1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include <linux/mmu_context.h>
23 #include "amdgpu.h"
24 #include "amdgpu_amdkfd.h"
25 #include "gc/gc_10_3_0_offset.h"
26 #include "gc/gc_10_3_0_sh_mask.h"
27 #include "oss/osssys_5_0_0_offset.h"
28 #include "oss/osssys_5_0_0_sh_mask.h"
29 #include "soc15_common.h"
30 #include "v10_structs.h"
31 #include "nv.h"
32 #include "nvd.h"
33 
34 enum hqd_dequeue_request_type {
35 	NO_ACTION = 0,
36 	DRAIN_PIPE,
37 	RESET_WAVES,
38 	SAVE_WAVES
39 };
40 
41 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
42 {
43 	return (struct amdgpu_device *)kgd;
44 }
45 
46 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
47 			uint32_t queue, uint32_t vmid)
48 {
49 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
50 
51 	mutex_lock(&adev->srbm_mutex);
52 	nv_grbm_select(adev, mec, pipe, queue, vmid);
53 }
54 
55 static void unlock_srbm(struct kgd_dev *kgd)
56 {
57 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
58 
59 	nv_grbm_select(adev, 0, 0, 0, 0);
60 	mutex_unlock(&adev->srbm_mutex);
61 }
62 
63 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
64 				uint32_t queue_id)
65 {
66 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
67 
68 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
69 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
70 
71 	lock_srbm(kgd, mec, pipe, queue_id, 0);
72 }
73 
74 static uint64_t get_queue_mask(struct amdgpu_device *adev,
75 			       uint32_t pipe_id, uint32_t queue_id)
76 {
77 	unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
78 			queue_id;
79 
80 	return 1ull << bit;
81 }
82 
83 static void release_queue(struct kgd_dev *kgd)
84 {
85 	unlock_srbm(kgd);
86 }
87 
88 static void program_sh_mem_settings_v10_3(struct kgd_dev *kgd, uint32_t vmid,
89 					uint32_t sh_mem_config,
90 					uint32_t sh_mem_ape1_base,
91 					uint32_t sh_mem_ape1_limit,
92 					uint32_t sh_mem_bases)
93 {
94 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
95 
96 	lock_srbm(kgd, 0, 0, 0, vmid);
97 
98 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_CONFIG), sh_mem_config);
99 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_BASES), sh_mem_bases);
100 	/* APE1 no longer exists on GFX9 */
101 
102 	unlock_srbm(kgd);
103 }
104 
105 /* ATC is defeatured on Sienna_Cichlid */
106 static int set_pasid_vmid_mapping_v10_3(struct kgd_dev *kgd, unsigned int pasid,
107 					unsigned int vmid)
108 {
109 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
110 
111 	uint32_t value = pasid << IH_VMID_0_LUT__PASID__SHIFT;
112 
113 	/* Mapping vmid to pasid also for IH block */
114 	pr_debug("mapping vmid %d -> pasid %d in IH block for GFX client\n",
115 			vmid, pasid);
116 	WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid, value);
117 
118 	return 0;
119 }
120 
121 static int init_interrupts_v10_3(struct kgd_dev *kgd, uint32_t pipe_id)
122 {
123 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
124 	uint32_t mec;
125 	uint32_t pipe;
126 
127 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
128 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
129 
130 	lock_srbm(kgd, mec, pipe, 0, 0);
131 
132 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCPC_INT_CNTL),
133 		CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
134 		CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
135 
136 	unlock_srbm(kgd);
137 
138 	return 0;
139 }
140 
141 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
142 				unsigned int engine_id,
143 				unsigned int queue_id)
144 {
145 	uint32_t sdma_engine_reg_base = 0;
146 	uint32_t sdma_rlc_reg_offset;
147 
148 	switch (engine_id) {
149 	default:
150 		dev_warn(adev->dev,
