1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include <linux/slab.h>
27 
28 #include "dm_services.h"
29 
30 #include "resource.h"
31 #include "include/irq_service_interface.h"
32 #include "link_encoder.h"
33 #include "stream_encoder.h"
34 #include "opp.h"
35 #include "timing_generator.h"
36 #include "transform.h"
37 #include "dccg.h"
38 #include "dchubbub.h"
39 #include "dpp.h"
40 #include "core_types.h"
41 #include "set_mode_types.h"
42 #include "virtual/virtual_stream_encoder.h"
43 #include "dpcd_defs.h"
44 
45 #if defined(CONFIG_DRM_AMD_DC_SI)
46 #include "dce60/dce60_resource.h"
47 #endif
48 #include "dce80/dce80_resource.h"
49 #include "dce100/dce100_resource.h"
50 #include "dce110/dce110_resource.h"
51 #include "dce112/dce112_resource.h"
52 #include "dce120/dce120_resource.h"
53 #if defined(CONFIG_DRM_AMD_DC_DCN)
54 #include "dcn10/dcn10_resource.h"
55 #include "dcn20/dcn20_resource.h"
56 #include "dcn21/dcn21_resource.h"
57 #include "dcn30/dcn30_resource.h"
58 #include "dcn301/dcn301_resource.h"
59 #include "dcn302/dcn302_resource.h"
60 #include "dcn303/dcn303_resource.h"
61 #endif
62 
63 #define DC_LOGGER_INIT(logger)
64 
65 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
66 {
67 	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
68 	switch (asic_id.chip_family) {
69 
70 #if defined(CONFIG_DRM_AMD_DC_SI)
71 	case FAMILY_SI:
72 		if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
73 		    ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
74 		    ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
75 			dc_version = DCE_VERSION_6_0;
76 		else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
77 			dc_version = DCE_VERSION_6_4;
78 		else
79 			dc_version = DCE_VERSION_6_1;
80 		break;
81 #endif
82 	case FAMILY_CI:
83 		dc_version = DCE_VERSION_8_0;
84 		break;
85 	case FAMILY_KV:
86 		if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
87 		    ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
88 		    ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
89 			dc_version = DCE_VERSION_8_3;
90 		else
91 			dc_version = DCE_VERSION_8_1;
92 		break;
93 	case FAMILY_CZ:
94 		dc_version = DCE_VERSION_11_0;
95 		break;
96 
97 	case FAMILY_VI:
98 		if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
99 				ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
100 			dc_version = DCE_VERSION_10_0;
101 			break;
102 		}
103 		if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
104 				ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
105 				ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
106 			dc_version = DCE_VERSION_11_2;
107 		}
108 		if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
109 			dc_version = DCE_VERSION_11_22;
110 		break;
111 	case FAMILY_AI:
112 		if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
113 			dc_version = DCE_VERSION_12_1;
114 		else
115 			dc_version = DCE_VERSION_12_0;
116 		break;
117 #if defined(CONFIG_DRM_AMD_DC_DCN)
118 	case FAMILY_RV:
119 		dc_version = DCN_VERSION_1_0;
120 		if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
121 			dc_version = DCN_VERSION_1_01;
122 		if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
123 			dc_version = DCN_VERSION_2_1;
124 		if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
125 			dc_version = DCN_VERSION_2_1;
126 		break;
127 
128 	case FAMILY_NV:
129 		dc_version = DCN_VERSION_2_0;
130 		if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
131 			dc_version = DCN_VERSION_3_0;
132 		if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
133 			dc_version = DCN_VERSION_3_02;
134 		if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
135 			dc_version = DCN_VERSION_3_03;
136 		break;
137 
138 	case FAMILY_VGH:
139 		dc_version = DCN_VERSION_3_01;
140 		break;
141 #endif
142 	default:
143 		dc_version = DCE_VERSION_UNKNOWN;
144 		break;
145 	}
146 	return dc_version;
147 }
148 
149 struct resource_pool *dc_create_resource_pool(struct dc  *dc,
150 					      const struct dc_init_data *init_data,
151 					      enum dce_version dc_version)
152 {
153 	struct resource_pool *res_pool = NULL;
154 
155 	switch (dc_version) {
156 #if defined(CONFIG_DRM_AMD_DC_SI)
157 	case DCE_VERSION_6_0:
158 		res_pool = dce60_create_resource_pool(
159 			init_data->num_virtual_links, dc);
160 		break;
161 	case DCE_VERSION_6_1:
162 		res_pool = dce61_create_resource_pool(
163 			init_data->num_virtual_links, dc);
164 		break;
165 	case DCE_VERSION_6_4:
166 		res_pool = dce64_create_resource_pool(
167 			init_data->num_virtual_links, dc);
168 		break;
169 #endif
170 	case DCE_VERSION_8_0:
171 		res_pool = dce80_create_resource_pool(
172 				init_data->num_virtual_links, dc);
173 		break;
174 	case DCE_VERSION_8_1:
175 		res_pool = dce81_create_resource_pool(
176 				init_data->num_virtual_links, dc);
177 		break;
178 	case DCE_VERSION_8_3:
179 		res_pool = dce83_create_resource_pool(
180 				init_data->num_virtual_links, dc);
181 		break;
182 	case DCE_VERSION_10_0:
183 		res_pool = dce100_create_resource_pool(
184 				init_data->num_virtual_links, dc);
185 		break;
186 	case DCE_VERSION_11_0:
187 		res_pool = dce110_create_resource_pool(
188 				init_data->num_virtual_links, dc,
189 				init_data->asic_id);
190 		break;
191 	case DCE_VERSION_11_2:
192 	case DCE_VERSION_11_22:
193 		res_pool = dce112_create_resource_pool(
194 				init_data->num_virtual_links, dc);
195 		break;
196 	case DCE_VERSION_12_0:
197 	case DCE_VERSION_12_1:
198 		res_pool = dce120_create_resource_pool(
199 				init_data->num_virtual_links, dc);
200 		break;
201 
202 #if defined(CONFIG_DRM_AMD_DC_DCN)
203 	case DCN_VERSION_1_0:
204 	case DCN_VERSION_1_01:
205 		res_pool = dcn10_create_resource_pool(init_data, dc);
206 		break;
207 	case DCN_VERSION_2_0:
208 		res_pool = dcn20_create_resource_pool(init_data, dc);
209 		break;
210 	case DCN_VERSION_2_1:
211 		res_pool = dcn21_create_resource_pool(init_data, dc);
212 		break;
213 	case DCN_VERSION_3_0:
214 		res_pool = dcn30_create_resource_pool(init_data, dc);
215 		break;
216 	case DCN_VERSION_3_01:
217 		res_pool = dcn301_create_resource_pool(init_data, dc);
218 		break;
219 	case DCN_VERSION_3_02:
220 		res_pool = dcn302_create_resource_pool(init_data, dc);
221 		break;
222 	case DCN_VERSION_3_03:
223 		res_pool = dcn303_create_resource_pool(init_data, dc);
224 		break;
225 #endif
226 	default:
227 		break;
228 	}
229 
230 	if (res_pool != NULL) {
231 		if (dc->ctx->dc_bios->fw_info_valid) {
232 			res_pool->ref_clocks.xtalin_clock_inKhz =
233 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
234 			/* initialize with firmware data first, no all
235 			 * ASIC have DCCG SW component. FPGA or
236 			 * simulation need initialization of
237 			 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
238 			 * with xtalin_clock_inKhz
239 			 */
240 			res_pool->ref_clocks.dccg_ref_clock_inKhz =
241 				res_pool->ref_clocks.xtalin_clock_inKhz;
242 			res_pool->ref_clocks.dchub_ref_clock_inKhz =
243 				res_pool->ref_clocks.xtalin_clock_inKhz;
244 		} else
245 			ASSERT_CRITICAL(false);
246 	}
247 
248 	return res_pool;
249 }
250 
251 void dc_destroy_resource_pool(struct dc  *dc)
252 {
253 	if (dc) {
254 		if (dc->res_pool)
255 			dc->res_pool->funcs->destroy(&dc->res_pool);
256 
257 		kfree(dc->hwseq);
258 	}
259 }
260 
261 static void update_num_audio(
262 	const struct resource_straps *straps,
263 	unsigned int *num_audio,
264 	struct audio_support *aud_support)
265 {
266 	aud_support->dp_audio = true;
267 	aud_support->hdmi_audio_native = false;
268 	aud_support->hdmi_audio_on_dongle = false;
269 
270 	if (straps->hdmi_disable == 0) {
271 		if (straps->dc_pinstraps_audio & 0x2) {
272 			aud_support->hdmi_audio_on_dongle = true;
273 			aud_support->hdmi_audio_native = true;
274 		}
275 	}
276 
277 	switch (straps->audio_stream_number) {
278 	case 0: /* multi streams supported */
279 		break;
280 	case 1: /* multi streams not supported */
281 		*num_audio = 1;
282 		break;
283 	default:
284 		DC_ERR("DC: unexpected audio fuse!\n");
285 	}
286 }
287 
288 bool resource_construct(
289 	unsigned int num_virtual_links,
290 	struct dc  *dc,
291 	struct resource_pool *pool,
292 	const struct resource_create_funcs *create_funcs)
293 {
294 	struct dc_context *ctx = dc->ctx;
295 	const struct resource_caps *caps = pool->res_cap;
296 	int i;
297 	unsigned int num_audio = caps->num_audio;
298 	struct resource_straps straps = {0};
299 
300 	if (create_funcs->read_dce_straps)
301 		create_funcs->read_dce_straps(dc->ctx, &straps);
302 
303 	pool->audio_count = 0;
304 	if (create_funcs->create_audio) {
305 		/* find the total number of streams available via the
306 		 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
307 		 * registers (one for each pin) starting from pin 1
308 		 * up to the max number of audio pins.
