1 /* 2 * Copyright 2022 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/delay.h> 25 #include <linux/firmware.h> 26 #include <linux/module.h> 27 #include <linux/pci.h> 28 29 #include "amdgpu.h" 30 #include "amdgpu_xcp.h" 31 #include "amdgpu_ucode.h" 32 #include "amdgpu_trace.h" 33 34 #include "sdma/sdma_4_4_2_offset.h" 35 #include "sdma/sdma_4_4_2_sh_mask.h" 36 37 #include "soc15_common.h" 38 #include "soc15.h" 39 #include "vega10_sdma_pkt_open.h" 40 41 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h" 42 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h" 43 44 #include "amdgpu_ras.h" 45 46 MODULE_FIRMWARE("amdgpu/sdma_4_4_2.bin"); 47 48 #define WREG32_SDMA(instance, offset, value) \ 49 WREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)), value) 50 #define RREG32_SDMA(instance, offset) \ 51 RREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset))) 52 53 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev); 54 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev); 55 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev); 56 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev); 57 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev); 58 59 static u32 sdma_v4_4_2_get_reg_offset(struct amdgpu_device *adev, 60 u32 instance, u32 offset) 61 { 62 u32 dev_inst = GET_INST(SDMA0, instance); 63 64 return (adev->reg_offset[SDMA0_HWIP][dev_inst][0] + offset); 65 } 66 67 static unsigned sdma_v4_4_2_seq_to_irq_id(int seq_num) 68 { 69 switch (seq_num) { 70 case 0: 71 return SOC15_IH_CLIENTID_SDMA0; 72 case 1: 73 return SOC15_IH_CLIENTID_SDMA1; 74 case 2: 75 return SOC15_IH_CLIENTID_SDMA2; 76 case 3: 77 return SOC15_IH_CLIENTID_SDMA3; 78 default: 79 return -EINVAL; 80 } 81 } 82 83 static int sdma_v4_4_2_irq_id_to_seq(unsigned client_id) 84 { 85 switch (client_id) { 86 case SOC15_IH_CLIENTID_SDMA0: 87 return 0; 88 case SOC15_IH_CLIENTID_SDMA1: 89 return 1; 90 case SOC15_IH_CLIENTID_SDMA2: 91 return 2; 92 case SOC15_IH_CLIENTID_SDMA3: 93 return 3; 94 default: 95 return -EINVAL; 96 } 97 } 98 99 static void sdma_v4_4_2_inst_init_golden_registers(struct amdgpu_device *adev, 100 uint32_t inst_mask) 101 { 102 u32 val; 103 int i; 104 105 for (i = 0; i < adev->sdma.num_instances; i++) { 106 val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG); 107 val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG, NUM_BANKS, 4); 108 val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG, 109 PIPE_INTERLEAVE_SIZE, 0); 110 WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG, val); 111 112 val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ); 113 val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ, NUM_BANKS, 114 4); 115 val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ, 116 PIPE_INTERLEAVE_SIZE, 0); 117 WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ, val); 118 } 119 } 120 121 /** 122 * sdma_v4_4_2_init_microcode - load ucode images from disk 123 * 124 * @adev: amdgpu_device pointer 125 * 126 * Use the firmware interface to load the ucode images into 127 * the driver (not loaded into hw). 128 * Returns 0 on success, error on failure. 129 */ 130 static int sdma_v4_4_2_init_microcode(struct amdgpu_device *adev) 131 { 132 int ret, i; 133 134 for (i = 0; i < adev->sdma.num_instances; i++) { 135 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 4, 2)) { 136 ret = amdgpu_sdma_init_microcode(adev, 0, true); 137 break; 138 } else { 139 ret = amdgpu_sdma_init_microcode(adev, i, false); 140 if (ret) 141 return ret; 142 } 143 } 144 145 return ret; 146 } 147 148 /** 149 * sdma_v4_4_2_ring_get_rptr - get the current read pointer 150 * 151 * @ring: amdgpu ring pointer 152 * 153 * Get the current rptr from the hardware. 154 */ 155 static uint64_t sdma_v4_4_2_ring_get_rptr(struct amdgpu_ring *ring) 156 { 157 u64 *rptr; 158 159 /* XXX check if swapping is necessary on BE */ 160 rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]); 161 162 DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr); 163 return ((*rptr) >> 2); 164 } 165 166 /** 167 * sdma_v4_4_2_ring_get_wptr - get the current write pointer 168 * 169 * @ring: amdgpu ring pointer 170 * 171 * Get the current wptr from the hardware. 172 */ 173 static uint64_t sdma_v4_4_2_ring_get_wptr(struct amdgpu_ring *ring) 174 { 175 struct amdgpu_device *adev = ring->adev; 176 u64 wptr; 177 178 if (ring->use_doorbell) { 179 /* XXX check if swapping is necessary on BE */ 180 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); 181 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr); 182 } else { 183 wptr = RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI); 184 wptr = wptr << 32; 185 wptr |= RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR); 186 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", 187 ring->me, wptr); 188 } 189 190 return wptr >> 2; 191 } 192 193 /** 194 * sdma_v4_4_2_ring_set_wptr - commit the write pointer 195 * 196 * @ring: amdgpu ring pointer 197 * 198 * Write the wptr back to the hardware. 199 */ 200 static void sdma_v4_4_2_ring_set_wptr(struct amdgpu_ring *ring) 201 { 202 struct amdgpu_device *adev = ring->adev; 203 204 DRM_DEBUG("Setting write pointer\n"); 205 if (ring->use_doorbell) { 206 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs]; 207 208 DRM_DEBUG("Using doorbell -- " 209 "wptr_offs == 0x%08x " 210 "lower_32_bits(ring->wptr) << 2 == 0x%08x " 211 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n", 212 ring->wptr_offs, 213 lower_32_bits(ring->wptr << 2), 214 upper_32_bits(ring->wptr << 2)); 215 /* XXX check if swapping is necessary on BE */ 216 WRITE_ONCE(*wb, (ring->wptr << 2)); 217 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n", 218 ring->doorbell_index, ring->wptr << 2); 219 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 220 } else { 221 DRM_DEBUG("Not using doorbell -- " 222 "regSDMA%i_GFX_RB_WPTR == 0x%08x " 223 "regSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n", 224 ring->me, 225 lower_32_bits(ring->wptr << 2), 226 ring->me, 227 upper_32_bits(ring->wptr << 2)); 228 WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR, 229 lower_32_bits(ring->wptr << 2)); 230 WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI, 231 upper_32_bits(ring->wptr << 2)); 232 } 233 } 234 235 /** 236 * sdma_v4_4_2_page_ring_get_wptr - get the current write pointer 237 * 238 * @ring: amdgpu ring pointer 239 * 240 * Get the current wptr from the hardware. 241 */ 242 static uint64_t sdma_v4_4_2_page_ring_get_wptr(struct amdgpu_ring *ring) 243 { 244 struct amdgpu_device *adev = ring->adev; 245 u64 wptr; 246 247 if (ring->use_doorbell) { 248 /* XXX check if swapping is necessary on BE */ 249 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); 250 } else { 251 wptr = RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI); 252 wptr = wptr << 32; 253 wptr |= RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR); 254 } 255 256 return wptr >> 2; 257 } 258 259 /** 260 * sdma_v4_4_2_page_ring_set_wptr - commit the write pointer 261 * 262 * @ring: amdgpu ring pointer 263 * 264 * Write the wptr back to the hardware. 265 */ 266 static void sdma_v4_4_2_page_ring_set_wptr(struct amdgpu_ring *ring) 267 { 268 struct amdgpu_device *adev = ring->adev; 269 270 if (ring->use_doorbell) { 271 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs]; 272 273 /* XXX check if swapping is necessary on BE */ 274 WRITE_ONCE(*wb, (ring->wptr << 2)); 275 WDOORBELL64(ring->doorbell_index, ring->wptr << 2); 276 } else { 277 uint64_t wptr = ring->wptr << 2; 278 279 WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR, 280 lower_32_bits(wptr)); 281 WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI, 282 upper_32_bits(wptr)); 283 } 284 } 285 286 static void sdma_v4_4_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) 287 { 288 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 289 int i; 290 291 for (i = 0; i < count; i++) 292 if (sdma && sdma->burst_nop && (i == 0)) 293 amdgpu_ring_write(ring, ring->funcs->nop | 294 SDMA_PKT_NOP_HEADER_COUNT(count - 1)); 295 else 296 amdgpu_ring_write(ring, ring->funcs->nop); 297 } 298 299 /** 300 * sdma_v4_4_2_ring_emit_ib - Schedule an IB on the DMA engine 301 * 302 * @ring: amdgpu ring pointer 303 * @job: job to retrieve vmid from 304 * @ib: IB object to schedule 305 * @flags: unused 306 * 307 * Schedule an IB in the DMA ring. 308 */ 309 static void sdma_v4_4_2_ring_emit_ib(struct amdgpu_ring *ring, 310 struct amdgpu_job *job, 311 struct amdgpu_ib *ib, 312 uint32_t flags) 313 { 314 unsigned vmid = AMDGPU_JOB_GET_VMID(job); 315 316 /* IB packet must end on a 8 DW boundary */ 317 sdma_v4_4_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7); 318 319 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | 320 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); 321 /* base must be 32 byte aligned */ 322 