pipe_idx,
1133 				pipe_ctx->next_odm_pipe ? pipe_ctx->next_odm_pipe->pipe_idx : -1,
1134 				pipe_ctx->prev_odm_pipe ? pipe_ctx->prev_odm_pipe->pipe_idx : -1);
1135 	}	/* ODM + windows MPO, where window is on either right or left ODM half */
1136 	else if (pipe_ctx->top_pipe && (pipe_ctx->top_pipe->next_odm_pipe || pipe_ctx->top_pipe->prev_odm_pipe)) {
1137 
1138 		pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx->top_pipe) + 1;
1139 
1140 		DC_LOG_SCALER("%s ODM + windows MPO: pipe:%d top_pipe:%d   top_pipe->next_odm_pipe:%d   top_pipe->prev_odm_pipe:%d\n",
1141 				__func__,
1142 				pipe_ctx->pipe_idx,
1143 				pipe_ctx->top_pipe->pipe_idx,
1144 				pipe_ctx->top_pipe->next_odm_pipe ? pipe_ctx->top_pipe->next_odm_pipe->pipe_idx : -1,
1145 				pipe_ctx->top_pipe->prev_odm_pipe ? pipe_ctx->top_pipe->prev_odm_pipe->pipe_idx : -1);
1146 	}
1147 	/* depends on h_active */
1148 	calculate_recout(pipe_ctx);
1149 	/* depends on pixel format */
1150 	calculate_scaling_ratios(pipe_ctx);
1151 	/* depends on scaling ratios and recout, does not calculate offset yet */
1152 	calculate_viewport_size(pipe_ctx);
1153 
1154 	if (!pipe_ctx->stream->ctx->dc->config.enable_windowed_mpo_odm) {
1155 		/* Stopgap for validation of ODM + MPO on one side of screen case */
1156 		if (pipe_ctx->plane_res.scl_data.viewport.height < 1 ||
1157 				pipe_ctx->plane_res.scl_data.viewport.width < 1)
1158 			return false;
1159 	}
1160 
1161 	/*
1162 	 * LB calculations depend on vp size, h/v_active and scaling ratios
1163 	 * Setting line buffer pixel depth to 24bpp yields banding
1164 	 * on certain displays, such as the Sharp 4k. 36bpp is needed
1165 	 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1166 	 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1167 	 * precision on DCN display engines, but apparently not for DCE, as
1168 	 * far as testing on DCE-11.2 and DCE-8 showed. Various DCE parts have
1169 	 * problems: Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1170 	 * neither do DCE-8 at 4k resolution, or DCE-11.2 (broken identify pixel
1171 	 * passthrough). Therefore only use 36 bpp on DCN where it is actually needed.
1172 	 */
1173 	if (plane_state->ctx->dce_version > DCE_VERSION_MAX)
1174 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1175 	else
1176 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1177 
1178 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1179 
1180 	if (pipe_ctx->plane_res.xfm != NULL)
1181 		res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1182 				pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1183 
1184 	if (pipe_ctx->plane_res.dpp != NULL)
1185 		res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1186 				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1187 
1188 
1189 	if (!res) {
1190 		/* Try 24 bpp linebuffer */
1191 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1192 
1193 		if (pipe_ctx->plane_res.xfm != NULL)
1194 			res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1195 					pipe_ctx->plane_res.xfm,
1196 					&pipe_ctx->plane_res.scl_data,
1197 					&plane_state->scaling_quality);
1198 
1199 		if (pipe_ctx->plane_res.dpp != NULL)
1200 			res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1201 					pipe_ctx->plane_res.dpp,
1202 					&pipe_ctx->plane_res.scl_data,
1203 					&plane_state->scaling_quality);
1204 	}
1205 
1206 	/*
1207 	 * Depends on recout, scaling ratios, h_active and taps
1208 	 * May need to re-check lb size after this in some obscure scenario
1209 	 */
1210 	if (res)
1211 		calculate_inits_and_viewports(pipe_ctx);
1212 
1213 	/*
1214 	 * Handle side by side and top bottom 3d recout offsets after vp calculation
1215 	 * since 3d is special and needs to calculate vp as if there is no recout offset
1216 	 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1217 	 */
1218 	if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1219 		ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1220 			(pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1221 				pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1222 		if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1223 			pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1224 		else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1225 			pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1226 	}
1227 
1228 	if (!pipe_ctx->stream->ctx->dc->config.enable_windowed_mpo_odm) {
1229 		if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE ||
1230 				pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1231 			res = false;
1232 	} else {
1233 		/* Clamp minimum viewport size */
1234 		if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE)
1235 			pipe_ctx->plane_res.scl_data.viewport.height = MIN_VIEWPORT_SIZE;
1236 		if (pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1237 			pipe_ctx->plane_res.scl_data.viewport.width = MIN_VIEWPORT_SIZE;
1238 	}
1239 
1240 	DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d  Recout: height:%d width:%d x:%d y:%d  HACTIVE:%d VACTIVE:%d\n"
1241 			"src_rect: height:%d width:%d x:%d y:%d  dst_rect: height:%d width:%d x:%d y:%d  clip_rect: height:%d width:%d x:%d y:%d\n",
1242 			__func__,
1243 			pipe_ctx->pipe_idx,
1244 			pipe_ctx->plane_res.scl_data.viewport.height,
1245 			pipe_ctx->plane_res.scl_data.viewport.width,
1246 			pipe_ctx->plane_res.scl_data.viewport.x,
1247 			pipe_ctx->plane_res.scl_data.viewport.y,
1248 			pipe_ctx->plane_res.scl_data.recout.height,
1249 			pipe_ctx->plane_res.scl_data.recout.width,
1250 			pipe_ctx->plane_res.scl_data.recout.x,
1251 			pipe_ctx->plane_res.scl_data.recout.y,
1252 			pipe_ctx->plane_res.scl_data.h_active,
1253 			pipe_ctx->plane_res.scl_data.v_active,
1254 			plane_state->src_rect.height,
1255 			plane_state->src_rect.width,
1256 			plane_state->src_rect.x,
1257 			plane_state->src_rect.y,
1258 			plane_state->dst_rect.height,
1259 			plane_state->dst_rect.width,
1260 			plane_state->dst_rect.x,
1261 			plane_state->dst_rect.y,
1262 			plane_state->clip_rect.height,
1263 			plane_state->clip_rect.width,
1264 			plane_state->clip_rect.x,
1265 			plane_state->clip_rect.y);
1266 
1267 	pipe_ctx->stream->dst.x -= timing->h_border_left;
1268 	pipe_ctx->stream->dst.y -= timing->v_border_top;
1269 
1270 	return res;
1271 }
1272 
1273 
1274 enum dc_status resource_build_scaling_params_for_context(
1275 	const struct dc  *dc,
1276 	struct dc_state *context)
1277 {
1278 	int i;
1279 
1280 	for (i = 0; i < MAX_PIPES; i++) {
1281 		if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1282 				context->res_ctx.pipe_ctx[i].stream != NULL)
1283 			if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1284 				return DC_FAIL_SCALING;
1285 	}
1286 
1287 	return DC_OK;
1288 }
1289 
1290 struct pipe_ctx *find_idle_secondary_pipe(
1291 		struct resource_context *res_ctx,
1292 		const struct resource_pool *pool,
1293 		const struct pipe_ctx *primary_pipe)
1294 {
1295 	int i;
1296 	struct pipe_ctx *secondary_pipe = NULL;
1297 
1298 	/*
1299 	 * We add a preferred pipe mapping to avoid the chance that
1300 	 * MPCCs already in use will need to be reassigned to other trees.
1301 	 * For example, if we went with the strict, assign backwards logic:
1302 	 *
1303 	 * (State 1)
1304 	 * Display A on, no surface, top pipe = 0
1305 	 * Display B on, no surface, top pipe = 1
1306 	 *
1307 	 * (State 2)
1308 	 * Display A on, no surface, top pipe = 0
1309 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1310 	 *
1311 	 * (State 3)
1312 	 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1313 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1314 	 *
1315 	 * The state 2->3 transition requires remapping MPCC 5 from display B
1316 	 * to display A.
1317 	 *
1318 	 * However, with the preferred pipe logic, state 2 would look like:
1319 	 *
1320 	 * (State 2)
1321 	 * Display A on, no surface, top pipe = 0
1322 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1323 	 *
1324 	 * This would then cause 2->3 to not require remapping any MPCCs.