309 		 * We stop on the first pin where
310 		 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
311 		 */
312 		update_num_audio(&straps, &num_audio, &pool->audio_support);
313 		for (i = 0; i < caps->num_audio; i++) {
314 			struct audio *aud = create_funcs->create_audio(ctx, i);
315 
316 			if (aud == NULL) {
317 				DC_ERR("DC: failed to create audio!\n");
318 				return false;
319 			}
320 			if (!aud->funcs->endpoint_valid(aud)) {
321 				aud->funcs->destroy(&aud);
322 				break;
323 			}
324 			pool->audios[i] = aud;
325 			pool->audio_count++;
326 		}
327 	}
328 
329 	pool->stream_enc_count = 0;
330 	if (create_funcs->create_stream_encoder) {
331 		for (i = 0; i < caps->num_stream_encoder; i++) {
332 			pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
333 			if (pool->stream_enc[i] == NULL)
334 				DC_ERR("DC: failed to create stream_encoder!\n");
335 			pool->stream_enc_count++;
336 		}
337 	}
338 
339 #if defined(CONFIG_DRM_AMD_DC_DCN)
340 	for (i = 0; i < caps->num_mpc_3dlut; i++) {
341 		pool->mpc_lut[i] = dc_create_3dlut_func();
342 		if (pool->mpc_lut[i] == NULL)
343 			DC_ERR("DC: failed to create MPC 3dlut!\n");
344 		pool->mpc_shaper[i] = dc_create_transfer_func();
345 		if (pool->mpc_shaper[i] == NULL)
346 			DC_ERR("DC: failed to create MPC shaper!\n");
347 	}
348 #endif
349 	dc->caps.dynamic_audio = false;
350 	if (pool->audio_count < pool->stream_enc_count) {
351 		dc->caps.dynamic_audio = true;
352 	}
353 	for (i = 0; i < num_virtual_links; i++) {
354 		pool->stream_enc[pool->stream_enc_count] =
355 			virtual_stream_encoder_create(
356 					ctx, ctx->dc_bios);
357 		if (pool->stream_enc[pool->stream_enc_count] == NULL) {
358 			DC_ERR("DC: failed to create stream_encoder!\n");
359 			return false;
360 		}
361 		pool->stream_enc_count++;
362 	}
363 
364 	dc->hwseq = create_funcs->create_hwseq(ctx);
365 
366 	return true;
367 }
368 static int find_matching_clock_source(
369 		const struct resource_pool *pool,
370 		struct clock_source *clock_source)
371 {
372 
373 	int i;
374 
375 	for (i = 0; i < pool->clk_src_count; i++) {
376 		if (pool->clock_sources[i] == clock_source)
377 			return i;
378 	}
379 	return -1;
380 }
381 
382 void resource_unreference_clock_source(
383 		struct resource_context *res_ctx,
384 		const struct resource_pool *pool,
385 		struct clock_source *clock_source)
386 {
387 	int i = find_matching_clock_source(pool, clock_source);
388 
389 	if (i > -1)
390 		res_ctx->clock_source_ref_count[i]--;
391 
392 	if (pool->dp_clock_source == clock_source)
393 		res_ctx->dp_clock_source_ref_count--;
394 }
395 
396 void resource_reference_clock_source(
397 		struct resource_context *res_ctx,
398 		const struct resource_pool *pool,
399 		struct clock_source *clock_source)
400 {
401 	int i = find_matching_clock_source(pool, clock_source);
402 
403 	if (i > -1)
404 		res_ctx->clock_source_ref_count[i]++;
405 
406 	if (pool->dp_clock_source == clock_source)
407 		res_ctx->dp_clock_source_ref_count++;
408 }
409 
410 int resource_get_clock_source_reference(
411 		struct resource_context *res_ctx,
412 		const struct resource_pool *pool,
413 		struct clock_source *clock_source)
414 {
415 	int i = find_matching_clock_source(pool, clock_source);
416 
417 	if (i > -1)
418 		return res_ctx->clock_source_ref_count[i];
419 
420 	if (pool->dp_clock_source == clock_source)
421 		return res_ctx->dp_clock_source_ref_count;
422 
423 	return -1;
424 }
425 
426 bool resource_are_vblanks_synchronizable(
427 	struct dc_stream_state *stream1,
428 	struct dc_stream_state *stream2)
429 {
430 	uint32_t base60_refresh_rates[] = {10, 20, 5};
431 	uint8_t i;
432 	uint8_t rr_count = sizeof(base60_refresh_rates)/sizeof(base60_refresh_rates[0]);
433 	uint64_t frame_time_diff;
434 
435 	if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
436 		stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
437 		dc_is_dp_signal(stream1->signal) &&
438 		dc_is_dp_signal(stream2->signal) &&
439 		false == stream1->has_non_synchronizable_pclk &&
440 		false == stream2->has_non_synchronizable_pclk &&
441 		stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
442 		stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
443 		/* disable refresh rates higher than 60Hz for now */
444 		if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
445 				stream1->timing.v_total > 60)
446 			return false;
447 		if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
448 				stream2->timing.v_total > 60)
449 			return false;
450 		frame_time_diff = (uint64_t)10000 *
451 			stream1->timing.h_total *
452 			stream1->timing.v_total *
453 			stream2->timing.pix_clk_100hz;
454 		frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
455 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
456 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
457 		for (i = 0; i < rr_count; i++) {
458 			int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
459 
460 			if (diff < 0)
461 				diff = -diff;
462 			if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
463 				return true;
464 		}
465 	}
466 	return false;
467 }
468 
469 bool resource_are_streams_timing_synchronizable(
470 	struct dc_stream_state *stream1,
471 	struct dc_stream_state *stream2)
472 {
473 	if (stream1->timing.h_total != stream2->timing.h_total)
474 		return false;
475 
476 	if (stream1->timing.v_total != stream2->timing.v_total)
477 		return false;
478 
479 	if (stream1->timing.h_addressable
480 				!= stream2->timing.h_addressable)
481 		return false;
482 
483 	if (stream1->timing.v_addressable
484 				!= stream2->timing.v_addressable)
485 		return false;
486 
487 	if (stream1->timing.v_front_porch
488 				!= stream2->timing.v_front_porch)
489 		return false;
490 
491 	if (stream1->timing.pix_clk_100hz
492 				!= stream2->timing.pix_clk_100hz)
493 		return false;
494 
495 	if (stream1->clamping.c_depth != stream2->clamping.c_depth)
496 		return false;
497 
498 	if (stream1->phy_pix_clk != stream2->phy_pix_clk
499 			&& (!dc_is_dp_signal(stream1->signal)
500 			|| !dc_is_dp_signal(stream2->signal)))
501 		return false;
502 
503 	if (stream1->view_format != stream2->view_format)
504 		return false;
505 
506 	if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
507 		return false;
508 
509 	return true;
510 }
511 static bool is_dp_and_hdmi_sharable(
512 		struct dc_stream_state *stream1,
513 		struct dc_stream_state *stream2)
514 {
515 	if (stream1->ctx->dc->caps.disable_dp_clk_share)
516 		return false;
517 
518 	if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
519 		stream2->clamping.c_depth != COLOR_DEPTH_888)
520 		return false;
521 
522 	return true;
523 
524 }
525 
526 static bool is_sharable_clk_src(
527 	const struct pipe_ctx *pipe_with_clk_src,
528 	const struct pipe_ctx *pipe)
529 {
530 	if (pipe_with_clk_src->clock_source == NULL)
531 		return false;
532 
533 	if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
534 		return false;
535 
536 	if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
537 		(dc_is_dp_signal(pipe->stream->signal) &&
538 		!is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
539 				     pipe->stream)))
540 		return false;
541 
542 	if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
543 			&& dc_is_dual_link_signal(pipe->stream->signal))
544 		return false;
545 
546 	if (dc_is_hdmi_signal(pipe->stream->signal)
547 			&& dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
548 		return false;
549 
550 	if (!resource_are_streams_timing_synchronizable(
551 			pipe_with_clk_src->stream, pipe->stream))
552 		return false;
553 
554 	return true;
555 }
556 
557 struct clock_source *resource_find_used_clk_src_for_sharing(
558 					struct resource_context *res_ctx,
559 					struct pipe_ctx *pipe_ctx)
560 {
561 	int i;
562 
563 	for (i = 0; i < MAX_PIPES; i++) {
564 		if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
565 			return res_ctx->pipe_ctx[i].clock_source;
566 	}
567 
568 	return NULL;
569 }
570 
571 static enum pixel_format convert_pixel_format_to_dalsurface(
572 		enum surface_pixel_format surface_pixel_format)
573 {
574 	enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
575 
576 	switch (surface_pixel_format) {
577 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
578 		dal_pixel_format = PIXEL_FORMAT_INDEX8;
579 		break;
580 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
581 		dal_pixel_format = PIXEL_FORMAT_RGB565;
582 		break;
583 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
584 		dal_pixel_format = PIXEL_FORMAT_RGB565;
585 		break;
586 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
587 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
588 		break;
589 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
590 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
591 		break;
592 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
593 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
594 		break;
595 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
596 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
597 		break;
598 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
599 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
600 		break;
601 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
602 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
603 		dal_pixel_format = PIXEL_FORMAT_FP16;
604 		break;
605 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
606 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
607 		dal_pixel_format = PIXEL_FORMAT_420BPP8;
608 		break;
609 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
610 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
611 		dal_pixel_format = PIXEL_FORMAT_420BPP10;
612 		break;
613 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
614 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
615 	default:
616 		dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
617 		break;
618 	}
619 	return dal_pixel_format;
620 }
621 
622 static inline void get_vp_scan_direction(
623 	enum dc_rotation_angle rotation,
624 	bool horizontal_mirror,
625 	bool *orthogonal_rotation,
626 	bool *flip_vert_scan_dir,
627 	bool *flip_horz_scan_dir)
628 {
629 	*orthogonal_rotation = false;
630 	*flip_vert_scan_dir = false;
631 	*flip_horz_scan_dir = false;
632 	if (rotation == ROTATION_ANGLE_180) {
633 		*flip_vert_scan_dir = true;
634 		*flip_horz_scan_dir = true;
635 	} else if (rotation == ROTATION_ANGLE_90) {
636 		*orthogonal_rotation = true;
637 		*flip_horz_scan_dir = true;
638 	} else if (rotation == ROTATION_ANGLE_270) {
639 		*orthogonal_rotation = true;
640 		*flip_vert_scan_dir = true;
641 	}
642 
643 	if (horizontal_mirror)
644 		*flip_horz_scan_dir = !*flip_horz_scan_dir;
645 }
646 
647 int get_num_mpc_splits(struct pipe_ctx *pipe)
648 {
649 	int mpc_split_count = 0;
650 	struct pipe_ctx *other_pipe = pipe->bottom_pipe;
651 
652 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
653 		mpc_split_count++;
654 		other_pipe = other_pipe->bottom_pipe;
655 	}
656 	other_pipe = pipe->top_pipe;
657 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
658 		mpc_split_count++;
659 		other_pipe = other_pipe->top_pipe;
660 	}
661 
662 	return mpc_split_count;
663 }
664 
665 int get_num_odm_splits(struct pipe_ctx *pipe)
666 {
667 	int odm_split_count = 0;
668 	struct pipe_ctx *next_pipe = pipe->next_odm_pipe;
669 	while (next_pipe) {
670 		odm_split_count++;
671 		next_pipe = next_pipe->next_odm_pipe;
672 	}
673 	pipe = pipe->prev_odm_pipe;
674 	while (pipe) {
675 		odm_split_count++;
676 		pipe = pipe->prev_odm_pipe;
677 	}
678 	return odm_split_count;
679 }
680 
681 static void calculate_split_count_and_index(struct pipe_ctx *pipe_ctx, int *split_count, int *split_idx)
682 {
683 	*split_count = get_num_odm_splits(pipe_ctx);
684 	*split_idx = 0;
685 	if (*split_count == 0) {
686 		/*Check for mpc split*/
687 		struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
688 
689 		*split_count = get_num_mpc_splits(pipe_ctx);
690 		while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
691 			(*split_idx)++;
692 			split_pipe = split_pipe->top_pipe;
693 		}
694 	} else {
695 		/*Get odm split index*/
696 		struct pipe_ctx *split_pipe = pipe_ctx->prev_odm_pipe;
697 
698 		while (split_pipe) {
699 			(*split_idx)++;
700 			split_pipe = split_pipe->prev_odm_pipe;
701 		}
702 	}
703 }
704 
705 /*
706  * This is a preliminary vp size calculation to allow us to check taps support.
707  * The result is completely overridden afterwards.