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); 323 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); 324 amdgpu_ring_write(ring, ib->length_dw); 325 amdgpu_ring_write(ring, 0); 326 amdgpu_ring_write(ring, 0); 327 328 } 329 330 static void sdma_v4_4_2_wait_reg_mem(struct amdgpu_ring *ring, 331 int mem_space, int hdp, 332 uint32_t addr0, uint32_t addr1, 333 uint32_t ref, uint32_t mask, 334 uint32_t inv) 335 { 336 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | 337 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) | 338 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) | 339 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ 340 if (mem_space) { 341 /* memory */ 342 amdgpu_ring_write(ring, addr0); 343 amdgpu_ring_write(ring, addr1); 344 } else { 345 /* registers */ 346 amdgpu_ring_write(ring, addr0 << 2); 347 amdgpu_ring_write(ring, addr1 << 2); 348 } 349 amdgpu_ring_write(ring, ref); /* reference */ 350 amdgpu_ring_write(ring, mask); /* mask */ 351 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | 352 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */ 353 } 354 355 /** 356 * sdma_v4_4_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring 357 * 358 * @ring: amdgpu ring pointer 359 * 360 * Emit an hdp flush packet on the requested DMA ring. 361 */ 362 static void sdma_v4_4_2_ring_emit_hdp_flush(struct amdgpu_ring *ring) 363 { 364 struct amdgpu_device *adev = ring->adev; 365 u32 ref_and_mask = 0; 366 const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg; 367 368 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me; 369 370 sdma_v4_4_2_wait_reg_mem(ring, 0, 1, 371 adev->nbio.funcs->get_hdp_flush_done_offset(adev), 372 adev->nbio.funcs->get_hdp_flush_req_offset(adev), 373 ref_and_mask, ref_and_mask, 10); 374 } 375 376 /** 377 * sdma_v4_4_2_ring_emit_fence - emit a fence on the DMA ring 378 * 379 * @ring: amdgpu ring pointer 380 * @addr: address 381 * @seq: sequence number 382 * @flags: fence related flags 383 * 384 * Add a DMA fence packet to the ring to write 385 * the fence seq number and DMA trap packet to generate 386 * an interrupt if needed. 387 */ 388 static void sdma_v4_4_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, 389 unsigned flags) 390 { 391 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; 392 /* write the fence */ 393 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 394 /* zero in first two bits */ 395 BUG_ON(addr & 0x3); 396 amdgpu_ring_write(ring, lower_32_bits(addr)); 397 amdgpu_ring_write(ring, upper_32_bits(addr)); 398 amdgpu_ring_write(ring, lower_32_bits(seq)); 399 400 /* optionally write high bits as well */ 401 if (write64bit) { 402 addr += 4; 403 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); 404 /* zero in first two bits */ 405 BUG_ON(addr & 0x3); 406 amdgpu_ring_write(ring, lower_32_bits(addr)); 407 amdgpu_ring_write(ring, upper_32_bits(addr)); 408 amdgpu_ring_write(ring, upper_32_bits(seq)); 409 } 410 411 /* generate an interrupt */ 412 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); 413 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); 414 } 415 416 417 /** 418 * sdma_v4_4_2_inst_gfx_stop - stop the gfx async dma engines 419 * 420 * @adev: amdgpu_device pointer 421 * @inst_mask: mask of dma engine instances to be disabled 422 * 423 * Stop the gfx async dma ring buffers. 424 */ 425 static void sdma_v4_4_2_inst_gfx_stop(struct amdgpu_device *adev, 426 uint32_t inst_mask) 427 { 428 struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES]; 429 u32 rb_cntl, ib_cntl; 430 int i, unset = 0; 431 432 for_each_inst(i, inst_mask) { 433 sdma[i] = &adev->sdma.instance[i].ring; 434 435 if ((adev->mman.buffer_funcs_ring == sdma[i]) && unset != 1) { 436 amdgpu_ttm_set_buffer_funcs_status(adev, false); 437 unset = 1; 438 } 439 440 rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL); 441 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 0); 442 WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl); 443 ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL); 444 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 0); 445 WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl); 446 } 447 } 448 449 /** 450 * sdma_v4_4_2_inst_rlc_stop - stop the compute async dma engines 451 * 452 * @adev: amdgpu_device pointer 453 * @inst_mask: mask of dma engine instances to be disabled 454 * 455 * Stop the compute async dma queues. 456 */ 457 static void sdma_v4_4_2_inst_rlc_stop(struct amdgpu_device *adev, 458 uint32_t inst_mask) 459 { 460 /* XXX todo */ 461 } 462 463 /** 464 * sdma_v4_4_2_inst_page_stop - stop the page async dma engines 465 * 466 * @adev: amdgpu_device pointer 467 * @inst_mask: mask of dma engine instances to be disabled 468 * 469 * Stop the page async dma ring buffers. 470 */ 471 static void sdma_v4_4_2_inst_page_stop(struct amdgpu_device *adev, 472 uint32_t inst_mask) 473 { 474 struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES]; 475 u32 rb_cntl, ib_cntl; 476 int i; 477 bool unset = false; 478 479 for_each_inst(i, inst_mask) { 480 sdma[i] = &adev->sdma.instance[i].page; 481 482 if ((adev->mman.buffer_funcs_ring == sdma[i]) && 483 (!unset)) { 484 amdgpu_ttm_set_buffer_funcs_status(adev, false); 485 unset = true; 486 } 487 488 rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL); 489 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, 490 RB_ENABLE, 0); 491 WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl); 492 ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL); 493 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, 494 IB_ENABLE, 0); 495 WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl); 496 } 497 } 498 499 /** 500 * sdma_v4_4_2_inst_ctx_switch_enable - stop the async dma engines context switch 501 * 502 * @adev: amdgpu_device pointer 503 * @enable: enable/disable the DMA MEs context switch. 504 * @inst_mask: mask of dma engine instances to be enabled 505 * 506 * Halt or unhalt the async dma engines context switch. 507 */ 508 static void sdma_v4_4_2_inst_ctx_switch_enable(struct amdgpu_device *adev, 509 bool enable, uint32_t inst_mask) 510 { 511 u32 f32_cntl, phase_quantum = 0; 512 int i; 513 514 if (amdgpu_sdma_phase_quantum) { 515 unsigned value = amdgpu_sdma_phase_quantum; 516 unsigned unit = 0; 517 518 while (value > (SDMA_PHASE0_QUANTUM__VALUE_MASK >> 519 SDMA_PHASE0_QUANTUM__VALUE__SHIFT)) { 520 value = (value + 1) >> 1; 521 unit++; 522 } 523 if (unit > (SDMA_PHASE0_QUANTUM__UNIT_MASK >> 524 SDMA_PHASE0_QUANTUM__UNIT__SHIFT)) { 525 value = (SDMA_PHASE0_QUANTUM__VALUE_MASK >> 526 SDMA_PHASE0_QUANTUM__VALUE__SHIFT); 527 unit = (SDMA_PHASE0_QUANTUM__UNIT_MASK >> 528 SDMA_PHASE0_QUANTUM__UNIT__SHIFT); 529 WARN_ONCE(1, 530 "clamping sdma_phase_quantum to %uK clock cycles\n", 531 value << unit); 532 } 533 phase_quantum = 534 value << SDMA_PHASE0_QUANTUM__VALUE__SHIFT | 535 unit << SDMA_PHASE0_QUANTUM__UNIT__SHIFT; 536 } 537 538 for_each_inst(i, inst_mask) { 539 f32_cntl = RREG32_SDMA(i, regSDMA_CNTL); 540 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_CNTL, 541 AUTO_CTXSW_ENABLE, enable ? 1 : 0); 542 if (enable && amdgpu_sdma_phase_quantum) { 543 WREG32_SDMA(i, regSDMA_PHASE0_QUANTUM, phase_quantum); 544 WREG32_SDMA(i, regSDMA_PHASE1_QUANTUM, phase_quantum); 545 WREG32_SDMA(i, regSDMA_PHASE2_QUANTUM, phase_quantum); 546 } 547 WREG32_SDMA(i, regSDMA_CNTL, f32_cntl); 548 549 /* Extend page fault timeout to avoid interrupt storm */ 550 WREG32_SDMA(i, regSDMA_UTCL1_TIMEOUT, 0x00800080); 551 } 552 } 553 554 /** 555 * sdma_v4_4_2_inst_enable - stop the async dma engines 556 * 557 * @adev: amdgpu_device pointer 558 * @enable: enable/disable the DMA MEs. 559 * @inst_mask: mask of dma engine instances to be enabled 560 * 561 * Halt or unhalt the async dma engines. 562 */ 563 static void sdma_v4_4_2_inst_enable(struct amdgpu_device *adev, bool enable, 564 uint32_t inst_mask) 565 { 566 u32 f32_cntl; 567 int i; 568 569 if (!enable) { 570 sdma_v4_4_2_inst_gfx_stop(adev, inst_mask); 571 sdma_v4_4_2_inst_rlc_stop(adev, inst_mask); 572 if (adev->sdma.has_page_queue) 573 sdma_v4_4_2_inst_page_stop(adev, inst_mask); 574 575 /* SDMA FW needs to respond to FREEZE requests during reset. 576 * Keep it running during reset */ 577 if (!amdgpu_sriov_vf(adev) && amdgpu_in_reset(adev)) 578 return; 579 } 580 581 for_each_inst(i, inst_mask) { 582 f32_cntl = RREG32_SDMA(i, regSDMA_F32_CNTL); 583 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_F32_CNTL, HALT, enable ? 