1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include <linux/slab.h>
27 
28 #include "dm_services.h"
29 
30 #include "resource.h"
31 #include "include/irq_service_interface.h"
32 #include "link_encoder.h"
33 #include "stream_encoder.h"
34 #include "opp.h"
35 #include "timing_generator.h"
36 #include "transform.h"
37 #include "dccg.h"
38 #include "dchubbub.h"
39 #include "dpp.h"
40 #include "core_types.h"
41 #include "set_mode_types.h"
42 #include "virtual/virtual_stream_encoder.h"
43 #include "dpcd_defs.h"
44 
45 #if defined(CONFIG_DRM_AMD_DC_SI)
46 #include "dce60/dce60_resource.h"
47 #endif
48 #include "dce80/dce80_resource.h"
49 #include "dce100/dce100_resource.h"
50 #include "dce110/dce110_resource.h"
51 #include "dce112/dce112_resource.h"
52 #include "dce120/dce120_resource.h"
53 #if defined(CONFIG_DRM_AMD_DC_DCN)
54 #include "dcn10/dcn10_resource.h"
55 #include "dcn20/dcn20_resource.h"
56 #include "dcn21/dcn21_resource.h"
57 #include "dcn30/dcn30_resource.h"
58 #include "dcn301/dcn301_resource.h"
59 #include "dcn302/dcn302_resource.h"
60 #include "dcn303/dcn303_resource.h"
61 #if defined(CONFIG_DRM_AMD_DC_DCN3_1)
62 #include "../dcn31/dcn31_resource.h"
63 #endif
64 #endif
65 
66 #define DC_LOGGER_INIT(logger)
67 
68 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
69 {
70 	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
71 	switch (asic_id.chip_family) {
72 
73 #if defined(CONFIG_DRM_AMD_DC_SI)
74 	case FAMILY_SI:
75 		if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
76 		    ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
77 		    ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
78 			dc_version = DCE_VERSION_6_0;
79 		else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
80 			dc_version = DCE_VERSION_6_4;
81 		else
82 			dc_version = DCE_VERSION_6_1;
83 		break;
84 #endif
85 	case FAMILY_CI:
86 		dc_version = DCE_VERSION_8_0;
87 		break;
88 	case FAMILY_KV:
89 		if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
90 		    ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
91 		    ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
92 			dc_version = DCE_VERSION_8_3;
93 		else
94 			dc_version = DCE_VERSION_8_1;
95 		break;
96 	case FAMILY_CZ:
97 		dc_version = DCE_VERSION_11_0;
98 		break;
99 
100 	case FAMILY_VI:
101 		if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
102 				ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
103 			dc_version = DCE_VERSION_10_0;
104 			break;
105 		}
106 		if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
107 				ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
108 				ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
109 			dc_version = DCE_VERSION_11_2;
110 		}
111 		if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
112 			dc_version = DCE_VERSION_11_22;
113 		break;
114 	case FAMILY_AI:
115 		if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
116 			dc_version = DCE_VERSION_12_1;
117 		else
118 			dc_version = DCE_VERSION_12_0;
119 		break;
120 #if defined(CONFIG_DRM_AMD_DC_DCN)
121 	case FAMILY_RV:
122 		dc_version = DCN_VERSION_1_0;
123 		if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
124 			dc_version = DCN_VERSION_1_01;
125 		if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
126 			dc_version = DCN_VERSION_2_1;
127 		if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
128 			dc_version = DCN_VERSION_2_1;
129 		break;
130 
131 	case FAMILY_NV:
132 		dc_version = DCN_VERSION_2_0;
133 		if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
134 			dc_version = DCN_VERSION_3_0;
135 		if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
136 			dc_version = DCN_VERSION_3_02;
137 		if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
138 			dc_version = DCN_VERSION_3_03;
139 		break;
140 
141 	case FAMILY_VGH:
142 		dc_version = DCN_VERSION_3_01;
143 		break;
144 #endif
145 
146 #if defined(CONFIG_DRM_AMD_DC_DCN3_1)
147 	case FAMILY_YELLOW_CARP:
148 		if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
149 			dc_version = DCN_VERSION_3_1;
150 		break;
151 #endif
152 
153 	default:
154 		dc_version = DCE_VERSION_UNKNOWN;
155 		break;
156 	}
157 	return dc_version;
158 }
159 
160 struct resource_pool *dc_create_resource_pool(struct dc  *dc,
161 					      const struct dc_init_data *init_data,
162 					      enum dce_version dc_version)
163 {
164 	struct resource_pool *res_pool = NULL;
165 
166 	switch (dc_version) {
167 #if defined(CONFIG_DRM_AMD_DC_SI)
168 	case DCE_VERSION_6_0:
169 		res_pool = dce60_create_resource_pool(
170 			init_data->num_virtual_links, dc);
171 		break;
172 	case DCE_VERSION_6_1:
173 		res_pool = dce61_create_resource_pool(
174 			init_data->num_virtual_links, dc);
175 		break;
176 	case DCE_VERSION_6_4:
177 		res_pool = dce64_create_resource_pool(
178 			init_data->num_virtual_links, dc);
179 		break;
180 #endif
181 	case DCE_VERSION_8_0:
182 		res_pool = dce80_create_resource_pool(
183 				init_data->num_virtual_links, dc);
184 		break;
185 	case DCE_VERSION_8_1:
186 		res_pool = dce81_create_resource_pool(
187 				init_data->num_virtual_links, dc);
188 		break;
189 	case DCE_VERSION_8_3:
190 		res_pool = dce83_create_resource_pool(
191 				init_data->num_virtual_links, dc);
192 		break;
193 	case DCE_VERSION_10_0:
194 		res_pool = dce100_create_resource_pool(
195 				init_data->num_virtual_links, dc);
196 		break;
197 	case DCE_VERSION_11_0:
198 		res_pool = dce110_create_resource_pool(
199 				init_data->num_virtual_links, dc,
200 				init_data->asic_id);
201 		break;
202 	case DCE_VERSION_11_2:
203 	case DCE_VERSION_11_22:
204 		res_pool = dce112_create_resource_pool(
205 				init_data->num_virtual_links, dc);
206 		break;
207 	case DCE_VERSION_12_0:
208 	case DCE_VERSION_12_1:
209 		res_pool = dce120_create_resource_pool(
210 				init_data->num_virtual_links, dc);
211 		break;
212 
213 #if defined(CONFIG_DRM_AMD_DC_DCN)
214 	case DCN_VERSION_1_0:
215 	case DCN_VERSION_1_01:
216 		res_pool = dcn10_create_resource_pool(init_data, dc);
217 		break;
218 	case DCN_VERSION_2_0:
219 		res_pool = dcn20_create_resource_pool(init_data, dc);
220 		break;
221 	case DCN_VERSION_2_1:
222 		res_pool = dcn21_create_resource_pool(init_data, dc);
223 		break;
224 	case DCN_VERSION_3_0:
225 		res_pool = dcn30_create_resource_pool(init_data, dc);
226 		break;
227 	case DCN_VERSION_3_01:
228 		res_pool = dcn301_create_resource_pool(init_data, dc);
229 		break;
230 	case DCN_VERSION_3_02:
231 		res_pool = dcn302_create_resource_pool(init_data, dc);
232 		break;
233 	case DCN_VERSION_3_03:
234 		res_pool = dcn303_create_resource_pool(init_data, dc);
235 		break;
236 #if defined(CONFIG_DRM_AMD_DC_DCN3_1)
237 	case DCN_VERSION_3_1:
238 		res_pool = dcn31_create_resource_pool(init_data, dc);
239 		break;
240 #endif
241 #endif
242 	default:
243 		break;
244 	}
245 
246 	if (res_pool != NULL) {
247 		if (dc->ctx->dc_bios->fw_info_valid) {
248 			res_pool->ref_clocks.xtalin_clock_inKhz =
249 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
250 			/* initialize with firmware data first, no all
251 			 * ASIC have DCCG SW component. FPGA or
252 			 * simulation need initialization of
253 			 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
254 			 * with xtalin_clock_inKhz
255 			 */
256 			res_pool->ref_clocks.dccg_ref_clock_inKhz =
257 				res_pool->ref_clocks.xtalin_clock_inKhz;
258 			res_pool->ref_clocks.dchub_ref_clock_inKhz =
259 				res_pool->ref_clocks.xtalin_clock_inKhz;
260 		} else
261 			ASSERT_CRITICAL(false);
262 	}
263 
264 	return res_pool;
265 }
266 
267 void dc_destroy_resource_pool(struct dc  *dc)
268 {
269 	if (dc) {
270 		if (dc->res_pool)
271 			dc->res_pool->funcs->destroy(&dc->res_pool);
272 
273 		kfree(dc->hwseq);
274 	}
275 }
276 
277 static void update_num_audio(
278 	const struct resource_straps *straps,
279 	unsigned int *num_audio,
280 	struct audio_support *aud_support)
281 {
282 	aud_support->dp_audio = true;
283 	aud_support->hdmi_audio_native = false;
284 	aud_support->hdmi_audio_on_dongle = false;
285 
286 	if (straps->hdmi_disable == 0) {
287 		if (straps->dc_pinstraps_audio & 0x2) {
288 			aud_support->hdmi_audio_on_dongle = true;
289 			aud_support->hdmi_audio_native = true;
290 		}
291 	}
292 
293 	switch (straps->audio_stream_number) {
294 	case 0: /* multi streams supported */
295 		break;
296 	case 1: /* multi streams not supported */
297 		*num_audio = 1;
298 		break;
299 	default:
300 		DC_ERR("DC: unexpected audio fuse!\n");
301 	}
302 }
303 
304 bool resource_construct(
305 	unsigned int num_virtual_links,
306 	struct dc  *dc,
307 	struct resource_pool *pool,
308 	const struct resource_create_funcs *create_funcs)
309 {
310 	struct dc_context *ctx = dc->ctx;
311 	const struct resource_caps *caps = pool->res_cap;
312 	int i;
313 	unsigned int num_audio = caps->num_audio;
314 	struct resource_straps straps = {0};
315 
316 	if (create_funcs->read_dce_straps)
317 		create_funcs->read_dce_straps(dc->ctx, &straps);
318 
319 	pool->audio_count = 0;
320 	if (create_funcs->create_audio) {
321 		/* find the total number of streams available via the
322 		 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
323 		 * registers (one for each pin) starting from pin 1
324 		 * up to the max number of audio pins.