708  */
709 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
710 {
711 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
712 
713 	data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
714 	data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
715 	data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
716 	data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
717 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
718 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
719 		swap(data->viewport.width, data->viewport.height);
720 		swap(data->viewport_c.width, data->viewport_c.height);
721 	}
722 }
723 
724 static void calculate_recout(struct pipe_ctx *pipe_ctx)
725 {
726 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
727 	const struct dc_stream_state *stream = pipe_ctx->stream;
728 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
729 	struct rect surf_clip = plane_state->clip_rect;
730 	bool split_tb = stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
731 	int split_count, split_idx;
732 
733 	calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
734 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
735 		split_idx = 0;
736 
737 	/*
738 	 * Only the leftmost ODM pipe should be offset by a nonzero distance
739 	 */
740 	if (!pipe_ctx->prev_odm_pipe || split_idx == split_count) {
741 		data->recout.x = stream->dst.x;
742 		if (stream->src.x < surf_clip.x)
743 			data->recout.x += (surf_clip.x - stream->src.x) * stream->dst.width
744 						/ stream->src.width;
745 	} else
746 		data->recout.x = 0;
747 
748 	if (stream->src.x > surf_clip.x)
749 		surf_clip.width -= stream->src.x - surf_clip.x;
750 	data->recout.width = surf_clip.width * stream->dst.width / stream->src.width;
751 	if (data->recout.width + data->recout.x > stream->dst.x + stream->dst.width)
752 		data->recout.width = stream->dst.x + stream->dst.width - data->recout.x;
753 
754 	data->recout.y = stream->dst.y;
755 	if (stream->src.y < surf_clip.y)
756 		data->recout.y += (surf_clip.y - stream->src.y) * stream->dst.height
757 						/ stream->src.height;
758 	else if (stream->src.y > surf_clip.y)
759 		surf_clip.height -= stream->src.y - surf_clip.y;
760 
761 	data->recout.height = surf_clip.height * stream->dst.height / stream->src.height;
762 	if (data->recout.height + data->recout.y > stream->dst.y + stream->dst.height)
763 		data->recout.height = stream->dst.y + stream->dst.height - data->recout.y;
764 
765 	/* Handle h & v split */
766 	if (split_tb) {
767 		ASSERT(data->recout.height % 2 == 0);
768 		data->recout.height /= 2;
769 	} else if (split_count) {
770 		if (!pipe_ctx->next_odm_pipe && !pipe_ctx->prev_odm_pipe) {
771 			/* extra pixels in the division remainder need to go to pipes after
772 			 * the extra pixel index minus one(epimo) defined here as:
773 			 */
774 			int epimo = split_count - data->recout.width % (split_count + 1);
775 
776 			data->recout.x += (data->recout.width / (split_count + 1)) * split_idx;
777 			if (split_idx > epimo)
778 				data->recout.x += split_idx - epimo - 1;
779 			ASSERT(stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE || data->recout.width % 2 == 0);
780 			data->recout.width = data->recout.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
781 		} else {
782 			/* odm */
783 			if (split_idx == split_count) {
784 				/* rightmost pipe is the remainder recout */
785 				data->recout.width -= data->h_active * split_count - data->recout.x;
786 				data->recout.x = 0;
787 			} else
788 				data->recout.width = data->h_active - data->recout.x;
789 		}
790 	}
791 }
792 
793 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
794 {
795 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
796 	const struct dc_stream_state *stream = pipe_ctx->stream;
797 	struct rect surf_src = plane_state->src_rect;
798 	const int in_w = stream->src.width;
799 	const int in_h = stream->src.height;
800 	const int out_w = stream->dst.width;
801 	const int out_h = stream->dst.height;
802 
803 	/*Swap surf_src height and width since scaling ratios are in recout rotation*/
804 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
805 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
806 		swap(surf_src.height, surf_src.width);
807 
808 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
809 					surf_src.width,
810 					plane_state->dst_rect.width);
811 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
812 					surf_src.height,
813 					plane_state->dst_rect.height);
814 
815 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
816 		pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
817 	else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
818 		pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
819 
820 	pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
821 		pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
822 	pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
823 		pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
824 
825 	pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
826 	pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
827 
828 	if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
829 			|| pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
830 		pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
831 		pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
832 	}
833 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
834 			pipe_ctx->plane_res.scl_data.ratios.horz, 19);
835 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
836 			pipe_ctx->plane_res.scl_data.ratios.vert, 19);
837 	pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
838 			pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
839 	pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
840 			pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
841 }
842 
843 
844 /*
845  * We completely calculate vp offset, size and inits here based entirely on scaling
846  * ratios and recout for pixel perfect pipe combine.
847  */
848 static void calculate_init_and_vp(
849 		bool flip_scan_dir,
850 		int recout_offset_within_recout_full,
851 		int recout_size,
852 		int src_size,
853 		int taps,
854 		struct fixed31_32 ratio,
855 		struct fixed31_32 *init,
856 		int *vp_offset,
857 		int *vp_size)
858 {
859 	struct fixed31_32 temp;
860 	int int_part;
861 
862 	/*
863 	 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
864 	 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
865 	 * All following calculations are based on this logic.
866 	 *
867 	 * Init calculated according to formula:
868 	 * 	init = (scaling_ratio + number_of_taps + 1) / 2
869 	 * 	init_bot = init + scaling_ratio
870 	 * 	to get pixel perfect combine add the fraction from calculating vp offset
871 	 */
872 	temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
873 	*vp_offset = dc_fixpt_floor(temp);
874 	temp.value &= 0xffffffff;
875 	*init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
876 			dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
877 	/*
878 	 * If viewport has non 0 offset and there are more taps than covered by init then
879 	 * we should decrease the offset and increase init so we are never sampling
880 	 * outside of viewport.
881 	 */
882 	int_part = dc_fixpt_floor(*init);
883 	if (int_part < taps) {
884 		int_part = taps - int_part;
885 		if (int_part > *vp_offset)
886 			int_part = *vp_offset;
887 		*vp_offset -= int_part;
888 		*init = dc_fixpt_add_int(*init, int_part);
889 	}
890 	/*
891 	 * If taps are sampling outside of viewport at end of recout and there are more pixels
892 	 * available in the surface we should increase the viewport size, regardless set vp to
893 	 * only what is used.
894 	 */
895 	temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
896 	*vp_size = dc_fixpt_floor(temp);
897 	if (*vp_size + *vp_offset > src_size)
898 		*vp_size = src_size - *vp_offset;
899 
900 	/* We did all the math assuming we are scanning same direction as display does,
901 	 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
902 	 * is flipped we simply need to calculate offset from the other side of plane.
903 	 * Note that outside of viewport all scaling hardware works in recout space.
904 	 */
905 	if (flip_scan_dir)
906 		*vp_offset = src_size - *vp_offset - *vp_size;
907 }
908 
909 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
910 {
911 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
912 	const struct dc_stream_state *stream = pipe_ctx->stream;
913 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
914 	struct rect src = plane_state->src_rect;
915 	int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
916 				|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
917 	int split_count, split_idx, ro_lb, ro_tb, recout_full_x, recout_full_y;
918 	bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
919 
920 	calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
921 	/*
922 	 * recout full is what the recout would have been if we didnt clip
923 	 * the source plane at all. We only care about left(ro_lb) and top(ro_tb)
924 	 * offsets of recout within recout full because those are the directions
925 	 * we scan from and therefore the only ones that affect inits.
926 	 */
927 	recout_full_x = stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
928 			* stream->dst.width / stream->src.width;
929 	recout_full_y = stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
930 			* stream->dst.height / stream->src.height;
931 	if (pipe_ctx->prev_odm_pipe && split_idx)
932 		ro_lb = data->h_active * split_idx - recout_full_x;
933 	else
934 		ro_lb = data->recout.x - recout_full_x;
935 	ro_tb = data->recout.y - recout_full_y;
936 	ASSERT(ro_lb >= 0 && ro_tb >= 0);
937 
938 	/*
939 	 * Work in recout rotation since that requires less transformations
940 	 */
941 	get_vp_scan_direction(
942 			plane_state->rotation,
943 			plane_state->horizontal_mirror,
944 			&orthogonal_rotation,
945 			&flip_vert_scan_dir,
946 			&flip_horz_scan_dir);
947 
948 	if (orthogonal_rotation) {
949 		swap(src.width, src.height);
950 		swap(flip_vert_scan_dir, flip_horz_scan_dir);
951 	}
952 
953 	calculate_init_and_vp(
954 			flip_horz_scan_dir,
955 			ro_lb,
956 			data->recout.width,
957 			src.width,
958 			data->taps.h_taps,
959 			data->ratios.horz,
960 			&data->inits.h,
961 			&data->viewport.x,
962 			&data->viewport.width);
963 	calculate_init_and_vp(
964 			flip_horz_scan_dir,
965 			ro_lb,
966 			data->recout.width,
967 			src.width / vpc_div,
968 			data->taps.h_taps_c,
969 			data->ratios.horz_c,
970 			&data->inits.h_c,
971 			&data->viewport_c.x,
972 			&data->viewport_c.width);
973 	calculate_init_and_vp(
974 			flip_vert_scan_dir,
975 			ro_tb,
976 			data->recout.height,
977 			src.height,
978 			data->taps.v_taps,
979 			data->ratios.vert,
980 			&data->inits.v,
981 			&data->viewport.y,
982 			&data->viewport.height);
983 	calculate_init_and_vp(
984 			flip_vert_scan_dir,
985 			ro_tb,
986 			data->recout.height,
987 			src.height / vpc_div,
988 			data->taps.v_taps_c,
989 			data->ratios.vert_c,
990 			&data->inits.v_c,
991 			&data->viewport_c.y,
992 			&data->viewport_c.height);
993 	if (orthogonal_rotation) {
994 		swap(data->viewport.x, data->viewport.y);
995 		swap(data->viewport.width, data->viewport.height);
996 		swap(data->viewport_c.x, data->viewport_c.y);
997 		swap(data->viewport_c.width, data->viewport_c.height);
998 	}
999 	data->viewport.x += src.x;
1000 	data->viewport.y += src.y;
1001 	ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1002 	data->viewport_c.x += src.x / vpc_div;
1003 	data->viewport_c.y += src.y / vpc_div;
1004 }
1005 
1006 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1007 {
1008 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1009 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1010 	bool res = false;
1011 	DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1012 
1013 	pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1014 			pipe_ctx->plane_state->format);
1015 
1016 	/* Timing borders are part of vactive that we are also supposed to skip in addition
1017 	 * to any stream dst offset. Since dm logic assumes dst is in addressable
1018 	 * space we need to add the the left and top borders to dst offsets temporarily.
1019 	 * TODO: fix in DM, stream dst is supposed to be in vactive
1020 	 */
1021 	pipe_ctx->stream->dst.x += timing->h_border_left;
1022 	pipe_ctx->stream->dst.y += timing->v_border_top;
1023 
1024 	/* Calculate H and V active size */
1025 	pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable +
1026 			timing->h_border_left + timing->h_border_right;
1027 	pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable +
1028 		timing->v_border_top + timing->v_border_bottom;
1029 	if (pipe_ctx->next_odm_pipe || pipe_ctx->prev_odm_pipe)
1030 		pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx) + 1;
1031 
1032 	/* depends on h_active */
1033 	calculate_recout(pipe_ctx);
1034 	/* depends on pixel format */
1035 	calculate_scaling_ratios(pipe_ctx);
1036 	/* depends on scaling ratios and recout, does not calculate offset yet */
1037 	calculate_viewport_size(pipe_ctx);
1038 
1039 	/*
1040 	 * LB calculations depend on vp size, h/v_active and scaling ratios
1041 	 * Setting line buffer pixel depth to 24bpp yields banding
1042 	 * on certain displays, such as the Sharp 4k
1043 	 */
1044 	pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1045 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1046 
1047 	if (pipe_ctx->plane_res.xfm != NULL)
1048 		res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1049 				pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1050 
1051 	if (pipe_ctx->plane_res.dpp != NULL)
1052 		res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1053 				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1054 
1055 
1056 	if (!res) {
1057 		/* Try 24 bpp linebuffer */
1058 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1059 
1060 		if (pipe_ctx->plane_res.xfm != NULL)
1061 			res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1062 					pipe_ctx->plane_res.xfm,
1063 					&pipe_ctx->plane_res.scl_data,
1064 					&plane_state->scaling_quality);
1065 
1066 		if (pipe_ctx->plane_res.dpp != NULL)
1067 			res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1068 					pipe_ctx->plane_res.dpp,
1069 					&pipe_ctx->plane_res.scl_data,
1070 					&plane_state->scaling_quality);
1071 	}
1072 
1073 	/*
1074 	 * Depends on recout, scaling ratios, h_active and taps
1075 	 * May need to re-check lb size after this in some obscure scenario
1076 	 */
1077 	if (res)
1078 		calculate_inits_and_viewports(pipe_ctx);
1079 
1080 	/*
1081 	 * Handle side by side and top bottom 3d recout offsets after vp calculation
1082 	 * since 3d is special and needs to calculate vp as if there is no recout offset
1083 	 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1084 	 */
1085 	if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1086 		ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1087 			(pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1088 				pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1089 		if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1090 			pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1091 		else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1092 			pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1093 	}
1094 
1095 	if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE ||
1096 			pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1097 		res = false;
1098 
1099 	DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d  Recout: height:%d width:%d x:%d y:%d  HACTIVE:%d VACTIVE:%d\n"
1100 			"src_rect: height:%d width:%d x:%d y:%d  dst_rect: height:%d width:%d x:%d y:%d  clip_rect: height:%d width:%d x:%d y:%d\n",
1101 			__func__,
1102 			pipe_ctx->pipe_idx,
1103 			pipe_ctx->plane_res.scl_data.viewport.height,
1104 			pipe_ctx->plane_res.scl_data.viewport.width,
1105 			pipe_ctx->plane_res.scl_data.viewport.x,
1106 			pipe_ctx->plane_res.scl_data.viewport.y,
1107 			pipe_ctx->plane_res.scl_data.recout.height,
1108 			pipe_ctx->plane_res.scl_data.recout.width,
1109 			pipe_ctx->plane_res.scl_data.recout.x,
1110 			pipe_ctx->plane_res.scl_data.recout.y,
1111 			pipe_ctx->plane_res.scl_data.h_active,
1112 			pipe_ctx->plane_res.scl_data.v_active,
1113 			plane_state->src_rect.height,
1114 			plane_state->src_rect.width,
1115 			plane_state->src_rect.x,
1116 			plane_state->src_rect.y,
1117 			plane_state->dst_rect.height,
1118 			plane_state->dst_rect.width,
1119 			plane_state->dst_rect.x,
1120 			plane_state->dst_rect.y,
1121 			plane_state->clip_rect.height,
1122 			plane_state->clip_rect.width,
1123 			plane_state->clip_rect.x,
1124 			plane_state->clip_rect.y);
1125 
1126 	pipe_ctx->stream->dst.x -= timing->h_border_left;
1127 	pipe_ctx->stream->dst.y -= timing->v_border_top;
1128 
1129 	return res;
1130 }
1131 
1132 
1133 enum dc_status resource_build_scaling_params_for_context(
1134 	const struct dc  *dc,
1135 	struct dc_state *context)
1136 {
1137 	int i;
1138 
1139 	for (i = 0; i < MAX_PIPES; i++) {
1140 		if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1141 				context->res_ctx.pipe_ctx[i].stream != NULL)
1142 			if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1143 				return DC_FAIL_SCALING;
1144 	}
1145 
1146 	return DC_OK;
1147 }
1148 
1149 struct pipe_ctx *find_idle_secondary_pipe(
1150 		struct resource_context *res_ctx,
1151 		const struct resource_pool *pool,
1152 		const struct pipe_ctx *primary_pipe)
1153 {
1154 	int i;
1155 	struct pipe_ctx *secondary_pipe = NULL;
1156 
1157 	/*
1158 	 * We add a preferred pipe mapping to avoid the chance that
1159 	 * MPCCs already in use will need to be reassigned to other trees.