0 : 1); 584 WREG32_SDMA(i, regSDMA_F32_CNTL, f32_cntl); 585 } 586 } 587 588 /* 589 * sdma_v4_4_2_rb_cntl - get parameters for rb_cntl 590 */ 591 static uint32_t sdma_v4_4_2_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl) 592 { 593 /* Set ring buffer size in dwords */ 594 uint32_t rb_bufsz = order_base_2(ring->ring_size / 4); 595 596 barrier(); /* work around https://bugs.llvm.org/show_bug.cgi?id=42576 */ 597 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SIZE, rb_bufsz); 598 #ifdef __BIG_ENDIAN 599 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); 600 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, 601 RPTR_WRITEBACK_SWAP_ENABLE, 1); 602 #endif 603 return rb_cntl; 604 } 605 606 /** 607 * sdma_v4_4_2_gfx_resume - setup and start the async dma engines 608 * 609 * @adev: amdgpu_device pointer 610 * @i: instance to resume 611 * 612 * Set up the gfx DMA ring buffers and enable them. 613 * Returns 0 for success, error for failure. 614 */ 615 static void sdma_v4_4_2_gfx_resume(struct amdgpu_device *adev, unsigned int i) 616 { 617 struct amdgpu_ring *ring = &adev->sdma.instance[i].ring; 618 u32 rb_cntl, ib_cntl, wptr_poll_cntl; 619 u32 wb_offset; 620 u32 doorbell; 621 u32 doorbell_offset; 622 u64 wptr_gpu_addr; 623 624 wb_offset = (ring->rptr_offs * 4); 625 626 rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL); 627 rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl); 628 WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl); 629 630 /* Initialize the ring buffer's read and write pointers */ 631 WREG32_SDMA(i, regSDMA_GFX_RB_RPTR, 0); 632 WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_HI, 0); 633 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR, 0); 634 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_HI, 0); 635 636 /* set the wb address whether it's enabled or not */ 637 WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_HI, 638 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 639 WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_LO, 640 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); 641 642 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, 643 RPTR_WRITEBACK_ENABLE, 1); 644 645 WREG32_SDMA(i, regSDMA_GFX_RB_BASE, ring->gpu_addr >> 8); 646 WREG32_SDMA(i, regSDMA_GFX_RB_BASE_HI, ring->gpu_addr >> 40); 647 648 ring->wptr = 0; 649 650 /* before programing wptr to a less value, need set minor_ptr_update first */ 651 WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 1); 652 653 doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL); 654 doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET); 655 656 doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE, 657 ring->use_doorbell); 658 doorbell_offset = REG_SET_FIELD(doorbell_offset, 659 SDMA_GFX_DOORBELL_OFFSET, 660 OFFSET, ring->doorbell_index); 661 WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell); 662 WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset); 663 664 sdma_v4_4_2_ring_set_wptr(ring); 665 666 /* set minor_ptr_update to 0 after wptr programed */ 667 WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 0); 668 669 /* setup the wptr shadow polling */ 670 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); 671 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_LO, 672 lower_32_bits(wptr_gpu_addr)); 673 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_HI, 674 upper_32_bits(wptr_gpu_addr)); 675 wptr_poll_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL); 676 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 677 SDMA_GFX_RB_WPTR_POLL_CNTL, 678 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0); 679 WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl); 680 681 /* enable DMA RB */ 682 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 1); 683 WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl); 684 685 ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL); 686 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 1); 687 #ifdef __BIG_ENDIAN 688 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); 689 #endif 690 /* enable DMA IBs */ 691 WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl); 692 } 693 694 /** 695 * sdma_v4_4_2_page_resume - setup and start the async dma engines 696 * 697 * @adev: amdgpu_device pointer 698 * @i: instance to resume 699 * 700 * Set up the page DMA ring buffers and enable them. 701 * Returns 0 for success, error for failure. 702 */ 703 static void sdma_v4_4_2_page_resume(struct amdgpu_device *adev, unsigned int i) 704 { 705 struct amdgpu_ring *ring = &adev->sdma.instance[i].page; 706 u32 rb_cntl, ib_cntl, wptr_poll_cntl; 707 u32 wb_offset; 708 u32 doorbell; 709 u32 doorbell_offset; 710 u64 wptr_gpu_addr; 711 712 wb_offset = (ring->rptr_offs * 4); 713 714 rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL); 715 rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl); 716 WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl); 717 718 /* Initialize the ring buffer's read and write pointers */ 719 WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR, 0); 720 WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_HI, 0); 721 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR, 0); 722 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_HI, 0); 723 724 /* set the wb address whether it's enabled or not */ 725 WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_HI, 726 upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); 727 WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_LO, 728 lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); 729 730 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, 731 RPTR_WRITEBACK_ENABLE, 1); 732 733 WREG32_SDMA(i, regSDMA_PAGE_RB_BASE, ring->gpu_addr >> 8); 734 WREG32_SDMA(i, regSDMA_PAGE_RB_BASE_HI, ring->gpu_addr >> 40); 735 736 ring->wptr = 0; 737 738 /* before programing wptr to a less value, need set minor_ptr_update first */ 739 WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 1); 740 741 doorbell = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL); 742 doorbell_offset = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET); 743 744 doorbell = REG_SET_FIELD(doorbell, SDMA_PAGE_DOORBELL, ENABLE, 745 ring->use_doorbell); 746 doorbell_offset = REG_SET_FIELD(doorbell_offset, 747 SDMA_PAGE_DOORBELL_OFFSET, 748 OFFSET, ring->doorbell_index); 749 WREG32_SDMA(i, regSDMA_PAGE_DOORBELL, doorbell); 750 WREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET, doorbell_offset); 751 752 /* paging queue doorbell range is setup at sdma_v4_4_2_gfx_resume */ 753 sdma_v4_4_2_page_ring_set_wptr(ring); 754 755 /* set minor_ptr_update to 0 after wptr programed */ 756 WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 0); 757 758 /* setup the wptr shadow polling */ 759 wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); 760 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_LO, 761 lower_32_bits(wptr_gpu_addr)); 762 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_HI, 763 upper_32_bits(wptr_gpu_addr)); 764 wptr_poll_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL); 765 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, 766 SDMA_PAGE_RB_WPTR_POLL_CNTL, 767 F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0); 768 WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl); 769 770 /* enable DMA RB */ 771 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, RB_ENABLE, 1); 772 WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl); 773 774 ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL); 775 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_ENABLE, 1); 776 #ifdef __BIG_ENDIAN 777 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1); 778 #endif 779 /* enable DMA IBs */ 780 WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl); 781 } 782 783 static void sdma_v4_4_2_init_pg(struct amdgpu_device *adev) 784 { 785 786 } 787 788 /** 789 * sdma_v4_4_2_inst_rlc_resume - setup and start the async dma engines 790 * 791 * @adev: amdgpu_device pointer 792 * @inst_mask: mask of dma engine instances to be enabled 793 * 794 * Set up the compute DMA queues and enable them. 795 * Returns 0 for success, error for failure. 796 */ 797 static int sdma_v4_4_2_inst_rlc_resume(struct amdgpu_device *adev, 798 uint32_t inst_mask) 799 { 800 sdma_v4_4_2_init_pg(adev); 801 802 return 0; 803 } 804 805 /** 806 * sdma_v4_4_2_inst_load_microcode - load the sDMA ME ucode 807 * 808 * @adev: amdgpu_device pointer 809 * @inst_mask: mask of dma engine instances to be enabled 810 * 811 * Loads the sDMA0/1 ucode. 812 * Returns 0 for success, -EINVAL if the ucode is not available. 813 */ 814 static int sdma_v4_4_2_inst_load_microcode(struct amdgpu_device *adev, 815 uint32_t inst_mask) 816 { 817 const struct sdma_firmware_header_v1_0 *hdr; 818 const __le32 *fw_data; 819 u32 fw_size; 820 int i, j; 821 822 /* halt the MEs */ 823 sdma_v4_4_2_inst_enable(adev, false, inst_mask); 824 825 for_each_inst(i, inst_mask) { 826 if (!adev->sdma.instance[i].fw) 827 return -EINVAL; 828 829 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; 830 amdgpu_ucode_print_sdma_hdr(&hdr->header); 831 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; 832 833 fw_data = (const __le32 *) 834 (adev->sdma.instance[i].fw->data + 835 le32_to_cpu(hdr->header.ucode_array_offset_bytes)); 836 837 WREG32_SDMA(i, regSDMA_UCODE_ADDR, 0); 838 839 for (j = 0; j < fw_size; j++) 840 WREG32_SDMA(i, regSDMA_UCODE_DATA, 841 le32_to_cpup(fw_data++)); 842 843 WREG32_SDMA(i, regSDMA_UCODE_ADDR, 844 adev->sdma.instance[i].fw_version); 845 } 846 847 return 0; 848 } 849 850 /** 851 * sdma_v4_4_2_inst_start - setup and start the async dma engines 852 * 853 * @adev: amdgpu_device pointer 854 * @inst_mask: mask of dma engine instances to be enabled 855 * 856 * Set up the DMA engines and enable them. 857 * Returns 0 for success, error for failure. 