151 			 "Invalid sdma engine id (%d), using engine id 0\n",
152 			 engine_id);
153 		fallthrough;
154 	case 0:
155 		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0,
156 				mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
157 		break;
158 	case 1:
159 		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA1, 0,
160 				mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
161 		break;
162 	case 2:
163 		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA2, 0,
164 				mmSDMA2_RLC0_RB_CNTL) - mmSDMA2_RLC0_RB_CNTL;
165 		break;
166 	case 3:
167 		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA3, 0,
168 				mmSDMA3_RLC0_RB_CNTL) - mmSDMA2_RLC0_RB_CNTL;
169 		break;
170 	}
171 
172 	sdma_rlc_reg_offset = sdma_engine_reg_base
173 		+ queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
174 
175 	pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
176 			queue_id, sdma_rlc_reg_offset);
177 
178 	return sdma_rlc_reg_offset;
179 }
180 
181 static inline struct v10_compute_mqd *get_mqd(void *mqd)
182 {
183 	return (struct v10_compute_mqd *)mqd;
184 }
185 
186 static inline struct v10_sdma_mqd *get_sdma_mqd(void *mqd)
187 {
188 	return (struct v10_sdma_mqd *)mqd;
189 }
190 
191 static int hqd_load_v10_3(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
192 			uint32_t queue_id, uint32_t __user *wptr,
193 			uint32_t wptr_shift, uint32_t wptr_mask,
194 			struct mm_struct *mm)
195 {
196 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
197 	struct v10_compute_mqd *m;
198 	uint32_t *mqd_hqd;
199 	uint32_t reg, hqd_base, data;
200 
201 	m = get_mqd(mqd);
202 
203 	pr_debug("Load hqd of pipe %d queue %d\n", pipe_id, queue_id);
204 	acquire_queue(kgd, pipe_id, queue_id);
205 
206 	/* HIQ is set during driver init period with vmid set to 0*/
207 	if (m->cp_hqd_vmid == 0) {
208 		uint32_t value, mec, pipe;
209 
210 		mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
211 		pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
212 
213 		pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
214 			mec, pipe, queue_id);
215 		value = RREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_CP_SCHEDULERS));
216 		value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
217 			((mec << 5) | (pipe << 3) | queue_id | 0x80));
218 		WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_CP_SCHEDULERS), value);
219 	}
220 
221 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
222 	mqd_hqd = &m->cp_mqd_base_addr_lo;
223 	hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
224 
225 	for (reg = hqd_base;
226 	     reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
227 		WREG32(reg, mqd_hqd[reg - hqd_base]);
228 
229 
230 	/* Activate doorbell logic before triggering WPTR poll. */
231 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
232 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
233 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL), data);
234 
235 	if (wptr) {
236 		/* Don't read wptr with get_user because the user
237 		 * context may not be accessible (if this function
238 		 * runs in a work queue). Instead trigger a one-shot
239 		 * polling read from memory in the CP. This assumes
240 		 * that wptr is GPU-accessible in the queue's VMID via
241 		 * ATC or SVM. WPTR==RPTR before starting the poll so
242 		 * the CP starts fetching new commands from the right
243 		 * place.
244 		 *
245 		 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
246 		 * tricky. Assume that the queue didn't overflow. The
247 		 * number of valid bits in the 32-bit RPTR depends on
248 		 * the queue size. The remaining bits are taken from
249 		 * the saved 64-bit WPTR. If the WPTR wrapped, add the
250 		 * queue size.