1160 	 * For example, if we went with the strict, assign backwards logic:
1161 	 *
1162 	 * (State 1)
1163 	 * Display A on, no surface, top pipe = 0
1164 	 * Display B on, no surface, top pipe = 1
1165 	 *
1166 	 * (State 2)
1167 	 * Display A on, no surface, top pipe = 0
1168 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1169 	 *
1170 	 * (State 3)
1171 	 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1172 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1173 	 *
1174 	 * The state 2->3 transition requires remapping MPCC 5 from display B
1175 	 * to display A.
1176 	 *
1177 	 * However, with the preferred pipe logic, state 2 would look like:
1178 	 *
1179 	 * (State 2)
1180 	 * Display A on, no surface, top pipe = 0
1181 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1182 	 *
1183 	 * This would then cause 2->3 to not require remapping any MPCCs.
1184 	 */
1185 	if (primary_pipe) {
1186 		int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1187 		if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1188 			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1189 			secondary_pipe->pipe_idx = preferred_pipe_idx;
1190 		}
1191 	}
1192 
1193 	/*
1194 	 * search backwards for the second pipe to keep pipe
1195 	 * assignment more consistent
1196 	 */
1197 	if (!secondary_pipe)
1198 		for (i = pool->pipe_count - 1; i >= 0; i--) {
1199 			if (res_ctx->pipe_ctx[i].stream == NULL) {
1200 				secondary_pipe = &res_ctx->pipe_ctx[i];
1201 				secondary_pipe->pipe_idx = i;
1202 				break;
1203 			}
1204 		}
1205 
1206 	return secondary_pipe;
1207 }
1208 
1209 struct pipe_ctx *resource_get_head_pipe_for_stream(
1210 		struct resource_context *res_ctx,
1211 		struct dc_stream_state *stream)
1212 {
1213 	int i;
1214 
1215 	for (i = 0; i < MAX_PIPES; i++) {
1216 		if (res_ctx->pipe_ctx[i].stream == stream
1217 				&& !res_ctx->pipe_ctx[i].top_pipe
1218 				&& !res_ctx->pipe_ctx[i].prev_odm_pipe)
1219 			return &res_ctx->pipe_ctx[i];
1220 	}
1221 	return NULL;
1222 }
1223 
1224 static struct pipe_ctx *resource_get_tail_pipe(
1225 		struct resource_context *res_ctx,
1226 		struct pipe_ctx *head_pipe)
1227 {
1228 	struct pipe_ctx *tail_pipe;
1229 
1230 	tail_pipe = head_pipe->bottom_pipe;
1231 
1232 	while (tail_pipe) {
1233 		head_pipe = tail_pipe;
1234 		tail_pipe = tail_pipe->bottom_pipe;
1235 	}
1236 
1237 	return head_pipe;
1238 }
1239 
1240 /*
1241  * A free_pipe for a stream is defined here as a pipe
1242  * that has no surface attached yet
1243  */
1244 static struct pipe_ctx *acquire_free_pipe_for_head(
1245 		struct dc_state *context,
1246 		const struct resource_pool *pool,
1247 		struct pipe_ctx *head_pipe)
1248 {
1249 	int i;
1250 	struct resource_context *res_ctx = &context->res_ctx;
1251 
1252 	if (!head_pipe->plane_state)
1253 		return head_pipe;
1254 
1255 	/* Re-use pipe already acquired for this stream if available*/
1256 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1257 		if (res_ctx->pipe_ctx[i].stream == head_pipe->stream &&
1258 				!res_ctx->pipe_ctx[i].plane_state) {
1259 			return &res_ctx->pipe_ctx[i];
1260 		}
1261 	}
1262 
1263 	/*
1264 	 * At this point we have no re-useable pipe for this stream and we need
1265 	 * to acquire an idle one to satisfy the request
1266 	 */
1267 
1268 	if (!pool->funcs->acquire_idle_pipe_for_layer)
1269 		return NULL;
1270 
1271 	return pool->funcs->acquire_idle_pipe_for_layer(context, pool, head_pipe->stream);
1272 }
1273 
1274 #if defined(CONFIG_DRM_AMD_DC_DCN)
1275 static int acquire_first_split_pipe(
1276 		struct resource_context *res_ctx,
1277 		const struct resource_pool *pool,
1278 		struct dc_stream_state *stream)
1279 {
1280 	int i;
1281 
1282 	for (i = 0; i < pool->pipe_count; i++) {
1283 		struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1284 
1285 		if (split_pipe->top_pipe &&
1286 				split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1287 			split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1288 			if (split_pipe->bottom_pipe)
1289 				split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1290 
1291 			if (split_pipe->top_pipe->plane_state)
1292 				resource_build_scaling_params(split_pipe->top_pipe);
1293 
1294 			memset(split_pipe, 0, sizeof(*split_pipe));
1295 			split_pipe->stream_res.tg = pool->timing_generators[i];
1296 			split_pipe->plane_res.hubp = pool->hubps[i];
1297 			split_pipe->plane_res.ipp = pool->ipps[i];
1298 			split_pipe->plane_res.dpp = pool->dpps[i];
1299 			split_pipe->stream_res.opp = pool->opps[i];
1300 			split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1301 			split_pipe->pipe_idx = i;
1302 
1303 			split_pipe->stream = stream;
1304 			return i;
1305 		}
1306 	}
1307 	return -1;
1308 }
1309 #endif
1310 
1311 bool dc_add_plane_to_context(
1312 		const struct dc *dc,
1313 		struct dc_stream_state *stream,
1314 		struct dc_plane_state *plane_state,
1315 		struct dc_state *context)
1316 {
1317 	int i;
1318 	struct resource_pool *pool = dc->res_pool;
1319 	struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1320 	struct dc_stream_status *stream_status = NULL;
1321 
1322 	for (i = 0; i < context->stream_count; i++)
1323 		if (context->streams[i] == stream) {
1324 			stream_status = &context->stream_status[i];
1325 			break;
1326 		}
1327 	if (stream_status == NULL) {
1328 		dm_error("Existing stream not found; failed to attach surface!\n");
1329 		return false;
1330 	}
1331 
1332 
1333 	if (stream_status->plane_count == MAX_SURFACE_NUM) {
1334 		dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1335 				plane_state, MAX_SURFACE_NUM);
1336 		return false;
1337 	}
1338 
1339 	head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1340 
1341 	if (!head_pipe) {
1342 		dm_error("Head pipe not found for stream_state %p !\n", stream);
1343 		return false;
1344 	}
1345 
1346 	/* retain new surface, but only once per stream */
1347 	dc_plane_state_retain(plane_state);
1348 
1349 	while (head_pipe) {
1350 		free_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1351 
1352 	#if defined(CONFIG_DRM_AMD_DC_DCN)
1353 		if (!free_pipe) {
1354 			int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1355 			if (pipe_idx >= 0)
1356 				free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1357 		}
1358 	#endif
1359 		if (!free_pipe) {
1360 			dc_plane_state_release(plane_state);
1361 			return false;
1362 		}
1363 
1364 		free_pipe->plane_state = plane_state;
1365 
1366 		if (head_pipe != free_pipe) {
1367 			tail_pipe = resource_get_tail_pipe(&context->res_ctx, head_pipe);
1368 			ASSERT(tail_pipe);
1369 			free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1370 			free_pipe->stream_res.abm = tail_pipe->stream_res.abm;
1371 			free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1372 			free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1373 			free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1374 			free_pipe->clock_source = tail_pipe->clock_source;
1375 			free_pipe->top_pipe = tail_pipe;
1376 			tail_pipe->bottom_pipe = free_pipe;
1377 			if (!free_pipe->next_odm_pipe && tail_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1378 				free_pipe->next_odm_pipe = tail_pipe->next_odm_pipe->bottom_pipe;
1379 				tail_pipe->next_odm_pipe->bottom_pipe->prev_odm_pipe = free_pipe;
1380 			}
1381 			if (!free_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe->bottom_pipe) {
1382 				free_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1383 				tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = free_pipe;
1384 			}
1385 		}
1386 		head_pipe = head_pipe->next_odm_pipe;
1387 	}
1388 	/* assign new surfaces*/
1389 	stream_status->plane_states[stream_status->plane_count] = plane_state;
1390 
1391 	stream_status->plane_count++;
1392 
1393 	return true;
1394 }
1395 
1396 bool dc_remove_plane_from_context(
1397 		const struct dc *dc,
1398 		struct dc_stream_state *stream,
1399 		struct dc_plane_state *plane_state,
1400 		struct dc_state *context)
1401 {
1402 	int i;
1403 	struct dc_stream_status *stream_status = NULL;
1404 	struct resource_pool *pool = dc->res_pool;
1405 
1406 	for (i = 0; i < context->stream_count; i++)
1407 		if (context->streams[i] == stream) {
1408 			stream_status = &context->stream_status[i];
1409 			break;
1410 		}
1411 
1412 	if (stream_status == NULL) {
1413 		dm_error("Existing stream not found; failed to remove plane.\n");
1414 		return false;
1415 	}
1416 
1417 	/* release pipe for plane*/
1418 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1419 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1420 
1421 		if (pipe_ctx->plane_state == plane_state) {
1422 			if (pipe_ctx->top_pipe)
1423 				pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1424 
1425 			/* Second condition is to avoid setting NULL to top pipe
1426 			 * of tail pipe making it look like head pipe in subsequent
1427 			 * deletes
1428 			 */
1429 			if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1430 				pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1431 
1432 			/*
1433 			 * For head pipe detach surfaces from pipe for tail
1434 			 * pipe just zero it out
1435 			 */
1436 			if (!pipe_ctx->top_pipe)
1437 				pipe_ctx->plane_state = NULL;
1438 			else
1439 				memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1440 		}
1441 	}
1442 
1443 
1444 	for (i = 0; i < stream_status->plane_count; i++) {
1445 		if (stream_status->plane_states[i] == plane_state) {
1446 
1447 			dc_plane_state_release(stream_status->plane_states[i]);
1448 			break;
1449 		}
1450 	}
1451 
1452 	if (i == stream_status->plane_count) {
1453 		dm_error("Existing plane_state not found; failed to detach it!\n");
1454 		return false;
1455 	}
1456 
1457 	stream_status->plane_count--;
1458 
1459 	/* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1460 	for (; i < stream_status->plane_count; i++)
1461 		stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1462 
1463 	stream_status->plane_states[stream_status->plane_count] = NULL;
1464 
1465 	return true;
1466 }
1467 
1468 bool dc_rem_all_planes_for_stream(
1469 		const struct dc *dc,
1470 		struct dc_stream_state *stream,
1471 		struct dc_state *context)
1472 {
1473 	int i, old_plane_count;
1474 	struct dc_stream_status *stream_status = NULL;
1475 	struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1476 
1477 	for (i = 0; i < context->stream_count; i++)
1478 			if (context->streams[i] == stream) {
1479 				stream_status = &context->stream_status[i];
1480 				break;
1481 			}
1482 
1483 	if (stream_status == NULL) {
1484 		dm_error("Existing stream %p not found!\n", stream);
1485 		return false;
1486 	}
1487 
1488 	old_plane_count = stream_status->plane_count;
1489 
1490 	for (i = 0; i < old_plane_count; i++)
1491 		del_planes[i] = stream_status->plane_states[i];
1492 
1493 	for (i = 0; i < old_plane_count; i++)
1494 		if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1495 			return false;
1496 
1497 	return true;
1498 }
1499 
1500 static bool add_all_planes_for_stream(
1501 		const struct dc *dc,
1502 		struct dc_stream_state *stream,
1503 		const struct dc_validation_set set[],
1504 		int set_count,
1505 		struct dc_state *context)
1506 {
1507 	int i, j;
1508 
1509 	for (i = 0; i < set_count; i++)
1510 		if (set[i].stream == stream)
1511 			break;
1512 
1513 	if (i == set_count) {
1514 		dm_error("Stream %p not found in set!\n", stream);
1515 		return false;
1516 	}
1517 
1518 	for (j = 0; j < set[i].plane_count; j++)
1519 		if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1520 			return false;
1521 
1522 	return true;
1523 }
1524 
1525 bool dc_add_all_planes_for_stream(
1526 		const struct dc *dc,
1527 		struct dc_stream_state *stream,
1528 		struct dc_plane_state * const *plane_states,
1529 		int plane_count,
1530 		struct dc_state *context)
1531 {
1532 	struct dc_validation_set set;
1533 	int i;
1534 
1535 	set.stream = stream;
1536 	set.plane_count = plane_count;
1537 
1538 	for (i = 0; i < plane_count; i++)
1539 		set.plane_states[i] = plane_states[i];
1540 
1541 	return add_all_planes_for_stream(dc, stream, &set, 1, context);
1542 }
1543 
1544 static bool is_timing_changed(struct dc_stream_state *cur_stream,
1545 		struct dc_stream_state *new_stream)
1546 {
1547 	if (cur_stream == NULL)
1548 		return true;
1549 
1550 	/* If output color space is changed, need to reprogram info frames */
1551 	if (cur_stream->output_color_space != new_stream->output_color_space)
1552 		return true;
1553 
1554 	return memcmp(
1555 		&cur_stream->timing,
1556 		&new_stream->timing,
1557 		sizeof(struct dc_crtc_timing)) != 0;
1558 }
1559 
1560 static bool are_stream_backends_same(
1561 	struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1562 {
1563 	if (stream_a == stream_b)
1564 		return true;
1565 
1566 	if (stream_a == NULL || stream_b == NULL)
1567 		return false;
1568 
1569 	if (is_timing_changed(stream_a, stream_b))
1570 		return false;
1571 
1572 	if (stream_a->dpms_off != stream_b->dpms_off)
1573 		return false;
1574 
1575 	return true;
1576 }
1577 
1578 /*
1579  * dc_is_stream_unchanged() - Compare two stream states for equivalence.