858 */ 859 static int sdma_v4_4_2_inst_start(struct amdgpu_device *adev, 860 uint32_t inst_mask) 861 { 862 struct amdgpu_ring *ring; 863 uint32_t tmp_mask; 864 int i, r = 0; 865 866 if (amdgpu_sriov_vf(adev)) { 867 sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask); 868 sdma_v4_4_2_inst_enable(adev, false, inst_mask); 869 } else { 870 /* bypass sdma microcode loading on Gopher */ 871 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP && 872 adev->sdma.instance[0].fw) { 873 r = sdma_v4_4_2_inst_load_microcode(adev, inst_mask); 874 if (r) 875 return r; 876 } 877 878 /* unhalt the MEs */ 879 sdma_v4_4_2_inst_enable(adev, true, inst_mask); 880 /* enable sdma ring preemption */ 881 sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask); 882 } 883 884 /* start the gfx rings and rlc compute queues */ 885 tmp_mask = inst_mask; 886 for_each_inst(i, tmp_mask) { 887 uint32_t temp; 888 889 WREG32_SDMA(i, regSDMA_SEM_WAIT_FAIL_TIMER_CNTL, 0); 890 sdma_v4_4_2_gfx_resume(adev, i); 891 if (adev->sdma.has_page_queue) 892 sdma_v4_4_2_page_resume(adev, i); 893 894 /* set utc l1 enable flag always to 1 */ 895 temp = RREG32_SDMA(i, regSDMA_CNTL); 896 temp = REG_SET_FIELD(temp, SDMA_CNTL, UTC_L1_ENABLE, 1); 897 /* enable context empty interrupt during initialization */ 898 temp = REG_SET_FIELD(temp, SDMA_CNTL, CTXEMPTY_INT_ENABLE, 1); 899 WREG32_SDMA(i, regSDMA_CNTL, temp); 900 901 if (!amdgpu_sriov_vf(adev)) { 902 ring = &adev->sdma.instance[i].ring; 903 adev->nbio.funcs->sdma_doorbell_range(adev, i, 904 ring->use_doorbell, ring->doorbell_index, 905 adev->doorbell_index.sdma_doorbell_range); 906 907 /* unhalt engine */ 908 temp = RREG32_SDMA(i, regSDMA_F32_CNTL); 909 temp = REG_SET_FIELD(temp, SDMA_F32_CNTL, HALT, 0); 910 WREG32_SDMA(i, regSDMA_F32_CNTL, temp); 911 } 912 } 913 914 if (amdgpu_sriov_vf(adev)) { 915 sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask); 916 sdma_v4_4_2_inst_enable(adev, true, inst_mask); 917 } else { 918 r = sdma_v4_4_2_inst_rlc_resume(adev, inst_mask); 919 if (r) 920 return r; 921 } 922 923 tmp_mask = inst_mask; 924 for_each_inst(i, tmp_mask) { 925 ring = &adev->sdma.instance[i].ring; 926 927 r = amdgpu_ring_test_helper(ring); 928 if (r) 929 return r; 930 931 if (adev->sdma.has_page_queue) { 932 struct amdgpu_ring *page = &adev->sdma.instance[i].page; 933 934 r = amdgpu_ring_test_helper(page); 935 if (r) 936 return r; 937 938 if (adev->mman.buffer_funcs_ring == page) 939 amdgpu_ttm_set_buffer_funcs_status(adev, true); 940 } 941 942 if (adev->mman.buffer_funcs_ring == ring) 943 amdgpu_ttm_set_buffer_funcs_status(adev, true); 944 } 945 946 return r; 947 } 948 949 /** 950 * sdma_v4_4_2_ring_test_ring - simple async dma engine test 951 * 952 * @ring: amdgpu_ring structure holding ring information 953 * 954 * Test the DMA engine by writing using it to write an 955 * value to memory. 956 * Returns 0 for success, error for failure. 957 */ 958 static int sdma_v4_4_2_ring_test_ring(struct amdgpu_ring *ring) 959 { 960 struct amdgpu_device *adev = ring->adev; 961 unsigned i; 962 unsigned index; 963 int r; 964 u32 tmp; 965 u64 gpu_addr; 966 967 r = amdgpu_device_wb_get(adev, &index); 968 if (r) 969 return r; 970 971 gpu_addr = adev->wb.gpu_addr + (index * 4); 972 tmp = 0xCAFEDEAD; 973 adev->wb.wb[index] = cpu_to_le32(tmp); 974 975 r = amdgpu_ring_alloc(ring, 5); 976 if (r) 977 goto error_free_wb; 978 979 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 980 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); 981 amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); 982 amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); 983 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0)); 984 amdgpu_ring_write(ring, 0xDEADBEEF); 985 amdgpu_ring_commit(ring); 986 987 for (i = 0; i < adev->usec_timeout; i++) { 988 tmp = le32_to_cpu(adev->wb.wb[index]); 989 if (tmp == 0xDEADBEEF) 990 break; 991 udelay(1); 992 } 993 994 if (i >= adev->usec_timeout) 995 r = -ETIMEDOUT; 996 997 error_free_wb: 998 amdgpu_device_wb_free(adev, index); 999 return r; 1000 } 1001 1002 /** 1003 * sdma_v4_4_2_ring_test_ib - test an IB on the DMA engine 1004 * 1005 * @ring: amdgpu_ring structure holding ring information 1006 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT 1007 * 1008 * Test a simple IB in the DMA ring. 1009 * Returns 0 on success, error on failure. 1010 */ 1011 static int sdma_v4_4_2_ring_test_ib(struct amdgpu_ring *ring, long timeout) 1012 { 1013 struct amdgpu_device *adev = ring->adev; 1014 struct amdgpu_ib ib; 1015 struct dma_fence *f = NULL; 1016 unsigned index; 1017 long r; 1018 u32 tmp = 0; 1019 u64 gpu_addr; 1020 1021 r = amdgpu_device_wb_get(adev, &index); 1022 if (r) 1023 return r; 1024 1025 gpu_addr = adev->wb.gpu_addr + (index * 4); 1026 tmp = 0xCAFEDEAD; 1027 adev->wb.wb[index] = cpu_to_le32(tmp); 1028 memset(&ib, 0, sizeof(ib)); 1029 r = amdgpu_ib_get(adev, NULL, 256, 1030 AMDGPU_IB_POOL_DIRECT, &ib); 1031 if (r) 1032 goto err0; 1033 1034 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1035 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1036 ib.ptr[1] = lower_32_bits(gpu_addr); 1037 ib.ptr[2] = upper_32_bits(gpu_addr); 1038 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0); 1039 ib.ptr[4] = 0xDEADBEEF; 1040 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1041 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1042 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); 1043 ib.length_dw = 8; 1044 1045 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); 1046 if (r) 1047 goto err1; 1048 1049 r = dma_fence_wait_timeout(f, false, timeout); 1050 if (r == 0) { 1051 r = -ETIMEDOUT; 1052 goto err1; 1053 } else if (r < 0) { 1054 goto err1; 1055 } 1056 tmp = le32_to_cpu(adev->wb.wb[index]); 1057 if (tmp == 0xDEADBEEF) 1058 r = 0; 1059 else 1060 r = -EINVAL; 1061 1062 err1: 1063 amdgpu_ib_free(adev, &ib, NULL); 1064 dma_fence_put(f); 1065 err0: 1066 amdgpu_device_wb_free(adev, index); 1067 return r; 1068 } 1069 1070 1071 /** 1072 * sdma_v4_4_2_vm_copy_pte - update PTEs by copying them from the GART 1073 * 1074 * @ib: indirect buffer to fill with commands 1075 * @pe: addr of the page entry 1076 * @src: src addr to copy from 1077 * @count: number of page entries to update 1078 * 1079 * Update PTEs by copying them from the GART using sDMA. 1080 */ 1081 static void sdma_v4_4_2_vm_copy_pte(struct amdgpu_ib *ib, 1082 uint64_t pe, uint64_t src, 1083 unsigned count) 1084 { 1085 unsigned bytes = count * 8; 1086 1087 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1088 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); 1089 ib->ptr[ib->length_dw++] = bytes - 1; 1090 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1091 ib->ptr[ib->length_dw++] = lower_32_bits(src); 1092 ib->ptr[ib->length_dw++] = upper_32_bits(src); 1093 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1094 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1095 1096 } 1097 1098 /** 1099 * sdma_v4_4_2_vm_write_pte - update PTEs by writing them manually 1100 * 1101 * @ib: indirect buffer to fill with commands 1102 * @pe: addr of the page entry 1103 * @value: dst addr to write into pe 1104 * @count: number of page entries to update 1105 * @incr: increase next addr by incr bytes 1106 * 1107 * Update PTEs by writing them manually using sDMA. 1108 */ 1109 static void sdma_v4_4_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, 1110 uint64_t value, unsigned count, 1111 uint32_t incr) 1112 { 1113 unsigned ndw = count * 2; 1114 1115 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | 1116 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); 1117 ib->ptr[ib->length_dw++] = lower_32_bits(pe); 1118 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1119 ib->ptr[ib->length_dw++] = ndw - 1; 1120 for (; ndw > 0; ndw -= 2) { 1121 ib->ptr[ib->length_dw++] = lower_32_bits(value); 1122 ib->ptr[ib->length_dw++] = upper_32_bits(value); 1123 value += incr; 1124 } 1125 } 1126 1127 /** 1128 * sdma_v4_4_2_vm_set_pte_pde - update the page tables using sDMA 1129 * 1130 * @ib: indirect buffer to fill with commands 1131 * @pe: addr of the page entry 1132 * @addr: dst addr to write into pe 1133 * @count: number of page entries to update 1134 * @incr: increase next addr by incr bytes 1135 * @flags: access