325 		 * We stop on the first pin where
326 		 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
327 		 */
328 		update_num_audio(&straps, &num_audio, &pool->audio_support);
329 		for (i = 0; i < caps->num_audio; i++) {
330 			struct audio *aud = create_funcs->create_audio(ctx, i);
331 
332 			if (aud == NULL) {
333 				DC_ERR("DC: failed to create audio!\n");
334 				return false;
335 			}
336 			if (!aud->funcs->endpoint_valid(aud)) {
337 				aud->funcs->destroy(&aud);
338 				break;
339 			}
340 			pool->audios[i] = aud;
341 			pool->audio_count++;
342 		}
343 	}
344 
345 	pool->stream_enc_count = 0;
346 	if (create_funcs->create_stream_encoder) {
347 		for (i = 0; i < caps->num_stream_encoder; i++) {
348 			pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
349 			if (pool->stream_enc[i] == NULL)
350 				DC_ERR("DC: failed to create stream_encoder!\n");
351 			pool->stream_enc_count++;
352 		}
353 	}
354 
355 #if defined(CONFIG_DRM_AMD_DC_DCN)
356 	for (i = 0; i < caps->num_mpc_3dlut; i++) {
357 		pool->mpc_lut[i] = dc_create_3dlut_func();
358 		if (pool->mpc_lut[i] == NULL)
359 			DC_ERR("DC: failed to create MPC 3dlut!\n");
360 		pool->mpc_shaper[i] = dc_create_transfer_func();
361 		if (pool->mpc_shaper[i] == NULL)
362 			DC_ERR("DC: failed to create MPC shaper!\n");
363 	}
364 #endif
365 	dc->caps.dynamic_audio = false;
366 	if (pool->audio_count < pool->stream_enc_count) {
367 		dc->caps.dynamic_audio = true;
368 	}
369 	for (i = 0; i < num_virtual_links; i++) {
370 		pool->stream_enc[pool->stream_enc_count] =
371 			virtual_stream_encoder_create(
372 					ctx, ctx->dc_bios);
373 		if (pool->stream_enc[pool->stream_enc_count] == NULL) {
374 			DC_ERR("DC: failed to create stream_encoder!\n");
375 			return false;
376 		}
377 		pool->stream_enc_count++;
378 	}
379 
380 	dc->hwseq = create_funcs->create_hwseq(ctx);
381 
382 	return true;
383 }
384 static int find_matching_clock_source(
385 		const struct resource_pool *pool,
386 		struct clock_source *clock_source)
387 {
388 
389 	int i;
390 
391 	for (i = 0; i < pool->clk_src_count; i++) {
392 		if (pool->clock_sources[i] == clock_source)
393 			return i;
394 	}
395 	return -1;
396 }
397 
398 void resource_unreference_clock_source(
399 		struct resource_context *res_ctx,
400 		const struct resource_pool *pool,
401 		struct clock_source *clock_source)
402 {
403 	int i = find_matching_clock_source(pool, clock_source);
404 
405 	if (i > -1)
406 		res_ctx->clock_source_ref_count[i]--;
407 
408 	if (pool->dp_clock_source == clock_source)
409 		res_ctx->dp_clock_source_ref_count--;
410 }
411 
412 void resource_reference_clock_source(
413 		struct resource_context *res_ctx,
414 		const struct resource_pool *pool,
415 		struct clock_source *clock_source)
416 {
417 	int i = find_matching_clock_source(pool, clock_source);
418 
419 	if (i > -1)
420 		res_ctx->clock_source_ref_count[i]++;
421 
422 	if (pool->dp_clock_source == clock_source)
423 		res_ctx->dp_clock_source_ref_count++;
424 }
425 
426 int resource_get_clock_source_reference(
427 		struct resource_context *res_ctx,
428 		const struct resource_pool *pool,
429 		struct clock_source *clock_source)
430 {
431 	int i = find_matching_clock_source(pool, clock_source);
432 
433 	if (i > -1)
434 		return res_ctx->clock_source_ref_count[i];
435 
436 	if (pool->dp_clock_source == clock_source)
437 		return res_ctx->dp_clock_source_ref_count;
438 
439 	return -1;
440 }
441 
442 bool resource_are_vblanks_synchronizable(
443 	struct dc_stream_state *stream1,
444 	struct dc_stream_state *stream2)
445 {
446 	uint32_t base60_refresh_rates[] = {10, 20, 5};
447 	uint8_t i;
448 	uint8_t rr_count = sizeof(base60_refresh_rates)/sizeof(base60_refresh_rates[0]);
449 	uint64_t frame_time_diff;
450 
451 	if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
452 		stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
453 		dc_is_dp_signal(stream1->signal) &&
454 		dc_is_dp_signal(stream2->signal) &&
455 		false == stream1->has_non_synchronizable_pclk &&
456 		false == stream2->has_non_synchronizable_pclk &&
457 		stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
458 		stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
459 		/* disable refresh rates higher than 60Hz for now */
460 		if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
461 				stream1->timing.v_total > 60)
462 			return false;
463 		if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
464 				stream2->timing.v_total > 60)
465 			return false;
466 		frame_time_diff = (uint64_t)10000 *
467 			stream1->timing.h_total *
468 			stream1->timing.v_total *
469 			stream2->timing.pix_clk_100hz;
470 		frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
471 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
472 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
473 		for (i = 0; i < rr_count; i++) {
474 			int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
475 
476 			if (diff < 0)
477 				diff = -diff;
478 			if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
479 				return true;
480 		}
481 	}
482 	return false;
483 }
484 
485 bool resource_are_streams_timing_synchronizable(
486 	struct dc_stream_state *stream1,
487 	struct dc_stream_state *stream2)
488 {
489 	if (stream1->timing.h_total != stream2->timing.h_total)
490 		return false;
491 
492 	if (stream1->timing.v_total != stream2->timing.v_total)
493 		return false;
494 
495 	if (stream1->timing.h_addressable
496 				!= stream2->timing.h_addressable)
497 		return false;
498 
499 	if (stream1->timing.v_addressable
500 				!= stream2->timing.v_addressable)
501 		return false;
502 
503 	if (stream1->timing.v_front_porch
504 				!= stream2->timing.v_front_porch)
505 		return false;
506 
507 	if (stream1->timing.pix_clk_100hz
508 				!= stream2->timing.pix_clk_100hz)
509 		return false;
510 
511 	if (stream1->clamping.c_depth != stream2->clamping.c_depth)
512 		return false;
513 
514 	if (stream1->phy_pix_clk != stream2->phy_pix_clk
515 			&& (!dc_is_dp_signal(stream1->signal)
516 			|| !dc_is_dp_signal(stream2->signal)))
517 		return false;
518 
519 	if (stream1->view_format != stream2->view_format)
520 		return false;
521 
522 	if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
523 		return false;
524 
525 	return true;
526 }
527 static bool is_dp_and_hdmi_sharable(
528 		struct dc_stream_state *stream1,
529 		struct dc_stream_state *stream2)
530 {
531 	if (stream1->ctx->dc->caps.disable_dp_clk_share)
532 		return false;
533 
534 	if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
535 		stream2->clamping.c_depth != COLOR_DEPTH_888)
536 		return false;
537 
538 	return true;
539 
540 }
541 
542 static bool is_sharable_clk_src(
543 	const struct pipe_ctx *pipe_with_clk_src,
544 	const struct pipe_ctx *pipe)
545 {
546 	if (pipe_with_clk_src->clock_source == NULL)
547 		return false;
548 
549 	if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
550 		return false;
551 
552 	if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
553 		(dc_is_dp_signal(pipe->stream->signal) &&
554 		!is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
555 				     pipe->stream)))
556 		return false;
557 
558 	if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
559 			&& dc_is_dual_link_signal(pipe->stream->signal))
560 		return false;
561 
562 	if (dc_is_hdmi_signal(pipe->stream->signal)
563 			&& dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
564 		return false;
565 
566 	if (!resource_are_streams_timing_synchronizable(
567 			pipe_with_clk_src->stream, pipe->stream))
568 		return false;
569 
570 	return true;
571 }
572 
573 struct clock_source *resource_find_used_clk_src_for_sharing(
574 					struct resource_context *res_ctx,
575 					struct pipe_ctx *pipe_ctx)
576 {
577 	int i;
578 
579 	for (i = 0; i < MAX_PIPES; i++) {
580 		if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
581 			return res_ctx->pipe_ctx[i].clock_source;
582 	}
583 
584 	return NULL;
585 }
586 
587 static enum pixel_format convert_pixel_format_to_dalsurface(
588 		enum surface_pixel_format surface_pixel_format)
589 {
590 	enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
591 
592 	switch (surface_pixel_format) {
593 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
594 		dal_pixel_format = PIXEL_FORMAT_INDEX8;
595 		break;
596 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
597 		dal_pixel_format = PIXEL_FORMAT_RGB565;
598 		break;
599 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
600 		dal_pixel_format = PIXEL_FORMAT_RGB565;
601 		break;
602 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
603 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
604 		break;
605 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
606 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
607 		break;
608 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
609 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
610 		break;
611 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
612 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
613 		break;
614 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
615 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
616 		break;
617 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
618 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
619 		dal_pixel_format = PIXEL_FORMAT_FP16;
620 		break;
621 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
622 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
623 		dal_pixel_format = PIXEL_FORMAT_420BPP8;
624 		break;
625 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
626 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
627 		dal_pixel_format = PIXEL_FORMAT_420BPP10;
628 		break;
629 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
630 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
631 	default:
632 		dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
633 		break;
634 	}
635 	return dal_pixel_format;
636 }
637 
638 static inline void get_vp_scan_direction(
639 	enum dc_rotation_angle rotation,
640 	bool horizontal_mirror,
641 	bool *orthogonal_rotation,
642 	bool *flip_vert_scan_dir,
643 	bool *flip_horz_scan_dir)
644 {
645 	*orthogonal_rotation = false;
646 	*flip_vert_scan_dir = false;
647 	*flip_horz_scan_dir = false;
648 	if (rotation == ROTATION_ANGLE_180) {
649 		*flip_vert_scan_dir = true;
650 		*flip_horz_scan_dir = true;
651 	} else if (rotation == ROTATION_ANGLE_90) {
652 		*orthogonal_rotation = true;
653 		*flip_horz_scan_dir = true;
654 	} else if (rotation == ROTATION_ANGLE_270) {
655 		*orthogonal_rotation = true;
656 		*flip_vert_scan_dir = true;
657 	}
658 
659 	if (horizontal_mirror)
660 		*flip_horz_scan_dir = !*flip_horz_scan_dir;
661 }
662 
663 int get_num_mpc_splits(struct pipe_ctx *pipe)
664 {
665 	int mpc_split_count = 0;
666 	struct pipe_ctx *other_pipe = pipe->bottom_pipe;
667 
668 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
669 		mpc_split_count++;
670 		other_pipe = other_pipe->bottom_pipe;
671 	}
672 	other_pipe = pipe->top_pipe;
673 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
674 		mpc_split_count++;
675 		other_pipe = other_pipe->top_pipe;
676 	}
677 
678 	return mpc_split_count;
679 }
680 
681 int get_num_odm_splits(struct pipe_ctx *pipe)
682 {
683 	int odm_split_count = 0;
684 	struct pipe_ctx *next_pipe = pipe->next_odm_pipe;
685 	while (next_pipe) {
686 		odm_split_count++;
687 		next_pipe = next_pipe->next_odm_pipe;
688 	}
689 	pipe = pipe->prev_odm_pipe;
690 	while (pipe) {
691 		odm_split_count++;
692 		pipe = pipe->prev_odm_pipe;
693 	}
694 	return odm_split_count;
695 }
696 
697 static void calculate_split_count_and_index(struct pipe_ctx *pipe_ctx, int *split_count, int *split_idx)
698 {
699 	*split_count = get_num_odm_splits(pipe_ctx);
700 	*split_idx = 0;
701 	if (*split_count == 0) {
702 		/*Check for mpc split*/
703 		struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
704 
705 		*split_count = get_num_mpc_splits(pipe_ctx);
706 		while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
707 			(*split_idx)++;
708 			split_pipe = split_pipe->top_pipe;
709 		}
710 	} else {
711 		/*Get odm split index*/
712 		struct pipe_ctx *split_pipe = pipe_ctx->prev_odm_pipe;
713 
714 		while (split_pipe) {
715 			(*split_idx)++;
716 			split_pipe = split_pipe->prev_odm_pipe;
717 		}
718 	}
719 }
720 
721 /*
722  * This is a preliminary vp size calculation to allow us to check taps support.
723  * The result is completely overridden afterwards.