1325 	 */
1326 	if (primary_pipe) {
1327 		int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1328 		if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1329 			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1330 			secondary_pipe->pipe_idx = preferred_pipe_idx;
1331 		}
1332 	}
1333 
1334 	/*
1335 	 * search backwards for the second pipe to keep pipe
1336 	 * assignment more consistent
1337 	 */
1338 	if (!secondary_pipe)
1339 		for (i = pool->pipe_count - 1; i >= 0; i--) {
1340 			if (res_ctx->pipe_ctx[i].stream == NULL) {
1341 				secondary_pipe = &res_ctx->pipe_ctx[i];
1342 				secondary_pipe->pipe_idx = i;
1343 				break;
1344 			}
1345 		}
1346 
1347 	return secondary_pipe;
1348 }
1349 
1350 struct pipe_ctx *resource_get_head_pipe_for_stream(
1351 		struct resource_context *res_ctx,
1352 		struct dc_stream_state *stream)
1353 {
1354 	int i;
1355 
1356 	for (i = 0; i < MAX_PIPES; i++) {
1357 		if (res_ctx->pipe_ctx[i].stream == stream
1358 				&& !res_ctx->pipe_ctx[i].top_pipe
1359 				&& !res_ctx->pipe_ctx[i].prev_odm_pipe)
1360 			return &res_ctx->pipe_ctx[i];
1361 	}
1362 	return NULL;
1363 }
1364 
1365 static struct pipe_ctx *resource_get_tail_pipe(
1366 		struct resource_context *res_ctx,
1367 		struct pipe_ctx *head_pipe)
1368 {
1369 	struct pipe_ctx *tail_pipe;
1370 
1371 	tail_pipe = head_pipe->bottom_pipe;
1372 
1373 	while (tail_pipe) {
1374 		head_pipe = tail_pipe;
1375 		tail_pipe = tail_pipe->bottom_pipe;
1376 	}
1377 
1378 	return head_pipe;
1379 }
1380 
1381 /*
1382  * A free_pipe for a stream is defined here as a pipe
1383  * that has no surface attached yet
1384  */
1385 static struct pipe_ctx *acquire_free_pipe_for_head(
1386 		struct dc_state *context,
1387 		const struct resource_pool *pool,
1388 		struct pipe_ctx *head_pipe)
1389 {
1390 	int i;
1391 	struct resource_context *res_ctx = &context->res_ctx;
1392 
1393 	if (!head_pipe->plane_state)
1394 		return head_pipe;
1395 
1396 	/* Re-use pipe already acquired for this stream if available*/
1397 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1398 		if (res_ctx->pipe_ctx[i].stream == head_pipe->stream &&
1399 				!res_ctx->pipe_ctx[i].plane_state) {
1400 			return &res_ctx->pipe_ctx[i];
1401 		}
1402 	}
1403 
1404 	/*
1405 	 * At this point we have no re-useable pipe for this stream and we need
1406 	 * to acquire an idle one to satisfy the request
1407 	 */
1408 
1409 	if (!pool->funcs->acquire_idle_pipe_for_layer) {
1410 		if (!pool->funcs->acquire_idle_pipe_for_head_pipe_in_layer)
1411 			return NULL;
1412 		else
1413 			return pool->funcs->acquire_idle_pipe_for_head_pipe_in_layer(context, pool, head_pipe->stream, head_pipe);
1414 	}
1415 
1416 	return pool->funcs->acquire_idle_pipe_for_layer(context, pool, head_pipe->stream);
1417 }
1418 
1419 static int acquire_first_split_pipe(
1420 		struct resource_context *res_ctx,
1421 		const struct resource_pool *pool,
1422 		struct dc_stream_state *stream)
1423 {
1424 	int i;
1425 
1426 	for (i = 0; i < pool->pipe_count; i++) {
1427 		struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1428 
1429 		if (split_pipe->top_pipe &&
1430 				split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1431 			split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1432 			if (split_pipe->bottom_pipe)
1433 				split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1434 
1435 			if (split_pipe->top_pipe->plane_state)
1436 				resource_build_scaling_params(split_pipe->top_pipe);
1437 
1438 			memset(split_pipe, 0, sizeof(*split_pipe));
1439 			split_pipe->stream_res.tg = pool->timing_generators[i];
1440 			split_pipe->plane_res.hubp = pool->hubps[i];
1441 			split_pipe->plane_res.ipp = pool->ipps[i];
1442 			split_pipe->plane_res.dpp = pool->dpps[i];
1443 			split_pipe->stream_res.opp = pool->opps[i];
1444 			split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1445 			split_pipe->pipe_idx = i;
1446 
1447 			split_pipe->stream = stream;
1448 			return i;
1449 		}
1450 	}
1451 	return -1;
1452 }
1453 
1454 bool dc_add_plane_to_context(
1455 		const struct dc *dc,
1456 		struct dc_stream_state *stream,
1457 		struct dc_plane_state *plane_state,
1458 		struct dc_state *context)
1459 {
1460 	int i;
1461 	struct resource_pool *pool = dc->res_pool;
1462 	struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1463 	struct dc_stream_status *stream_status = NULL;
1464 	struct pipe_ctx *prev_right_head = NULL;
1465 	struct pipe_ctx *free_right_pipe = NULL;
1466 	struct pipe_ctx *prev_left_head = NULL;
1467 
1468 	DC_LOGGER_INIT(stream->ctx->logger);
1469 	for (i = 0; i < context->stream_count; i++)
1470 		if (context->streams[i] == stream) {
1471 			stream_status = &context->stream_status[i];
1472 			break;
1473 		}
1474 	if (stream_status == NULL) {
1475 		dm_error("Existing stream not found; failed to attach surface!\n");
1476 		return false;
1477 	}
1478 
1479 
1480 	if (stream_status->plane_count == MAX_SURFACE_NUM) {
1481 		dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1482 				plane_state, MAX_SURFACE_NUM);
1483 		return false;
1484 	}
1485 
1486 	head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1487 
1488 	if (!head_pipe) {
1489 		dm_error("Head pipe not found for stream_state %p !\n", stream);
1490 		return false;
1491 	}
1492 
1493 	/* retain new surface, but only once per stream */
1494 	dc_plane_state_retain(plane_state);
1495 
1496 	while (head_pipe) {
1497 		free_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1498 
1499 		if (!free_pipe) {
1500 			int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1501 			if (pipe_idx >= 0)
1502 				free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1503 		}
1504 
1505 		if (!free_pipe) {
1506 			dc_plane_state_release(plane_state);
1507 			return false;
1508 		}
1509 
1510 		free_pipe->plane_state = plane_state;
1511 
1512 		if (head_pipe != free_pipe) {
1513 			tail_pipe = resource_get_tail_pipe(&context->res_ctx, head_pipe);
1514 			ASSERT(tail_pipe);
1515 
1516 			/* ODM + window MPO, where MPO window is on right half only */
1517 			if (free_pipe->plane_state &&
1518 				(free_pipe->plane_state->clip_rect.x >= free_pipe->stream->src.x + free_pipe->stream->src.width/2) &&
1519 				tail_pipe->next_odm_pipe) {
1520 
1521 				/* For ODM + window MPO, in 3 plane case, if we already have a MPO window on
1522 				 *  the right side, then we will invalidate a 2nd one on the right side
1523 				 */
1524 				if (head_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1525 					dc_plane_state_release(plane_state);
1526 					return false;
1527 				}
1528 
1529 				DC_LOG_SCALER("%s - ODM + window MPO(right). free_pipe:%d  tail_pipe->next_odm_pipe:%d\n",
1530 						__func__,
1531 						free_pipe->pipe_idx,
1532 						tail_pipe->next_odm_pipe ? tail_pipe->next_odm_pipe->pipe_idx : -1);
1533 
1534 				/*
1535 				 * We want to avoid the case where the right side already has a pipe assigned to
1536 				 *  it and is different from free_pipe ( which would cause trigger a pipe
1537 				 *  reallocation ).
1538 				 * Check the old context to see if the right side already has a pipe allocated
1539 				 * - If not, continue to use free_pipe
1540 				 * - If the right side already has a pipe, use that pipe instead if its available
1541 				 */
1542 
1543 				/*
1544 				 * We also want to avoid the case where with three plane ( 2 MPO videos ), we have
1545 				 *  both videos on the left side so one of the videos is invalidated.  Then we
1546 				 *  move the invalidated video back to the right side.  If the order of the plane
1547 				 *  states is such that the right MPO plane is processed first, the free pipe
1548 				 *  selected by the head will be the left MPO pipe. But since there was no right
1549 				 *  MPO pipe, it will assign the free pipe to the right MPO pipe instead and
1550 				 *  a pipe reallocation will occur.
1551 				 * Check the old context to see if the left side already has a pipe allocated
1552 				 * - If not, continue to use free_pipe
1553 				 * - If the left side is already using this pipe, then pick another pipe for right
1554 				 */
1555 
1556 				prev_right_head = &dc->current_state->res_ctx.pipe_ctx[tail_pipe->next_odm_pipe->pipe_idx];
1557 				if ((prev_right_head->bottom_pipe) &&
1558 					(free_pipe->pipe_idx != prev_right_head->bottom_pipe->pipe_idx)) {
1559 					free_right_pipe = acquire_free_pipe_for_head(context, pool, tail_pipe->next_odm_pipe);
1560 				} else {
1561 					prev_left_head = &dc->current_state->res_ctx.pipe_ctx[head_pipe->pipe_idx];
1562 					if ((prev_left_head->bottom_pipe) &&
1563 						(free_pipe->pipe_idx == prev_left_head->bottom_pipe->pipe_idx)) {
1564 						free_right_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1565 					}
1566 				}
1567 
1568 				if (free_right_pipe) {
1569 					free_pipe->stream = NULL;
1570 					memset(&free_pipe->stream_res, 0, sizeof(struct stream_resource));
1571 					memset(&free_pipe->plane_res, 0, sizeof(struct plane_resource));
1572 					free_pipe->plane_state = NULL;
1573 					free_pipe->pipe_idx = 0;
1574 					free_right_pipe->plane_state = plane_state;
1575 					free_pipe = free_right_pipe;
1576 				}
1577 
1578 				free_pipe->stream_res.tg = tail_pipe->next_odm_pipe->stream_res.tg;
1579 				free_pipe->stream_res.abm = tail_pipe->next_odm_pipe->stream_res.abm;
1580 				free_pipe->stream_res.opp = tail_pipe->next_odm_pipe->stream_res.opp;
1581 				free_pipe->stream_res.stream_enc = tail_pipe->next_odm_pipe->stream_res.stream_enc;
1582 				free_pipe->stream_res.audio = tail_pipe->next_odm_pipe->stream_res.audio;
1583 				free_pipe->clock_source = tail_pipe->next_odm_pipe->clock_source;
1584 
1585 				free_pipe->top_pipe = tail_pipe->next_odm_pipe;
1586 				tail_pipe->next_odm_pipe->bottom_pipe = free_pipe;
1587 			} else if (free_pipe->plane_state &&
1588 				(free_pipe->plane_state->clip_rect.x >= free_pipe->stream->src.x + free_pipe->stream->src.width/2)
1589 				&& head_pipe->next_odm_pipe) {
1590 
1591 				/* For ODM + window MPO, support 3 plane ( 2 MPO ) case.
1592 				 * Here we have a desktop ODM + left window MPO and a new MPO window appears
1593 				 *  on the right side only.  It fails the first case, because tail_pipe is the
1594 				 *  left window MPO, so it has no next_odm_pipe.  So in this scenario, we check
1595 				 *  for head_pipe->next_odm_pipe instead
1596 				 */
1597 				DC_LOG_SCALER("%s - ODM + win MPO (left) + win MPO (right). free_pipe:%d  head_pipe->next_odm:%d\n",
1598 						__func__,
1599 						free_pipe->pipe_idx,
1600 						head_pipe->next_odm_pipe ? head_pipe->next_odm_pipe->pipe_idx : -1);
1601 
1602 				/*
1603 				 * We want to avoid the case where the right side already has a pipe assigned to
1604 				 *  it and is different from free_pipe ( which would cause trigger a pipe
1605 				 *  reallocation ).