1580  *
1581  * Checks if there a difference between the two states
1582  * that would require a mode change.
1583  *
1584  * Does not compare cursor position or attributes.
1585  */
1586 bool dc_is_stream_unchanged(
1587 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1588 {
1589 
1590 	if (!are_stream_backends_same(old_stream, stream))
1591 		return false;
1592 
1593 	if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
1594 		return false;
1595 
1596 	return true;
1597 }
1598 
1599 /*
1600  * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
1601  */
1602 bool dc_is_stream_scaling_unchanged(
1603 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1604 {
1605 	if (old_stream == stream)
1606 		return true;
1607 
1608 	if (old_stream == NULL || stream == NULL)
1609 		return false;
1610 
1611 	if (memcmp(&old_stream->src,
1612 			&stream->src,
1613 			sizeof(struct rect)) != 0)
1614 		return false;
1615 
1616 	if (memcmp(&old_stream->dst,
1617 			&stream->dst,
1618 			sizeof(struct rect)) != 0)
1619 		return false;
1620 
1621 	return true;
1622 }
1623 
1624 static void update_stream_engine_usage(
1625 		struct resource_context *res_ctx,
1626 		const struct resource_pool *pool,
1627 		struct stream_encoder *stream_enc,
1628 		bool acquired)
1629 {
1630 	int i;
1631 
1632 	for (i = 0; i < pool->stream_enc_count; i++) {
1633 		if (pool->stream_enc[i] == stream_enc)
1634 			res_ctx->is_stream_enc_acquired[i] = acquired;
1635 	}
1636 }
1637 
1638 /* TODO: release audio object */
1639 void update_audio_usage(
1640 		struct resource_context *res_ctx,
1641 		const struct resource_pool *pool,
1642 		struct audio *audio,
1643 		bool acquired)
1644 {
1645 	int i;
1646 	for (i = 0; i < pool->audio_count; i++) {
1647 		if (pool->audios[i] == audio)
1648 			res_ctx->is_audio_acquired[i] = acquired;
1649 	}
1650 }
1651 
1652 static int acquire_first_free_pipe(
1653 		struct resource_context *res_ctx,
1654 		const struct resource_pool *pool,
1655 		struct dc_stream_state *stream)
1656 {
1657 	int i;
1658 
1659 	for (i = 0; i < pool->pipe_count; i++) {
1660 		if (!res_ctx->pipe_ctx[i].stream) {
1661 			struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
1662 
1663 			pipe_ctx->stream_res.tg = pool->timing_generators[i];
1664 			pipe_ctx->plane_res.mi = pool->mis[i];
1665 			pipe_ctx->plane_res.hubp = pool->hubps[i];
1666 			pipe_ctx->plane_res.ipp = pool->ipps[i];
1667 			pipe_ctx->plane_res.xfm = pool->transforms[i];
1668 			pipe_ctx->plane_res.dpp = pool->dpps[i];
1669 			pipe_ctx->stream_res.opp = pool->opps[i];
1670 			if (pool->dpps[i])
1671 				pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
1672 			pipe_ctx->pipe_idx = i;
1673 
1674 
1675 			pipe_ctx->stream = stream;
1676 			return i;
1677 		}
1678 	}
1679 	return -1;
1680 }
1681 
1682 static struct audio *find_first_free_audio(
1683 		struct resource_context *res_ctx,
1684 		const struct resource_pool *pool,
1685 		enum engine_id id,
1686 		enum dce_version dc_version)
1687 {
1688 	int i, available_audio_count;
1689 
1690 	available_audio_count = pool->audio_count;
1691 
1692 	for (i = 0; i < available_audio_count; i++) {
1693 		if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
1694 			/*we have enough audio endpoint, find the matching inst*/
1695 			if (id != i)
1696 				continue;
1697 			return pool->audios[i];
1698 		}
1699 	}
1700 
1701 	/* use engine id to find free audio */
1702 	if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
1703 		return pool->audios[id];
1704 	}
1705 	/*not found the matching one, first come first serve*/
1706 	for (i = 0; i < available_audio_count; i++) {
1707 		if (res_ctx->is_audio_acquired[i] == false) {
1708 			return pool->audios[i];
1709 		}
1710 	}
1711 	return 0;
1712 }
1713 
1714 /*
1715  * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
1716  */
1717 enum dc_status dc_add_stream_to_ctx(
1718 		struct dc *dc,
1719 		struct dc_state *new_ctx,
1720 		struct dc_stream_state *stream)
1721 {
1722 	enum dc_status res;
1723 	DC_LOGGER_INIT(dc->ctx->logger);
1724 
1725 	if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
1726 		DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
1727 		return DC_ERROR_UNEXPECTED;
1728 	}
1729 
1730 	new_ctx->streams[new_ctx->stream_count] = stream;
1731 	dc_stream_retain(stream);
1732 	new_ctx->stream_count++;
1733 
1734 	res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
1735 	if (res != DC_OK)
1736 		DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
1737 
1738 	return res;
1739 }
1740 
1741 /*
1742  * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
1743  */
1744 enum dc_status dc_remove_stream_from_ctx(
1745 			struct dc *dc,
1746 			struct dc_state *new_ctx,
1747 			struct dc_stream_state *stream)
1748 {
1749 	int i;
1750 	struct dc_context *dc_ctx = dc->ctx;
1751 	struct pipe_ctx *del_pipe = resource_get_head_pipe_for_stream(&new_ctx->res_ctx, stream);
1752 	struct pipe_ctx *odm_pipe;
1753 
1754 	if (!del_pipe) {
1755 		DC_ERROR("Pipe not found for stream %p !\n", stream);
1756 		return DC_ERROR_UNEXPECTED;
1757 	}
1758 
1759 	odm_pipe = del_pipe->next_odm_pipe;
1760 
1761 	/* Release primary pipe */
1762 	ASSERT(del_pipe->stream_res.stream_enc);
1763 	update_stream_engine_usage(
1764 			&new_ctx->res_ctx,
1765 				dc->res_pool,
1766 			del_pipe->stream_res.stream_enc,
1767 			false);
1768 	/* Release link encoder from stream in new dc_state. */
1769 	if (dc->res_pool->funcs->link_enc_unassign)
1770 		dc->res_pool->funcs->link_enc_unassign(new_ctx, del_pipe->stream);
1771 
1772 	if (del_pipe->stream_res.audio)
1773 		update_audio_usage(
1774 			&new_ctx->res_ctx,
1775 			dc->res_pool,
1776 			del_pipe->stream_res.audio,
1777 			false);
1778 
1779 	resource_unreference_clock_source(&new_ctx->res_ctx,
1780 					  dc->res_pool,
1781 					  del_pipe->clock_source);
1782 
1783 	if (dc->res_pool->funcs->remove_stream_from_ctx)
1784 		dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
1785 
1786 	while (odm_pipe) {
1787 		struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1788 
1789 		memset(odm_pipe, 0, sizeof(*odm_pipe));
1790 		odm_pipe = next_odm_pipe;
1791 	}
1792 	memset(del_pipe, 0, sizeof(*del_pipe));
1793 
1794 	for (i = 0; i < new_ctx->stream_count; i++)
1795 		if (new_ctx->streams[i] == stream)
1796 			break;
1797 
1798 	if (new_ctx->streams[i] != stream) {
1799 		DC_ERROR("Context doesn't have stream %p !\n", stream);
1800 		return DC_ERROR_UNEXPECTED;
1801 	}
1802 
1803 	dc_stream_release(new_ctx->streams[i]);
1804 	new_ctx->stream_count--;
1805 
1806 	/* Trim back arrays */
1807 	for (; i < new_ctx->stream_count; i++) {
1808 		new_ctx->streams[i] = new_ctx->streams[i + 1];
1809 		new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
1810 	}
1811 
1812 	new_ctx->streams[new_ctx->stream_count] = NULL;
1813 	memset(
1814 			&new_ctx->stream_status[new_ctx->stream_count],
1815 			0,
1816 			sizeof(new_ctx->stream_status[0]));
1817 
1818 	return DC_OK;
1819 }
1820 
1821 static struct dc_stream_state *find_pll_sharable_stream(
1822 		struct dc_stream_state *stream_needs_pll,
1823 		struct dc_state *context)
1824 {
1825 	int i;
1826 
1827 	for (i = 0; i < context->stream_count; i++) {
1828 		struct dc_stream_state *stream_has_pll = context->streams[i];
1829 
1830 		/* We are looking for non dp, non virtual stream */
1831 		if (resource_are_streams_timing_synchronizable(
1832 			stream_needs_pll, stream_has_pll)
1833 			&& !dc_is_dp_signal(stream_has_pll->signal)
1834 			&& stream_has_pll->link->connector_signal
1835 			!= SIGNAL_TYPE_VIRTUAL)
1836 			return stream_has_pll;
1837 
1838 	}
1839 
1840 	return NULL;
1841 }
1842 
1843 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
1844 {
1845 	uint32_t pix_clk = timing->pix_clk_100hz;
1846 	uint32_t normalized_pix_clk = pix_clk;
1847 
1848 	if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
1849 		pix_clk /= 2;
1850 	if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
1851 		switch (timing->display_color_depth) {
1852 		case COLOR_DEPTH_666:
1853 		case COLOR_DEPTH_888:
1854 			normalized_pix_clk = pix_clk;
1855 			break;
1856 		case COLOR_DEPTH_101010:
1857 			normalized_pix_clk = (pix_clk * 30) / 24;
1858 			break;
1859 		case COLOR_DEPTH_121212:
1860 			normalized_pix_clk = (pix_clk * 36) / 24;
1861 		break;
1862 		case COLOR_DEPTH_161616:
1863 			normalized_pix_clk = (pix_clk * 48) / 24;
1864 		break;
1865 		default:
1866 			ASSERT(0);
1867 		break;
1868 		}
1869 	}
1870 	return normalized_pix_clk;
1871 }
1872 
1873 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
1874 {