724  */
725 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
726 {
727 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
728 
729 	data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
730 	data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
731 	data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
732 	data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
733 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
734 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
735 		swap(data->viewport.width, data->viewport.height);
736 		swap(data->viewport_c.width, data->viewport_c.height);
737 	}
738 }
739 
740 static void calculate_recout(struct pipe_ctx *pipe_ctx)
741 {
742 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
743 	const struct dc_stream_state *stream = pipe_ctx->stream;
744 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
745 	struct rect surf_clip = plane_state->clip_rect;
746 	bool split_tb = stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
747 	int split_count, split_idx;
748 
749 	calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
750 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
751 		split_idx = 0;
752 
753 	/*
754 	 * Only the leftmost ODM pipe should be offset by a nonzero distance
755 	 */
756 	if (!pipe_ctx->prev_odm_pipe || split_idx == split_count) {
757 		data->recout.x = stream->dst.x;
758 		if (stream->src.x < surf_clip.x)
759 			data->recout.x += (surf_clip.x - stream->src.x) * stream->dst.width
760 						/ stream->src.width;
761 	} else
762 		data->recout.x = 0;
763 
764 	if (stream->src.x > surf_clip.x)
765 		surf_clip.width -= stream->src.x - surf_clip.x;
766 	data->recout.width = surf_clip.width * stream->dst.width / stream->src.width;
767 	if (data->recout.width + data->recout.x > stream->dst.x + stream->dst.width)
768 		data->recout.width = stream->dst.x + stream->dst.width - data->recout.x;
769 
770 	data->recout.y = stream->dst.y;
771 	if (stream->src.y < surf_clip.y)
772 		data->recout.y += (surf_clip.y - stream->src.y) * stream->dst.height
773 						/ stream->src.height;
774 	else if (stream->src.y > surf_clip.y)
775 		surf_clip.height -= stream->src.y - surf_clip.y;
776 
777 	data->recout.height = surf_clip.height * stream->dst.height / stream->src.height;
778 	if (data->recout.height + data->recout.y > stream->dst.y + stream->dst.height)
779 		data->recout.height = stream->dst.y + stream->dst.height - data->recout.y;
780 
781 	/* Handle h & v split */
782 	if (split_tb) {
783 		ASSERT(data->recout.height % 2 == 0);
784 		data->recout.height /= 2;
785 	} else if (split_count) {
786 		if (!pipe_ctx->next_odm_pipe && !pipe_ctx->prev_odm_pipe) {
787 			/* extra pixels in the division remainder need to go to pipes after
788 			 * the extra pixel index minus one(epimo) defined here as:
789 			 */
790 			int epimo = split_count - data->recout.width % (split_count + 1);
791 
792 			data->recout.x += (data->recout.width / (split_count + 1)) * split_idx;
793 			if (split_idx > epimo)
794 				data->recout.x += split_idx - epimo - 1;
795 			ASSERT(stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE || data->recout.width % 2 == 0);
796 			data->recout.width = data->recout.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
797 		} else {
798 			/* odm */
799 			if (split_idx == split_count) {
800 				/* rightmost pipe is the remainder recout */
801 				data->recout.width -= data->h_active * split_count - data->recout.x;
802 				data->recout.x = 0;
803 			} else
804 				data->recout.width = data->h_active - data->recout.x;
805 		}
806 	}
807 }
808 
809 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
810 {
811 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
812 	const struct dc_stream_state *stream = pipe_ctx->stream;
813 	struct rect surf_src = plane_state->src_rect;
814 	const int in_w = stream->src.width;
815 	const int in_h = stream->src.height;
816 	const int out_w = stream->dst.width;
817 	const int out_h = stream->dst.height;
818 
819 	/*Swap surf_src height and width since scaling ratios are in recout rotation*/
820 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
821 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
822 		swap(surf_src.height, surf_src.width);
823 
824 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
825 					surf_src.width,
826 					plane_state->dst_rect.width);
827 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
828 					surf_src.height,
829 					plane_state->dst_rect.height);
830 
831 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
832 		pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
833 	else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
834 		pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
835 
836 	pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
837 		pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
838 	pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
839 		pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
840 
841 	pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
842 	pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
843 
844 	if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
845 			|| pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
846 		pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
847 		pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
848 	}
849 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
850 			pipe_ctx->plane_res.scl_data.ratios.horz, 19);
851 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
852 			pipe_ctx->plane_res.scl_data.ratios.vert, 19);
853 	pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
854 			pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
855 	pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
856 			pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
857 }
858 
859 
860 /*
861  * We completely calculate vp offset, size and inits here based entirely on scaling
862  * ratios and recout for pixel perfect pipe combine.
863  */
864 static void calculate_init_and_vp(
865 		bool flip_scan_dir,
866 		int recout_offset_within_recout_full,
867 		int recout_size,
868 		int src_size,
869 		int taps,
870 		struct fixed31_32 ratio,
871 		struct fixed31_32 *init,
872 		int *vp_offset,
873 		int *vp_size)
874 {
875 	struct fixed31_32 temp;
876 	int int_part;
877 
878 	/*
879 	 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
880 	 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
881 	 * All following calculations are based on this logic.
882 	 *
883 	 * Init calculated according to formula:
884 	 * 	init = (scaling_ratio + number_of_taps + 1) / 2
885 	 * 	init_bot = init + scaling_ratio
886 	 * 	to get pixel perfect combine add the fraction from calculating vp offset
887 	 */
888 	temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
889 	*vp_offset = dc_fixpt_floor(temp);
890 	temp.value &= 0xffffffff;
891 	*init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
892 			dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
893 	/*
894 	 * If viewport has non 0 offset and there are more taps than covered by init then
895 	 * we should decrease the offset and increase init so we are never sampling
896 	 * outside of viewport.
897 	 */
898 	int_part = dc_fixpt_floor(*init);
899 	if (int_part < taps) {
900 		int_part = taps - int_part;
901 		if (int_part > *vp_offset)
902 			int_part = *vp_offset;
903 		*vp_offset -= int_part;
904 		*init = dc_fixpt_add_int(*init, int_part);
905 	}
906 	/*
907 	 * If taps are sampling outside of viewport at end of recout and there are more pixels
908 	 * available in the surface we should increase the viewport size, regardless set vp to
909 	 * only what is used.
910 	 */
911 	temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
912 	*vp_size = dc_fixpt_floor(temp);
913 	if (*vp_size + *vp_offset > src_size)
914 		*vp_size = src_size - *vp_offset;
915 
916 	/* We did all the math assuming we are scanning same direction as display does,
917 	 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
918 	 * is flipped we simply need to calculate offset from the other side of plane.
919 	 * Note that outside of viewport all scaling hardware works in recout space.
920 	 */
921 	if (flip_scan_dir)
922 		*vp_offset = src_size - *vp_offset - *vp_size;
923 }
924 
925 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
926 {
927 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
928 	const struct dc_stream_state *stream = pipe_ctx->stream;
929 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
930 	struct rect src = plane_state->src_rect;
931 	int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
932 				|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
933 	int split_count, split_idx, ro_lb, ro_tb, recout_full_x, recout_full_y;
934 	bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
935 
936 	calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
937 	/*
938 	 * recout full is what the recout would have been if we didnt clip
939 	 * the source plane at all. We only care about left(ro_lb) and top(ro_tb)
940 	 * offsets of recout within recout full because those are the directions
941 	 * we scan from and therefore the only ones that affect inits.
942 	 */
943 	recout_full_x = stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
944 			* stream->dst.width / stream->src.width;
945 	recout_full_y = stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
946 			* stream->dst.height / stream->src.height;
947 	if (pipe_ctx->prev_odm_pipe && split_idx)
948 		ro_lb = data->h_active * split_idx - recout_full_x;
949 	else
950 		ro_lb = data->recout.x - recout_full_x;
951 	ro_tb = data->recout.y - recout_full_y;
952 	ASSERT(ro_lb >= 0 && ro_tb >= 0);
953 
954 	/*
955 	 * Work in recout rotation since that requires less transformations
956 	 */
957 	get_vp_scan_direction(
958 			plane_state->rotation,
959 			plane_state->horizontal_mirror,
960 			&orthogonal_rotation,
961 			&flip_vert_scan_dir,
962 			&flip_horz_scan_dir);
963 
964 	if (orthogonal_rotation) {
965 		swap(src.width, src.height);
966 		swap(flip_vert_scan_dir, flip_horz_scan_dir);
967 	}
968 
969 	calculate_init_and_vp(
970 			flip_horz_scan_dir,
971 			ro_lb,
972 			data->recout.width,
973 			src.width,
974 			data->taps.h_taps,
975 			data->ratios.horz,
976 			&data->inits.h,
977 			&data->viewport.x,
978 			&data->viewport.width);
979 	calculate_init_and_vp(
980 			flip_horz_scan_dir,
981 			ro_lb,
982 			data->recout.width,
983 			src.width / vpc_div,
984 			data->taps.h_taps_c,
985 			data->ratios.horz_c,
986 			&data->inits.h_c,
987 			&data->viewport_c.x,
988 			&data->viewport_c.width);
989 	calculate_init_and_vp(
990 			flip_vert_scan_dir,
991 			ro_tb,
992 			data->recout.height,
993 			src.height,
994 			data->taps.v_taps,
995 			data->ratios.vert,
996 			&data->inits.v,
997 			&data->viewport.y,
998 			&data->viewport.height);
999 	calculate_init_and_vp(
1000 			flip_vert_scan_dir,
1001 			ro_tb,
1002 			data->recout.height,
1003 			src.height / vpc_div,
1004 			data->taps.v_taps_c,
1005 			data->ratios.vert_c,
1006 			&data->inits.v_c,
1007 			&data->viewport_c.y,
1008 			&data->viewport_c.height);
1009 	if (orthogonal_rotation) {
1010 		swap(data->viewport.x, data->viewport.y);
1011 		swap(data->viewport.width, data->viewport.height);
1012 		swap(data->viewport_c.x, data->viewport_c.y);
1013 		swap(data->viewport_c.width, data->viewport_c.height);
1014 	}
1015 	data->viewport.x += src.x;
1016 	data->viewport.y += src.y;
1017 	ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1018 	data->viewport_c.x += src.x / vpc_div;
1019 	data->viewport_c.y += src.y / vpc_div;
1020 }
1021 
1022 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1023 {
1024 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1025 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1026 	bool res = false;
1027 	DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1028 
1029 	pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1030 			pipe_ctx->plane_state->format);
1031 
1032 	/* Timing borders are part of vactive that we are also supposed to skip in addition
1033 	 * to any stream dst offset. Since dm logic assumes dst is in addressable
1034 	 * space we need to add the the left and top borders to dst offsets temporarily.
1035 	 * TODO: fix in DM, stream dst is supposed to be in vactive
1036 	 */
1037 	pipe_ctx->stream->dst.x += timing->h_border_left;
1038 	pipe_ctx->stream->dst.y += timing->v_border_top;
1039 
1040 	/* Calculate H and V active size */
1041 	pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable +
1042 			timing->h_border_left + timing->h_border_right;
1043 	pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable +
1044 		timing->v_border_top + timing->v_border_bottom;
1045 	if (pipe_ctx->next_odm_pipe || pipe_ctx->prev_odm_pipe)
1046 		pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx) + 1;
1047 
1048 	/* depends on h_active */
1049 	calculate_recout(pipe_ctx);
1050 	/* depends on pixel format */
1051 	calculate_scaling_ratios(pipe_ctx);
1052 	/* depends on scaling ratios and recout, does not calculate offset yet */
1053 	calculate_viewport_size(pipe_ctx);
1054 
1055 	/*
1056 	 * LB calculations depend on vp size, h/v_active and scaling ratios
1057 	 * Setting line buffer pixel depth to 24bpp yields banding
1058 	 * on certain displays, such as the Sharp 4k. 36bpp is needed
1059 	 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1060 	 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1061 	 * precision on at least DCN display engines. However, at least
1062 	 * Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1063 	 * so use only 30 bpp on DCE_VERSION_11_0. Testing with DCE 11.2 and 8.3
1064 	 * did not show such problems, so this seems to be the exception.