1606 				 * Check the old context to see if the right side already has a pipe allocated
1607 				 * - If not, continue to use free_pipe
1608 				 * - If the right side already has a pipe, use that pipe instead if its available
1609 				 */
1610 				prev_right_head = &dc->current_state->res_ctx.pipe_ctx[head_pipe->next_odm_pipe->pipe_idx];
1611 				if ((prev_right_head->bottom_pipe) &&
1612 					(free_pipe->pipe_idx != prev_right_head->bottom_pipe->pipe_idx)) {
1613 					free_right_pipe = acquire_free_pipe_for_head(context, pool, head_pipe->next_odm_pipe);
1614 					if (free_right_pipe) {
1615 						free_pipe->stream = NULL;
1616 						memset(&free_pipe->stream_res, 0, sizeof(struct stream_resource));
1617 						memset(&free_pipe->plane_res, 0, sizeof(struct plane_resource));
1618 						free_pipe->plane_state = NULL;
1619 						free_pipe->pipe_idx = 0;
1620 						free_right_pipe->plane_state = plane_state;
1621 						free_pipe = free_right_pipe;
1622 					}
1623 				}
1624 
1625 				free_pipe->stream_res.tg = head_pipe->next_odm_pipe->stream_res.tg;
1626 				free_pipe->stream_res.abm = head_pipe->next_odm_pipe->stream_res.abm;
1627 				free_pipe->stream_res.opp = head_pipe->next_odm_pipe->stream_res.opp;
1628 				free_pipe->stream_res.stream_enc = head_pipe->next_odm_pipe->stream_res.stream_enc;
1629 				free_pipe->stream_res.audio = head_pipe->next_odm_pipe->stream_res.audio;
1630 				free_pipe->clock_source = head_pipe->next_odm_pipe->clock_source;
1631 
1632 				free_pipe->top_pipe = head_pipe->next_odm_pipe;
1633 				head_pipe->next_odm_pipe->bottom_pipe = free_pipe;
1634 			} else {
1635 
1636 				/* For ODM + window MPO, in 3 plane case, if we already have a MPO window on
1637 				 *  the left side, then we will invalidate a 2nd one on the left side
1638 				 */
1639 				if (head_pipe->next_odm_pipe && tail_pipe->top_pipe) {
1640 					dc_plane_state_release(plane_state);
1641 					return false;
1642 				}
1643 
1644 				free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1645 				free_pipe->stream_res.abm = tail_pipe->stream_res.abm;
1646 				free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1647 				free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1648 				free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1649 				free_pipe->clock_source = tail_pipe->clock_source;
1650 
1651 				free_pipe->top_pipe = tail_pipe;
1652 				tail_pipe->bottom_pipe = free_pipe;
1653 
1654 				/* Connect MPO pipes together if MPO window is in the centre */
1655 				if (!(free_pipe->plane_state &&
1656 						(free_pipe->plane_state->clip_rect.x + free_pipe->plane_state->clip_rect.width <=
1657 						free_pipe->stream->src.x + free_pipe->stream->src.width/2))) {
1658 					if (!free_pipe->next_odm_pipe &&
1659 						tail_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1660 						free_pipe->next_odm_pipe = tail_pipe->next_odm_pipe->bottom_pipe;
1661 						tail_pipe->next_odm_pipe->bottom_pipe->prev_odm_pipe = free_pipe;
1662 					}
1663 					if (!free_pipe->prev_odm_pipe &&
1664 						tail_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe->bottom_pipe) {
1665 						free_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1666 						tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = free_pipe;
1667 					}
1668 				}
1669 			}
1670 		}
1671 
1672 		/* ODM + window MPO, where MPO window is on left half only */
1673 		if (free_pipe->plane_state &&
1674 			(free_pipe->plane_state->clip_rect.x + free_pipe->plane_state->clip_rect.width <=
1675 			free_pipe->stream->src.x + free_pipe->stream->src.width/2)) {
1676 			DC_LOG_SCALER("%s - ODM + window MPO(left). free_pipe:%d\n",
1677 					__func__,
1678 					free_pipe->pipe_idx);
1679 			break;
1680 		}
1681 		/* ODM + window MPO, where MPO window is on right half only */
1682 		if (free_pipe->plane_state &&
1683 			(free_pipe->plane_state->clip_rect.x >= free_pipe->stream->src.x + free_pipe->stream->src.width/2)) {
1684 			DC_LOG_SCALER("%s - ODM + window MPO(right). free_pipe:%d\n",
1685 					__func__,
1686 					free_pipe->pipe_idx);
1687 			break;
1688 		}
1689 
1690 		head_pipe = head_pipe->next_odm_pipe;
1691 	}
1692 	/* assign new surfaces*/
1693 	stream_status->plane_states[stream_status->plane_count] = plane_state;
1694 
1695 	stream_status->plane_count++;
1696 
1697 	return true;
1698 }
1699 
1700 bool dc_remove_plane_from_context(
1701 		const struct dc *dc,
1702 		struct dc_stream_state *stream,
1703 		struct dc_plane_state *plane_state,
1704 		struct dc_state *context)
1705 {
1706 	int i;
1707 	struct dc_stream_status *stream_status = NULL;
1708 	struct resource_pool *pool = dc->res_pool;
1709 
1710 	for (i = 0; i < context->stream_count; i++)
1711 		if (context->streams[i] == stream) {
1712 			stream_status = &context->stream_status[i];
1713 			break;
1714 		}
1715 
1716 	if (stream_status == NULL) {
1717 		dm_error("Existing stream not found; failed to remove plane.\n");
1718 		return false;
1719 	}
1720 
1721 	/* release pipe for plane*/
1722 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1723 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1724 
1725 		if (pipe_ctx->plane_state == plane_state) {
1726 			if (pipe_ctx->top_pipe)
1727 				pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1728 
1729 			/* Second condition is to avoid setting NULL to top pipe
1730 			 * of tail pipe making it look like head pipe in subsequent
1731 			 * deletes
1732 			 */
1733 			if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1734 				pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1735 
1736 			/*
1737 			 * For head pipe detach surfaces from pipe for tail
1738 			 * pipe just zero it out
1739 			 */
1740 			if (!pipe_ctx->top_pipe)
1741 				pipe_ctx->plane_state = NULL;
1742 			else
1743 				memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1744 		}
1745 	}
1746 
1747 
1748 	for (i = 0; i < stream_status->plane_count; i++) {
1749 		if (stream_status->plane_states[i] == plane_state) {
1750 
1751 			dc_plane_state_release(stream_status->plane_states[i]);
1752 			break;
1753 		}
1754 	}
1755 
1756 	if (i == stream_status->plane_count) {
1757 		dm_error("Existing plane_state not found; failed to detach it!\n");
1758 		return false;
1759 	}
1760 
1761 	stream_status->plane_count--;
1762 
1763 	/* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1764 	for (; i < stream_status->plane_count; i++)
1765 		stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1766 
1767 	stream_status->plane_states[stream_status->plane_count] = NULL;
1768 
1769 	return true;
1770 }
1771 
1772 bool dc_rem_all_planes_for_stream(
1773 		const struct dc *dc,
1774 		struct dc_stream_state *stream,
1775 		struct dc_state *context)
1776 {
1777 	int i, old_plane_count;
1778 	struct dc_stream_status *stream_status = NULL;
1779 	struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1780 
1781 	for (i = 0; i < context->stream_count; i++)
1782 			if (context->streams[i] == stream) {
1783 				stream_status = &context->stream_status[i];
1784 				break;
1785 			}
1786 
1787 	if (stream_status == NULL) {
1788 		dm_error("Existing stream %p not found!\n", stream);
1789 		return false;
1790 	}
1791 
1792 	old_plane_count = stream_status->plane_count;
1793 
1794 	for (i = 0; i < old_plane_count; i++)
1795 		del_planes[i] = stream_status->plane_states[i];
1796 
1797 	for (i = 0; i < old_plane_count; i++)
1798 		if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1799 			return false;
1800 
1801 	return true;
1802 }
1803 
1804 static bool add_all_planes_for_stream(
1805 		const struct dc *dc,
1806 		struct dc_stream_state *stream,
1807 		const struct dc_validation_set set[],
1808 		int set_count,
1809 		struct dc_state *context)
1810 {
1811 	int i, j;
1812 
1813 	for (i = 0; i < set_count; i++)
1814 		if (set[i].stream == stream)
1815 			break;
1816 
1817 	if (i == set_count) {
1818 		dm_error("Stream %p not found in set!\n", stream);
1819 		return false;
1820 	}
1821 
1822 	for (j = 0; j < set[i].plane_count; j++)
1823 		if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1824 			return false;
1825 
1826 	return true;
1827 }
1828 
1829 bool dc_add_all_planes_for_stream(
1830 		const struct dc *dc,
1831 		struct dc_stream_state *stream,
1832 		struct dc_plane_state * const *plane_states,
1833 		int plane_count,
1834 		struct dc_state *context)
1835 {
1836 	struct dc_validation_set set;
1837 	int i;
1838 
1839 	set.stream = stream;
1840 	set.plane_count = plane_count;
1841 
1842 	for (i = 0; i < plane_count; i++)
1843 		set.plane_states[i] = plane_states[i];
1844 
1845 	return add_all_planes_for_stream(dc, stream, &set, 1, context);
1846 }
1847 
1848 bool is_timing_changed(struct dc_stream_state *cur_stream,
1849 		       struct dc_stream_state *new_stream)
1850 {
1851 	if (cur_stream == NULL)
1852 		return true;
1853 
1854 	/* If output color space is changed, need to reprogram info frames */
1855 	if (cur_stream->output_color_space != new_stream->output_color_space)
1856 		return true;
1857 
1858 	return memcmp(
1859 		&cur_stream->timing,
1860 		&new_stream->timing,
1861 		sizeof(struct dc_crtc_timing)) != 0;
1862 }
1863 
1864 static bool are_stream_backends_same(
1865 	struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1866 {
1867 	if (stream_a == stream_b)
1868 		return true;
1869 
1870 	if (stream_a == NULL || stream_b == NULL)
1871 		return false;
1872 
1873 	if (is_timing_changed(stream_a, stream_b))
1874 		return false;
1875 
1876 	if (stream_a->signal != stream_b->signal)
1877 		return false;
1878 
1879 	if (stream_a->dpms_off != stream_b->dpms_off)
1880 		return false;
1881 
1882 	return true;
1883 }
1884 
1885 /*
1886  * dc_is_stream_unchanged() - Compare two stream states for equivalence.
1887  *
1888  * Checks if there a difference between the two states
1889  * that would require a mode change.
1890  *
1891  * Does not compare cursor position or attributes.
1892  */
1893 bool dc_is_stream_unchanged(
1894 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1895 {
1896 
1897 	if (!are_stream_backends_same(old_stream, stream))
1898 		return false;
1899 
1900 	if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
1901 		return false;
1902 
1903 	/*compare audio info*/
1904 	if (memcmp(&old_stream->audio_info, &stream->audio_info, sizeof(stream->audio_info)) != 0)
1905 		return false;
1906 
1907 	if (old_stream->odm_2to1_policy_applied != stream->odm_2to1_policy_applied)
1908 		return false;
1909 
1910 	return true;
1911 }
1912 
1913 /*
1914  * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
1915  */
1916 bool dc_is_stream_scaling_unchanged(struct dc_stream_state *old_stream,
1917 				    struct dc_stream_state *stream)
1918 {
1919 	if (old_stream == stream)
1920 		return true;
1921 
1922 	if (old_stream == NULL || stream == NULL)
1923 		return false;
1924 
1925 	if (memcmp(&old_stream->src,
1926 			&stream->src,
1927 			sizeof(struct rect)) != 0)
1928 		return false;
1929 
1930 	if (memcmp(&old_stream->dst,
1931 			&stream->dst,
1932 			sizeof(struct rect)) != 0)
1933 		return false;
1934 
1935 	return true;
1936 }
1937 
1938 static void update_stream_engine_usage(
1939 		struct resource_context *res_ctx,
1940 		const struct resource_pool *pool,
1941 		struct stream_encoder *stream_enc,
1942 		bool acquired)
1943 {
1944 	int i;
1945 
1946 	for (i = 0; i < pool->stream_enc_count; i++) {
1947 		if (pool->stream_enc[i] == stream_enc)
1948 			res_ctx->is_stream_enc_acquired[i] = acquired;
1949 	}
1950 }
1951 