251 		 */
252 		uint32_t queue_size =
253 			2 << REG_GET_FIELD(m->cp_hqd_pq_control,
254 					   CP_HQD_PQ_CONTROL, QUEUE_SIZE);
255 		uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
256 
257 		if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
258 			guessed_wptr += queue_size;
259 		guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
260 		guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
261 
262 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_LO),
263 		       lower_32_bits(guessed_wptr));
264 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI),
265 		       upper_32_bits(guessed_wptr));
266 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR),
267 		       lower_32_bits((uint64_t)wptr));
268 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI),
269 		       upper_32_bits((uint64_t)wptr));
270 		pr_debug("%s setting CP_PQ_WPTR_POLL_CNTL1 to %x\n", __func__,
271 			 (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
272 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1),
273 		       (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
274 	}
275 
276 	/* Start the EOP fetcher */
277 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_EOP_RPTR),
278 	       REG_SET_FIELD(m->cp_hqd_eop_rptr,
279 			     CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
280 
281 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
282 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE), data);
283 
284 	release_queue(kgd);
285 
286 	return 0;
287 }
288 
289 static int hiq_mqd_load_v10_3(struct kgd_dev *kgd, void *mqd,
290 			    uint32_t pipe_id, uint32_t queue_id,
291 			    uint32_t doorbell_off)
292 {
293 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
294 	struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring;
295 	struct v10_compute_mqd *m;
296 	uint32_t mec, pipe;
297 	int r;
298 
299 	m = get_mqd(mqd);
300 
301 	acquire_queue(kgd, pipe_id, queue_id);
302 
303 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
304 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
305 
306 	pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
307 		 mec, pipe, queue_id);
308 
309 	spin_lock(&adev->gfx.kiq.ring_lock);
310 	r = amdgpu_ring_alloc(kiq_ring, 7);
311 	if (r) {
312 		pr_err("Failed to alloc KIQ (%d).\n", r);
313 		goto out_unlock;
314 	}
315 
316 	amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
317 	amdgpu_ring_write(kiq_ring,
318 			  PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
319 			  PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
320 			  PACKET3_MAP_QUEUES_QUEUE(queue_id) |
321 			  PACKET3_MAP_QUEUES_PIPE(pipe) |
322 			  PACKET3_MAP_QUEUES_ME((mec - 1)) |
323 			  PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
324 			  PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
325 			  PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
326 			  PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
327 	amdgpu_ring_write(kiq_ring,
328 			  PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
329 	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
330 	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
331 	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
332 	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
333 	amdgpu_ring_commit(kiq_ring);
334 
335 out_unlock:
336 	spin_unlock(&adev->gfx.kiq.ring_lock);
337 	release_queue(kgd);
338 
339 	return r;
340 }
341 
342 static int hqd_dump_v10_3(struct kgd_dev *kgd,
343 			uint32_t pipe_id, uint32_t queue_id,
344 			uint32_t (**dump)[2], uint32_t *n_regs)
345 {
346 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
347 	uint32_t i = 0, reg;
348 #define HQD_N_REGS 56
349 #define DUMP_REG(addr) do {				\
350 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
351 			break;				\
352 		(*dump)[i][0] = (addr) << 2;		\
353 		(*dump)[i++][1] = RREG32(addr);		\
354 	} while (0)
355 
356 	*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
357 	if (*dump == NULL)
358 		return -ENOMEM;
359 
360 	acquire_queue(kgd, pipe_id, queue_id);
361 
362 	for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
363 	     reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
364 		DUMP_REG(reg);
365 
366 	release_queue(kgd);
367 
368 	WARN_ON_ONCE(i != HQD_N_REGS);
369 	*n_regs = i;
370 
371 	return 0;
372 }
373 
374 static int hqd_sdma_load_v10_3(struct kgd_dev *kgd, void *mqd,
375 			     uint32_t __user *wptr, struct mm_struct *mm)
376 {
377 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
378 	struct v10_sdma_mqd *m;
379 	uint32_t sdma_rlc_reg_offset;