1065 	 */
1066 	if (plane_state->ctx->dce_version != DCE_VERSION_11_0)
1067 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1068 	else
1069 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1070 
1071 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1072 
1073 	if (pipe_ctx->plane_res.xfm != NULL)
1074 		res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1075 				pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1076 
1077 	if (pipe_ctx->plane_res.dpp != NULL)
1078 		res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1079 				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1080 
1081 
1082 	if (!res) {
1083 		/* Try 24 bpp linebuffer */
1084 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1085 
1086 		if (pipe_ctx->plane_res.xfm != NULL)
1087 			res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1088 					pipe_ctx->plane_res.xfm,
1089 					&pipe_ctx->plane_res.scl_data,
1090 					&plane_state->scaling_quality);
1091 
1092 		if (pipe_ctx->plane_res.dpp != NULL)
1093 			res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1094 					pipe_ctx->plane_res.dpp,
1095 					&pipe_ctx->plane_res.scl_data,
1096 					&plane_state->scaling_quality);
1097 	}
1098 
1099 	/*
1100 	 * Depends on recout, scaling ratios, h_active and taps
1101 	 * May need to re-check lb size after this in some obscure scenario
1102 	 */
1103 	if (res)
1104 		calculate_inits_and_viewports(pipe_ctx);
1105 
1106 	/*
1107 	 * Handle side by side and top bottom 3d recout offsets after vp calculation
1108 	 * since 3d is special and needs to calculate vp as if there is no recout offset
1109 	 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1110 	 */
1111 	if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1112 		ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1113 			(pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1114 				pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1115 		if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1116 			pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1117 		else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1118 			pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1119 	}
1120 
1121 	if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE ||
1122 			pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1123 		res = false;
1124 
1125 	DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d  Recout: height:%d width:%d x:%d y:%d  HACTIVE:%d VACTIVE:%d\n"
1126 			"src_rect: height:%d width:%d x:%d y:%d  dst_rect: height:%d width:%d x:%d y:%d  clip_rect: height:%d width:%d x:%d y:%d\n",
1127 			__func__,
1128 			pipe_ctx->pipe_idx,
1129 			pipe_ctx->plane_res.scl_data.viewport.height,
1130 			pipe_ctx->plane_res.scl_data.viewport.width,
1131 			pipe_ctx->plane_res.scl_data.viewport.x,
1132 			pipe_ctx->plane_res.scl_data.viewport.y,
1133 			pipe_ctx->plane_res.scl_data.recout.height,
1134 			pipe_ctx->plane_res.scl_data.recout.width,
1135 			pipe_ctx->plane_res.scl_data.recout.x,
1136 			pipe_ctx->plane_res.scl_data.recout.y,
1137 			pipe_ctx->plane_res.scl_data.h_active,
1138 			pipe_ctx->plane_res.scl_data.v_active,
1139 			plane_state->src_rect.height,
1140 			plane_state->src_rect.width,
1141 			plane_state->src_rect.x,
1142 			plane_state->src_rect.y,
1143 			plane_state->dst_rect.height,
1144 			plane_state->dst_rect.width,
1145 			plane_state->dst_rect.x,
1146 			plane_state->dst_rect.y,
1147 			plane_state->clip_rect.height,
1148 			plane_state->clip_rect.width,
1149 			plane_state->clip_rect.x,
1150 			plane_state->clip_rect.y);
1151 
1152 	pipe_ctx->stream->dst.x -= timing->h_border_left;
1153 	pipe_ctx->stream->dst.y -= timing->v_border_top;
1154 
1155 	return res;
1156 }
1157 
1158 
1159 enum dc_status resource_build_scaling_params_for_context(
1160 	const struct dc  *dc,
1161 	struct dc_state *context)
1162 {
1163 	int i;
1164 
1165 	for (i = 0; i < MAX_PIPES; i++) {
1166 		if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1167 				context->res_ctx.pipe_ctx[i].stream != NULL)
1168 			if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1169 				return DC_FAIL_SCALING;
1170 	}
1171 
1172 	return DC_OK;
1173 }
1174 
1175 struct pipe_ctx *find_idle_secondary_pipe(
1176 		struct resource_context *res_ctx,
1177 		const struct resource_pool *pool,
1178 		const struct pipe_ctx *primary_pipe)
1179 {
1180 	int i;
1181 	struct pipe_ctx *secondary_pipe = NULL;
1182 
1183 	/*
1184 	 * We add a preferred pipe mapping to avoid the chance that
1185 	 * MPCCs already in use will need to be reassigned to other trees.
1186 	 * For example, if we went with the strict, assign backwards logic:
1187 	 *
1188 	 * (State 1)
1189 	 * Display A on, no surface, top pipe = 0
1190 	 * Display B on, no surface, top pipe = 1
1191 	 *
1192 	 * (State 2)
1193 	 * Display A on, no surface, top pipe = 0
1194 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1195 	 *
1196 	 * (State 3)
1197 	 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1198 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1199 	 *
1200 	 * The state 2->3 transition requires remapping MPCC 5 from display B
1201 	 * to display A.
1202 	 *
1203 	 * However, with the preferred pipe logic, state 2 would look like:
1204 	 *
1205 	 * (State 2)
1206 	 * Display A on, no surface, top pipe = 0
1207 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1208 	 *
1209 	 * This would then cause 2->3 to not require remapping any MPCCs.
1210 	 */
1211 	if (primary_pipe) {
1212 		int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1213 		if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1214 			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1215 			secondary_pipe->pipe_idx = preferred_pipe_idx;
1216 		}
1217 	}
1218 
1219 	/*
1220 	 * search backwards for the second pipe to keep pipe
1221 	 * assignment more consistent
1222 	 */
1223 	if (!secondary_pipe)
1224 		for (i = pool->pipe_count - 1; i >= 0; i--) {
1225 			if (res_ctx->pipe_ctx[i].stream == NULL) {
1226 				secondary_pipe = &res_ctx->pipe_ctx[i];
1227 				secondary_pipe->pipe_idx = i;
1228 				break;
1229 			}
1230 		}
1231 
1232 	return secondary_pipe;
1233 }
1234 
1235 struct pipe_ctx *resource_get_head_pipe_for_stream(
1236 		struct resource_context *res_ctx,
1237 		struct dc_stream_state *stream)
1238 {
1239 	int i;
1240 
1241 	for (i = 0; i < MAX_PIPES; i++) {
1242 		if (res_ctx->pipe_ctx[i].stream == stream
1243 				&& !res_ctx->pipe_ctx[i].top_pipe
1244 				&& !res_ctx->pipe_ctx[i].prev_odm_pipe)
1245 			return &res_ctx->pipe_ctx[i];
1246 	}
1247 	return NULL;
1248 }
1249 
1250 static struct pipe_ctx *resource_get_tail_pipe(
1251 		struct resource_context *res_ctx,
1252 		struct pipe_ctx *head_pipe)
1253 {
1254 	struct pipe_ctx *tail_pipe;
1255 
1256 	tail_pipe = head_pipe->bottom_pipe;
1257 
1258 	while (tail_pipe) {
1259 		head_pipe = tail_pipe;
1260 		tail_pipe = tail_pipe->bottom_pipe;
1261 	}
1262 
1263 	return head_pipe;
1264 }
1265 
1266 /*
1267  * A free_pipe for a stream is defined here as a pipe
1268  * that has no surface attached yet
1269  */
1270 static struct pipe_ctx *acquire_free_pipe_for_head(
1271 		struct dc_state *context,
1272 		const struct resource_pool *pool,
1273 		struct pipe_ctx *head_pipe)
1274 {
1275 	int i;
1276 	struct resource_context *res_ctx = &context->res_ctx;
1277 
1278 	if (!head_pipe->plane_state)
1279 		return head_pipe;
1280 
1281 	/* Re-use pipe already acquired for this stream if available*/
1282 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1283 		if (res_ctx->pipe_ctx[i].stream == head_pipe->stream &&
1284 				!res_ctx->pipe_ctx[i].plane_state) {
1285 			return &res_ctx->pipe_ctx[i];
1286 		}
1287 	}
1288 
1289 	/*
1290 	 * At this point we have no re-useable pipe for this stream and we need
1291 	 * to acquire an idle one to satisfy the request
1292 	 */
1293 
1294 	if (!pool->funcs->acquire_idle_pipe_for_layer)
1295 		return NULL;
1296 
1297 	return pool->funcs->acquire_idle_pipe_for_layer(context, pool, head_pipe->stream);
1298 }
1299 
1300 #if defined(CONFIG_DRM_AMD_DC_DCN)
1301 static int acquire_first_split_pipe(
1302 		struct resource_context *res_ctx,
1303 		const struct resource_pool *pool,
1304 		struct dc_stream_state *stream)
1305 {
1306 	int i;
1307 
1308 	for (i = 0; i < pool->pipe_count; i++) {
1309 		struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1310 
1311 		if (split_pipe->top_pipe &&
1312 				split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1313 			split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1314 			if (split_pipe->bottom_pipe)
1315 				split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1316 
1317 			if (split_pipe->top_pipe->plane_state)
1318 				resource_build_scaling_params(split_pipe->top_pipe);
1319 
1320 			memset(split_pipe, 0, sizeof(*split_pipe));
1321 			split_pipe->stream_res.tg = pool->timing_generators[i];
1322 			split_pipe->plane_res.hubp = pool->hubps[i];
1323 			split_pipe->plane_res.ipp = pool->ipps[i];
1324 			split_pipe->plane_res.dpp = pool->dpps[i];
1325 			split_pipe->stream_res.opp = pool->opps[i];
1326 			split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1327 			split_pipe->pipe_idx = i;
1328 
1329 			split_pipe->stream = stream;
1330 			return i;
1331 		}
1332 	}
1333 	return -1;
1334 }
1335 #endif
1336 
1337 bool dc_add_plane_to_context(
1338 		const struct dc *dc,
1339 		struct dc_stream_state *stream,
1340 		struct dc_plane_state *plane_state,
1341 		struct dc_state *context)
1342 {
1343 	int i;
1344 	struct resource_pool *pool = dc->res_pool;
1345 	struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1346 	struct dc_stream_status *stream_status = NULL;
1347 
1348 	for (i = 0; i < context->stream_count; i++)
1349 		if (context->streams[i] == stream) {
1350 			stream_status = &context->stream_status[i];
1351 			break;
1352 		}
1353 	if (stream_status == NULL) {
1354 		dm_error("Existing stream not found; failed to attach surface!\n");
1355 		return false;
1356 	}
1357 
1358 
1359 	if (stream_status->plane_count == MAX_SURFACE_NUM) {
1360 		dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1361 				plane_state, MAX_SURFACE_NUM);
1362 		return false;
1363 	}
1364 
1365 	head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1366 
1367 	if (!head_pipe) {
1368 		dm_error("Head pipe not found for stream_state %p !\n", stream);
1369 		return false;
1370 	}
1371 
1372 	/* retain new surface, but only once per stream */
1373 	dc_plane_state_retain(plane_state);
1374 
1375 	while (head_pipe) {
1376 		free_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1377 
1378 	#if defined(CONFIG_DRM_AMD_DC_DCN)
1379 		if (!free_pipe) {
1380 			int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1381 			if (pipe_idx >= 0)
1382 				free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1383 		}
1384 	#endif
1385 		if (!free_pipe) {
1386 			dc_plane_state_release(plane_state);
1387 			return false;
1388 		}
1389 
1390 		free_pipe->plane_state = plane_state;
1391 
1392 		if (head_pipe != free_pipe) {
1393 			tail_pipe = resource_get_tail_pipe(&context->res_ctx, head_pipe);
1394 			ASSERT(tail_pipe);
1395 			free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1396 			free_pipe->stream_res.abm = tail_pipe->stream_res.abm;
1397 			free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1398 			free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1399 			free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1400 			free_pipe->clock_source = tail_pipe->clock_source;
1401 			free_pipe->top_pipe = tail_pipe;
1402 			tail_pipe->bottom_pipe = free_pipe;
1403 			if (!free_pipe->next_odm_pipe && tail_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1404 				free_pipe->next_odm_pipe = tail_pipe->next_odm_pipe->bottom_pipe;