1952 static void update_hpo_dp_stream_engine_usage(
1953 		struct resource_context *res_ctx,
1954 		const struct resource_pool *pool,
1955 		struct hpo_dp_stream_encoder *hpo_dp_stream_enc,
1956 		bool acquired)
1957 {
1958 	int i;
1959 
1960 	for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
1961 		if (pool->hpo_dp_stream_enc[i] == hpo_dp_stream_enc)
1962 			res_ctx->is_hpo_dp_stream_enc_acquired[i] = acquired;
1963 	}
1964 }
1965 
1966 static inline int find_acquired_hpo_dp_link_enc_for_link(
1967 		const struct resource_context *res_ctx,
1968 		const struct dc_link *link)
1969 {
1970 	int i;
1971 
1972 	for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_to_link_idx); i++)
1973 		if (res_ctx->hpo_dp_link_enc_ref_cnts[i] > 0 &&
1974 				res_ctx->hpo_dp_link_enc_to_link_idx[i] == link->link_index)
1975 			return i;
1976 
1977 	return -1;
1978 }
1979 
1980 static inline int find_free_hpo_dp_link_enc(const struct resource_context *res_ctx,
1981 		const struct resource_pool *pool)
1982 {
1983 	int i;
1984 
1985 	for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts); i++)
1986 		if (res_ctx->hpo_dp_link_enc_ref_cnts[i] == 0)
1987 			break;
1988 
1989 	return (i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts) &&
1990 			i < pool->hpo_dp_link_enc_count) ? i : -1;
1991 }
1992 
1993 static inline void acquire_hpo_dp_link_enc(
1994 		struct resource_context *res_ctx,
1995 		unsigned int link_index,
1996 		int enc_index)
1997 {
1998 	res_ctx->hpo_dp_link_enc_to_link_idx[enc_index] = link_index;
1999 	res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] = 1;
2000 }
2001 
2002 static inline void retain_hpo_dp_link_enc(
2003 		struct resource_context *res_ctx,
2004 		int enc_index)
2005 {
2006 	res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]++;
2007 }
2008 
2009 static inline void release_hpo_dp_link_enc(
2010 		struct resource_context *res_ctx,
2011 		int enc_index)
2012 {
2013 	ASSERT(res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] > 0);
2014 	res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]--;
2015 }
2016 
2017 static bool add_hpo_dp_link_enc_to_ctx(struct resource_context *res_ctx,
2018 		const struct resource_pool *pool,
2019 		struct pipe_ctx *pipe_ctx,
2020 		struct dc_stream_state *stream)
2021 {
2022 	int enc_index;
2023 
2024 	enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2025 
2026 	if (enc_index >= 0) {
2027 		retain_hpo_dp_link_enc(res_ctx, enc_index);
2028 	} else {
2029 		enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
2030 		if (enc_index >= 0)
2031 			acquire_hpo_dp_link_enc(res_ctx, stream->link->link_index, enc_index);
2032 	}
2033 
2034 	if (enc_index >= 0)
2035 		pipe_ctx->link_res.hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
2036 
2037 	return pipe_ctx->link_res.hpo_dp_link_enc != NULL;
2038 }
2039 
2040 static void remove_hpo_dp_link_enc_from_ctx(struct resource_context *res_ctx,
2041 		struct pipe_ctx *pipe_ctx,
2042 		struct dc_stream_state *stream)
2043 {
2044 	int enc_index;
2045 
2046 	enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2047 
2048 	if (enc_index >= 0) {
2049 		release_hpo_dp_link_enc(res_ctx, enc_index);
2050 		pipe_ctx->link_res.hpo_dp_link_enc = NULL;
2051 	}
2052 }
2053 
2054 /* TODO: release audio object */
2055 void update_audio_usage(
2056 		struct resource_context *res_ctx,
2057 		const struct resource_pool *pool,
2058 		struct audio *audio,
2059 		bool acquired)
2060 {
2061 	int i;
2062 	for (i = 0; i < pool->audio_count; i++) {
2063 		if (pool->audios[i] == audio)
2064 			res_ctx->is_audio_acquired[i] = acquired;
2065 	}
2066 }
2067 
2068 static int acquire_first_free_pipe(
2069 		struct resource_context *res_ctx,
2070 		const struct resource_pool *pool,
2071 		struct dc_stream_state *stream)
2072 {
2073 	int i;
2074 
2075 	for (i = 0; i < pool->pipe_count; i++) {
2076 		if (!res_ctx->pipe_ctx[i].stream) {
2077 			struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
2078 
2079 			pipe_ctx->stream_res.tg = pool->timing_generators[i];
2080 			pipe_ctx->plane_res.mi = pool->mis[i];
2081 			pipe_ctx->plane_res.hubp = pool->hubps[i];
2082 			pipe_ctx->plane_res.ipp = pool->ipps[i];
2083 			pipe_ctx->plane_res.xfm = pool->transforms[i];
2084 			pipe_ctx->plane_res.dpp = pool->dpps[i];
2085 			pipe_ctx->stream_res.opp = pool->opps[i];
2086 			if (pool->dpps[i])
2087 				pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
2088 			pipe_ctx->pipe_idx = i;
2089 
2090 			if (i >= pool->timing_generator_count) {
2091 				int tg_inst = pool->timing_generator_count - 1;
2092 
2093 				pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2094 				pipe_ctx->stream_res.opp = pool->opps[tg_inst];
2095 			}
2096 
2097 			pipe_ctx->stream = stream;
2098 			return i;
2099 		}
2100 	}
2101 	return -1;
2102 }
2103 
2104 static struct hpo_dp_stream_encoder *find_first_free_match_hpo_dp_stream_enc_for_link(
2105 		struct resource_context *res_ctx,
2106 		const struct resource_pool *pool,
2107 		struct dc_stream_state *stream)
2108 {
2109 	int i;
2110 
2111 	for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
2112 		if (!res_ctx->is_hpo_dp_stream_enc_acquired[i] &&
2113 				pool->hpo_dp_stream_enc[i]) {
2114 
2115 			return pool->hpo_dp_stream_enc[i];
2116 		}
2117 	}
2118 
2119 	return NULL;
2120 }
2121 
2122 static struct audio *find_first_free_audio(
2123 		struct resource_context *res_ctx,
2124 		const struct resource_pool *pool,
2125 		enum engine_id id,
2126 		enum dce_version dc_version)
2127 {
2128 	int i, available_audio_count;
2129 
2130 	available_audio_count = pool->audio_count;
2131 
2132 	for (i = 0; i < available_audio_count; i++) {
2133 		if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
2134 			/*we have enough audio endpoint, find the matching inst*/
2135 			if (id != i)
2136 				continue;
2137 			return pool->audios[i];
2138 		}
2139 	}
2140 
2141 	/* use engine id to find free audio */
2142 	if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
2143 		return pool->audios[id];
2144 	}
2145 	/*not found the matching one, first come first serve*/
2146 	for (i = 0; i < available_audio_count; i++) {
2147 		if (res_ctx->is_audio_acquired[i] == false) {
2148 			return pool->audios[i];
2149 		}
2150 	}
2151 	return NULL;
2152 }
2153 
2154 /*
2155  * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
2156  */
2157 enum dc_status dc_add_stream_to_ctx(
2158 		struct dc *dc,
2159 		struct dc_state *new_ctx,
2160 		struct dc_stream_state *stream)
2161 {
2162 	enum dc_status res;
2163 	DC_LOGGER_INIT(dc->ctx->logger);
2164 
2165 	if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
2166 		DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
2167 		return DC_ERROR_UNEXPECTED;
2168 	}
2169 
2170 	new_ctx->streams[new_ctx->stream_count] = stream;
2171 	dc_stream_retain(stream);
2172 	new_ctx->stream_count++;
2173 
2174 	res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
2175 	if (res != DC_OK)
2176 		DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
2177 
2178 	return res;
2179 }
2180 
2181 /*
2182  * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
2183  */
2184 enum dc_status dc_remove_stream_from_ctx(
2185 			struct dc *dc,
2186 			struct dc_state *new_ctx,
2187 			struct dc_stream_state *stream)
2188 {
2189 	int i;
2190 	struct dc_context *dc_ctx = dc->ctx;
2191 	struct pipe_ctx *del_pipe = resource_get_head_pipe_for_stream(&new_ctx->res_ctx, stream);
2192 	struct pipe_ctx *odm_pipe;
2193 
2194 	if (!del_pipe) {
2195 		DC_ERROR("Pipe not found for stream %p !\n", stream);
2196 		return DC_ERROR_UNEXPECTED;
2197 	}
2198 
2199 	odm_pipe = del_pipe->next_odm_pipe;
2200 
2201 	/* Release primary pipe */
2202 	ASSERT(del_pipe->stream_res.stream_enc);
2203 	update_stream_engine_usage(
2204 			&new_ctx->res_ctx,
2205 				dc->res_pool,
2206 			del_pipe->stream_res.stream_enc,
2207 			false);
2208 
2209 	if (is_dp_128b_132b_signal(del_pipe)) {
2210 		update_hpo_dp_stream_engine_usage(
2211 			&new_ctx->res_ctx, dc->res_pool,
2212 			del_pipe->stream_res.hpo_dp_stream_enc,
2213 			false);
2214 		remove_hpo_dp_link_enc_from_ctx(&new_ctx->res_ctx, del_pipe, del_pipe->stream);
2215 	}
2216 
2217 	if (del_pipe->stream_res.audio)
2218 		update_audio_usage(
2219 			&new_ctx->res_ctx,
2220 			dc->res_pool,
2221 			del_pipe->stream_res.audio,
2222 			false);
2223 
2224 	resource_unreference_clock_source(&new_ctx->res_ctx,
2225 					  dc->res_pool,
2226 					  del_pipe->clock_source);
2227 
2228 	if (dc->res_pool->funcs->remove_stream_from_ctx)
2229 		dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
2230 
2231 	while (odm_pipe) {
2232 		struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
2233 
2234 		memset(odm_pipe, 0, sizeof(*odm_pipe));
2235 		odm_pipe = next_odm_pipe;
2236 	}
2237 	memset(del_pipe, 0, sizeof(*del_pipe));
2238 
2239 	for (i = 0; i < new_ctx->stream_count; i++)
2240 		if (new_ctx->streams[i] == stream)
2241 			break;
2242 
2243 	if (new_ctx->streams[i] != stream) {
2244 		DC_ERROR("Context doesn't have stream %p !\n", stream);
2245 		return DC_ERROR_UNEXPECTED;
2246 	}
2247 
2248 	dc_stream_release(new_ctx->streams[i]);
2249 	new_ctx->stream_count--;
2250 
2251 	/* Trim back arrays */
2252 	for (; i < new_ctx->stream_count; i++) {
2253 		new_ctx->streams[i] = new_ctx->streams[i + 1];
2254 		new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
2255 	}
2256 
2257 	new_ctx->streams[new_ctx->stream_count] = NULL;
2258 	memset(
2259 			&new_ctx->stream_status[new_ctx->stream_count],
2260 			0,
2261 			sizeof(new_ctx->stream_status[0]));
2262 
2263 	return DC_OK;
2264 }
2265 
2266 static struct dc_stream_state *find_pll_sharable_stream(
2267 		struct dc_stream_state *stream_needs_pll,
2268 		struct dc_state *context)
2269 {
2270 	int i;
2271 
2272 	for (i = 0; i < context->stream_count; i++) {
2273 		struct dc_stream_state *stream_has_pll = context->streams[i];
2274 
2275 		/* We are looking for non dp, non virtual stream */
2276 		if (resource_are_streams_timing_synchronizable(
2277 			stream_needs_pll, stream_has_pll)
2278 			&& !dc_is_dp_signal(stream_has_pll->signal)
2279 			&& stream_has_pll->link->connector_signal
2280 			!= SIGNAL_TYPE_VIRTUAL)
2281 			return stream_has_pll;
2282 
2283 	}
2284 
2285 	return NULL;
2286 }
2287 
2288 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
2289 {
2290 	uint32_t pix_clk = timing->pix_clk_100hz;
2291 	uint32_t normalized_pix_clk = pix_clk;
2292 
2293 	if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
2294 		pix_clk /= 2;
2295 	if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
2296 		switch (timing->display_color_depth) {
2297 		case COLOR_DEPTH_666:
2298 		case COLOR_DEPTH_888:
2299 			normalized_pix_clk = pix_clk;
2300 			break;
2301 		case COLOR_DEPTH_101010:
2302 			normalized_pix_clk = (pix_clk * 30) / 24;
2303 			break;
2304 		case COLOR_DEPTH_121212:
2305 			normalized_pix_clk = (pix_clk * 36) / 24;
2306 		break;
2307 		case COLOR_DEPTH_161616:
2308 			normalized_pix_clk = (pix_clk * 48) / 24;
2309 		break;
2310 		default:
2311 			ASSERT(0);
2312 		break;
2313 		}
2314 	}
2315 	return normalized_pix_clk;
2316 }
2317 
2318 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
2319 {
2320 	/* update actual pixel clock on all streams */
2321 	if (dc_is_hdmi_signal(stream->signal))
2322 		stream->phy_pix_clk = get_norm_pix_clk(
2323 			&stream->timing) / 10;
2324 	else
2325 		stream->phy_pix_clk =
2326 			stream->timing.pix_clk_100hz / 10;
2327 