flags 1136 * 1137 * Update the page tables using sDMA. 1138 */ 1139 static void sdma_v4_4_2_vm_set_pte_pde(struct amdgpu_ib *ib, 1140 uint64_t pe, 1141 uint64_t addr, unsigned count, 1142 uint32_t incr, uint64_t flags) 1143 { 1144 /* for physically contiguous pages (vram) */ 1145 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE); 1146 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ 1147 ib->ptr[ib->length_dw++] = upper_32_bits(pe); 1148 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ 1149 ib->ptr[ib->length_dw++] = upper_32_bits(flags); 1150 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ 1151 ib->ptr[ib->length_dw++] = upper_32_bits(addr); 1152 ib->ptr[ib->length_dw++] = incr; /* increment size */ 1153 ib->ptr[ib->length_dw++] = 0; 1154 ib->ptr[ib->length_dw++] = count - 1; /* number of entries */ 1155 } 1156 1157 /** 1158 * sdma_v4_4_2_ring_pad_ib - pad the IB to the required number of dw 1159 * 1160 * @ring: amdgpu_ring structure holding ring information 1161 * @ib: indirect buffer to fill with padding 1162 */ 1163 static void sdma_v4_4_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) 1164 { 1165 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); 1166 u32 pad_count; 1167 int i; 1168 1169 pad_count = (-ib->length_dw) & 7; 1170 for (i = 0; i < pad_count; i++) 1171 if (sdma && sdma->burst_nop && (i == 0)) 1172 ib->ptr[ib->length_dw++] = 1173 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | 1174 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); 1175 else 1176 ib->ptr[ib->length_dw++] = 1177 SDMA_PKT_HEADER_OP(SDMA_OP_NOP); 1178 } 1179 1180 1181 /** 1182 * sdma_v4_4_2_ring_emit_pipeline_sync - sync the pipeline 1183 * 1184 * @ring: amdgpu_ring pointer 1185 * 1186 * Make sure all previous operations are completed (CIK). 1187 */ 1188 static void sdma_v4_4_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring) 1189 { 1190 uint32_t seq = ring->fence_drv.sync_seq; 1191 uint64_t addr = ring->fence_drv.gpu_addr; 1192 1193 /* wait for idle */ 1194 sdma_v4_4_2_wait_reg_mem(ring, 1, 0, 1195 addr & 0xfffffffc, 1196 upper_32_bits(addr) & 0xffffffff, 1197 seq, 0xffffffff, 4); 1198 } 1199 1200 1201 /** 1202 * sdma_v4_4_2_ring_emit_vm_flush - vm flush using sDMA 1203 * 1204 * @ring: amdgpu_ring pointer 1205 * @vmid: vmid number to use 1206 * @pd_addr: address 1207 * 1208 * Update the page table base and flush the VM TLB 1209 * using sDMA. 1210 */ 1211 static void sdma_v4_4_2_ring_emit_vm_flush(struct amdgpu_ring *ring, 1212 unsigned vmid, uint64_t pd_addr) 1213 { 1214 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); 1215 } 1216 1217 static void sdma_v4_4_2_ring_emit_wreg(struct amdgpu_ring *ring, 1218 uint32_t reg, uint32_t val) 1219 { 1220 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | 1221 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); 1222 amdgpu_ring_write(ring, reg); 1223 amdgpu_ring_write(ring, val); 1224 } 1225 1226 static void sdma_v4_4_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, 1227 uint32_t val, uint32_t mask) 1228 { 1229 sdma_v4_4_2_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10); 1230 } 1231 1232 static bool sdma_v4_4_2_fw_support_paging_queue(struct amdgpu_device *adev) 1233 { 1234 switch (adev->ip_versions[SDMA0_HWIP][0]) { 1235 case IP_VERSION(4, 4, 2): 1236 return false; 1237 default: 1238 return false; 1239 } 1240 } 1241 1242 static int sdma_v4_4_2_early_init(void *handle) 1243 { 1244 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1245 int r; 1246 1247 r = sdma_v4_4_2_init_microcode(adev); 1248 if (r) { 1249 DRM_ERROR("Failed to load sdma firmware!\n"); 1250 return r; 1251 } 1252 1253 /* TODO: Page queue breaks driver reload under SRIOV */ 1254 if (sdma_v4_4_2_fw_support_paging_queue(adev)) 1255 adev->sdma.has_page_queue = true; 1256 1257 sdma_v4_4_2_set_ring_funcs(adev); 1258 sdma_v4_4_2_set_buffer_funcs(adev); 1259 sdma_v4_4_2_set_vm_pte_funcs(adev); 1260 sdma_v4_4_2_set_irq_funcs(adev); 1261 sdma_v4_4_2_set_ras_funcs(adev); 1262 1263 return 0; 1264 } 1265 1266 #if 0 1267 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev, 1268 void *err_data, 1269 struct amdgpu_iv_entry *entry); 1270 #endif 1271 1272 static int sdma_v4_4_2_late_init(void *handle) 1273 { 1274 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1275 #if 0 1276 struct ras_ih_if ih_info = { 1277 .cb = sdma_v4_4_2_process_ras_data_cb, 1278 }; 1279 #endif 1280 if (!amdgpu_persistent_edc_harvesting_supported(adev)) { 1281 if (adev->sdma.ras && adev->sdma.ras->ras_block.hw_ops && 1282 adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count) 1283 adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count(adev); 1284 } 1285 1286 return 0; 1287 } 1288 1289 static int sdma_v4_4_2_sw_init(void *handle) 1290 { 1291 struct amdgpu_ring *ring; 1292 int r, i; 1293 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1294 u32 aid_id; 1295 1296 /* SDMA trap event */ 1297 for (i = 0; i < adev->sdma.num_inst_per_aid; i++) { 1298 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1299 SDMA0_4_0__SRCID__SDMA_TRAP, 1300 &adev->sdma.trap_irq); 1301 if (r) 1302 return r; 1303 } 1304 1305 /* SDMA SRAM ECC event */ 1306 for (i = 0; i < adev->sdma.num_inst_per_aid; i++) { 1307 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1308 SDMA0_4_0__SRCID__SDMA_SRAM_ECC, 1309 &adev->sdma.ecc_irq); 1310 if (r) 1311 return r; 1312 } 1313 1314 /* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/ 1315 for (i = 0; i < adev->sdma.num_inst_per_aid; i++) { 1316 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1317 SDMA0_4_0__SRCID__SDMA_VM_HOLE, 1318 &adev->sdma.vm_hole_irq); 1319 if (r) 1320 return r; 1321 1322 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1323 SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID, 1324 &adev->sdma.doorbell_invalid_irq); 1325 if (r) 1326 return r; 1327 1328 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1329 SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT, 1330 &adev->sdma.pool_timeout_irq); 1331 if (r) 1332 return r; 1333 1334 r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), 1335 SDMA0_4_0__SRCID__SDMA_SRBMWRITE, 1336 &adev->sdma.srbm_write_irq); 1337 if (r) 1338 return r; 1339 } 1340 1341 for (i = 0; i < adev->sdma.num_instances; i++) { 1342 ring = &adev->sdma.instance[i].ring; 1343 ring->ring_obj = NULL; 1344 ring->use_doorbell = true; 1345 aid_id = adev->sdma.instance[i].aid_id; 1346 1347 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i, 1348 ring->use_doorbell?"true":"false"); 1349 1350 /* doorbell size is 2 dwords, get DWORD offset */ 1351 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1; 1352 ring->vm_hub = AMDGPU_MMHUB0(aid_id); 1353 1354 sprintf(ring->name, "sdma%d.%d", aid_id, 1355 i % adev->sdma.num_inst_per_aid); 1356 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq, 1357 AMDGPU_SDMA_IRQ_INSTANCE0 + i, 1358 AMDGPU_RING_PRIO_DEFAULT, NULL); 1359 if (r) 1360 return r; 1361 1362 if (adev->sdma.has_page_queue) { 1363 ring = &adev->sdma.instance[i].page; 1364 ring->ring_obj = NULL; 1365 ring->use_doorbell = true; 1366 1367 /* doorbell index of page queue is assigned right after 1368 * gfx queue on the same instance 1369 */ 1370 ring->doorbell_index = 1371 (adev->doorbell_index.sdma_engine[i] + 1) << 1; 1372 ring->vm_hub = AMDGPU_MMHUB0(aid_id); 1373 1374 sprintf(ring->name, "page%d.%d", aid_id, 1375 i % adev->sdma.num_inst_per_aid); 1376 r = amdgpu_ring_init(adev, ring, 1024, 1377 &adev->sdma.trap_irq, 1378 AMDGPU_SDMA_IRQ_INSTANCE0 + i, 1379 AMDGPU_RING_PRIO_DEFAULT, NULL); 1380 if (r) 1381 return r; 1382 } 1383 } 1384 1385 if (amdgpu_sdma_ras_sw_init(adev)) { 1386 dev_err(adev->dev, "fail to initialize sdma ras block\n"); 1387 return -EINVAL; 1388 } 1389 1390 return r; 1391 } 1392 1393 static int sdma_v4_4_2_sw_fini(void *handle) 1394 { 1395 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1396 int i; 1397 1398 for (i = 0; i < adev->sdma.num_instances; i++) { 1399 amdgpu_ring_fini(&adev->sdma.instance[i].ring); 1400 if (adev->sdma.has_page_queue) 1401 amdgpu_ring_fini(&adev->sdma.instance[i].page); 1402 } 1403 1404 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 4, 2)) 1405 amdgpu_sdma_destroy_inst_ctx(adev, true); 1406 else 1407 amdgpu_sdma_destroy_inst_ctx(adev, false); 1408 1409 return 0; 1410 } 1411 1412 static int sdma_v4_4_2_hw_init(void *handle) 1413 { 1414 int r; 1415 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1416 uint32_t inst_mask; 1417 1418 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); 1419 if (!amdgpu_sriov_vf(adev)) 1420 sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask); 1421 1422 r = sdma_v4_4_2_inst_start(adev, inst_mask); 1423 1424 return r; 1425 } 1426 1427 static int sdma_v4_4_2_hw_fini(void *handle) 1428 { 1429 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1430 uint32_t inst_mask; 1431 int i; 1432 1433 if (amdgpu_sriov_vf(adev)) 1434 return 0; 1435 1436 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); 1437 for (i = 0; i < adev->sdma.num_instances; i++) { 1438 amdgpu_irq_put(adev, &adev->sdma.ecc_irq, 1439 AMDGPU_SDMA_IRQ_INSTANCE0 + i); 1440 } 1441 1442 sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask); 1443 sdma_v4_4_2_inst_enable(adev, false, inst_mask); 1444 1445 return 0; 1446 } 1447 1448 static int sdma_v4_4_2_set_clockgating_state(void *handle, 1449 enum amd_clockgating_state state); 1450 1451 static int sdma_v4_4_2_suspend(void *handle) 1452 { 1453 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1454 1455 if (amdgpu_in_reset(adev)) 1456 sdma_v4_4_2_set_clockgating_state(adev, AMD_CG_STATE_UNGATE); 1457 1458 return sdma_v4_4_2_hw_fini(adev); 1459 } 1460 1461 static int sdma_v4_4_2_resume(void *handle) 1462 { 1463 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1464 1465 return sdma_v4_4_2_hw_init(adev); 1466 } 1467 1468 static bool sdma_v4_4_2_is_idle(void *handle) 1469 { 1470 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1471 u32 i; 1472 1473 for (i = 0; i < adev->sdma.num_instances; i++) { 1474 u32 tmp = RREG32_SDMA(i, regSDMA_STATUS_REG); 1475 1476 if (!