1405 				tail_pipe->next_odm_pipe->bottom_pipe->prev_odm_pipe = free_pipe;
1406 			}
1407 			if (!free_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe->bottom_pipe) {
1408 				free_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1409 				tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = free_pipe;
1410 			}
1411 		}
1412 		head_pipe = head_pipe->next_odm_pipe;
1413 	}
1414 	/* assign new surfaces*/
1415 	stream_status->plane_states[stream_status->plane_count] = plane_state;
1416 
1417 	stream_status->plane_count++;
1418 
1419 	return true;
1420 }
1421 
1422 bool dc_remove_plane_from_context(
1423 		const struct dc *dc,
1424 		struct dc_stream_state *stream,
1425 		struct dc_plane_state *plane_state,
1426 		struct dc_state *context)
1427 {
1428 	int i;
1429 	struct dc_stream_status *stream_status = NULL;
1430 	struct resource_pool *pool = dc->res_pool;
1431 
1432 	for (i = 0; i < context->stream_count; i++)
1433 		if (context->streams[i] == stream) {
1434 			stream_status = &context->stream_status[i];
1435 			break;
1436 		}
1437 
1438 	if (stream_status == NULL) {
1439 		dm_error("Existing stream not found; failed to remove plane.\n");
1440 		return false;
1441 	}
1442 
1443 	/* release pipe for plane*/
1444 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1445 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1446 
1447 		if (pipe_ctx->plane_state == plane_state) {
1448 			if (pipe_ctx->top_pipe)
1449 				pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1450 
1451 			/* Second condition is to avoid setting NULL to top pipe
1452 			 * of tail pipe making it look like head pipe in subsequent
1453 			 * deletes
1454 			 */
1455 			if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1456 				pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1457 
1458 			/*
1459 			 * For head pipe detach surfaces from pipe for tail
1460 			 * pipe just zero it out
1461 			 */
1462 			if (!pipe_ctx->top_pipe)
1463 				pipe_ctx->plane_state = NULL;
1464 			else
1465 				memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1466 		}
1467 	}
1468 
1469 
1470 	for (i = 0; i < stream_status->plane_count; i++) {
1471 		if (stream_status->plane_states[i] == plane_state) {
1472 
1473 			dc_plane_state_release(stream_status->plane_states[i]);
1474 			break;
1475 		}
1476 	}
1477 
1478 	if (i == stream_status->plane_count) {
1479 		dm_error("Existing plane_state not found; failed to detach it!\n");
1480 		return false;
1481 	}
1482 
1483 	stream_status->plane_count--;
1484 
1485 	/* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1486 	for (; i < stream_status->plane_count; i++)
1487 		stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1488 
1489 	stream_status->plane_states[stream_status->plane_count] = NULL;
1490 
1491 	return true;
1492 }
1493 
1494 bool dc_rem_all_planes_for_stream(
1495 		const struct dc *dc,
1496 		struct dc_stream_state *stream,
1497 		struct dc_state *context)
1498 {
1499 	int i, old_plane_count;
1500 	struct dc_stream_status *stream_status = NULL;
1501 	struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1502 
1503 	for (i = 0; i < context->stream_count; i++)
1504 			if (context->streams[i] == stream) {
1505 				stream_status = &context->stream_status[i];
1506 				break;
1507 			}
1508 
1509 	if (stream_status == NULL) {
1510 		dm_error("Existing stream %p not found!\n", stream);
1511 		return false;
1512 	}
1513 
1514 	old_plane_count = stream_status->plane_count;
1515 
1516 	for (i = 0; i < old_plane_count; i++)
1517 		del_planes[i] = stream_status->plane_states[i];
1518 
1519 	for (i = 0; i < old_plane_count; i++)
1520 		if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1521 			return false;
1522 
1523 	return true;
1524 }
1525 
1526 static bool add_all_planes_for_stream(
1527 		const struct dc *dc,
1528 		struct dc_stream_state *stream,
1529 		const struct dc_validation_set set[],
1530 		int set_count,
1531 		struct dc_state *context)
1532 {
1533 	int i, j;
1534 
1535 	for (i = 0; i < set_count; i++)
1536 		if (set[i].stream == stream)
1537 			break;
1538 
1539 	if (i == set_count) {
1540 		dm_error("Stream %p not found in set!\n", stream);
1541 		return false;
1542 	}
1543 
1544 	for (j = 0; j < set[i].plane_count; j++)
1545 		if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1546 			return false;
1547 
1548 	return true;
1549 }
1550 
1551 bool dc_add_all_planes_for_stream(
1552 		const struct dc *dc,
1553 		struct dc_stream_state *stream,
1554 		struct dc_plane_state * const *plane_states,
1555 		int plane_count,
1556 		struct dc_state *context)
1557 {
1558 	struct dc_validation_set set;
1559 	int i;
1560 
1561 	set.stream = stream;
1562 	set.plane_count = plane_count;
1563 
1564 	for (i = 0; i < plane_count; i++)
1565 		set.plane_states[i] = plane_states[i];
1566 
1567 	return add_all_planes_for_stream(dc, stream, &set, 1, context);
1568 }
1569 
1570 static bool is_timing_changed(struct dc_stream_state *cur_stream,
1571 		struct dc_stream_state *new_stream)
1572 {
1573 	if (cur_stream == NULL)
1574 		return true;
1575 
1576 	/* If output color space is changed, need to reprogram info frames */
1577 	if (cur_stream->output_color_space != new_stream->output_color_space)
1578 		return true;
1579 
1580 	return memcmp(
1581 		&cur_stream->timing,
1582 		&new_stream->timing,
1583 		sizeof(struct dc_crtc_timing)) != 0;
1584 }
1585 
1586 static bool are_stream_backends_same(
1587 	struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1588 {
1589 	if (stream_a == stream_b)
1590 		return true;
1591 
1592 	if (stream_a == NULL || stream_b == NULL)
1593 		return false;
1594 
1595 	if (is_timing_changed(stream_a, stream_b))
1596 		return false;
1597 
1598 	if (stream_a->dpms_off != stream_b->dpms_off)
1599 		return false;
1600 
1601 	return true;
1602 }
1603 
1604 /*
1605  * dc_is_stream_unchanged() - Compare two stream states for equivalence.
1606  *
1607  * Checks if there a difference between the two states
1608  * that would require a mode change.
1609  *
1610  * Does not compare cursor position or attributes.
1611  */
1612 bool dc_is_stream_unchanged(
1613 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1614 {
1615 
1616 	if (!are_stream_backends_same(old_stream, stream))
1617 		return false;
1618 
1619 	if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
1620 		return false;
1621 
1622 	return true;
1623 }
1624 
1625 /*
1626  * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
1627  */
1628 bool dc_is_stream_scaling_unchanged(
1629 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1630 {
1631 	if (old_stream == stream)
1632 		return true;
1633 
1634 	if (old_stream == NULL || stream == NULL)
1635 		return false;
1636 
1637 	if (memcmp(&old_stream->src,
1638 			&stream->src,
1639 			sizeof(struct rect)) != 0)
1640 		return false;
1641 
1642 	if (memcmp(&old_stream->dst,
1643 			&stream->dst,
1644 			sizeof(struct rect)) != 0)
1645 		return false;
1646 
1647 	return true;
1648 }
1649 
1650 static void update_stream_engine_usage(
1651 		struct resource_context *res_ctx,
1652 		const struct resource_pool *pool,
1653 		struct stream_encoder *stream_enc,
1654 		bool acquired)
1655 {
1656 	int i;
1657 
1658 	for (i = 0; i < pool->stream_enc_count; i++) {
1659 		if (pool->stream_enc[i] == stream_enc)
1660 			res_ctx->is_stream_enc_acquired[i] = acquired;
1661 	}
1662 }
1663 
1664 /* TODO: release audio object */
1665 void update_audio_usage(
1666 		struct resource_context *res_ctx,
1667 		const struct resource_pool *pool,
1668 		struct audio *audio,
1669 		bool acquired)
1670 {
1671 	int i;
1672 	for (i = 0; i < pool->audio_count; i++) {
1673 		if (pool->audios[i] == audio)
1674 			res_ctx->is_audio_acquired[i] = acquired;
1675 	}
1676 }
1677 
1678 static int acquire_first_free_pipe(
1679 		struct resource_context *res_ctx,
1680 		const struct resource_pool *pool,
1681 		struct dc_stream_state *stream)
1682 {
1683 	int i;
1684 
1685 	for (i = 0; i < pool->pipe_count; i++) {
1686 		if (!res_ctx->pipe_ctx[i].stream) {
1687 			struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
1688 
1689 			pipe_ctx->stream_res.tg = pool->timing_generators[i];
1690 			pipe_ctx->plane_res.mi = pool->mis[i];
1691 			pipe_ctx->plane_res.hubp = pool->hubps[i];
1692 			pipe_ctx->plane_res.ipp = pool->ipps[i];
1693 			pipe_ctx->plane_res.xfm = pool->transforms[i];
1694 			pipe_ctx->plane_res.dpp = pool->dpps[i];
1695 			pipe_ctx->stream_res.opp = pool->opps[i];
1696 			if (pool->dpps[i])
1697 				pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
1698 			pipe_ctx->pipe_idx = i;
1699 
1700 
1701 			pipe_ctx->stream = stream;
1702 			return i;
1703 		}
1704 	}
1705 	return -1;
1706 }
1707 
1708 static struct audio *find_first_free_audio(
1709 		struct resource_context *res_ctx,
1710 		const struct resource_pool *pool,
1711 		enum engine_id id,
1712 		enum dce_version dc_version)
1713 {
1714 	int i, available_audio_count;
1715 
1716 	available_audio_count = pool->audio_count;
1717 
1718 	for (i = 0; i < available_audio_count; i++) {
1719 		if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
1720 			/*we have enough audio endpoint, find the matching inst*/
1721 			if (id != i)
1722 				continue;
1723 			return pool->audios[i];
1724 		}
1725 	}
1726 
1727 	/* use engine id to find free audio */
1728 	if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
1729 		return pool->audios[id];
1730 	}
1731 	/*not found the matching one, first come first serve*/
1732 	for (i = 0; i < available_audio_count; i++) {
1733 		if (res_ctx->is_audio_acquired[i] == false) {
1734 			return pool->audios[i];
1735 		}
1736 	}
1737 	return 0;
1738 }
1739 
1740 /*
1741  * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
1742  */
1743 enum dc_status dc_add_stream_to_ctx(
1744 		struct dc *dc,
1745 		struct dc_state *new_ctx,
1746 		struct dc_stream_state *stream)
1747 {
1748 	enum dc_status res;
1749 	DC_LOGGER_INIT(dc->ctx->logger);
1750 
1751 	if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
1752 		DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
1753 		return DC_ERROR_UNEXPECTED;
1754 	}
1755 
1756 	new_ctx->streams[new_ctx->stream_count] = stream;
1757 	dc_stream_retain(stream);
1758 	new_ctx->stream_count++;
1759 
1760 	res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
1761 	if (res != DC_OK)
1762 		DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
1763 
1764 	return res;
1765 }
1766 
1767 /*
1768  * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
1769  */
1770 enum dc_status dc_remove_stream_from_ctx(
1771 			struct dc *dc,
1772 			struct dc_state *new_ctx,
1773 			struct dc_stream_state *stream)
1774 {
1775 	int i;
1776 	struct dc_context *dc_ctx = dc->ctx;
1777 	struct pipe_ctx *del_pipe = resource_get_head_pipe_for_stream(&new_ctx->res_ctx, stream);
1778 	struct pipe_ctx *odm_pipe;
1779 
1780 	if (!del_pipe) {
1781 		DC_ERROR("Pipe not found for stream %p !\n", stream);
1782 		return DC_ERROR_UNEXPECTED;
1783 	}
1784 
1785 	odm_pipe = del_pipe->next_odm_pipe;
1786 
1787 	/* Release primary pipe */
1788 	ASSERT(del_pipe->stream_res.stream_enc);
1789 	update_stream_engine_usage(
1790 			&new_ctx->res_ctx,
1791 				dc->res_pool,
1792 			del_pipe->stream_res.stream_enc,
1793 			false);
1794 	/* Release link encoder from stream in new dc_state. */
1795 	if (dc->res_pool->funcs->link_enc_unassign)
1796 		dc->res_pool->funcs->link_enc_unassign(new_ctx, del_pipe->stream);
1797 
1798 	if (del_pipe->stream_res.audio)
1799 		update_audio_usage(
1800 			&new_ctx->res_ctx,
1801 			dc->res_pool,
1802 			del_pipe->stream_res.audio,
1803 			false);
1804 
1805 	resource_unreference_clock_source(&new_ctx->res_ctx,
1806 					  dc->res_pool,