2328 	if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
2329 		stream->phy_pix_clk *= 2;
2330 }
2331 
2332 static int acquire_resource_from_hw_enabled_state(
2333 		struct resource_context *res_ctx,
2334 		const struct resource_pool *pool,
2335 		struct dc_stream_state *stream)
2336 {
2337 	struct dc_link *link = stream->link;
2338 	unsigned int i, inst, tg_inst = 0;
2339 	uint32_t numPipes = 1;
2340 	uint32_t id_src[4] = {0};
2341 
2342 	/* Check for enabled DIG to identify enabled display */
2343 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
2344 		return -1;
2345 
2346 	inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
2347 
2348 	if (inst == ENGINE_ID_UNKNOWN)
2349 		return -1;
2350 
2351 	for (i = 0; i < pool->stream_enc_count; i++) {
2352 		if (pool->stream_enc[i]->id == inst) {
2353 			tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
2354 				pool->stream_enc[i]);
2355 			break;
2356 		}
2357 	}
2358 
2359 	// tg_inst not found
2360 	if (i == pool->stream_enc_count)
2361 		return -1;
2362 
2363 	if (tg_inst >= pool->timing_generator_count)
2364 		return -1;
2365 
2366 	if (!res_ctx->pipe_ctx[tg_inst].stream) {
2367 		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
2368 
2369 		pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2370 		id_src[0] = tg_inst;
2371 
2372 		if (pipe_ctx->stream_res.tg->funcs->get_optc_source)
2373 			pipe_ctx->stream_res.tg->funcs->get_optc_source(pipe_ctx->stream_res.tg,
2374 						&numPipes, &id_src[0], &id_src[1]);
2375 
2376 		if (id_src[0] == 0xf && id_src[1] == 0xf) {
2377 			id_src[0] = tg_inst;
2378 			numPipes = 1;
2379 		}
2380 
2381 		for (i = 0; i < numPipes; i++) {
2382 			//Check if src id invalid
2383 			if (id_src[i] == 0xf)
2384 				return -1;
2385 
2386 			pipe_ctx = &res_ctx->pipe_ctx[id_src[i]];
2387 
2388 			pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2389 			pipe_ctx->plane_res.mi = pool->mis[id_src[i]];
2390 			pipe_ctx->plane_res.hubp = pool->hubps[id_src[i]];
2391 			pipe_ctx->plane_res.ipp = pool->ipps[id_src[i]];
2392 			pipe_ctx->plane_res.xfm = pool->transforms[id_src[i]];
2393 			pipe_ctx->plane_res.dpp = pool->dpps[id_src[i]];
2394 			pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
2395 
2396 			if (pool->dpps[id_src[i]]) {
2397 				pipe_ctx->plane_res.mpcc_inst = pool->dpps[id_src[i]]->inst;
2398 
2399 				if (pool->mpc->funcs->read_mpcc_state) {
2400 					struct mpcc_state s = {0};
2401 
2402 					pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
2403 
2404 					if (s.dpp_id < MAX_MPCC)
2405 						pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id =
2406 								s.dpp_id;
2407 
2408 					if (s.bot_mpcc_id < MAX_MPCC)
2409 						pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
2410 								&pool->mpc->mpcc_array[s.bot_mpcc_id];
2411 
2412 					if (s.opp_id < MAX_OPP)
2413 						pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
2414 				}
2415 			}
2416 			pipe_ctx->pipe_idx = id_src[i];
2417 
2418 			if (id_src[i] >= pool->timing_generator_count) {
2419 				id_src[i] = pool->timing_generator_count - 1;
2420 
2421 				pipe_ctx->stream_res.tg = pool->timing_generators[id_src[i]];
2422 				pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
2423 			}
2424 
2425 			pipe_ctx->stream = stream;
2426 		}
2427 
2428 		if (numPipes == 2) {
2429 			stream->apply_boot_odm_mode = dm_odm_combine_policy_2to1;
2430 			res_ctx->pipe_ctx[id_src[0]].next_odm_pipe = &res_ctx->pipe_ctx[id_src[1]];
2431 			res_ctx->pipe_ctx[id_src[0]].prev_odm_pipe = NULL;
2432 			res_ctx->pipe_ctx[id_src[1]].next_odm_pipe = NULL;
2433 			res_ctx->pipe_ctx[id_src[1]].prev_odm_pipe = &res_ctx->pipe_ctx[id_src[0]];
2434 		} else
2435 			stream->apply_boot_odm_mode = dm_odm_combine_mode_disabled;
2436 
2437 		return id_src[0];
2438 	}
2439 
2440 	return -1;
2441 }
2442 
2443 static void mark_seamless_boot_stream(
2444 		const struct dc  *dc,
2445 		struct dc_stream_state *stream)
2446 {
2447 	struct dc_bios *dcb = dc->ctx->dc_bios;
2448 
2449 	if (dc->config.allow_seamless_boot_optimization &&
2450 			!dcb->funcs->is_accelerated_mode(dcb)) {
2451 		if (dc_validate_boot_timing(dc, stream->sink, &stream->timing))
2452 			stream->apply_seamless_boot_optimization = true;
2453 	}
2454 }
2455 
2456 enum dc_status resource_map_pool_resources(
2457 		const struct dc  *dc,
2458 		struct dc_state *context,
2459 		struct dc_stream_state *stream)
2460 {
2461 	const struct resource_pool *pool = dc->res_pool;
2462 	int i;
2463 	struct dc_context *dc_ctx = dc->ctx;
2464 	struct pipe_ctx *pipe_ctx = NULL;
2465 	int pipe_idx = -1;
2466 
2467 	calculate_phy_pix_clks(stream);
2468 
2469 	mark_seamless_boot_stream(dc, stream);
2470 
2471 	if (stream->apply_seamless_boot_optimization) {
2472 		pipe_idx = acquire_resource_from_hw_enabled_state(
2473 				&context->res_ctx,
2474 				pool,
2475 				stream);
2476 		if (pipe_idx < 0)
2477 			/* hw resource was assigned to other stream */
2478 			stream->apply_seamless_boot_optimization = false;
2479 	}
2480 
2481 	if (pipe_idx < 0)
2482 		/* acquire new resources */
2483 		pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2484 
2485 	if (pipe_idx < 0)
2486 		pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2487 
2488 	if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2489 		return DC_NO_CONTROLLER_RESOURCE;
2490 
2491 	pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2492 
2493 	pipe_ctx->stream_res.stream_enc =
2494 		dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2495 			&context->res_ctx, pool, stream);
2496 
2497 	if (!pipe_ctx->stream_res.stream_enc)
2498 		return DC_NO_STREAM_ENC_RESOURCE;
2499 
2500 	update_stream_engine_usage(
2501 		&context->res_ctx, pool,
2502 		pipe_ctx->stream_res.stream_enc,
2503 		true);
2504 
2505 	/* Allocate DP HPO Stream Encoder based on signal, hw capabilities
2506 	 * and link settings
2507 	 */
2508 	if (dc_is_dp_signal(stream->signal)) {
2509 		if (!decide_link_settings(stream, &pipe_ctx->link_config.dp_link_settings))
2510 			return DC_FAIL_DP_LINK_BANDWIDTH;
2511 		if (dp_get_link_encoding_format(&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
2512 			pipe_ctx->stream_res.hpo_dp_stream_enc =
2513 					find_first_free_match_hpo_dp_stream_enc_for_link(
2514 							&context->res_ctx, pool, stream);
2515 
2516 			if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
2517 				return DC_NO_STREAM_ENC_RESOURCE;
2518 
2519 			update_hpo_dp_stream_engine_usage(
2520 					&context->res_ctx, pool,
2521 					pipe_ctx->stream_res.hpo_dp_stream_enc,
2522 					true);
2523 			if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, pool, pipe_ctx, stream))
2524 				return DC_NO_LINK_ENC_RESOURCE;
2525 		}
2526 	}
2527 
2528 	/* TODO: Add check if ASIC support and EDID audio */
2529 	if (!stream->converter_disable_audio &&
2530 	    dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2531 	    stream->audio_info.mode_count && stream->audio_info.flags.all) {
2532 		pipe_ctx->stream_res.audio = find_first_free_audio(
2533 		&context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2534 
2535 		/*
2536 		 * Audio assigned in order first come first get.
2537 		 * There are asics which has number of audio
2538 		 * resources less then number of pipes
2539 		 */
2540 		if (pipe_ctx->stream_res.audio)
2541 			update_audio_usage(&context->res_ctx, pool,
2542 					   pipe_ctx->stream_res.audio, true);
2543 	}
2544 
2545 	/* Add ABM to the resource if on EDP */
2546 	if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2547 		if (pool->abm)
2548 			pipe_ctx->stream_res.abm = pool->abm;
2549 		else
2550 			pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2551 	}
2552 
2553 	for (i = 0; i < context->stream_count; i++)
2554 		if (context->streams[i] == stream) {
2555 			context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2556 			context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2557 			context->stream_status[i].audio_inst =
2558 				pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2559 
2560 			return DC_OK;
2561 		}
2562 
2563 	DC_ERROR("Stream %p not found in new ctx!\n", stream);
2564 	return DC_ERROR_UNEXPECTED;
2565 }
2566 
2567 /**
2568  * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2569  * Is a shallow copy.  Increments refcounts on existing streams and planes.
2570  * @dc: copy out of dc->current_state
2571  * @dst_ctx: copy into this
2572  */
2573 void dc_resource_state_copy_construct_current(
2574 		const struct dc *dc,
2575 		struct dc_state *dst_ctx)
2576 {
2577 	dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2578 }
2579 
2580 
2581 void dc_resource_state_construct(
2582 		const struct dc *dc,
2583 		struct dc_state *dst_ctx)
2584 {
2585 	dst_ctx->clk_mgr = dc->clk_mgr;
2586 
2587 	/* Initialise DIG link encoder resource tracking variables. */
2588 	link_enc_cfg_init(dc, dst_ctx);
2589 }
2590 
2591 
2592 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2593 {
2594 	if (dc->res_pool == NULL)
2595 		return false;
2596 
2597 	return dc->res_pool->res_cap->num_dsc > 0;
2598 }
2599 
2600 
2601 /**
2602  * dc_validate_global_state() - Determine if HW can support a given state
2603  * Checks HW resource availability and bandwidth requirement.
2604  * @dc: dc struct for this driver
2605  * @new_ctx: state to be validated
2606  * @fast_validate: set to true if only yes/no to support matters
2607  *
2608  * Return: DC_OK if the result can be programmed.  Otherwise, an error code.
2609  */
2610 enum dc_status dc_validate_global_state(
2611 		struct dc *dc,
2612 		struct dc_state *new_ctx,
2613 		bool fast_validate)
2614 {
2615 	enum dc_status result = DC_ERROR_UNEXPECTED;
2616 	int i, j;
2617 
2618 	if (!new_ctx)
2619 		return DC_ERROR_UNEXPECTED;
2620 
2621 	if (dc->res_pool->funcs->validate_global) {
2622 		result = dc->res_pool->funcs->validate_global(dc, new_ctx);
2623 		if (result != DC_OK)
2624 			return result;
2625 	}
2626 
2627 	for (i = 0; i < new_ctx->stream_count; i++) {
2628 		struct dc_stream_state *stream = new_ctx->streams[i];
2629 
2630 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
2631 			struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
2632 
2633 			if (pipe_ctx->stream != stream)
2634 				continue;
2635 
2636 			if (dc->res_pool->funcs->patch_unknown_plane_state &&
2637 					pipe_ctx->plane_state &&
2638 					pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
2639 				result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
2640 				if (result != DC_OK)
2641 					return result;
2642 			}
2643 
2644 			/* Switch to dp clock source only if there is
2645 			 * no non dp stream that shares the same timing
2646 			 * with the dp stream.
2647 			 */
2648 			if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
2649 				!find_pll_sharable_stream(stream, new_ctx)) {
2650 
2651 				resource_unreference_clock_source(
2652 						&new_ctx->res_ctx,
2653 						dc->res_pool,
2654 						pipe_ctx->clock_source);
2655 
2656 				pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
2657 				resource_reference_clock_source(
2658 						&new_ctx->res_ctx,
2659 						dc->res_pool,
2660 						 pipe_ctx->clock_source);
2661 			}
2662 		}
2663 	}
2664 
2665 	result = resource_build_scaling_params_for_context(dc, new_ctx);
2666 
2667 	if (result == DC_OK)
2668 		if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
2669 			result = DC_FAIL_BANDWIDTH_VALIDATE;
2670 
2671 	/*
2672 	 * Only update link encoder to stream assignment after bandwidth validation passed.