1875 	/* update actual pixel clock on all streams */
1876 	if (dc_is_hdmi_signal(stream->signal))
1877 		stream->phy_pix_clk = get_norm_pix_clk(
1878 			&stream->timing) / 10;
1879 	else
1880 		stream->phy_pix_clk =
1881 			stream->timing.pix_clk_100hz / 10;
1882 
1883 	if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
1884 		stream->phy_pix_clk *= 2;
1885 }
1886 
1887 static int acquire_resource_from_hw_enabled_state(
1888 		struct resource_context *res_ctx,
1889 		const struct resource_pool *pool,
1890 		struct dc_stream_state *stream)
1891 {
1892 	struct dc_link *link = stream->link;
1893 	unsigned int i, inst, tg_inst = 0;
1894 
1895 	/* Check for enabled DIG to identify enabled display */
1896 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1897 		return -1;
1898 
1899 	inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1900 
1901 	if (inst == ENGINE_ID_UNKNOWN)
1902 		return -1;
1903 
1904 	for (i = 0; i < pool->stream_enc_count; i++) {
1905 		if (pool->stream_enc[i]->id == inst) {
1906 			tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
1907 				pool->stream_enc[i]);
1908 			break;
1909 		}
1910 	}
1911 
1912 	// tg_inst not found
1913 	if (i == pool->stream_enc_count)
1914 		return -1;
1915 
1916 	if (tg_inst >= pool->timing_generator_count)
1917 		return -1;
1918 
1919 	if (!res_ctx->pipe_ctx[tg_inst].stream) {
1920 		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
1921 
1922 		pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
1923 		pipe_ctx->plane_res.mi = pool->mis[tg_inst];
1924 		pipe_ctx->plane_res.hubp = pool->hubps[tg_inst];
1925 		pipe_ctx->plane_res.ipp = pool->ipps[tg_inst];
1926 		pipe_ctx->plane_res.xfm = pool->transforms[tg_inst];
1927 		pipe_ctx->plane_res.dpp = pool->dpps[tg_inst];
1928 		pipe_ctx->stream_res.opp = pool->opps[tg_inst];
1929 
1930 		if (pool->dpps[tg_inst]) {
1931 			pipe_ctx->plane_res.mpcc_inst = pool->dpps[tg_inst]->inst;
1932 
1933 			// Read DPP->MPCC->OPP Pipe from HW State
1934 			if (pool->mpc->funcs->read_mpcc_state) {
1935 				struct mpcc_state s = {0};
1936 
1937 				pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
1938 
1939 				if (s.dpp_id < MAX_MPCC)
1940 					pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id = s.dpp_id;
1941 
1942 				if (s.bot_mpcc_id < MAX_MPCC)
1943 					pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
1944 							&pool->mpc->mpcc_array[s.bot_mpcc_id];
1945 
1946 				if (s.opp_id < MAX_OPP)
1947 					pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
1948 			}
1949 		}
1950 		pipe_ctx->pipe_idx = tg_inst;
1951 
1952 		pipe_ctx->stream = stream;
1953 		return tg_inst;
1954 	}
1955 
1956 	return -1;
1957 }
1958 
1959 static void mark_seamless_boot_stream(
1960 		const struct dc  *dc,
1961 		struct dc_stream_state *stream)
1962 {
1963 	struct dc_bios *dcb = dc->ctx->dc_bios;
1964 
1965 	/* TODO: Check Linux */
1966 	if (dc->config.allow_seamless_boot_optimization &&
1967 			!dcb->funcs->is_accelerated_mode(dcb)) {
1968 		if (dc_validate_seamless_boot_timing(dc, stream->sink, &stream->timing))
1969 			stream->apply_seamless_boot_optimization = true;
1970 	}
1971 }
1972 
1973 enum dc_status resource_map_pool_resources(
1974 		const struct dc  *dc,
1975 		struct dc_state *context,
1976 		struct dc_stream_state *stream)
1977 {
1978 	const struct resource_pool *pool = dc->res_pool;
1979 	int i;
1980 	struct dc_context *dc_ctx = dc->ctx;
1981 	struct pipe_ctx *pipe_ctx = NULL;
1982 	int pipe_idx = -1;
1983 
1984 	calculate_phy_pix_clks(stream);
1985 
1986 	mark_seamless_boot_stream(dc, stream);
1987 
1988 	if (stream->apply_seamless_boot_optimization) {
1989 		pipe_idx = acquire_resource_from_hw_enabled_state(
1990 				&context->res_ctx,
1991 				pool,
1992 				stream);
1993 		if (pipe_idx < 0)
1994 			/* hw resource was assigned to other stream */
1995 			stream->apply_seamless_boot_optimization = false;
1996 	}
1997 
1998 	if (pipe_idx < 0)
1999 		/* acquire new resources */
2000 		pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2001 
2002 #ifdef CONFIG_DRM_AMD_DC_DCN
2003 	if (pipe_idx < 0)
2004 		pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2005 #endif
2006 
2007 	if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2008 		return DC_NO_CONTROLLER_RESOURCE;
2009 
2010 	pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2011 
2012 	pipe_ctx->stream_res.stream_enc =
2013 		dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2014 			&context->res_ctx, pool, stream);
2015 
2016 	if (!pipe_ctx->stream_res.stream_enc)
2017 		return DC_NO_STREAM_ENC_RESOURCE;
2018 
2019 	update_stream_engine_usage(
2020 		&context->res_ctx, pool,
2021 		pipe_ctx->stream_res.stream_enc,
2022 		true);
2023 
2024 	/* TODO: Add check if ASIC support and EDID audio */
2025 	if (!stream->converter_disable_audio &&
2026 	    dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2027 	    stream->audio_info.mode_count && stream->audio_info.flags.all) {
2028 		pipe_ctx->stream_res.audio = find_first_free_audio(
2029 		&context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2030 
2031 		/*
2032 		 * Audio assigned in order first come first get.
2033 		 * There are asics which has number of audio
2034 		 * resources less then number of pipes
2035 		 */
2036 		if (pipe_ctx->stream_res.audio)
2037 			update_audio_usage(&context->res_ctx, pool,
2038 					   pipe_ctx->stream_res.audio, true);
2039 	}
2040 
2041 	/* Add ABM to the resource if on EDP */
2042 	if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2043 #if defined(CONFIG_DRM_AMD_DC_DCN)
2044 		if (pool->abm)
2045 			pipe_ctx->stream_res.abm = pool->abm;
2046 		else
2047 			pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2048 #else
2049 		pipe_ctx->stream_res.abm = pool->abm;
2050 #endif
2051 	}
2052 
2053 	for (i = 0; i < context->stream_count; i++)
2054 		if (context->streams[i] == stream) {
2055 			context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2056 			context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2057 			context->stream_status[i].audio_inst =
2058 				pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2059 
2060 			return DC_OK;
2061 		}
2062 
2063 	DC_ERROR("Stream %p not found in new ctx!\n", stream);
2064 	return DC_ERROR_UNEXPECTED;
2065 }
2066 
2067 /**
2068  * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2069  * Is a shallow copy.  Increments refcounts on existing streams and planes.
2070  * @dc: copy out of dc->current_state
2071  * @dst_ctx: copy into this
2072  */
2073 void dc_resource_state_copy_construct_current(
2074 		const struct dc *dc,
2075 		struct dc_state *dst_ctx)
2076 {
2077 	dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2078 }
2079 
2080 
2081 void dc_resource_state_construct(
2082 		const struct dc *dc,
2083 		struct dc_state *dst_ctx)
2084 {
2085 	dst_ctx->clk_mgr = dc->clk_mgr;
2086 }
2087 
2088 
2089 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2090 {
2091 	return dc->res_pool->res_cap->num_dsc > 0;
2092 }
2093 
2094 
2095 /**
2096  * dc_validate_global_state() - Determine if HW can support a given state
2097  * Checks HW resource availability and bandwidth requirement.
2098  * @dc: dc struct for this driver
2099  * @new_ctx: state to be validated
2100  * @fast_validate: set to true if only yes/no to support matters
2101  *
2102  * Return: DC_OK if the result can be programmed.  Otherwise, an error code.
2103  */
2104 enum dc_status dc_validate_global_state(
2105 		struct dc *dc,
2106 		struct dc_state *new_ctx,
2107 		bool fast_validate)
2108 {
2109 	enum dc_status result = DC_ERROR_UNEXPECTED;
2110 	int i, j;
2111 
2112 	if (!new_ctx)
2113 		return DC_ERROR_UNEXPECTED;
2114 
2115 	if (dc->res_pool->funcs->validate_global) {
2116 		result = dc->res_pool->funcs->validate_global(dc, new_ctx);
2117 		if (result != DC_OK)
2118 			return result;
2119 	}
2120 
2121 	for (i = 0; i < new_ctx->stream_count; i++) {
2122 		struct dc_stream_state *stream = new_ctx->streams[i];
2123 
2124 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
2125 			struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
2126 
2127 			if (pipe_ctx->stream != stream)
2128 				continue;
2129 
2130 			if (dc->res_pool->funcs->patch_unknown_plane_state &&
2131 					pipe_ctx->plane_state &&
2132 					pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
2133 				result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
2134 				if (result != DC_OK)
2135 					return result;
2136 			}
2137 
2138 			/* Switch to dp clock source only if there is
2139 			 * no non dp stream that shares the same timing
2140 			 * with the dp stream.