1807 					  del_pipe->clock_source);
1808 
1809 	if (dc->res_pool->funcs->remove_stream_from_ctx)
1810 		dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
1811 
1812 	while (odm_pipe) {
1813 		struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1814 
1815 		memset(odm_pipe, 0, sizeof(*odm_pipe));
1816 		odm_pipe = next_odm_pipe;
1817 	}
1818 	memset(del_pipe, 0, sizeof(*del_pipe));
1819 
1820 	for (i = 0; i < new_ctx->stream_count; i++)
1821 		if (new_ctx->streams[i] == stream)
1822 			break;
1823 
1824 	if (new_ctx->streams[i] != stream) {
1825 		DC_ERROR("Context doesn't have stream %p !\n", stream);
1826 		return DC_ERROR_UNEXPECTED;
1827 	}
1828 
1829 	dc_stream_release(new_ctx->streams[i]);
1830 	new_ctx->stream_count--;
1831 
1832 	/* Trim back arrays */
1833 	for (; i < new_ctx->stream_count; i++) {
1834 		new_ctx->streams[i] = new_ctx->streams[i + 1];
1835 		new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
1836 	}
1837 
1838 	new_ctx->streams[new_ctx->stream_count] = NULL;
1839 	memset(
1840 			&new_ctx->stream_status[new_ctx->stream_count],
1841 			0,
1842 			sizeof(new_ctx->stream_status[0]));
1843 
1844 	return DC_OK;
1845 }
1846 
1847 static struct dc_stream_state *find_pll_sharable_stream(
1848 		struct dc_stream_state *stream_needs_pll,
1849 		struct dc_state *context)
1850 {
1851 	int i;
1852 
1853 	for (i = 0; i < context->stream_count; i++) {
1854 		struct dc_stream_state *stream_has_pll = context->streams[i];
1855 
1856 		/* We are looking for non dp, non virtual stream */
1857 		if (resource_are_streams_timing_synchronizable(
1858 			stream_needs_pll, stream_has_pll)
1859 			&& !dc_is_dp_signal(stream_has_pll->signal)
1860 			&& stream_has_pll->link->connector_signal
1861 			!= SIGNAL_TYPE_VIRTUAL)
1862 			return stream_has_pll;
1863 
1864 	}
1865 
1866 	return NULL;
1867 }
1868 
1869 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
1870 {
1871 	uint32_t pix_clk = timing->pix_clk_100hz;
1872 	uint32_t normalized_pix_clk = pix_clk;
1873 
1874 	if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
1875 		pix_clk /= 2;
1876 	if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
1877 		switch (timing->display_color_depth) {
1878 		case COLOR_DEPTH_666:
1879 		case COLOR_DEPTH_888:
1880 			normalized_pix_clk = pix_clk;
1881 			break;
1882 		case COLOR_DEPTH_101010:
1883 			normalized_pix_clk = (pix_clk * 30) / 24;
1884 			break;
1885 		case COLOR_DEPTH_121212:
1886 			normalized_pix_clk = (pix_clk * 36) / 24;
1887 		break;
1888 		case COLOR_DEPTH_161616:
1889 			normalized_pix_clk = (pix_clk * 48) / 24;
1890 		break;
1891 		default:
1892 			ASSERT(0);
1893 		break;
1894 		}
1895 	}
1896 	return normalized_pix_clk;
1897 }
1898 
1899 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
1900 {
1901 	/* update actual pixel clock on all streams */
1902 	if (dc_is_hdmi_signal(stream->signal))
1903 		stream->phy_pix_clk = get_norm_pix_clk(
1904 			&stream->timing) / 10;
1905 	else
1906 		stream->phy_pix_clk =
1907 			stream->timing.pix_clk_100hz / 10;
1908 
1909 	if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
1910 		stream->phy_pix_clk *= 2;
1911 }
1912 
1913 static int acquire_resource_from_hw_enabled_state(
1914 		struct resource_context *res_ctx,
1915 		const struct resource_pool *pool,
1916 		struct dc_stream_state *stream)
1917 {
1918 	struct dc_link *link = stream->link;
1919 	unsigned int i, inst, tg_inst = 0;
1920 
1921 	/* Check for enabled DIG to identify enabled display */
1922 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1923 		return -1;
1924 
1925 	inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1926 
1927 	if (inst == ENGINE_ID_UNKNOWN)
1928 		return -1;
1929 
1930 	for (i = 0; i < pool->stream_enc_count; i++) {
1931 		if (pool->stream_enc[i]->id == inst) {
1932 			tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
1933 				pool->stream_enc[i]);
1934 			break;
1935 		}
1936 	}
1937 
1938 	// tg_inst not found
1939 	if (i == pool->stream_enc_count)
1940 		return -1;
1941 
1942 	if (tg_inst >= pool->timing_generator_count)
1943 		return -1;
1944 
1945 	if (!res_ctx->pipe_ctx[tg_inst].stream) {
1946 		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
1947 
1948 		pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
1949 		pipe_ctx->plane_res.mi = pool->mis[tg_inst];
1950 		pipe_ctx->plane_res.hubp = pool->hubps[tg_inst];
1951 		pipe_ctx->plane_res.ipp = pool->ipps[tg_inst];
1952 		pipe_ctx->plane_res.xfm = pool->transforms[tg_inst];
1953 		pipe_ctx->plane_res.dpp = pool->dpps[tg_inst];
1954 		pipe_ctx->stream_res.opp = pool->opps[tg_inst];
1955 
1956 		if (pool->dpps[tg_inst]) {
1957 			pipe_ctx->plane_res.mpcc_inst = pool->dpps[tg_inst]->inst;
1958 
1959 			// Read DPP->MPCC->OPP Pipe from HW State
1960 			if (pool->mpc->funcs->read_mpcc_state) {
1961 				struct mpcc_state s = {0};
1962 
1963 				pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
1964 
1965 				if (s.dpp_id < MAX_MPCC)
1966 					pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id = s.dpp_id;
1967 
1968 				if (s.bot_mpcc_id < MAX_MPCC)
1969 					pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
1970 							&pool->mpc->mpcc_array[s.bot_mpcc_id];
1971 
1972 				if (s.opp_id < MAX_OPP)
1973 					pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
1974 			}
1975 		}
1976 		pipe_ctx->pipe_idx = tg_inst;
1977 
1978 		pipe_ctx->stream = stream;
1979 		return tg_inst;
1980 	}
1981 
1982 	return -1;
1983 }
1984 
1985 static void mark_seamless_boot_stream(
1986 		const struct dc  *dc,
1987 		struct dc_stream_state *stream)
1988 {
1989 	struct dc_bios *dcb = dc->ctx->dc_bios;
1990 
1991 	/* TODO: Check Linux */
1992 	if (dc->config.allow_seamless_boot_optimization &&
1993 			!dcb->funcs->is_accelerated_mode(dcb)) {
1994 		if (dc_validate_seamless_boot_timing(dc, stream->sink, &stream->timing))
1995 			stream->apply_seamless_boot_optimization = true;
1996 	}
1997 }
1998 
1999 enum dc_status resource_map_pool_resources(
2000 		const struct dc  *dc,
2001 		struct dc_state *context,
2002 		struct dc_stream_state *stream)
2003 {
2004 	const struct resource_pool *pool = dc->res_pool;
2005 	int i;
2006 	struct dc_context *dc_ctx = dc->ctx;
2007 	struct pipe_ctx *pipe_ctx = NULL;
2008 	int pipe_idx = -1;
2009 
2010 	calculate_phy_pix_clks(stream);
2011 
2012 	mark_seamless_boot_stream(dc, stream);
2013 
2014 	if (stream->apply_seamless_boot_optimization) {
2015 		pipe_idx = acquire_resource_from_hw_enabled_state(
2016 				&context->res_ctx,
2017 				pool,
2018 				stream);
2019 		if (pipe_idx < 0)
2020 			/* hw resource was assigned to other stream */
2021 			stream->apply_seamless_boot_optimization = false;
2022 	}
2023 
2024 	if (pipe_idx < 0)
2025 		/* acquire new resources */
2026 		pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2027 
2028 #ifdef CONFIG_DRM_AMD_DC_DCN
2029 	if (pipe_idx < 0)
2030 		pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2031 #endif
2032 
2033 	if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2034 		return DC_NO_CONTROLLER_RESOURCE;
2035 
2036 	pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2037 
2038 	pipe_ctx->stream_res.stream_enc =
2039 		dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2040 			&context->res_ctx, pool, stream);
2041 
2042 	if (!pipe_ctx->stream_res.stream_enc)
2043 		return DC_NO_STREAM_ENC_RESOURCE;
2044 
2045 	update_stream_engine_usage(
2046 		&context->res_ctx, pool,
2047 		pipe_ctx->stream_res.stream_enc,
2048 		true);
2049 
2050 	/* TODO: Add check if ASIC support and EDID audio */
2051 	if (!stream->converter_disable_audio &&
2052 	    dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2053 	    stream->audio_info.mode_count && stream->audio_info.flags.all) {
2054 		pipe_ctx->stream_res.audio = find_first_free_audio(
2055 		&context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2056 
2057 		/*
2058 		 * Audio assigned in order first come first get.
2059 		 * There are asics which has number of audio
2060 		 * resources less then number of pipes
2061 		 */
2062 		if (pipe_ctx->stream_res.audio)
2063 			update_audio_usage(&context->res_ctx, pool,
2064 					   pipe_ctx->stream_res.audio, true);
2065 	}
2066 
2067 	/* Add ABM to the resource if on EDP */
2068 	if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2069 #if defined(CONFIG_DRM_AMD_DC_DCN)
2070 		if (pool->abm)
2071 			pipe_ctx->stream_res.abm = pool->abm;
2072 		else
2073 			pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2074 #else
2075 		pipe_ctx->stream_res.abm = pool->abm;
2076 #endif
2077 	}
2078 
2079 	for (i = 0; i < context->stream_count; i++)
2080 		if (context->streams[i] == stream) {
2081 			context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2082 			context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2083 			context->stream_status[i].audio_inst =
2084 				pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2085 
2086 			return DC_OK;
2087 		}
2088 
2089 	DC_ERROR("Stream %p not found in new ctx!\n", stream);
2090 	return DC_ERROR_UNEXPECTED;
2091 }
2092 
2093 /**
2094  * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2095  * Is a shallow copy.  Increments refcounts on existing streams and planes.
2096  * @dc: copy out of dc->current_state
2097  * @dst_ctx: copy into this
2098  */
2099 void dc_resource_state_copy_construct_current(
2100 		const struct dc *dc,
2101 		struct dc_state *dst_ctx)
2102 {
2103 	dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2104 }
2105 
2106 
2107 void dc_resource_state_construct(
2108 		const struct dc *dc,
2109 		struct dc_state *dst_ctx)
2110 {
2111 	dst_ctx->clk_mgr = dc->clk_mgr;
2112 }
2113 
2114 
2115 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2116 {
2117 	return dc->res_pool->res_cap->num_dsc > 0;
2118 }
2119 
2120 
2121 /**
2122  * dc_validate_global_state() - Determine if HW can support a given state
2123  * Checks HW resource availability and bandwidth requirement.
2124  * @dc: dc struct for this driver
2125  * @new_ctx: state to be validated
2126  * @fast_validate: set to true if only yes/no to support matters
2127  *
2128  * Return: DC_OK if the result can be programmed.  Otherwise, an error code.
2129  */
2130 enum dc_status dc_validate_global_state(
2131 		struct dc *dc,
2132 		struct dc_state *new_ctx,
2133 		bool fast_validate)
2134 {
2135 	enum dc_status result = DC_ERROR_UNEXPECTED;
2136 	int i, j;
2137 
2138 	if (!new_ctx)
2139 		return DC_ERROR_UNEXPECTED;
2140 #if defined(CONFIG_DRM_AMD_DC_DCN3_1)
2141 
2142 	/*
2143 	 * Update link encoder to stream assignment.
2144 	 * TODO: Split out reason allocation from validation.
2145 	 */
2146 	if (dc->res_pool->funcs->link_encs_assign)
2147 		dc->res_pool->funcs->link_encs_assign(
2148 			dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
2149 #endif
2150 
2151 	if (dc->res_pool->funcs->validate_global) {
2152 		result = dc->res_pool->funcs->validate_global(dc, new_ctx);
2153 		if (result != DC_OK)
2154 			return result;
2155 	}
2156 
2157 	for (i = 0; i < new_ctx->stream_count; i++) {
2158 		struct dc_stream_state *stream = new_ctx->streams[i];
2159 
2160 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
2161 			struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
2162 
2163 			if (pipe_ctx->stream != stream)
2164 				continue;
2165 
2166 			if (dc->res_pool->funcs->patch_unknown_plane_state &&
2167 					pipe_ctx->plane_state &&
2168 					pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
2169 				result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
2170 				if (result != DC_OK)
2171 					return result;
2172 			}
2173 
2174 			/* Switch to dp clock source only if there is
2175 			 * no non dp stream that shares the same timing
2176 			 * with the dp stream.