2673 	 * TODO: Split out assignment and validation.
2674 	 */
2675 	if (result == DC_OK && dc->res_pool->funcs->link_encs_assign && fast_validate == false)
2676 		dc->res_pool->funcs->link_encs_assign(
2677 			dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
2678 
2679 	return result;
2680 }
2681 
2682 static void patch_gamut_packet_checksum(
2683 		struct dc_info_packet *gamut_packet)
2684 {
2685 	/* For gamut we recalc checksum */
2686 	if (gamut_packet->valid) {
2687 		uint8_t chk_sum = 0;
2688 		uint8_t *ptr;
2689 		uint8_t i;
2690 
2691 		/*start of the Gamut data. */
2692 		ptr = &gamut_packet->sb[3];
2693 
2694 		for (i = 0; i <= gamut_packet->sb[1]; i++)
2695 			chk_sum += ptr[i];
2696 
2697 		gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
2698 	}
2699 }
2700 
2701 static void set_avi_info_frame(
2702 		struct dc_info_packet *info_packet,
2703 		struct pipe_ctx *pipe_ctx)
2704 {
2705 	struct dc_stream_state *stream = pipe_ctx->stream;
2706 	enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
2707 	uint32_t pixel_encoding = 0;
2708 	enum scanning_type scan_type = SCANNING_TYPE_NODATA;
2709 	enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
2710 	bool itc = false;
2711 	uint8_t itc_value = 0;
2712 	uint8_t cn0_cn1 = 0;
2713 	unsigned int cn0_cn1_value = 0;
2714 	uint8_t *check_sum = NULL;
2715 	uint8_t byte_index = 0;
2716 	union hdmi_info_packet hdmi_info;
2717 	union display_content_support support = {0};
2718 	unsigned int vic = pipe_ctx->stream->timing.vic;
2719 	unsigned int rid = pipe_ctx->stream->timing.rid;
2720 	unsigned int fr_ind = pipe_ctx->stream->timing.fr_index;
2721 	enum dc_timing_3d_format format;
2722 
2723 	memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
2724 
2725 	color_space = pipe_ctx->stream->output_color_space;
2726 	if (color_space == COLOR_SPACE_UNKNOWN)
2727 		color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
2728 			COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
2729 
2730 	/* Initialize header */
2731 	hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
2732 	/* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
2733 	* not be used in HDMI 2.0 (Section 10.1) */
2734 	hdmi_info.bits.header.version = 2;
2735 	hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
2736 
2737 	/*
2738 	 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
2739 	 * according to HDMI 2.0 spec (Section 10.1)
2740 	 */
2741 
2742 	switch (stream->timing.pixel_encoding) {
2743 	case PIXEL_ENCODING_YCBCR422:
2744 		pixel_encoding = 1;
2745 		break;
2746 
2747 	case PIXEL_ENCODING_YCBCR444:
2748 		pixel_encoding = 2;
2749 		break;
2750 	case PIXEL_ENCODING_YCBCR420:
2751 		pixel_encoding = 3;
2752 		break;
2753 
2754 	case PIXEL_ENCODING_RGB:
2755 	default:
2756 		pixel_encoding = 0;
2757 	}
2758 
2759 	/* Y0_Y1_Y2 : The pixel encoding */
2760 	/* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
2761 	hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
2762 
2763 	/* A0 = 1 Active Format Information valid */
2764 	hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
2765 
2766 	/* B0, B1 = 3; Bar info data is valid */
2767 	hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
2768 
2769 	hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
2770 
2771 	/* S0, S1 : Underscan / Overscan */
2772 	/* TODO: un-hardcode scan type */
2773 	scan_type = SCANNING_TYPE_UNDERSCAN;
2774 	hdmi_info.bits.S0_S1 = scan_type;
2775 
2776 	/* C0, C1 : Colorimetry */
2777 	if (color_space == COLOR_SPACE_YCBCR709 ||
2778 			color_space == COLOR_SPACE_YCBCR709_LIMITED)
2779 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
2780 	else if (color_space == COLOR_SPACE_YCBCR601 ||
2781 			color_space == COLOR_SPACE_YCBCR601_LIMITED)
2782 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
2783 	else {
2784 		hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
2785 	}
2786 	if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
2787 			color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
2788 			color_space == COLOR_SPACE_2020_YCBCR) {
2789 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
2790 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2791 	} else if (color_space == COLOR_SPACE_ADOBERGB) {
2792 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
2793 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2794 	}
2795 
2796 	/* TODO: un-hardcode aspect ratio */
2797 	aspect = stream->timing.aspect_ratio;
2798 
2799 	switch (aspect) {
2800 	case ASPECT_RATIO_4_3:
2801 	case ASPECT_RATIO_16_9:
2802 		hdmi_info.bits.M0_M1 = aspect;
2803 		break;
2804 
2805 	case ASPECT_RATIO_NO_DATA:
2806 	case ASPECT_RATIO_64_27:
2807 	case ASPECT_RATIO_256_135:
2808 	default:
2809 		hdmi_info.bits.M0_M1 = 0;
2810 	}
2811 
2812 	/* Active Format Aspect ratio - same as Picture Aspect Ratio. */
2813 	hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
2814 
2815 	/* TODO: un-hardcode cn0_cn1 and itc */
2816 
2817 	cn0_cn1 = 0;
2818 	cn0_cn1_value = 0;
2819 
2820 	itc = true;
2821 	itc_value = 1;
2822 
2823 	support = stream->content_support;
2824 
2825 	if (itc) {
2826 		if (!support.bits.valid_content_type) {
2827 			cn0_cn1_value = 0;
2828 		} else {
2829 			if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
2830 				if (support.bits.graphics_content == 1) {
2831 					cn0_cn1_value = 0;
2832 				}
2833 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
2834 				if (support.bits.photo_content == 1) {
2835 					cn0_cn1_value = 1;
2836 				} else {
2837 					cn0_cn1_value = 0;
2838 					itc_value = 0;
2839 				}
2840 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
2841 				if (support.bits.cinema_content == 1) {
2842 					cn0_cn1_value = 2;
2843 				} else {
2844 					cn0_cn1_value = 0;
2845 					itc_value = 0;
2846 				}
2847 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
2848 				if (support.bits.game_content == 1) {
2849 					cn0_cn1_value = 3;
2850 				} else {
2851 					cn0_cn1_value = 0;
2852 					itc_value = 0;
2853 				}
2854 			}
2855 		}
2856 		hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
2857 		hdmi_info.bits.ITC = itc_value;
2858 	}
2859 
2860 	if (stream->qs_bit == 1) {
2861 		if (color_space == COLOR_SPACE_SRGB ||
2862 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2863 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_FULL_RANGE;
2864 		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2865 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2866 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_LIMITED_RANGE;
2867 		else
2868 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2869 	} else
2870 		hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2871 
2872 	/* TODO : We should handle YCC quantization */
2873 	/* but we do not have matrix calculation */
2874 	hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2875 
2876 	///VIC
2877 	if (pipe_ctx->stream->timing.hdmi_vic != 0)
2878 		vic = 0;
2879 	format = stream->timing.timing_3d_format;
2880 	/*todo, add 3DStereo support*/
2881 	if (format != TIMING_3D_FORMAT_NONE) {
2882 		// Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
2883 		switch (pipe_ctx->stream->timing.hdmi_vic) {
2884 		case 1:
2885 			vic = 95;
2886 			break;
2887 		case 2:
2888 			vic = 94;
2889 			break;
2890 		case 3:
2891 			vic = 93;
2892 			break;
2893 		case 4:
2894 			vic = 98;
2895 			break;
2896 		default:
2897 			break;
2898 		}
2899 	}
2900 	/* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
2901 	hdmi_info.bits.VIC0_VIC7 = vic;
2902 	if (vic >= 128)
2903 		hdmi_info.bits.header.version = 3;
2904 	/* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
2905 	 * the Source shall use 20 AVI InfoFrame Version 4
2906 	 */
2907 	if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
2908 			hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
2909 		hdmi_info.bits.header.version = 4;
2910 		hdmi_info.bits.header.length = 14;
2911 	}
2912 
2913 	if (rid != 0 && fr_ind != 0) {
2914 		hdmi_info.bits.header.version = 5;
2915 		hdmi_info.bits.header.length = 15;
2916 
2917 		hdmi_info.bits.FR0_FR3 = fr_ind & 0xF;
2918 		hdmi_info.bits.FR4 = (fr_ind >> 4) & 0x1;
2919 		hdmi_info.bits.RID0_RID5 = rid;
2920 	}
2921 
2922 	/* pixel repetition
2923 	 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
2924 	 * repetition start from 1 */
2925 	hdmi_info.bits.PR0_PR3 = 0;
2926 
2927 	/* Bar Info
2928 	 * barTop:    Line Number of End of Top Bar.
2929 	 * barBottom: Line Number of Start of Bottom Bar.
2930 	 * barLeft:   Pixel Number of End of Left Bar.