(tmp & SDMA_STATUS_REG__IDLE_MASK)) 1477 return false; 1478 } 1479 1480 return true; 1481 } 1482 1483 static int sdma_v4_4_2_wait_for_idle(void *handle) 1484 { 1485 unsigned i, j; 1486 u32 sdma[AMDGPU_MAX_SDMA_INSTANCES]; 1487 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1488 1489 for (i = 0; i < adev->usec_timeout; i++) { 1490 for (j = 0; j < adev->sdma.num_instances; j++) { 1491 sdma[j] = RREG32_SDMA(j, regSDMA_STATUS_REG); 1492 if (!(sdma[j] & SDMA_STATUS_REG__IDLE_MASK)) 1493 break; 1494 } 1495 if (j == adev->sdma.num_instances) 1496 return 0; 1497 udelay(1); 1498 } 1499 return -ETIMEDOUT; 1500 } 1501 1502 static int sdma_v4_4_2_soft_reset(void *handle) 1503 { 1504 /* todo */ 1505 1506 return 0; 1507 } 1508 1509 static int sdma_v4_4_2_set_trap_irq_state(struct amdgpu_device *adev, 1510 struct amdgpu_irq_src *source, 1511 unsigned type, 1512 enum amdgpu_interrupt_state state) 1513 { 1514 u32 sdma_cntl; 1515 1516 sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL); 1517 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, TRAP_ENABLE, 1518 state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); 1519 WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl); 1520 1521 return 0; 1522 } 1523 1524 static int sdma_v4_4_2_process_trap_irq(struct amdgpu_device *adev, 1525 struct amdgpu_irq_src *source, 1526 struct amdgpu_iv_entry *entry) 1527 { 1528 uint32_t instance, i; 1529 1530 DRM_DEBUG("IH: SDMA trap\n"); 1531 instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id); 1532 1533 /* Client id gives the SDMA instance in AID. To know the exact SDMA 1534 * instance, interrupt entry gives the node id which corresponds to the AID instance. 1535 * Match node id with the AID id associated with the SDMA instance. */ 1536 for (i = instance; i < adev->sdma.num_instances; 1537 i += adev->sdma.num_inst_per_aid) { 1538 if (adev->sdma.instance[i].aid_id == 1539 node_id_to_phys_map[entry->node_id]) 1540 break; 1541 } 1542 1543 if (i >= adev->sdma.num_instances) { 1544 dev_WARN_ONCE( 1545 adev->dev, 1, 1546 "Couldn't find the right sdma instance in trap handler"); 1547 return 0; 1548 } 1549 1550 switch (entry->ring_id) { 1551 case 0: 1552 amdgpu_fence_process(&adev->sdma.instance[i].ring); 1553 break; 1554 default: 1555 break; 1556 } 1557 return 0; 1558 } 1559 1560 #if 0 1561 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev, 1562 void *err_data, 1563 struct amdgpu_iv_entry *entry) 1564 { 1565 int instance; 1566 1567 /* When “Full RAS” is enabled, the per-IP interrupt sources should 1568 * be disabled and the driver should only look for the aggregated 1569 * interrupt via sync flood 1570 */ 1571 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) 1572 goto out; 1573 1574 instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id); 1575 if (instance < 0) 1576 goto out; 1577 1578 amdgpu_sdma_process_ras_data_cb(adev, err_data, entry); 1579 1580 out: 1581 return AMDGPU_RAS_SUCCESS; 1582 } 1583 #endif 1584 1585 static int sdma_v4_4_2_process_illegal_inst_irq(struct amdgpu_device *adev, 1586 struct amdgpu_irq_src *source, 1587 struct amdgpu_iv_entry *entry) 1588 { 1589 int instance; 1590 1591 DRM_ERROR("Illegal instruction in SDMA command stream\n"); 1592 1593 instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id); 1594 if (instance < 0) 1595 return 0; 1596 1597 switch (entry->ring_id) { 1598 case 0: 1599 drm_sched_fault(&adev->sdma.instance[instance].ring.sched); 1600 break; 1601 } 1602 return 0; 1603 } 1604 1605 static int sdma_v4_4_2_set_ecc_irq_state(struct amdgpu_device *adev, 1606 struct amdgpu_irq_src *source, 1607 unsigned type, 1608 enum amdgpu_interrupt_state state) 1609 { 1610 u32 sdma_cntl; 1611 1612 sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL); 1613 switch (state) { 1614 case AMDGPU_IRQ_STATE_DISABLE: 1615 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, 1616 DRAM_ECC_INT_ENABLE, 0); 1617 WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl); 1618 break; 1619 /* sdma ecc interrupt is enabled by default 1620 * driver doesn't need to do anything to 1621 * enable the interrupt */ 1622 case AMDGPU_IRQ_STATE_ENABLE: 1623 default: 1624 break; 1625 } 1626 1627 return 0; 1628 } 1629 1630 static int sdma_v4_4_2_print_iv_entry(struct amdgpu_device *adev, 1631 struct amdgpu_iv_entry *entry) 1632 { 1633 int instance; 1634 struct amdgpu_task_info task_info; 1635 u64 addr; 1636 1637 instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id); 1638 if (instance < 0 || instance >= adev->sdma.num_instances) { 1639 dev_err(adev->dev, "sdma instance invalid %d\n", instance); 1640 return -EINVAL; 1641 } 1642 1643 addr = (u64)entry->src_data[0] << 12; 1644 addr |= ((u64)entry->src_data[1] & 0xf) << 44; 1645 1646 memset(&task_info, 0, sizeof(struct amdgpu_task_info)); 1647 amdgpu_vm_get_task_info(adev, entry->pasid, &task_info); 1648 1649 dev_dbg_ratelimited(adev->dev, 1650 "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u " 1651 "pasid:%u, for process %s pid %d thread %s pid %d\n", 1652 instance, addr, entry->src_id, entry->ring_id, entry->vmid, 1653 entry->pasid, task_info.process_name, task_info.tgid, 1654 task_info.task_name, task_info.pid); 1655 return 0; 1656 } 1657 1658 static int sdma_v4_4_2_process_vm_hole_irq(struct amdgpu_device *adev, 1659 struct amdgpu_irq_src *source, 1660 struct amdgpu_iv_entry *entry) 1661 { 1662 dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n"); 1663 sdma_v4_4_2_print_iv_entry(adev, entry); 1664 return 0; 1665 } 1666 1667 static int sdma_v4_4_2_process_doorbell_invalid_irq(struct amdgpu_device *adev, 1668 struct amdgpu_irq_src *source, 1669 struct amdgpu_iv_entry *entry) 1670 { 1671 1672 dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n"); 1673 sdma_v4_4_2_print_iv_entry(adev, entry); 1674 return 0; 1675 } 1676 1677 static int sdma_v4_4_2_process_pool_timeout_irq(struct amdgpu_device *adev, 1678 struct amdgpu_irq_src *source, 1679 struct amdgpu_iv_entry *entry) 1680 { 1681 dev_dbg_ratelimited(adev->dev, 1682 "Polling register/memory timeout executing POLL_REG/MEM with finite timer\n"); 1683 sdma_v4_4_2_print_iv_entry(adev, entry); 1684 return 0; 1685 } 1686 1687 static int sdma_v4_4_2_process_srbm_write_irq(struct amdgpu_device *adev, 1688 struct amdgpu_irq_src *source, 1689 struct amdgpu_iv_entry *entry) 1690 { 1691 dev_dbg_ratelimited(adev->dev, 1692 "SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n"); 1693 sdma_v4_4_2_print_iv_entry(adev, entry); 1694 return 0; 1695 } 1696 1697 static void sdma_v4_4_2_inst_update_medium_grain_light_sleep( 1698 struct amdgpu_device *adev, bool enable, uint32_t inst_mask) 1699 { 1700 uint32_t data, def; 1701 int i; 1702 1703 /* leave as default if it is not driver controlled */ 1704 if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) 1705 return; 1706 1707 if (enable) { 1708 for_each_inst(i, inst_mask) { 1709 /* 1-not override: enable sdma mem light sleep */ 1710 def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL); 1711 data |= SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 1712 if (def != data) 1713 WREG32_SDMA(i, regSDMA_POWER_CNTL, data); 1714 } 1715 } else { 1716 for_each_inst(i, inst_mask) { 1717 /* 0-override:disable sdma mem light sleep */ 1718 def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL); 1719 data &= ~SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; 1720 if (def != data) 1721 WREG32_SDMA(i, regSDMA_POWER_CNTL, data); 1722 } 1723 } 1724 } 1725 1726 static void sdma_v4_4_2_inst_update_medium_grain_clock_gating( 1727 struct amdgpu_device *adev, bool enable, uint32_t inst_mask) 1728 { 1729 uint32_t data, def; 1730 int i; 1731 1732 /* leave as default if it is not driver controlled */ 1733 if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) 1734 return; 1735 1736 if (enable) { 1737 for_each_inst(i, inst_mask) { 1738 def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL); 1739 data &= ~(SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK | 1740 SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK | 1741 SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK | 1742 SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK | 1743 SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK | 1744 SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK); 1745 if (def != data) 1746 WREG32_SDMA(i, regSDMA_CLK_CTRL, data); 1747 } 1748 } else { 1749 for_each_inst(i, inst_mask) { 1750 def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL); 1751 data |= (SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK | 1752 SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK | 1753 SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK | 1754 SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK | 1755 SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK | 1756 SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK); 1757 if (def != data) 1758 WREG32_SDMA(i, regSDMA_CLK_CTRL, data); 1759 } 1760 } 1761 } 1762 1763 static int sdma_v4_4_2_set_clockgating_state(void *handle, 1764 enum amd_clockgating_state state) 1765 { 1766 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1767 uint32_t inst_mask; 1768 1769 if (amdgpu_sriov_vf(adev)) 1770 return 0; 1771 1772 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); 1773 1774 sdma_v4_4_2_inst_update_medium_grain_clock_gating( 1775 adev, state == AMD_CG_STATE_GATE, inst_mask); 1776 sdma_v4_4_2_inst_update_medium_grain_light_sleep( 1777 adev, state == AMD_CG_STATE_GATE, inst_mask); 1778 return 0; 1779 } 1780 1781 static int sdma_v4_4_2_set_powergating_state(void *handle, 1782 enum amd_powergating_state state) 1783 { 1784 return 0; 1785 } 1786 1787 static void sdma_v4_4_2_get_clockgating_state(void *handle, u64 *flags) 1788 { 1789 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 1790 int data; 1791 1792 if (amdgpu_sriov_vf(adev)) 1793 *flags = 0; 1794 1795 /* AMD_CG_SUPPORT_SDMA_MGCG */ 1796 data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_CLK_CTRL)); 1797 if (!(data & SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK)) 1798 *flags |= AMD_CG_SUPPORT_SDMA_MGCG; 1799 1800 /* AMD_CG_SUPPORT_SDMA_LS */ 1801 data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_POWER_CNTL)); 1802 if (data & SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK) 1803 *flags |= AMD_CG_SUPPORT_SDMA_LS; 1804 } 1805 1806 const struct amd_ip_funcs sdma_v4_4_2_ip_funcs = { 1807 .name = "sdma_v4_4_2", 1808 .early_init = sdma_v4_4_2_early_init, 1809 .late_init = sdma_v4_4_2_late_init, 1810 .sw_init = sdma_v4_4_2_sw_init, 1811 .sw_fini = sdma_v4_4_2_sw_fini, 1812 .hw_init = sdma_v4_4_2_hw_init, 1813 .hw_fini = sdma_v4_4_2_hw_fini, 1814 .suspend = sdma_v4_4_2_suspend, 1815 .resume = sdma_v4_4_2_resume, 1816 .is_idle = sdma_v4_4_2_is_idle, 1817 .wait_for_idle = sdma_v4_4_2_wait_for_idle, 1818 .soft_reset = sdma_v4_4_2_soft_reset, 1819 .set_clockgating_state = sdma_v4_4_2_set_clockgating_state, 1820 .set_powergating_state = sdma_v4_4_2_set_powergating_state, 1821 .get_clockgating_state = sdma_v4_4_2_get_clockgating_state, 1822 }; 1823 1824 static const struct amdgpu_ring_funcs sdma_v4_4_2_ring_funcs = { 1825 .type = AMDGPU_RING_TYPE_SDMA, 1826 .align_mask = 0xf, 1827 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 1828 .support_64bit_ptrs = true, 1829 .get_rptr = sdma_v4_4_2_ring_get_rptr, 1830 .get_wptr = sdma_v4_4_2_ring_get_wptr, 1831 .set_wptr = sdma_v4_4_2_ring_set_wptr, 1832 .emit_frame_size = 1833 6 + /* sdma_v4_4_2_ring_emit_hdp_flush */ 1834 3 + /* hdp invalidate */ 1835 6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */ 1836 /* sdma_v4_4_2_ring_emit_vm_flush */ 1837 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 1838 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 1839 10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */ 1840 .emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */ 1841 .emit_ib = sdma_v4_4_2_ring_emit_ib, 1842 .emit_fence = sdma_v4_4_2_ring_emit_fence, 1843 .emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync, 1844 .emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush, 1845 .emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush, 1846 .test_ring = sdma_v4_4_2_ring_test_ring, 1847 .test_ib = sdma_v4_4_2_ring_test_ib, 1848 .insert_nop = sdma_v4_4_2_ring_insert_nop, 1849 .pad_ib = sdma_v4_4_2_ring_pad_ib, 1850 .emit_wreg = sdma_v4_4_2_ring_emit_wreg, 1851 .emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait, 1852 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 1853 }; 1854 1855 static const struct amdgpu_ring_funcs sdma_v4_4_2_page_ring_funcs = { 1856 .type = AMDGPU_RING_TYPE_SDMA, 1857 .align_mask = 0xf, 1858 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 1859 .support_64bit_ptrs = true, 1860 .get_rptr = sdma_v4_4_2_ring_get_rptr, 1861 .get_wptr = sdma_v4_4_2_page_ring_get_wptr, 1862 .set_wptr = sdma_v4_4_2_page_ring_set_wptr, 1863 .emit_frame_size = 1864 6 + /* sdma_v4_4_2_ring_emit_hdp_flush */ 1865 3 + /* hdp invalidate */ 1866 6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */ 1867 /* sdma_v4_4_2_ring_emit_vm_flush */ 1868 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + 1869 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 1870 10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */ 1871 .emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */ 1872 .emit_ib = sdma_v4_4_2_ring_emit_ib, 1873 .emit_fence = sdma_v4_4_2_ring_emit_fence, 1874 .emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync, 1875 .emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush, 1876 .emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush, 1877 .test_ring = sdma_v4_4_2_ring_test_ring, 1878 .test_ib = sdma_v4_4_2_ring_test_ib, 1879 .insert_nop = sdma_v4_4_2_ring_insert_nop, 1880 .pad_ib = sdma_v4_4_2_ring_pad_ib, 1881 .emit_wreg = sdma_v4_4_2_ring_emit_wreg, 1882 .emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait, 1883 .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, 1884 }; 1885 1886 static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev) 1887 { 1888 int i, dev_inst; 1889 1890 for (i = 0; i < adev->sdma.num_instances; i++) { 1891 adev->sdma.instance[i].ring.funcs = &sdma_v4_4_2_ring_funcs; 1892 adev->sdma.instance[i].ring.me = i; 1893 if (adev->sdma.has_page_queue) { 1894 adev->sdma.instance[i].page.funcs = 1895 &sdma_v4_4_2_page_ring_funcs; 1896 adev->sdma.instance[i].page.me = i; 1897 } 1898 1899 dev_inst = GET_INST(SDMA0, i); 1900 /* AID to which SDMA belongs depends on physical instance */ 1901 adev->sdma.instance[i].aid_id = 1902 dev_inst / adev->sdma.num_inst_per_aid; 1903 } 1904 } 1905 1906 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_trap_irq_funcs = { 1907 .set = sdma_v4_4_2_set_trap_irq_state, 1908 .process = sdma_v4_4_2_process_trap_irq, 1909 }; 1910 1911 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_illegal_inst_irq_funcs = { 1912 .process = sdma_v4_4_2_process_illegal_inst_irq, 1913 }; 1914 1915 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_ecc_irq_funcs = { 1916 .set = sdma_v4_4_2_set_ecc_irq_state, 1917 .process = amdgpu_sdma_process_ecc_irq, 1918 }; 1919 1920 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_vm_hole_irq_funcs = { 1921 .process = sdma_v4_4_2_process_vm_hole_irq, 1922 }; 1923 1924 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_doorbell_invalid_irq_funcs = { 1925 .process = sdma_v4_4_2_process_doorbell_invalid_irq, 1926 }; 1927 1928 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_pool_timeout_irq_funcs = { 1929 .process = sdma_v4_4_2_process_pool_timeout_irq, 1930 }; 1931 1932 static const struct amdgpu_irq_src_funcs sdma_v4_4_2_srbm_write_irq_funcs = { 1933 .process = sdma_v4_4_2_process_srbm_write_irq, 1934 }; 1935 1936 static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev) 1937 { 1938 adev->sdma.trap_irq.num_types = adev->sdma.num_instances; 1939 adev->sdma.ecc_irq.num_types = adev->sdma.num_instances; 1940 adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances; 1941 adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances; 1942 adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances; 1943 adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances; 1944 1945 adev->sdma.trap_irq.funcs = &sdma_v4_4_2_trap_irq_funcs; 1946 adev->sdma.illegal_inst_irq.funcs = &sdma_v4_4_2_illegal_inst_irq_funcs; 1947 adev->sdma.ecc_irq.funcs = &sdma_v4_4_2_ecc_irq_funcs; 1948 adev->sdma.vm_hole_irq.funcs = &sdma_v4_4_2_vm_hole_irq_funcs; 1949 adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_4_2_doorbell_invalid_irq_funcs; 1950 adev->sdma.pool_timeout_irq.funcs = &sdma_v4_4_2_pool_timeout_irq_funcs; 1951 adev->sdma.srbm_write_irq.funcs = &sdma_v4_4_2_srbm_write_irq_funcs; 1952 } 1953 1954 /** 1955 * sdma_v4_4_2_emit_copy_buffer - copy buffer using the sDMA engine 1956 * 1957 * @ib: indirect buffer to copy to 1958 * @src_offset: src GPU address 1959 * @dst_offset: dst GPU address 1960 * @byte_count: number of bytes to xfer 1961 * @tmz: if a secure copy should be used 1962 * 1963 * Copy GPU buffers using the DMA engine. 