380 	unsigned long end_jiffies;
381 	uint32_t data;
382 	uint64_t data64;
383 	uint64_t __user *wptr64 = (uint64_t __user *)wptr;
384 
385 	m = get_sdma_mqd(mqd);
386 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
387 					    m->sdma_queue_id);
388 
389 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
390 		m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
391 
392 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
393 	while (true) {
394 		data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
395 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
396 			break;
397 		if (time_after(jiffies, end_jiffies)) {
398 			pr_err("SDMA RLC not idle in %s\n", __func__);
399 			return -ETIME;
400 		}
401 		usleep_range(500, 1000);
402 	}
403 
404 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
405 	       m->sdmax_rlcx_doorbell_offset);
406 
407 	data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
408 			     ENABLE, 1);
409 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
410 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
411 				m->sdmax_rlcx_rb_rptr);
412 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
413 				m->sdmax_rlcx_rb_rptr_hi);
414 
415 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
416 	if (read_user_wptr(mm, wptr64, data64)) {
417 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
418 		       lower_32_bits(data64));
419 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
420 		       upper_32_bits(data64));
421 	} else {
422 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
423 		       m->sdmax_rlcx_rb_rptr);
424 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
425 		       m->sdmax_rlcx_rb_rptr_hi);
426 	}
427 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
428 
429 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
430 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
431 			m->sdmax_rlcx_rb_base_hi);
432 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
433 			m->sdmax_rlcx_rb_rptr_addr_lo);
434 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
435 			m->sdmax_rlcx_rb_rptr_addr_hi);
436 
437 	data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
438 			     RB_ENABLE, 1);
439 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
440 
441 	return 0;
442 }
443 
444 static int hqd_sdma_dump_v10_3(struct kgd_dev *kgd,
445 			     uint32_t engine_id, uint32_t queue_id,
446 			     uint32_t (**dump)[2], uint32_t *n_regs)
447 {
448 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
449 	uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
450 			engine_id, queue_id);
451 	uint32_t i = 0, reg;
452 #undef HQD_N_REGS
453 #define HQD_N_REGS (19+6+7+10)
454 
455 	*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
456 	if (*dump == NULL)
457 		return -ENOMEM;
458 
459 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
460 		DUMP_REG(sdma_rlc_reg_offset + reg);
461 	for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
462 		DUMP_REG(sdma_rlc_reg_offset + reg);
463 	for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
464 	     reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
465 		DUMP_REG(sdma_rlc_reg_offset + reg);
466 	for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
467 	     reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
468 		DUMP_REG(sdma_rlc_reg_offset + reg);
469 
470 	WARN_ON_ONCE(i != HQD_N_REGS);
471 	*n_regs = i;
472 
473 	return 0;
474 }
475 
476 static bool hqd_is_occupied_v10_3(struct kgd_dev *kgd, uint64_t queue_address,
477 				uint32_t pipe_id, uint32_t queue_id)
478 {
479 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
480 	uint32_t act;
481 	bool retval = false;
482 	uint32_t low, high;
483 
484 	acquire_queue(kgd, pipe_id, queue_id);
485 	act = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE));
486 	if (act) {
487 		low = lower_32_bits(queue_address >> 8);
488 		high = upper_32_bits(queue_address >> 8);
489 
490 		if (low == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE)) &&
491 		   high == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE_HI)))
492 			retval = true;
493 	}
494 	release_queue(kgd);
495 	return retval;
496 }
497 
498 static bool hqd_sdma_is_occupied_v10_3(struct kgd_dev *kgd, void *mqd)
499 {
500 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
501 	struct v10_sdma_mqd *m;
502 	uint32_t sdma_rlc_reg_offset;
503 	uint32_t sdma_rlc_rb_cntl;
504 
505 	m = get_sdma_mqd(mqd);
506 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
507 					    m->sdma_queue_id);
508 
509 	sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
510 