2931 	 * barRight:  Pixel Number of Start of Right Bar. */
2932 	hdmi_info.bits.bar_top = stream->timing.v_border_top;
2933 	hdmi_info.bits.bar_bottom = (stream->timing.v_total
2934 			- stream->timing.v_border_bottom + 1);
2935 	hdmi_info.bits.bar_left  = stream->timing.h_border_left;
2936 	hdmi_info.bits.bar_right = (stream->timing.h_total
2937 			- stream->timing.h_border_right + 1);
2938 
2939     /* Additional Colorimetry Extension
2940      * Used in conduction with C0-C1 and EC0-EC2
2941      * 0 = DCI-P3 RGB (D65)
2942      * 1 = DCI-P3 RGB (theater)
2943      */
2944 	hdmi_info.bits.ACE0_ACE3 = 0;
2945 
2946 	/* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
2947 	check_sum = &hdmi_info.packet_raw_data.sb[0];
2948 
2949 	*check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
2950 
2951 	for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
2952 		*check_sum += hdmi_info.packet_raw_data.sb[byte_index];
2953 
2954 	/* one byte complement */
2955 	*check_sum = (uint8_t) (0x100 - *check_sum);
2956 
2957 	/* Store in hw_path_mode */
2958 	info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
2959 	info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
2960 	info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
2961 
2962 	for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
2963 		info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
2964 
2965 	info_packet->valid = true;
2966 }
2967 
2968 static void set_vendor_info_packet(
2969 		struct dc_info_packet *info_packet,
2970 		struct dc_stream_state *stream)
2971 {
2972 	/* SPD info packet for FreeSync */
2973 
2974 	/* Check if Freesync is supported. Return if false. If true,
2975 	 * set the corresponding bit in the info packet
2976 	 */
2977 	if (!stream->vsp_infopacket.valid)
2978 		return;
2979 
2980 	*info_packet = stream->vsp_infopacket;
2981 }
2982 
2983 static void set_spd_info_packet(
2984 		struct dc_info_packet *info_packet,
2985 		struct dc_stream_state *stream)
2986 {
2987 	/* SPD info packet for FreeSync */
2988 
2989 	/* Check if Freesync is supported. Return if false. If true,
2990 	 * set the corresponding bit in the info packet
2991 	 */
2992 	if (!stream->vrr_infopacket.valid)
2993 		return;
2994 
2995 	*info_packet = stream->vrr_infopacket;
2996 }
2997 
2998 static void set_hdr_static_info_packet(
2999 		struct dc_info_packet *info_packet,
3000 		struct dc_stream_state *stream)
3001 {
3002 	/* HDR Static Metadata info packet for HDR10 */
3003 
3004 	if (!stream->hdr_static_metadata.valid ||
3005 			stream->use_dynamic_meta)
3006 		return;
3007 
3008 	*info_packet = stream->hdr_static_metadata;
3009 }
3010 
3011 static void set_vsc_info_packet(
3012 		struct dc_info_packet *info_packet,
3013 		struct dc_stream_state *stream)
3014 {
3015 	if (!stream->vsc_infopacket.valid)
3016 		return;
3017 
3018 	*info_packet = stream->vsc_infopacket;
3019 }
3020 static void set_hfvs_info_packet(
3021 		struct dc_info_packet *info_packet,
3022 		struct dc_stream_state *stream)
3023 {
3024 	if (!stream->hfvsif_infopacket.valid)
3025 		return;
3026 
3027 	*info_packet = stream->hfvsif_infopacket;
3028 }
3029 
3030 
3031 static void set_vtem_info_packet(
3032 		struct dc_info_packet *info_packet,
3033 		struct dc_stream_state *stream)
3034 {
3035 	if (!stream->vtem_infopacket.valid)
3036 		return;
3037 
3038 	*info_packet = stream->vtem_infopacket;
3039 }
3040 
3041 void dc_resource_state_destruct(struct dc_state *context)
3042 {
3043 	int i, j;
3044 
3045 	for (i = 0; i < context->stream_count; i++) {
3046 		for (j = 0; j < context->stream_status[i].plane_count; j++)
3047 			dc_plane_state_release(
3048 				context->stream_status[i].plane_states[j]);
3049 
3050 		context->stream_status[i].plane_count = 0;
3051 		dc_stream_release(context->streams[i]);
3052 		context->streams[i] = NULL;
3053 	}
3054 	context->stream_count = 0;
3055 }
3056 
3057 void dc_resource_state_copy_construct(
3058 		const struct dc_state *src_ctx,
3059 		struct dc_state *dst_ctx)
3060 {
3061 	int i, j;
3062 	struct kref refcount = dst_ctx->refcount;
3063 
3064 	*dst_ctx = *src_ctx;
3065 
3066 	for (i = 0; i < MAX_PIPES; i++) {
3067 		struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
3068 
3069 		if (cur_pipe->top_pipe)
3070 			cur_pipe->top_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
3071 
3072 		if (cur_pipe->bottom_pipe)
3073 			cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
3074 
3075 		if (cur_pipe->next_odm_pipe)
3076 			cur_pipe->next_odm_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
3077 
3078 		if (cur_pipe->prev_odm_pipe)
3079 			cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
3080 	}
3081 
3082 	for (i = 0; i < dst_ctx->stream_count; i++) {
3083 		dc_stream_retain(dst_ctx->streams[i]);
3084 		for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
3085 			dc_plane_state_retain(
3086 				dst_ctx->stream_status[i].plane_states[j]);
3087 	}
3088 
3089 	/* context refcount should not be overridden */
3090 	dst_ctx->refcount = refcount;
3091 
3092 }
3093 
3094 struct clock_source *dc_resource_find_first_free_pll(
3095 		struct resource_context *res_ctx,
3096 		const struct resource_pool *pool)
3097 {
3098 	int i;
3099 
3100 	for (i = 0; i < pool->clk_src_count; ++i) {
3101 		if (res_ctx->clock_source_ref_count[i] == 0)
3102 			return pool->clock_sources[i];
3103 	}
3104 
3105 	return NULL;
3106 }
3107 
3108 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
3109 {
3110 	enum signal_type signal = SIGNAL_TYPE_NONE;
3111 	struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
3112 
3113 	/* default all packets to invalid */
3114 	info->avi.valid = false;
3115 	info->gamut.valid = false;
3116 	info->vendor.valid = false;
3117 	info->spd.valid = false;
3118 	info->hdrsmd.valid = false;
3119 	info->vsc.valid = false;
3120 	info->hfvsif.valid = false;
3121 	info->vtem.valid = false;
3122 	signal = pipe_ctx->stream->signal;
3123 
3124 	/* HDMi and DP have different info packets*/
3125 	if (dc_is_hdmi_signal(signal)) {
3126 		set_avi_info_frame(&info->avi, pipe_ctx);
3127 
3128 		set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
3129 		set_hfvs_info_packet(&info->hfvsif, pipe_ctx->stream);
3130 		set_vtem_info_packet(&info->vtem, pipe_ctx->stream);
3131 
3132 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
3133 
3134 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
3135 
3136 	} else if (dc_is_dp_signal(signal)) {
3137 		set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
3138 
3139 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
3140 
3141 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
3142 	}
3143 
3144 	patch_gamut_packet_checksum(&info->gamut);
3145 }
3146 
3147 enum dc_status resource_map_clock_resources(
3148 		const struct dc  *dc,
3149 		struct dc_state *context,
3150 		struct dc_stream_state *stream)
3151 {
3152 	/* acquire new resources */
3153 	const struct resource_pool *pool = dc->res_pool;
3154 	struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
3155 				&context->res_ctx, stream);
3156 
3157 	if (!pipe_ctx)
3158 		return DC_ERROR_UNEXPECTED;
3159 
3160 	if (dc_is_dp_signal(pipe_ctx->stream->signal)
3161 		|| pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
3162 		pipe_ctx->clock_source = pool->dp_clock_source;
3163 	else {
3164 		pipe_ctx->clock_source = NULL;
3165 
3166 		if (!dc->config.disable_disp_pll_sharing)
3167 			pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
3168 				&context->res_ctx,
3169 				pipe_ctx);
3170 
3171 		if (pipe_ctx->clock_source == NULL)
3172 			pipe_ctx->clock_source =
3173 				dc_resource_find_first_free_pll(
3174 					&context->res_ctx,
3175 					pool);
3176 	}
3177 
3178 	if (pipe_ctx->clock_source == NULL)
3179 		return DC_NO_CLOCK_SOURCE_RESOURCE;
3180 
3181 	resource_reference_clock_source(
3182 		&context->res_ctx, pool,
3183 		pipe_ctx->clock_source);
3184 
3185 	return DC_OK;
3186 }
3187 
3188 /*
3189  * Note: We need to disable output if clock sources change,
3190  * since bios does optimization and doesn't apply if changing
3191  * PHY when not already disabled.
3192  */
3193 bool pipe_need_reprogram(
3194 		struct pipe_ctx *pipe_ctx_old,
3195 		struct pipe_ctx *pipe_ctx)
3196 {
3197 	if (!pipe_ctx_old->stream)
3198 		return false;
3199 
3200 	if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
3201 		return true;
3202 
3203 	if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
3204 		return true;
3205 
3206 	if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
3207 		return true;
3208 
3209 	if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
3210 			&& pipe_ctx_old->stream != pipe_ctx->stream)
3211 		return true;
3212 
3213 	if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
3214 		return true;
3215 
3216 	if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
3217 		return true;
3218 
3219 	if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
3220 		return true;
3221 
3222 	if (false == pipe_ctx_old->stream->link->link_state_valid &&
3223 		false == pipe_ctx_old->stream->dpms_off)
3224 		return true;
3225 
3226 	if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
3227 		return true;
3228 
3229 	if (pipe_ctx_old->stream_res.hpo_dp_stream_enc != pipe_ctx->stream_res.hpo_dp_stream_enc)
3230 		return true;
3231 	if (pipe_ctx_old->link_res.hpo_dp_link_enc != pipe_ctx->link_res.hpo_dp_link_enc)
3232 		return true;
3233 
3234 	/* DIG link encoder resource assignment for stream changed. */
3235 	if (pipe_ctx_old->stream->ctx->dc->res_pool->funcs->link_encs_assign) {
3236 		bool need_reprogram = false;
3237 		struct dc *dc = pipe_ctx_old->stream->ctx->dc;
3238 		struct link_encoder *link_enc_prev =
3239 			link_enc_cfg_get_link_enc_used_by_stream_current(dc, pipe_ctx_old->stream);
3240 
3241 		if (link_enc_prev != pipe_ctx->stream->link_enc)
3242 			need_reprogram = true;
3243 
3244 		return need_reprogram;
3245 	}
3246 
3247 	return false;
3248 }
3249 
3250 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
3251 		struct bit_depth_reduction_params *fmt_bit_depth)
3252 {
3253 	enum dc_dither_option option = stream->dither_option;
3254 	enum dc_pixel_encoding pixel_encoding =
3255 			stream->timing.pixel_encoding;
3256 
3257 	memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
3258 
3259 	if (option == DITHER_OPTION_DEFAULT) {
3260 		switch (stream->timing.display_color_depth) {
3261 		case COLOR_DEPTH_666:
3262 			option = DITHER_OPTION_SPATIAL6;
3263 			break;
3264 		case COLOR_DEPTH_888:
3265 			option = DITHER_OPTION_SPATIAL8;
3266 			break;
3267 		case COLOR_DEPTH_101010:
3268 			option = DITHER_OPTION_SPATIAL10;
3269 			break;
3270 		default:
3271 			option = DITHER_OPTION_DISABLE;
3272 		}
3273 	}
3274 
3275 	if (option == DITHER_OPTION_DISABLE)
3276 		return;
3277 
3278 	if (option == DITHER_OPTION_TRUN6) {
3279 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3280 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
3281 	} else if (option == DITHER_OPTION_TRUN8 ||
3282 			option == DITHER_OPTION_TRUN8_SPATIAL6 ||
3283 			option == DITHER_OPTION_TRUN8_FM6) {
3284 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3285 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
3286 	} else if (option == DITHER_OPTION_TRUN10        ||
3287 			option == DITHER_OPTION_TRUN10_SPATIAL6   ||
3288 			option == DITHER_OPTION_TRUN10_SPATIAL8   ||
3289 			option == DITHER_OPTION_TRUN10_FM8     ||
3290 			option == DITHER_OPTION_TRUN10_FM6     ||
3291 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3292 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3293 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
3294 	}
3295 
3296 	/* special case - Formatter can only reduce by 4 bits at most.
3297 	 * When reducing from 12 to 6 bits,
3298 	 * HW recommends we use trunc with round mode
3299 	 * (if we did nothing, trunc to 10 bits would be used)
3300 	 * note that any 12->10 bit reduction is ignored prior to DCE8,
3301 	 * as the input was 10 bits.