1964 * Used by the amdgpu ttm implementation to move pages if 1965 * registered as the asic copy callback. 1966 */ 1967 static void sdma_v4_4_2_emit_copy_buffer(struct amdgpu_ib *ib, 1968 uint64_t src_offset, 1969 uint64_t dst_offset, 1970 uint32_t byte_count, 1971 bool tmz) 1972 { 1973 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | 1974 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) | 1975 SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0); 1976 ib->ptr[ib->length_dw++] = byte_count - 1; 1977 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ 1978 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); 1979 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); 1980 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 1981 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 1982 } 1983 1984 /** 1985 * sdma_v4_4_2_emit_fill_buffer - fill buffer using the sDMA engine 1986 * 1987 * @ib: indirect buffer to copy to 1988 * @src_data: value to write to buffer 1989 * @dst_offset: dst GPU address 1990 * @byte_count: number of bytes to xfer 1991 * 1992 * Fill GPU buffers using the DMA engine. 1993 */ 1994 static void sdma_v4_4_2_emit_fill_buffer(struct amdgpu_ib *ib, 1995 uint32_t src_data, 1996 uint64_t dst_offset, 1997 uint32_t byte_count) 1998 { 1999 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); 2000 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); 2001 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); 2002 ib->ptr[ib->length_dw++] = src_data; 2003 ib->ptr[ib->length_dw++] = byte_count - 1; 2004 } 2005 2006 static const struct amdgpu_buffer_funcs sdma_v4_4_2_buffer_funcs = { 2007 .copy_max_bytes = 0x400000, 2008 .copy_num_dw = 7, 2009 .emit_copy_buffer = sdma_v4_4_2_emit_copy_buffer, 2010 2011 .fill_max_bytes = 0x400000, 2012 .fill_num_dw = 5, 2013 .emit_fill_buffer = sdma_v4_4_2_emit_fill_buffer, 2014 }; 2015 2016 static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev) 2017 { 2018 adev->mman.buffer_funcs = &sdma_v4_4_2_buffer_funcs; 2019 if (adev->sdma.has_page_queue) 2020 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page; 2021 else 2022 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; 2023 } 2024 2025 static const struct amdgpu_vm_pte_funcs sdma_v4_4_2_vm_pte_funcs = { 2026 .copy_pte_num_dw = 7, 2027 .copy_pte = sdma_v4_4_2_vm_copy_pte, 2028 2029 .write_pte = sdma_v4_4_2_vm_write_pte, 2030 .set_pte_pde = sdma_v4_4_2_vm_set_pte_pde, 2031 }; 2032 2033 static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev) 2034 { 2035 struct drm_gpu_scheduler *sched; 2036 unsigned i; 2037 2038 adev->vm_manager.vm_pte_funcs = &sdma_v4_4_2_vm_pte_funcs; 2039 for (i = 0; i < adev->sdma.num_instances; i++) { 2040 if (adev->sdma.has_page_queue) 2041 sched = &adev->sdma.instance[i].page.sched; 2042 else 2043 sched = &adev->sdma.instance[i].ring.sched; 2044 adev->vm_manager.vm_pte_scheds[i] = sched; 2045 } 2046 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances; 2047 } 2048 2049 const struct amdgpu_ip_block_version sdma_v4_4_2_ip_block = { 2050 .type = AMD_IP_BLOCK_TYPE_SDMA, 2051 .major = 4, 2052 .minor = 4, 2053 .rev = 0, 2054 .funcs = &sdma_v4_4_2_ip_funcs, 2055 }; 2056 2057 static int sdma_v4_4_2_xcp_resume(void *handle, uint32_t inst_mask) 2058 { 2059 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2060 int r; 2061 2062 if (!amdgpu_sriov_vf(adev)) 2063 sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask); 2064 2065 r = sdma_v4_4_2_inst_start(adev, inst_mask); 2066 2067 return r; 2068 } 2069 2070 static int sdma_v4_4_2_xcp_suspend(void *handle, uint32_t inst_mask) 2071 { 2072 struct amdgpu_device *adev = (struct amdgpu_device *)handle; 2073 uint32_t tmp_mask = inst_mask; 2074 int i; 2075 2076 for_each_inst(i, tmp_mask) { 2077 amdgpu_irq_put(adev, &adev->sdma.ecc_irq, 2078 AMDGPU_SDMA_IRQ_INSTANCE0 + i); 2079 } 2080 2081 sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask); 2082 sdma_v4_4_2_inst_enable(adev, false, inst_mask); 2083 2084 return 0; 2085 } 2086 2087 struct amdgpu_xcp_ip_funcs sdma_v4_4_2_xcp_funcs = { 2088 .suspend = &sdma_v4_4_2_xcp_suspend, 2089 .resume = &sdma_v4_4_2_xcp_resume 2090 }; 2091 2092 static const struct amdgpu_ras_err_status_reg_entry sdma_v4_2_2_ue_reg_list[] = { 2093 {AMDGPU_RAS_REG_ENTRY(SDMA0, 0, regSDMA_UE_ERR_STATUS_LO, regSDMA_UE_ERR_STATUS_HI), 2094 1, (AMDGPU_RAS_ERR_INFO_VALID | AMDGPU_RAS_ERR_STATUS_VALID), "SDMA"}, 2095 }; 2096 2097 static const struct amdgpu_ras_memory_id_entry sdma_v4_4_2_ras_memory_list[] = { 2098 {AMDGPU_SDMA_MBANK_DATA_BUF0, "SDMA_MBANK_DATA_BUF0"}, 2099 {AMDGPU_SDMA_MBANK_DATA_BUF1, "SDMA_MBANK_DATA_BUF1"}, 2100 {AMDGPU_SDMA_MBANK_DATA_BUF2, "SDMA_MBANK_DATA_BUF2"}, 2101 {AMDGPU_SDMA_MBANK_DATA_BUF3, "SDMA_MBANK_DATA_BUF3"}, 2102 {AMDGPU_SDMA_MBANK_DATA_BUF4, "SDMA_MBANK_DATA_BUF4"}, 2103 {AMDGPU_SDMA_MBANK_DATA_BUF5, "SDMA_MBANK_DATA_BUF5"}, 2104 {AMDGPU_SDMA_MBANK_DATA_BUF6, "SDMA_MBANK_DATA_BUF6"}, 2105 {AMDGPU_SDMA_MBANK_DATA_BUF7, "SDMA_MBANK_DATA_BUF7"}, 2106 {AMDGPU_SDMA_MBANK_DATA_BUF8, "SDMA_MBANK_DATA_BUF8"}, 2107 {AMDGPU_SDMA_MBANK_DATA_BUF9, "SDMA_MBANK_DATA_BUF9"}, 2108 {AMDGPU_SDMA_MBANK_DATA_BUF10, "SDMA_MBANK_DATA_BUF10"}, 2109 {AMDGPU_SDMA_MBANK_DATA_BUF11, "SDMA_MBANK_DATA_BUF11"}, 2110 {AMDGPU_SDMA_MBANK_DATA_BUF12, "SDMA_MBANK_DATA_BUF12"}, 2111 {AMDGPU_SDMA_MBANK_DATA_BUF13, "SDMA_MBANK_DATA_BUF13"}, 2112 {AMDGPU_SDMA_MBANK_DATA_BUF14, "SDMA_MBANK_DATA_BUF14"}, 2113 {AMDGPU_SDMA_MBANK_DATA_BUF15, "SDMA_MBANK_DATA_BUF15"}, 2114 {AMDGPU_SDMA_UCODE_BUF, "SDMA_UCODE_BUF"}, 2115 {AMDGPU_SDMA_RB_CMD_BUF, "SDMA_RB_CMD_BUF"}, 2116 {AMDGPU_SDMA_IB_CMD_BUF, "SDMA_IB_CMD_BUF"}, 2117 {AMDGPU_SDMA_UTCL1_RD_FIFO, "SDMA_UTCL1_RD_FIFO"}, 2118 {AMDGPU_SDMA_UTCL1_RDBST_FIFO, "SDMA_UTCL1_RDBST_FIFO"}, 2119 {AMDGPU_SDMA_UTCL1_WR_FIFO, "SDMA_UTCL1_WR_FIFO"}, 2120 {AMDGPU_SDMA_DATA_LUT_FIFO, "SDMA_DATA_LUT_FIFO"}, 2121 {AMDGPU_SDMA_SPLIT_DAT_BUF, "SDMA_SPLIT_DAT_BUF"}, 2122 }; 2123 2124 static void sdma_v4_4_2_inst_query_ras_error_count(struct amdgpu_device *adev, 2125 uint32_t sdma_inst, 2126 void *ras_err_status) 2127 { 2128 struct ras_err_data *err_data = (struct ras_err_data *)ras_err_status; 2129 uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst); 2130 2131 /* sdma v4_4_2 doesn't support query ce counts */ 2132 amdgpu_ras_inst_query_ras_error_count(adev, 2133 sdma_v4_2_2_ue_reg_list, 2134 ARRAY_SIZE(sdma_v4_2_2_ue_reg_list), 2135 sdma_v4_4_2_ras_memory_list, 2136 ARRAY_SIZE(sdma_v4_4_2_ras_memory_list), 2137 sdma_dev_inst, 2138 AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE, 2139 &err_data->ue_count); 2140 } 2141 2142 static void sdma_v4_4_2_query_ras_error_count(struct amdgpu_device *adev, 2143 void *ras_err_status) 2144 { 2145 uint32_t inst_mask; 2146 int i = 0; 2147 2148 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); 2149 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { 2150 for_each_inst(i, inst_mask) 2151 sdma_v4_4_2_inst_query_ras_error_count(adev, i, ras_err_status); 2152 } else { 2153 dev_warn(adev->dev, "SDMA RAS is not supported\n"); 2154 } 2155 } 2156 2157 static void sdma_v4_4_2_inst_reset_ras_error_count(struct amdgpu_device *adev, 2158 uint32_t sdma_inst) 2159 { 2160 uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst); 2161 2162 amdgpu_ras_inst_reset_ras_error_count(adev, 2163 sdma_v4_2_2_ue_reg_list, 2164 ARRAY_SIZE(sdma_v4_2_2_ue_reg_list), 2165 sdma_dev_inst); 2166 } 2167 2168 static void sdma_v4_4_2_reset_ras_error_count(struct amdgpu_device *adev) 2169 { 2170 uint32_t inst_mask; 2171 int i = 0; 2172 2173 inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); 2174 if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { 2175 for_each_inst(i, inst_mask) 2176 sdma_v4_4_2_inst_reset_ras_error_count(adev, i); 2177 } else { 2178 dev_warn(adev->dev, "SDMA RAS is not supported\n"); 2179 } 2180 } 2181 2182 static const struct amdgpu_ras_block_hw_ops sdma_v4_4_2_ras_hw_ops = { 2183 .query_ras_error_count = sdma_v4_4_2_query_ras_error_count, 2184 .reset_ras_error_count = sdma_v4_4_2_reset_ras_error_count, 2185 }; 2186 2187 static struct amdgpu_sdma_ras sdma_v4_4_2_ras = { 2188 .ras_block = { 2189 .hw_ops = &sdma_v4_4_2_ras_hw_ops, 2190 }, 2191 }; 2192 2193 static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev) 2194 { 2195 adev->sdma.ras = &sdma_v4_4_2_ras; 2196 } 2197