2177 			 */
2178 			if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
2179 				!find_pll_sharable_stream(stream, new_ctx)) {
2180 
2181 				resource_unreference_clock_source(
2182 						&new_ctx->res_ctx,
2183 						dc->res_pool,
2184 						pipe_ctx->clock_source);
2185 
2186 				pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
2187 				resource_reference_clock_source(
2188 						&new_ctx->res_ctx,
2189 						dc->res_pool,
2190 						 pipe_ctx->clock_source);
2191 			}
2192 		}
2193 	}
2194 
2195 	result = resource_build_scaling_params_for_context(dc, new_ctx);
2196 
2197 	if (result == DC_OK)
2198 		if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
2199 			result = DC_FAIL_BANDWIDTH_VALIDATE;
2200 
2201 	return result;
2202 }
2203 
2204 static void patch_gamut_packet_checksum(
2205 		struct dc_info_packet *gamut_packet)
2206 {
2207 	/* For gamut we recalc checksum */
2208 	if (gamut_packet->valid) {
2209 		uint8_t chk_sum = 0;
2210 		uint8_t *ptr;
2211 		uint8_t i;
2212 
2213 		/*start of the Gamut data. */
2214 		ptr = &gamut_packet->sb[3];
2215 
2216 		for (i = 0; i <= gamut_packet->sb[1]; i++)
2217 			chk_sum += ptr[i];
2218 
2219 		gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
2220 	}
2221 }
2222 
2223 static void set_avi_info_frame(
2224 		struct dc_info_packet *info_packet,
2225 		struct pipe_ctx *pipe_ctx)
2226 {
2227 	struct dc_stream_state *stream = pipe_ctx->stream;
2228 	enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
2229 	uint32_t pixel_encoding = 0;
2230 	enum scanning_type scan_type = SCANNING_TYPE_NODATA;
2231 	enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
2232 	bool itc = false;
2233 	uint8_t itc_value = 0;
2234 	uint8_t cn0_cn1 = 0;
2235 	unsigned int cn0_cn1_value = 0;
2236 	uint8_t *check_sum = NULL;
2237 	uint8_t byte_index = 0;
2238 	union hdmi_info_packet hdmi_info;
2239 	union display_content_support support = {0};
2240 	unsigned int vic = pipe_ctx->stream->timing.vic;
2241 	enum dc_timing_3d_format format;
2242 
2243 	memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
2244 
2245 	color_space = pipe_ctx->stream->output_color_space;
2246 	if (color_space == COLOR_SPACE_UNKNOWN)
2247 		color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
2248 			COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
2249 
2250 	/* Initialize header */
2251 	hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
2252 	/* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
2253 	* not be used in HDMI 2.0 (Section 10.1) */
2254 	hdmi_info.bits.header.version = 2;
2255 	hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
2256 
2257 	/*
2258 	 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
2259 	 * according to HDMI 2.0 spec (Section 10.1)
2260 	 */
2261 
2262 	switch (stream->timing.pixel_encoding) {
2263 	case PIXEL_ENCODING_YCBCR422:
2264 		pixel_encoding = 1;
2265 		break;
2266 
2267 	case PIXEL_ENCODING_YCBCR444:
2268 		pixel_encoding = 2;
2269 		break;
2270 	case PIXEL_ENCODING_YCBCR420:
2271 		pixel_encoding = 3;
2272 		break;
2273 
2274 	case PIXEL_ENCODING_RGB:
2275 	default:
2276 		pixel_encoding = 0;
2277 	}
2278 
2279 	/* Y0_Y1_Y2 : The pixel encoding */
2280 	/* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
2281 	hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
2282 
2283 	/* A0 = 1 Active Format Information valid */
2284 	hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
2285 
2286 	/* B0, B1 = 3; Bar info data is valid */
2287 	hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
2288 
2289 	hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
2290 
2291 	/* S0, S1 : Underscan / Overscan */
2292 	/* TODO: un-hardcode scan type */
2293 	scan_type = SCANNING_TYPE_UNDERSCAN;
2294 	hdmi_info.bits.S0_S1 = scan_type;
2295 
2296 	/* C0, C1 : Colorimetry */
2297 	if (color_space == COLOR_SPACE_YCBCR709 ||
2298 			color_space == COLOR_SPACE_YCBCR709_LIMITED)
2299 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
2300 	else if (color_space == COLOR_SPACE_YCBCR601 ||
2301 			color_space == COLOR_SPACE_YCBCR601_LIMITED)
2302 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
2303 	else {
2304 		hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
2305 	}
2306 	if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
2307 			color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
2308 			color_space == COLOR_SPACE_2020_YCBCR) {
2309 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
2310 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2311 	} else if (color_space == COLOR_SPACE_ADOBERGB) {
2312 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
2313 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2314 	}
2315 
2316 	/* TODO: un-hardcode aspect ratio */
2317 	aspect = stream->timing.aspect_ratio;
2318 
2319 	switch (aspect) {
2320 	case ASPECT_RATIO_4_3:
2321 	case ASPECT_RATIO_16_9:
2322 		hdmi_info.bits.M0_M1 = aspect;
2323 		break;
2324 
2325 	case ASPECT_RATIO_NO_DATA:
2326 	case ASPECT_RATIO_64_27:
2327 	case ASPECT_RATIO_256_135:
2328 	default:
2329 		hdmi_info.bits.M0_M1 = 0;
2330 	}
2331 
2332 	/* Active Format Aspect ratio - same as Picture Aspect Ratio. */
2333 	hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
2334 
2335 	/* TODO: un-hardcode cn0_cn1 and itc */
2336 
2337 	cn0_cn1 = 0;
2338 	cn0_cn1_value = 0;
2339 
2340 	itc = true;
2341 	itc_value = 1;
2342 
2343 	support = stream->content_support;
2344 
2345 	if (itc) {
2346 		if (!support.bits.valid_content_type) {
2347 			cn0_cn1_value = 0;
2348 		} else {
2349 			if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
2350 				if (support.bits.graphics_content == 1) {
2351 					cn0_cn1_value = 0;
2352 				}
2353 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
2354 				if (support.bits.photo_content == 1) {
2355 					cn0_cn1_value = 1;
2356 				} else {
2357 					cn0_cn1_value = 0;
2358 					itc_value = 0;
2359 				}
2360 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
2361 				if (support.bits.cinema_content == 1) {
2362 					cn0_cn1_value = 2;
2363 				} else {
2364 					cn0_cn1_value = 0;
2365 					itc_value = 0;
2366 				}
2367 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
2368 				if (support.bits.game_content == 1) {
2369 					cn0_cn1_value = 3;
2370 				} else {
2371 					cn0_cn1_value = 0;
2372 					itc_value = 0;
2373 				}
2374 			}
2375 		}
2376 		hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
2377 		hdmi_info.bits.ITC = itc_value;
2378 	}
2379 
2380 	if (stream->qs_bit == 1) {
2381 		if (color_space == COLOR_SPACE_SRGB ||
2382 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2383 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_FULL_RANGE;
2384 		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2385 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2386 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_LIMITED_RANGE;
2387 		else
2388 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2389 	} else
2390 		hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2391 
2392 	/* TODO : We should handle YCC quantization */
2393 	/* but we do not have matrix calculation */
2394 	if (stream->qy_bit == 1) {
2395 		if (color_space == COLOR_SPACE_SRGB ||
2396 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2397 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2398 		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2399 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2400 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2401 		else
2402 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2403 	} else
2404 		hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2405 
2406 	///VIC
2407 	format = stream->timing.timing_3d_format;
2408 	/*todo, add 3DStereo support*/
2409 	if (format != TIMING_3D_FORMAT_NONE) {
2410 		// Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
2411 		switch (pipe_ctx->stream->timing.hdmi_vic) {
2412 		case 1:
2413 			vic = 95;
2414 			break;
2415 		case 2:
2416 			vic = 94;
2417 			break;
2418 		case 3:
2419 			vic = 93;
2420 			break;
2421 		case 4:
2422 			vic = 98;
2423 			break;
2424 		default:
2425 			break;
2426 		}
2427 	}
2428 	/* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
2429 	hdmi_info.bits.VIC0_VIC7 = vic;
2430 	if (vic >= 128)
2431 		hdmi_info.bits.header.version = 3;
2432 	/* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
2433 	 * the Source shall use 20 AVI InfoFrame Version 4
2434 	 */
2435 	if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
2436 			hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
2437 		hdmi_info.bits.header.version = 4;
2438 		hdmi_info.bits.header.length = 14;
2439 	}
2440 
2441 	/* pixel repetition
2442 	 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
2443 	 * repetition start from 1 */
2444 	hdmi_info.bits.PR0_PR3 = 0;
2445 
2446 	/* Bar Info
2447 	 * barTop:    Line Number of End of Top Bar.
2448 	 * barBottom: Line Number of Start of Bottom Bar.
2449 	 * barLeft:   Pixel Number of End of Left Bar.
2450 	 * barRight:  Pixel Number of Start of Right Bar. */
2451 	hdmi_info.bits.bar_top = stream->timing.v_border_top;
2452 	hdmi_info.bits.bar_bottom = (stream->timing.v_total
2453 			- stream->timing.v_border_bottom + 1);
2454 	hdmi_info.bits.bar_left  = stream->timing.h_border_left;
2455 	hdmi_info.bits.bar_right = (stream->timing.h_total
2456 			- stream->timing.h_border_right + 1);
2457 
2458     /* Additional Colorimetry Extension
2459      * Used in conduction with C0-C1 and EC0-EC2
2460      * 0 = DCI-P3 RGB (D65)
2461      * 1 = DCI-P3 RGB (theater)
2462      */
2463 	hdmi_info.bits.ACE0_ACE3 = 0;
2464 
2465 	/* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
2466 	check_sum = &hdmi_info.packet_raw_data.sb[0];
2467 
2468 	*check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
2469 
2470 	for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
2471 		*check_sum += hdmi_info.packet_raw_data.sb[byte_index];
2472 
2473 	/* one byte complement */
2474 	*check_sum = (uint8_t) (0x100 - *check_sum);
2475 
2476 	/* Store in hw_path_mode */
2477 	info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
2478 	info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
2479 	info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
2480 
2481 	for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
2482 		info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
2483 
2484 	info_packet->valid = true;
2485 }
2486 
2487 static void set_vendor_info_packet(
2488 		struct dc_info_packet *info_packet,
2489 		struct dc_stream_state *stream)
2490 {
2491 	/* SPD info packet for FreeSync */
2492 
2493 	/* Check if Freesync is supported. Return if false. If true,
2494 	 * set the corresponding bit in the info packet
2495 	 */
2496 	if (!stream->vsp_infopacket.valid)
2497 		return;
2498 
2499 	*info_packet = stream->vsp_infopacket;
2500 }
2501 
2502 static void set_spd_info_packet(
2503 		struct dc_info_packet *info_packet,
2504 		struct dc_stream_state *stream)
2505 {
2506 	/* SPD info packet for FreeSync */
2507 
2508 	/* Check if Freesync is supported. Return if false. If true,
2509 	 * set the corresponding bit in the info packet
2510 	 */
2511 	if (!stream->vrr_infopacket.valid)
2512 		return;
2513 
2514 	*info_packet = stream->vrr_infopacket;
2515 }
2516 
2517 static void set_hdr_static_info_packet(
2518 		struct dc_info_packet *info_packet,
2519 		struct dc_stream_state *stream)
2520 {
2521 	/* HDR Static Metadata info packet for HDR10 */
2522 
2523 	if (!stream->hdr_static_metadata.valid ||
2524 			stream->use_dynamic_meta)
2525 		return;
2526 
2527 	*info_packet = stream->hdr_static_metadata;
2528 }
2529 
2530 static void set_vsc_info_packet(
2531 		struct dc_info_packet *info_packet,
2532 		struct dc_stream_state *stream)
2533 {
2534 	if (!stream->vsc_infopacket.valid)
2535 		return;
2536 
2537 	*info_packet = stream->vsc_infopacket;
2538 }
2539 
2540 void dc_resource_state_destruct(struct dc_state *context)
2541 {
2542 	int i, j;
2543 
2544 	for (i = 0; i < context->stream_count; i++) {
2545 		for (j = 0; j < context->stream_status[i].plane_count; j++)
2546 			dc_plane_state_release(
2547 				context->stream_status[i].plane_states[j]);
2548 
2549 		context->stream_status[i].plane_count = 0;
2550 		dc_stream_release(context->streams[i]);
2551 		context->streams[i] = NULL;
2552 	}
2553 	context->stream_count = 0;
2554 }
2555 
2556 void dc_resource_state_copy_construct(
2557 		const struct dc_state *src_ctx,
2558 		struct dc_state *dst_ctx)
2559 {
2560 	int i, j;
2561 	struct kref refcount = dst_ctx->refcount;
2562 
2563 	*dst_ctx = *src_ctx;
2564 
2565 	for (i = 0; i < MAX_PIPES; i++) {
2566 		struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
2567 
2568 		if (cur_pipe->top_pipe)
2569 			cur_pipe->top_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2570 
2571 		if (cur_pipe->bottom_pipe)
2572 			cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2573 
2574 		if (cur_pipe->next_odm_pipe)
2575 			cur_pipe->next_odm_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2576 
2577 		if (cur_pipe->prev_odm_pipe)
2578 			cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2579 	}
2580 
2581 	for (i = 0; i < dst_ctx->stream_count; i++) {
2582 		dc_stream_retain(dst_ctx->streams[i]);
2583 		for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
2584 			dc_plane_state_retain(
2585 				dst_ctx->stream_status[i].plane_states[j]);
2586 	}
2587 
2588 	/* context refcount should not be overridden */
2589 	dst_ctx->refcount = refcount;
2590 
2591 }
2592 
2593 struct clock_source *dc_resource_find_first_free_pll(
2594 		struct resource_context *res_ctx,
2595 		const struct resource_pool *pool)
2596 {
2597 	int i;
2598 
2599 	for (i = 0; i < pool->clk_src_count; ++i) {
2600 		if (res_ctx->clock_source_ref_count[i] == 0)
2601 			return pool->clock_sources[i];
2602 	}
2603 
2604 	return NULL;
2605 }
2606 
2607 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
2608 {
2609 	enum signal_type signal = SIGNAL_TYPE_NONE;
2610 	struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
2611 
2612 	/* default all packets to invalid */
2613 	info->avi.valid = false;
2614 	info->gamut.valid = false;
2615 	info->vendor.valid = false;
2616 	info->spd.valid = false;
2617 	info->hdrsmd.valid = false;
2618 	info->vsc.valid = false;
2619 
2620 	signal = pipe_ctx->stream->signal;
2621 
2622 	/* HDMi and DP have different info packets*/
2623 	if (dc_is_hdmi_signal(signal)) {
2624 		set_avi_info_frame(&info->avi, pipe_ctx);
2625 
2626 		set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
2627 
2628 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
2629 
2630 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2631 
2632 	} else if (dc_is_dp_signal(signal)) {
2633 		set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
2634 
2635 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
2636 
2637 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2638 	}
2639 
2640 	patch_gamut_packet_checksum(&info->gamut);
2641 }
2642 
2643 enum dc_status resource_map_clock_resources(
2644 		const struct dc  *dc,
2645 		struct dc_state *context,
2646 		struct dc_stream_state *stream)
2647 {
2648 	/* acquire new resources */
2649 	const struct resource_pool *pool = dc->res_pool;
2650 	struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
2651 				&context->res_ctx, stream);
2652 
2653 	if (!pipe_ctx)
2654 		return DC_ERROR_UNEXPECTED;
2655 
2656 	if (dc_is_dp_signal(pipe_ctx->stream->signal)
2657 		|| pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
2658 		pipe_ctx->clock_source = pool->dp_clock_source;
2659 	else {
2660 		pipe_ctx->clock_source = NULL;
2661 
2662 		if (!dc->config.disable_disp_pll_sharing)
2663 			pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
2664 				&context->res_ctx,
2665 				pipe_ctx);
2666 
2667 		if (pipe_ctx->clock_source == NULL)
2668 			pipe_ctx->clock_source =
2669 				dc_resource_find_first_free_pll(
2670 					&context->res_ctx,
2671 					pool);
2672 	}
2673 
2674 	if (pipe_ctx->clock_source == NULL)
2675 		return DC_NO_CLOCK_SOURCE_RESOURCE;
2676 
2677 	resource_reference_clock_source(
2678 		&context->res_ctx, pool,
2679 		pipe_ctx->clock_source);
2680 
2681 	return DC_OK;
2682 }
2683 
2684 /*
2685  * Note: We need to disable output if clock sources change,
2686  * since bios does optimization and doesn't apply if changing
2687  * PHY when not already disabled.