3302 	 */
3303 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
3304 			option == DITHER_OPTION_SPATIAL6 ||
3305 			option == DITHER_OPTION_FM6) {
3306 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3307 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
3308 		fmt_bit_depth->flags.TRUNCATE_MODE = 1;
3309 	}
3310 
3311 	/* spatial dither
3312 	 * note that spatial modes 1-3 are never used
3313 	 */
3314 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM            ||
3315 			option == DITHER_OPTION_SPATIAL6 ||
3316 			option == DITHER_OPTION_TRUN10_SPATIAL6      ||
3317 			option == DITHER_OPTION_TRUN8_SPATIAL6) {
3318 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3319 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
3320 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3321 		fmt_bit_depth->flags.RGB_RANDOM =
3322 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3323 	} else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM            ||
3324 			option == DITHER_OPTION_SPATIAL8 ||
3325 			option == DITHER_OPTION_SPATIAL8_FM6        ||
3326 			option == DITHER_OPTION_TRUN10_SPATIAL8      ||
3327 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3328 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3329 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
3330 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3331 		fmt_bit_depth->flags.RGB_RANDOM =
3332 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3333 	} else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
3334 			option == DITHER_OPTION_SPATIAL10 ||
3335 			option == DITHER_OPTION_SPATIAL10_FM8 ||
3336 			option == DITHER_OPTION_SPATIAL10_FM6) {
3337 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3338 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
3339 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3340 		fmt_bit_depth->flags.RGB_RANDOM =
3341 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3342 	}
3343 
3344 	if (option == DITHER_OPTION_SPATIAL6 ||
3345 			option == DITHER_OPTION_SPATIAL8 ||
3346 			option == DITHER_OPTION_SPATIAL10) {
3347 		fmt_bit_depth->flags.FRAME_RANDOM = 0;
3348 	} else {
3349 		fmt_bit_depth->flags.FRAME_RANDOM = 1;
3350 	}
3351 
3352 	//////////////////////
3353 	//// temporal dither
3354 	//////////////////////
3355 	if (option == DITHER_OPTION_FM6           ||
3356 			option == DITHER_OPTION_SPATIAL8_FM6     ||
3357 			option == DITHER_OPTION_SPATIAL10_FM6     ||
3358 			option == DITHER_OPTION_TRUN10_FM6     ||
3359 			option == DITHER_OPTION_TRUN8_FM6      ||
3360 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3361 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3362 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
3363 	} else if (option == DITHER_OPTION_FM8        ||
3364 			option == DITHER_OPTION_SPATIAL10_FM8  ||
3365 			option == DITHER_OPTION_TRUN10_FM8) {
3366 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3367 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
3368 	} else if (option == DITHER_OPTION_FM10) {
3369 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3370 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
3371 	}
3372 
3373 	fmt_bit_depth->pixel_encoding = pixel_encoding;
3374 }
3375 
3376 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
3377 {
3378 	struct dc_link *link = stream->link;
3379 	struct timing_generator *tg = dc->res_pool->timing_generators[0];
3380 	enum dc_status res = DC_OK;
3381 
3382 	calculate_phy_pix_clks(stream);
3383 
3384 	if (!tg->funcs->validate_timing(tg, &stream->timing))
3385 		res = DC_FAIL_CONTROLLER_VALIDATE;
3386 
3387 	if (res == DC_OK) {
3388 		if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
3389 				!link->link_enc->funcs->validate_output_with_stream(
3390 						link->link_enc, stream))
3391 			res = DC_FAIL_ENC_VALIDATE;
3392 	}
3393 
3394 	/* TODO: validate audio ASIC caps, encoder */
3395 
3396 	if (res == DC_OK)
3397 		res = dc_link_validate_mode_timing(stream,
3398 		      link,
3399 		      &stream->timing);
3400 
3401 	return res;
3402 }
3403 
3404 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
3405 {
3406 	enum dc_status res = DC_OK;
3407 
3408 	/* check if surface has invalid dimensions */
3409 	if (plane_state->src_rect.width == 0 || plane_state->src_rect.height == 0 ||
3410 		plane_state->dst_rect.width == 0 || plane_state->dst_rect.height == 0)
3411 		return DC_FAIL_SURFACE_VALIDATE;
3412 
3413 	/* TODO For now validates pixel format only */
3414 	if (dc->res_pool->funcs->validate_plane)
3415 		return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
3416 
3417 	return res;
3418 }
3419 
3420 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
3421 {
3422 	switch (format) {
3423 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
3424 		return 8;
3425 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
3426 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
3427 		return 12;
3428 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
3429 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
3430 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
3431 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
3432 		return 16;
3433 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
3434 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
3435 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
3436 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
3437 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
3438 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
3439 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
3440 		return 32;
3441 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
3442 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
3443 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
3444 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
3445 		return 64;
3446 	default:
3447 		ASSERT_CRITICAL(false);
3448 		return -1;
3449 	}
3450 }
3451 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
3452 {
3453 	if (modes) {
3454 		if (modes->sample_rates.rate.RATE_192)
3455 			return 192000;
3456 		if (modes->sample_rates.rate.RATE_176_4)
3457 			return 176400;
3458 		if (modes->sample_rates.rate.RATE_96)
3459 			return 96000;
3460 		if (modes->sample_rates.rate.RATE_88_2)
3461 			return 88200;
3462 		if (modes->sample_rates.rate.RATE_48)
3463 			return 48000;
3464 		if (modes->sample_rates.rate.RATE_44_1)
3465 			return 44100;
3466 		if (modes->sample_rates.rate.RATE_32)
3467 			return 32000;
3468 	}
3469 	/*original logic when no audio info*/
3470 	return 441000;
3471 }
3472 
3473 void get_audio_check(struct audio_info *aud_modes,
3474 	struct audio_check *audio_chk)
3475 {
3476 	unsigned int i;
3477 	unsigned int max_sample_rate = 0;
3478 
3479 	if (aud_modes) {
3480 		audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
3481 
3482 		audio_chk->max_audiosample_rate = 0;
3483 		for (i = 0; i < aud_modes->mode_count; i++) {
3484 			max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
3485 			if (audio_chk->max_audiosample_rate < max_sample_rate)
3486 				audio_chk->max_audiosample_rate = max_sample_rate;
3487 			/*dts takes the same as type 2: AP = 0.25*/
3488 		}
3489 		/*check which one take more bandwidth*/
3490 		if (audio_chk->max_audiosample_rate > 192000)
3491 			audio_chk->audio_packet_type = 0x9;/*AP =1*/
3492 		audio_chk->acat = 0;/*not support*/
3493 	}
3494 }
3495 
3496 static struct hpo_dp_link_encoder *get_temp_hpo_dp_link_enc(
3497 		const struct resource_context *res_ctx,
3498 		const struct resource_pool *const pool,
3499 		const struct dc_link *link)
3500 {
3501 	struct hpo_dp_link_encoder *hpo_dp_link_enc = NULL;
3502 	int enc_index;
3503 
3504 	enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, link);
3505 
3506 	if (enc_index < 0)
3507 		enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
3508 
3509 	if (enc_index >= 0)
3510 		hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
3511 
3512 	return hpo_dp_link_enc;
3513 }
3514 
3515 bool get_temp_dp_link_res(struct dc_link *link,
3516 		struct link_resource *link_res,
3517 		struct dc_link_settings *link_settings)
3518 {
3519 	const struct dc *dc  = link->dc;
3520 	const struct resource_context *res_ctx = &dc->current_state->res_ctx;
3521 
3522 	memset(link_res, 0, sizeof(*link_res));
3523 
3524 	if (dp_get_link_encoding_format(link_settings) == DP_128b_132b_ENCODING) {
3525 		link_res->hpo_dp_link_enc = get_temp_hpo_dp_link_enc(res_ctx,
3526 				dc->res_pool, link);
3527 		if (!link_res->hpo_dp_link_enc)
3528 			return false;
3529 	}
3530 	return true;
3531 }
3532 
3533 void reset_syncd_pipes_from_disabled_pipes(struct dc *dc,
3534 		struct dc_state *context)
3535 {
3536 	int i, j;
3537 	struct pipe_ctx *pipe_ctx_old, *pipe_ctx, *pipe_ctx_syncd;
3538 
3539 	/* If pipe backend is reset, need to reset pipe syncd status */
3540 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3541 		pipe_ctx_old =	&dc->current_state->res_ctx.pipe_ctx[i];
3542 		pipe_ctx = &context->res_ctx.pipe_ctx[i];
3543 
3544 		if (!pipe_ctx_old->stream)
3545 			continue;
3546 
3547 		if (pipe_ctx_old->top_pipe || pipe_ctx_old->prev_odm_pipe)
3548 			continue;
3549 
3550 		if (!pipe_ctx->stream ||
3551 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
3552 
3553 			/* Reset all the syncd pipes from the disabled pipe */
3554 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3555 				pipe_ctx_syncd = &context->res_ctx.pipe_ctx[j];
3556 				if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_syncd) == pipe_ctx_old->pipe_idx) ||
3557 					!IS_PIPE_SYNCD_VALID(pipe_ctx_syncd))
3558 					SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_syncd, j);
3559 			}
3560 		}
3561 	}
3562 }
3563 
3564 void check_syncd_pipes_for_disabled_master_pipe(struct dc *dc,
3565 	struct dc_state *context,
3566 	uint8_t disabled_master_pipe_idx)
3567 {
3568 	int i;
3569 	struct pipe_ctx *pipe_ctx, *pipe_ctx_check;
3570 
3571 	pipe_ctx = &context->res_ctx.pipe_ctx[disabled_master_pipe_idx];
3572 	if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx) != disabled_master_pipe_idx) ||
3573 		!IS_PIPE_SYNCD_VALID(pipe_ctx))
3574 		SET_PIPE_SYNCD_TO_PIPE(pipe_ctx, disabled_master_pipe_idx);
3575 
3576 	/* for the pipe disabled, check if any slave pipe exists and assert */
3577 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3578 		pipe_ctx_check = &context->res_ctx.pipe_ctx[i];
3579 
3580 		if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_check) == disabled_master_pipe_idx) &&
3581 			IS_PIPE_SYNCD_VALID(pipe_ctx_check) && (i != disabled_master_pipe_idx))
3582 			DC_ERR("DC: Failure: pipe_idx[%d] syncd with disabled master pipe_idx[%d]\n",
3583 				i, disabled_master_pipe_idx);
3584 	}
3585 }
3586 
3587 uint8_t resource_transmitter_to_phy_idx(const struct dc *dc, enum transmitter transmitter)
3588 {
3589 	/* TODO - get transmitter to phy idx mapping from DMUB */
3590 	uint8_t phy_idx = transmitter - TRANSMITTER_UNIPHY_A;
3591 
3592 	if (dc->ctx->dce_version == DCN_VERSION_3_1 &&
3593 			dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0) {
3594 		switch (transmitter) {
3595 		case TRANSMITTER_UNIPHY_A:
3596 			phy_idx = 0;
3597 			break;
3598 		case TRANSMITTER_UNIPHY_B:
3599 			phy_idx = 1;
3600 			break;
3601 		case TRANSMITTER_UNIPHY_C:
3602 			phy_idx = 5;
3603 			break;
3604 		case TRANSMITTER_UNIPHY_D:
3605 			phy_idx = 6;
3606 			break;
3607 		case TRANSMITTER_UNIPHY_E:
3608 			phy_idx = 4;
3609 			break;
3610 		default:
3611 			phy_idx = 0;
3612 			break;
3613 		}
3614 	}
3615 
3616 	return phy_idx;
3617 }
3618 
3619 const struct link_hwss *get_link_hwss(const struct dc_link *link,
3620 		const struct link_resource *link_res)
3621 {
3622 	/* Link_hwss is only accessible by getter function instead of accessing
3623 	 * by pointers in dc with the intent to protect against breaking polymorphism.
3624 	 */
3625 	if (can_use_hpo_dp_link_hwss(link, link_res))
3626 		/* TODO: some assumes that if decided link settings is 128b/132b
3627 		 * channel coding format hpo_dp_link_enc should be used.
3628 		 * Others believe that if hpo_dp_link_enc is available in link
3629 		 * resource then hpo_dp_link_enc must be used. This bound between
3630 		 * hpo_dp_link_enc != NULL and decided link settings is loosely coupled
3631 		 * with a premise that both hpo_dp_link_enc pointer and decided link
3632 		 * settings are determined based on single policy function like
3633 		 * "decide_link_settings" from upper layer. This "convention"
3634 		 * cannot be maintained and enforced at current level.
3635 		 * Therefore a refactor is due so we can enforce a strong bound
3636 		 * between those two parameters at this level.
3637 		 *
3638 		 * To put it simple, we want to make enforcement at low level so that
3639 		 * we will not return link hwss if caller plans to do 8b/10b
3640 		 * with an hpo encoder. Or we can return a very dummy one that doesn't
3641 		 * do work for all functions
3642 		 */
3643 		return get_hpo_dp_link_hwss();
3644 	else if (can_use_dpia_link_hwss(link, link_res))
3645 		return get_dpia_link_hwss();
3646 	else if (can_use_dio_link_hwss(link, link_res))
3647 		return get_dio_link_hwss();
3648 	else
3649 		return get_virtual_link_hwss();
3650 }
3651