2141 			 */
2142 			if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
2143 				!find_pll_sharable_stream(stream, new_ctx)) {
2144 
2145 				resource_unreference_clock_source(
2146 						&new_ctx->res_ctx,
2147 						dc->res_pool,
2148 						pipe_ctx->clock_source);
2149 
2150 				pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
2151 				resource_reference_clock_source(
2152 						&new_ctx->res_ctx,
2153 						dc->res_pool,
2154 						 pipe_ctx->clock_source);
2155 			}
2156 		}
2157 	}
2158 
2159 	result = resource_build_scaling_params_for_context(dc, new_ctx);
2160 
2161 	if (result == DC_OK)
2162 		if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
2163 			result = DC_FAIL_BANDWIDTH_VALIDATE;
2164 
2165 	return result;
2166 }
2167 
2168 static void patch_gamut_packet_checksum(
2169 		struct dc_info_packet *gamut_packet)
2170 {
2171 	/* For gamut we recalc checksum */
2172 	if (gamut_packet->valid) {
2173 		uint8_t chk_sum = 0;
2174 		uint8_t *ptr;
2175 		uint8_t i;
2176 
2177 		/*start of the Gamut data. */
2178 		ptr = &gamut_packet->sb[3];
2179 
2180 		for (i = 0; i <= gamut_packet->sb[1]; i++)
2181 			chk_sum += ptr[i];
2182 
2183 		gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
2184 	}
2185 }
2186 
2187 static void set_avi_info_frame(
2188 		struct dc_info_packet *info_packet,
2189 		struct pipe_ctx *pipe_ctx)
2190 {
2191 	struct dc_stream_state *stream = pipe_ctx->stream;
2192 	enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
2193 	uint32_t pixel_encoding = 0;
2194 	enum scanning_type scan_type = SCANNING_TYPE_NODATA;
2195 	enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
2196 	bool itc = false;
2197 	uint8_t itc_value = 0;
2198 	uint8_t cn0_cn1 = 0;
2199 	unsigned int cn0_cn1_value = 0;
2200 	uint8_t *check_sum = NULL;
2201 	uint8_t byte_index = 0;
2202 	union hdmi_info_packet hdmi_info;
2203 	union display_content_support support = {0};
2204 	unsigned int vic = pipe_ctx->stream->timing.vic;
2205 	enum dc_timing_3d_format format;
2206 
2207 	memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
2208 
2209 	color_space = pipe_ctx->stream->output_color_space;
2210 	if (color_space == COLOR_SPACE_UNKNOWN)
2211 		color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
2212 			COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
2213 
2214 	/* Initialize header */
2215 	hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
2216 	/* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
2217 	* not be used in HDMI 2.0 (Section 10.1) */
2218 	hdmi_info.bits.header.version = 2;
2219 	hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
2220 
2221 	/*
2222 	 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
2223 	 * according to HDMI 2.0 spec (Section 10.1)
2224 	 */
2225 
2226 	switch (stream->timing.pixel_encoding) {
2227 	case PIXEL_ENCODING_YCBCR422:
2228 		pixel_encoding = 1;
2229 		break;
2230 
2231 	case PIXEL_ENCODING_YCBCR444:
2232 		pixel_encoding = 2;
2233 		break;
2234 	case PIXEL_ENCODING_YCBCR420:
2235 		pixel_encoding = 3;
2236 		break;
2237 
2238 	case PIXEL_ENCODING_RGB:
2239 	default:
2240 		pixel_encoding = 0;
2241 	}
2242 
2243 	/* Y0_Y1_Y2 : The pixel encoding */
2244 	/* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
2245 	hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
2246 
2247 	/* A0 = 1 Active Format Information valid */
2248 	hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
2249 
2250 	/* B0, B1 = 3; Bar info data is valid */
2251 	hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
2252 
2253 	hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
2254 
2255 	/* S0, S1 : Underscan / Overscan */
2256 	/* TODO: un-hardcode scan type */
2257 	scan_type = SCANNING_TYPE_UNDERSCAN;
2258 	hdmi_info.bits.S0_S1 = scan_type;
2259 
2260 	/* C0, C1 : Colorimetry */
2261 	if (color_space == COLOR_SPACE_YCBCR709 ||
2262 			color_space == COLOR_SPACE_YCBCR709_LIMITED)
2263 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
2264 	else if (color_space == COLOR_SPACE_YCBCR601 ||
2265 			color_space == COLOR_SPACE_YCBCR601_LIMITED)
2266 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
2267 	else {
2268 		hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
2269 	}
2270 	if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
2271 			color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
2272 			color_space == COLOR_SPACE_2020_YCBCR) {
2273 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
2274 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2275 	} else if (color_space == COLOR_SPACE_ADOBERGB) {
2276 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
2277 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2278 	}
2279 
2280 	/* TODO: un-hardcode aspect ratio */
2281 	aspect = stream->timing.aspect_ratio;
2282 
2283 	switch (aspect) {
2284 	case ASPECT_RATIO_4_3:
2285 	case ASPECT_RATIO_16_9:
2286 		hdmi_info.bits.M0_M1 = aspect;
2287 		break;
2288 
2289 	case ASPECT_RATIO_NO_DATA:
2290 	case ASPECT_RATIO_64_27:
2291 	case ASPECT_RATIO_256_135:
2292 	default:
2293 		hdmi_info.bits.M0_M1 = 0;
2294 	}
2295 
2296 	/* Active Format Aspect ratio - same as Picture Aspect Ratio. */
2297 	hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
2298 
2299 	/* TODO: un-hardcode cn0_cn1 and itc */
2300 
2301 	cn0_cn1 = 0;
2302 	cn0_cn1_value = 0;
2303 
2304 	itc = true;
2305 	itc_value = 1;
2306 
2307 	support = stream->content_support;
2308 
2309 	if (itc) {
2310 		if (!support.bits.valid_content_type) {
2311 			cn0_cn1_value = 0;
2312 		} else {
2313 			if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
2314 				if (support.bits.graphics_content == 1) {
2315 					cn0_cn1_value = 0;
2316 				}
2317 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
2318 				if (support.bits.photo_content == 1) {
2319 					cn0_cn1_value = 1;
2320 				} else {
2321 					cn0_cn1_value = 0;
2322 					itc_value = 0;
2323 				}
2324 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
2325 				if (support.bits.cinema_content == 1) {
2326 					cn0_cn1_value = 2;
2327 				} else {
2328 					cn0_cn1_value = 0;
2329 					itc_value = 0;
2330 				}
2331 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
2332 				if (support.bits.game_content == 1) {
2333 					cn0_cn1_value = 3;
2334 				} else {
2335 					cn0_cn1_value = 0;
2336 					itc_value = 0;
2337 				}
2338 			}
2339 		}
2340 		hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
2341 		hdmi_info.bits.ITC = itc_value;
2342 	}
2343 
2344 	if (stream->qs_bit == 1) {
2345 		if (color_space == COLOR_SPACE_SRGB ||
2346 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2347 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_FULL_RANGE;
2348 		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2349 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2350 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_LIMITED_RANGE;
2351 		else
2352 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2353 	} else
2354 		hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2355 
2356 	/* TODO : We should handle YCC quantization */
2357 	/* but we do not have matrix calculation */
2358 	if (stream->qy_bit == 1) {
2359 		if (color_space == COLOR_SPACE_SRGB ||
2360 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2361 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2362 		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2363 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2364 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2365 		else
2366 			hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2367 	} else
2368 		hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2369 
2370 	///VIC
2371 	format = stream->timing.timing_3d_format;
2372 	/*todo, add 3DStereo support*/
2373 	if (format != TIMING_3D_FORMAT_NONE) {
2374 		// Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
2375 		switch (pipe_ctx->stream->timing.hdmi_vic) {
2376 		case 1:
2377 			vic = 95;
2378 			break;
2379 		case 2:
2380 			vic = 94;
2381 			break;
2382 		case 3:
2383 			vic = 93;
2384 			break;
2385 		case 4:
2386 			vic = 98;
2387 			break;
2388 		default:
2389 			break;
2390 		}
2391 	}
2392 	/* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
2393 	hdmi_info.bits.VIC0_VIC7 = vic;
2394 	if (vic >= 128)
2395 		hdmi_info.bits.header.version = 3;
2396 	/* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
2397 	 * the Source shall use 20 AVI InfoFrame Version 4
2398 	 */
2399 	if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
2400 			hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
2401 		hdmi_info.bits.header.version = 4;
2402 		hdmi_info.bits.header.length = 14;
2403 	}
2404 
2405 	/* pixel repetition
2406 	 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
2407 	 * repetition start from 1 */
2408 	hdmi_info.bits.PR0_PR3 = 0;
2409 
2410 	/* Bar Info
2411 	 * barTop:    Line Number of End of Top Bar.
2412 	 * barBottom: Line Number of Start of Bottom Bar.
2413 	 * barLeft:   Pixel Number of End of Left Bar.
2414 	 * barRight:  Pixel Number of Start of Right Bar. */
2415 	hdmi_info.bits.bar_top = stream->timing.v_border_top;
2416 	hdmi_info.bits.bar_bottom = (stream->timing.v_total
2417 			- stream->timing.v_border_bottom + 1);
2418 	hdmi_info.bits.bar_left  = stream->timing.h_border_left;
2419 	hdmi_info.bits.bar_right = (stream->timing.h_total
2420 			- stream->timing.h_border_right + 1);
2421 
2422     /* Additional Colorimetry Extension
2423      * Used in conduction with C0-C1 and EC0-EC2
2424      * 0 = DCI-P3 RGB (D65)
2425      * 1 = DCI-P3 RGB (theater)
2426      */
2427 	hdmi_info.bits.ACE0_ACE3 = 0;
2428 
2429 	/* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
2430 	check_sum = &hdmi_info.packet_raw_data.sb[0];
2431 
2432 	*check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
2433 
2434 	for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
2435 		*check_sum += hdmi_info.packet_raw_data.sb[byte_index];
2436 
2437 	/* one byte complement */
2438 	*check_sum = (uint8_t) (0x100 - *check_sum);
2439 
2440 	/* Store in hw_path_mode */
2441 	info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
2442 	info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
2443 	info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
2444 
2445 	for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
2446 		info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
2447 
2448 	info_packet->valid = true;
2449 }
2450 
2451 static void set_vendor_info_packet(
2452 		struct dc_info_packet *info_packet,
2453 		struct dc_stream_state *stream)
2454 {
2455 	/* SPD info packet for FreeSync */
2456 
2457 	/* Check if Freesync is supported. Return if false. If true,
2458 	 * set the corresponding bit in the info packet
2459 	 */
2460 	if (!stream->vsp_infopacket.valid)
2461 		return;
2462 
2463 	*info_packet = stream->vsp_infopacket;
2464 }
2465 
2466 static void set_spd_info_packet(
2467 		struct dc_info_packet *info_packet,
2468 		struct dc_stream_state *stream)
2469 {
2470 	/* SPD info packet for FreeSync */
2471 
2472 	/* Check if Freesync is supported. Return if false. If true,
2473 	 * set the corresponding bit in the info packet
2474 	 */
2475 	if (!stream->vrr_infopacket.valid)
2476 		return;
2477 
2478 	*info_packet = stream->vrr_infopacket;
2479 }
2480 
2481 static void set_hdr_static_info_packet(
2482 		struct dc_info_packet *info_packet,
2483 		struct dc_stream_state *stream)
2484 {
2485 	/* HDR Static Metadata info packet for HDR10 */
2486 
2487 	if (!stream->hdr_static_metadata.valid ||
2488 			stream->use_dynamic_meta)
2489 		return;
2490 
2491 	*info_packet = stream->hdr_static_metadata;
2492 }
2493 
2494 static void set_vsc_info_packet(
2495 		struct dc_info_packet *info_packet,
2496 		struct dc_stream_state *stream)
2497 {
2498 	if (!stream->vsc_infopacket.valid)
2499 		return;
2500 
2501 	*info_packet = stream->vsc_infopacket;
2502 }
2503 
2504 void dc_resource_state_destruct(struct dc_state *context)
2505 {
2506 	int i, j;
2507 
2508 	for (i = 0; i < context->stream_count; i++) {
2509 		for (j = 0; j < context->stream_status[i].plane_count; j++)
2510 			dc_plane_state_release(
2511 				context->stream_status[i].plane_states[j]);
2512 
2513 		context->stream_status[i].plane_count = 0;
2514 		dc_stream_release(context->streams[i]);
2515 		context->streams[i] = NULL;
2516 	}
2517 	context->stream_count = 0;
2518 }
2519 
2520 void dc_resource_state_copy_construct(
2521 		const struct dc_state *src_ctx,
2522 		struct dc_state *dst_ctx)
2523 {
2524 	int i, j;
2525 	struct kref refcount = dst_ctx->refcount;
2526 
2527 	*dst_ctx = *src_ctx;
2528 
2529 	for (i = 0; i < MAX_PIPES; i++) {
2530 		struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
2531 
2532 		if (cur_pipe->top_pipe)
2533 			cur_pipe->top_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2534 
2535 		if (cur_pipe->bottom_pipe)
2536 			cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2537 
2538 		if (cur_pipe->next_odm_pipe)
2539 			cur_pipe->next_odm_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2540 
2541 		if (cur_pipe->prev_odm_pipe)
2542 			cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2543 	}
2544 
2545 	for (i = 0; i < dst_ctx->stream_count; i++) {
2546 		dc_stream_retain(dst_ctx->streams[i]);
2547 		for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
2548 			dc_plane_state_retain(
2549 				dst_ctx->stream_status[i].plane_states[j]);
2550 	}
2551 
2552 	/* context refcount should not be overridden */
2553 	dst_ctx->refcount = refcount;
2554 
2555 }
2556 
2557 struct clock_source *dc_resource_find_first_free_pll(
2558 		struct resource_context *res_ctx,
2559 		const struct resource_pool *pool)
2560 {
2561 	int i;
2562 
2563 	for (i = 0; i < pool->clk_src_count; ++i) {
2564 		if (res_ctx->clock_source_ref_count[i] == 0)
2565 			return pool->clock_sources[i];
2566 	}
2567 
2568 	return NULL;
2569 }
2570 
2571 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
2572 {
2573 	enum signal_type signal = SIGNAL_TYPE_NONE;
2574 	struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
2575 
2576 	/* default all packets to invalid */
2577 	info->avi.valid = false;
2578 	info->gamut.valid = false;
2579 	info->vendor.valid = false;
2580 	info->spd.valid = false;
2581 	info->hdrsmd.valid = false;
2582 	info->vsc.valid = false;
2583 
2584 	signal = pipe_ctx->stream->signal;
2585 
2586 	/* HDMi and DP have different info packets*/
2587 	if (dc_is_hdmi_signal(signal)) {
2588 		set_avi_info_frame(&info->avi, pipe_ctx);
2589 
2590 		set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
2591 
2592 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
2593 
2594 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2595 
2596 	} else if (dc_is_dp_signal(signal)) {
2597 		set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
2598 
2599 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
2600 
2601 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2602 	}
2603 
2604 	patch_gamut_packet_checksum(&info->gamut);
2605 }
2606 
2607 enum dc_status resource_map_clock_resources(
2608 		const struct dc  *dc,
2609 		struct dc_state *context,
2610 		struct dc_stream_state *stream)
2611 {
2612 	/* acquire new resources */
2613 	const struct resource_pool *pool = dc->res_pool;
2614 	struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
2615 				&context->res_ctx, stream);
2616 
2617 	if (!pipe_ctx)
2618 		return DC_ERROR_UNEXPECTED;
2619 
2620 	if (dc_is_dp_signal(pipe_ctx->stream->signal)
2621 		|| pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
2622 		pipe_ctx->clock_source = pool->dp_clock_source;
2623 	else {
2624 		pipe_ctx->clock_source = NULL;
2625 
2626 		if (!dc->config.disable_disp_pll_sharing)
2627 			pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
2628 				&context->res_ctx,
2629 				pipe_ctx);
2630 
2631 		if (pipe_ctx->clock_source == NULL)
2632 			pipe_ctx->clock_source =
2633 				dc_resource_find_first_free_pll(
2634 					&context->res_ctx,
2635 					pool);
2636 	}
2637 
2638 	if (pipe_ctx->clock_source == NULL)
2639 		return DC_NO_CLOCK_SOURCE_RESOURCE;
2640 
2641 	resource_reference_clock_source(
2642 		&context->res_ctx, pool,
2643 		pipe_ctx->clock_source);
2644 
2645 	return DC_OK;
2646 }
2647 
2648 /*
2649  * Note: We need to disable output if clock sources change,
2650  * since bios does optimization and doesn't apply if changing
2651  * PHY when not already disabled.