2688  */
2689 bool pipe_need_reprogram(
2690 		struct pipe_ctx *pipe_ctx_old,
2691 		struct pipe_ctx *pipe_ctx)
2692 {
2693 	if (!pipe_ctx_old->stream)
2694 		return false;
2695 
2696 	if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
2697 		return true;
2698 
2699 	if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
2700 		return true;
2701 
2702 	if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
2703 		return true;
2704 
2705 	if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
2706 			&& pipe_ctx_old->stream != pipe_ctx->stream)
2707 		return true;
2708 
2709 	if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
2710 		return true;
2711 
2712 	if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
2713 		return true;
2714 
2715 	if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
2716 		return true;
2717 
2718 	if (false == pipe_ctx_old->stream->link->link_state_valid &&
2719 		false == pipe_ctx_old->stream->dpms_off)
2720 		return true;
2721 
2722 	if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
2723 		return true;
2724 
2725 	/* DIG link encoder resource assignment for stream changed. */
2726 	if (pipe_ctx_old->stream->link_enc != pipe_ctx->stream->link_enc)
2727 		return true;
2728 
2729 	return false;
2730 }
2731 
2732 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
2733 		struct bit_depth_reduction_params *fmt_bit_depth)
2734 {
2735 	enum dc_dither_option option = stream->dither_option;
2736 	enum dc_pixel_encoding pixel_encoding =
2737 			stream->timing.pixel_encoding;
2738 
2739 	memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
2740 
2741 	if (option == DITHER_OPTION_DEFAULT) {
2742 		switch (stream->timing.display_color_depth) {
2743 		case COLOR_DEPTH_666:
2744 			option = DITHER_OPTION_SPATIAL6;
2745 			break;
2746 		case COLOR_DEPTH_888:
2747 			option = DITHER_OPTION_SPATIAL8;
2748 			break;
2749 		case COLOR_DEPTH_101010:
2750 			option = DITHER_OPTION_SPATIAL10;
2751 			break;
2752 		default:
2753 			option = DITHER_OPTION_DISABLE;
2754 		}
2755 	}
2756 
2757 	if (option == DITHER_OPTION_DISABLE)
2758 		return;
2759 
2760 	if (option == DITHER_OPTION_TRUN6) {
2761 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2762 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
2763 	} else if (option == DITHER_OPTION_TRUN8 ||
2764 			option == DITHER_OPTION_TRUN8_SPATIAL6 ||
2765 			option == DITHER_OPTION_TRUN8_FM6) {
2766 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2767 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
2768 	} else if (option == DITHER_OPTION_TRUN10        ||
2769 			option == DITHER_OPTION_TRUN10_SPATIAL6   ||
2770 			option == DITHER_OPTION_TRUN10_SPATIAL8   ||
2771 			option == DITHER_OPTION_TRUN10_FM8     ||
2772 			option == DITHER_OPTION_TRUN10_FM6     ||
2773 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2774 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2775 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2776 	}
2777 
2778 	/* special case - Formatter can only reduce by 4 bits at most.
2779 	 * When reducing from 12 to 6 bits,
2780 	 * HW recommends we use trunc with round mode
2781 	 * (if we did nothing, trunc to 10 bits would be used)
2782 	 * note that any 12->10 bit reduction is ignored prior to DCE8,
2783 	 * as the input was 10 bits.
2784 	 */
2785 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
2786 			option == DITHER_OPTION_SPATIAL6 ||
2787 			option == DITHER_OPTION_FM6) {
2788 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2789 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2790 		fmt_bit_depth->flags.TRUNCATE_MODE = 1;
2791 	}
2792 
2793 	/* spatial dither
2794 	 * note that spatial modes 1-3 are never used
2795 	 */
2796 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM            ||
2797 			option == DITHER_OPTION_SPATIAL6 ||
2798 			option == DITHER_OPTION_TRUN10_SPATIAL6      ||
2799 			option == DITHER_OPTION_TRUN8_SPATIAL6) {
2800 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2801 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
2802 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2803 		fmt_bit_depth->flags.RGB_RANDOM =
2804 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2805 	} else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM            ||
2806 			option == DITHER_OPTION_SPATIAL8 ||
2807 			option == DITHER_OPTION_SPATIAL8_FM6        ||
2808 			option == DITHER_OPTION_TRUN10_SPATIAL8      ||
2809 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2810 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2811 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
2812 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2813 		fmt_bit_depth->flags.RGB_RANDOM =
2814 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2815 	} else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
2816 			option == DITHER_OPTION_SPATIAL10 ||
2817 			option == DITHER_OPTION_SPATIAL10_FM8 ||
2818 			option == DITHER_OPTION_SPATIAL10_FM6) {
2819 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2820 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
2821 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2822 		fmt_bit_depth->flags.RGB_RANDOM =
2823 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2824 	}
2825 
2826 	if (option == DITHER_OPTION_SPATIAL6 ||
2827 			option == DITHER_OPTION_SPATIAL8 ||
2828 			option == DITHER_OPTION_SPATIAL10) {
2829 		fmt_bit_depth->flags.FRAME_RANDOM = 0;
2830 	} else {
2831 		fmt_bit_depth->flags.FRAME_RANDOM = 1;
2832 	}
2833 
2834 	//////////////////////
2835 	//// temporal dither
2836 	//////////////////////
2837 	if (option == DITHER_OPTION_FM6           ||
2838 			option == DITHER_OPTION_SPATIAL8_FM6     ||
2839 			option == DITHER_OPTION_SPATIAL10_FM6     ||
2840 			option == DITHER_OPTION_TRUN10_FM6     ||
2841 			option == DITHER_OPTION_TRUN8_FM6      ||
2842 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2843 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2844 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
2845 	} else if (option == DITHER_OPTION_FM8        ||
2846 			option == DITHER_OPTION_SPATIAL10_FM8  ||
2847 			option == DITHER_OPTION_TRUN10_FM8) {
2848 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2849 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
2850 	} else if (option == DITHER_OPTION_FM10) {
2851 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2852 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
2853 	}
2854 
2855 	fmt_bit_depth->pixel_encoding = pixel_encoding;
2856 }
2857 
2858 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
2859 {
2860 	struct dc_link *link = stream->link;
2861 	struct timing_generator *tg = dc->res_pool->timing_generators[0];
2862 	enum dc_status res = DC_OK;
2863 
2864 	calculate_phy_pix_clks(stream);
2865 
2866 	if (!tg->funcs->validate_timing(tg, &stream->timing))
2867 		res = DC_FAIL_CONTROLLER_VALIDATE;
2868 
2869 	if (res == DC_OK) {
2870 		if (!link->link_enc->funcs->validate_output_with_stream(
2871 						link->link_enc, stream))
2872 			res = DC_FAIL_ENC_VALIDATE;
2873 	}
2874 
2875 	/* TODO: validate audio ASIC caps, encoder */
2876 
2877 	if (res == DC_OK)
2878 		res = dc_link_validate_mode_timing(stream,
2879 		      link,
2880 		      &stream->timing);
2881 
2882 	return res;
2883 }
2884 
2885 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
2886 {
2887 	enum dc_status res = DC_OK;
2888 
2889 	/* TODO For now validates pixel format only */
2890 	if (dc->res_pool->funcs->validate_plane)
2891 		return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
2892 
2893 	return res;
2894 }
2895 
2896 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
2897 {
2898 	switch (format) {
2899 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
2900 		return 8;
2901 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
2902 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
2903 		return 12;
2904 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
2905 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
2906 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
2907 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
2908 		return 16;
2909 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
2910 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
2911 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
2912 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
2913 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
2914 #if defined(CONFIG_DRM_AMD_DC_DCN)
2915 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
2916 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
2917 #endif
2918 		return 32;
2919 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
2920 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
2921 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
2922 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
2923 		return 64;
2924 	default:
2925 		ASSERT_CRITICAL(false);
2926 		return -1;
2927 	}
2928 }
2929 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
2930 {
2931 	if (modes) {
2932 		if (modes->sample_rates.rate.RATE_192)
2933 			return 192000;
2934 		if (modes->sample_rates.rate.RATE_176_4)
2935 			return 176400;
2936 		if (modes->sample_rates.rate.RATE_96)
2937 			return 96000;
2938 		if (modes->sample_rates.rate.RATE_88_2)
2939 			return 88200;
2940 		if (modes->sample_rates.rate.RATE_48)
2941 			return 48000;
2942 		if (modes->sample_rates.rate.RATE_44_1)
2943 			return 44100;
2944 		if (modes->sample_rates.rate.RATE_32)
2945 			return 32000;
2946 	}
2947 	/*original logic when no audio info*/
2948 	return 441000;
2949 }
2950 
2951 void get_audio_check(struct audio_info *aud_modes,
2952 	struct audio_check *audio_chk)
2953 {
2954 	unsigned int i;
2955 	unsigned int max_sample_rate = 0;
2956 
2957 	if (aud_modes) {
2958 		audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
2959 
2960 		audio_chk->max_audiosample_rate = 0;
2961 		for (i = 0; i < aud_modes->mode_count; i++) {
2962 			max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
2963 			if (audio_chk->max_audiosample_rate < max_sample_rate)
2964 				audio_chk->max_audiosample_rate = max_sample_rate;
2965 			/*dts takes the same as type 2: AP = 0.25*/
2966 		}
2967 		/*check which one take more bandwidth*/
2968 		if (audio_chk->max_audiosample_rate > 192000)
2969 			audio_chk->audio_packet_type = 0x9;/*AP =1*/
2970 		audio_chk->acat = 0;/*not support*/
2971 	}
2972 }
2973 
2974