2652  */
2653 bool pipe_need_reprogram(
2654 		struct pipe_ctx *pipe_ctx_old,
2655 		struct pipe_ctx *pipe_ctx)
2656 {
2657 	if (!pipe_ctx_old->stream)
2658 		return false;
2659 
2660 	if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
2661 		return true;
2662 
2663 	if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
2664 		return true;
2665 
2666 	if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
2667 		return true;
2668 
2669 	if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
2670 			&& pipe_ctx_old->stream != pipe_ctx->stream)
2671 		return true;
2672 
2673 	if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
2674 		return true;
2675 
2676 	if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
2677 		return true;
2678 
2679 	if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
2680 		return true;
2681 
2682 	if (false == pipe_ctx_old->stream->link->link_state_valid &&
2683 		false == pipe_ctx_old->stream->dpms_off)
2684 		return true;
2685 
2686 	if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
2687 		return true;
2688 
2689 	/* DIG link encoder resource assignment for stream changed. */
2690 	if (pipe_ctx_old->stream->link_enc != pipe_ctx->stream->link_enc)
2691 		return true;
2692 
2693 	return false;
2694 }
2695 
2696 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
2697 		struct bit_depth_reduction_params *fmt_bit_depth)
2698 {
2699 	enum dc_dither_option option = stream->dither_option;
2700 	enum dc_pixel_encoding pixel_encoding =
2701 			stream->timing.pixel_encoding;
2702 
2703 	memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
2704 
2705 	if (option == DITHER_OPTION_DEFAULT) {
2706 		switch (stream->timing.display_color_depth) {
2707 		case COLOR_DEPTH_666:
2708 			option = DITHER_OPTION_SPATIAL6;
2709 			break;
2710 		case COLOR_DEPTH_888:
2711 			option = DITHER_OPTION_SPATIAL8;
2712 			break;
2713 		case COLOR_DEPTH_101010:
2714 			option = DITHER_OPTION_SPATIAL10;
2715 			break;
2716 		default:
2717 			option = DITHER_OPTION_DISABLE;
2718 		}
2719 	}
2720 
2721 	if (option == DITHER_OPTION_DISABLE)
2722 		return;
2723 
2724 	if (option == DITHER_OPTION_TRUN6) {
2725 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2726 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
2727 	} else if (option == DITHER_OPTION_TRUN8 ||
2728 			option == DITHER_OPTION_TRUN8_SPATIAL6 ||
2729 			option == DITHER_OPTION_TRUN8_FM6) {
2730 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2731 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
2732 	} else if (option == DITHER_OPTION_TRUN10        ||
2733 			option == DITHER_OPTION_TRUN10_SPATIAL6   ||
2734 			option == DITHER_OPTION_TRUN10_SPATIAL8   ||
2735 			option == DITHER_OPTION_TRUN10_FM8     ||
2736 			option == DITHER_OPTION_TRUN10_FM6     ||
2737 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2738 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2739 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2740 	}
2741 
2742 	/* special case - Formatter can only reduce by 4 bits at most.
2743 	 * When reducing from 12 to 6 bits,
2744 	 * HW recommends we use trunc with round mode
2745 	 * (if we did nothing, trunc to 10 bits would be used)
2746 	 * note that any 12->10 bit reduction is ignored prior to DCE8,
2747 	 * as the input was 10 bits.
2748 	 */
2749 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
2750 			option == DITHER_OPTION_SPATIAL6 ||
2751 			option == DITHER_OPTION_FM6) {
2752 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2753 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2754 		fmt_bit_depth->flags.TRUNCATE_MODE = 1;
2755 	}
2756 
2757 	/* spatial dither
2758 	 * note that spatial modes 1-3 are never used
2759 	 */
2760 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM            ||
2761 			option == DITHER_OPTION_SPATIAL6 ||
2762 			option == DITHER_OPTION_TRUN10_SPATIAL6      ||
2763 			option == DITHER_OPTION_TRUN8_SPATIAL6) {
2764 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2765 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
2766 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2767 		fmt_bit_depth->flags.RGB_RANDOM =
2768 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2769 	} else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM            ||
2770 			option == DITHER_OPTION_SPATIAL8 ||
2771 			option == DITHER_OPTION_SPATIAL8_FM6        ||
2772 			option == DITHER_OPTION_TRUN10_SPATIAL8      ||
2773 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2774 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2775 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
2776 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2777 		fmt_bit_depth->flags.RGB_RANDOM =
2778 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2779 	} else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
2780 			option == DITHER_OPTION_SPATIAL10 ||
2781 			option == DITHER_OPTION_SPATIAL10_FM8 ||
2782 			option == DITHER_OPTION_SPATIAL10_FM6) {
2783 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2784 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
2785 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2786 		fmt_bit_depth->flags.RGB_RANDOM =
2787 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2788 	}
2789 
2790 	if (option == DITHER_OPTION_SPATIAL6 ||
2791 			option == DITHER_OPTION_SPATIAL8 ||
2792 			option == DITHER_OPTION_SPATIAL10) {
2793 		fmt_bit_depth->flags.FRAME_RANDOM = 0;
2794 	} else {
2795 		fmt_bit_depth->flags.FRAME_RANDOM = 1;
2796 	}
2797 
2798 	//////////////////////
2799 	//// temporal dither
2800 	//////////////////////
2801 	if (option == DITHER_OPTION_FM6           ||
2802 			option == DITHER_OPTION_SPATIAL8_FM6     ||
2803 			option == DITHER_OPTION_SPATIAL10_FM6     ||
2804 			option == DITHER_OPTION_TRUN10_FM6     ||
2805 			option == DITHER_OPTION_TRUN8_FM6      ||
2806 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2807 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2808 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
2809 	} else if (option == DITHER_OPTION_FM8        ||
2810 			option == DITHER_OPTION_SPATIAL10_FM8  ||
2811 			option == DITHER_OPTION_TRUN10_FM8) {
2812 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2813 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
2814 	} else if (option == DITHER_OPTION_FM10) {
2815 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2816 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
2817 	}
2818 
2819 	fmt_bit_depth->pixel_encoding = pixel_encoding;
2820 }
2821 
2822 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
2823 {
2824 	struct dc_link *link = stream->link;
2825 	struct timing_generator *tg = dc->res_pool->timing_generators[0];
2826 	enum dc_status res = DC_OK;
2827 
2828 	calculate_phy_pix_clks(stream);
2829 
2830 	if (!tg->funcs->validate_timing(tg, &stream->timing))
2831 		res = DC_FAIL_CONTROLLER_VALIDATE;
2832 
2833 	if (res == DC_OK) {
2834 		if (!link->link_enc->funcs->validate_output_with_stream(
2835 						link->link_enc, stream))
2836 			res = DC_FAIL_ENC_VALIDATE;
2837 	}
2838 
2839 	/* TODO: validate audio ASIC caps, encoder */
2840 
2841 	if (res == DC_OK)
2842 		res = dc_link_validate_mode_timing(stream,
2843 		      link,
2844 		      &stream->timing);
2845 
2846 	return res;
2847 }
2848 
2849 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
2850 {
2851 	enum dc_status res = DC_OK;
2852 
2853 	/* TODO For now validates pixel format only */
2854 	if (dc->res_pool->funcs->validate_plane)
2855 		return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
2856 
2857 	return res;
2858 }
2859 
2860 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
2861 {
2862 	switch (format) {
2863 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
2864 		return 8;
2865 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
2866 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
2867 		return 12;
2868 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
2869 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
2870 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
2871 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
2872 		return 16;
2873 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
2874 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
2875 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
2876 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
2877 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
2878 #if defined(CONFIG_DRM_AMD_DC_DCN)
2879 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
2880 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
2881 #endif
2882 		return 32;
2883 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
2884 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
2885 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
2886 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
2887 		return 64;
2888 	default:
2889 		ASSERT_CRITICAL(false);
2890 		return -1;
2891 	}
2892 }
2893 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
2894 {
2895 	if (modes) {
2896 		if (modes->sample_rates.rate.RATE_192)
2897 			return 192000;
2898 		if (modes->sample_rates.rate.RATE_176_4)
2899 			return 176400;
2900 		if (modes->sample_rates.rate.RATE_96)
2901 			return 96000;
2902 		if (modes->sample_rates.rate.RATE_88_2)
2903 			return 88200;
2904 		if (modes->sample_rates.rate.RATE_48)
2905 			return 48000;
2906 		if (modes->sample_rates.rate.RATE_44_1)
2907 			return 44100;
2908 		if (modes->sample_rates.rate.RATE_32)
2909 			return 32000;
2910 	}
2911 	/*original logic when no audio info*/
2912 	return 441000;
2913 }
2914 
2915 void get_audio_check(struct audio_info *aud_modes,
2916 	struct audio_check *audio_chk)
2917 {
2918 	unsigned int i;
2919 	unsigned int max_sample_rate = 0;
2920 
2921 	if (aud_modes) {
2922 		audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
2923 
2924 		audio_chk->max_audiosample_rate = 0;
2925 		for (i = 0; i < aud_modes->mode_count; i++) {
2926 			max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
2927 			if (audio_chk->max_audiosample_rate < max_sample_rate)
2928 				audio_chk->max_audiosample_rate = max_sample_rate;
2929 			/*dts takes the same as type 2: AP = 0.25*/
2930 		}
2931 		/*check which one take more bandwidth*/
2932 		if (audio_chk->max_audiosample_rate > 192000)
2933 			audio_chk->audio_packet_type = 0x9;/*AP =1*/
2934 		audio_chk->acat = 0;/*not support*/
2935 	}
2936 }
2937 
2938