511 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
512 		return true;
513 
514 	return false;
515 }
516 
517 static int hqd_destroy_v10_3(struct kgd_dev *kgd, void *mqd,
518 				enum kfd_preempt_type reset_type,
519 				unsigned int utimeout, uint32_t pipe_id,
520 				uint32_t queue_id)
521 {
522 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
523 	enum hqd_dequeue_request_type type;
524 	unsigned long end_jiffies;
525 	uint32_t temp;
526 	struct v10_compute_mqd *m = get_mqd(mqd);
527 
528 	acquire_queue(kgd, pipe_id, queue_id);
529 
530 	if (m->cp_hqd_vmid == 0)
531 		WREG32_FIELD15(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0);
532 
533 	switch (reset_type) {
534 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
535 		type = DRAIN_PIPE;
536 		break;
537 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
538 		type = RESET_WAVES;
539 		break;
540 	default:
541 		type = DRAIN_PIPE;
542 		break;
543 	}
544 
545 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_DEQUEUE_REQUEST), type);
546 
547 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
548 	while (true) {
549 		temp = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE));
550 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
551 			break;
552 		if (time_after(jiffies, end_jiffies)) {
553 			pr_err("cp queue pipe %d queue %d preemption failed\n",
554 					pipe_id, queue_id);
555 			release_queue(kgd);
556 			return -ETIME;
557 		}
558 		usleep_range(500, 1000);
559 	}
560 
561 	release_queue(kgd);
562 	return 0;
563 }
564 
565 static int hqd_sdma_destroy_v10_3(struct kgd_dev *kgd, void *mqd,
566 				unsigned int utimeout)
567 {
568 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
569 	struct v10_sdma_mqd *m;
570 	uint32_t sdma_rlc_reg_offset;
571 	uint32_t temp;
572 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
573 
574 	m = get_sdma_mqd(mqd);
575 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
576 					    m->sdma_queue_id);
577 
578 	temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
579 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
580 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
581 
582 	while (true) {
583 		temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
584 		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
585 			break;
586 		if (time_after(jiffies, end_jiffies)) {
587 			pr_err("SDMA RLC not idle in %s\n", __func__);
588 			return -ETIME;
589 		}
590 		usleep_range(500, 1000);
591 	}
592 
593 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
594 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
595 		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
596 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
597 
598 	m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
599 	m->sdmax_rlcx_rb_rptr_hi =
600 		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
601 
602 	return 0;
603 }
604 
605 
606 static int address_watch_disable_v10_3(struct kgd_dev *kgd)
607 {
608 	return 0;
609 }
610 
611 static int address_watch_execute_v10_3(struct kgd_dev *kgd,
612 					unsigned int watch_point_id,
613 					uint32_t cntl_val,
614 					uint32_t addr_hi,
615 					uint32_t addr_lo)
616 {
617 	return 0;
618 }
619 
620 static int wave_control_execute_v10_3(struct kgd_dev *kgd,
621 					uint32_t gfx_index_val,
622 					uint32_t sq_cmd)
623 {
624 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
625 	uint32_t data = 0;
626 
627 	mutex_lock(&adev->grbm_idx_mutex);
628 
629 	WREG32(SOC15_REG_OFFSET(GC, 0, mmGRBM_GFX_INDEX), gfx_index_val);
630 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_CMD), sq_cmd);
631 
632 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
633 		INSTANCE_BROADCAST_WRITES, 1);
634 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
635 		SA_BROADCAST_WRITES, 1);
636 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
637 		SE_BROADCAST_WRITES, 1);
638 
639 	WREG32(SOC15_REG_OFFSET(GC, 0, mmGRBM_GFX_INDEX), data);
640 	mutex_unlock(&adev->grbm_idx_mutex);
641 
642 	return 0;
643 }
644 
645 static uint32_t address_watch_get_offset_v10_3(struct kgd_dev *kgd,
646 					unsigned int watch_point_id,
647 					unsigned int reg_offset)
648 {
649 	return 0;
650 }
651 
652 static void set_vm_context_page_table_base_v10_3(struct kgd_dev *kgd, uint32_t vmid,
653 		uint64_t page_table_base)
654 {
655 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
656 
657 	/* SDMA is on gfxhub as well for Navi1* series */
658 	adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
659 }
660 
661 #if 0
662 uint32_t enable_debug_trap_v10_3(struct kgd_dev *kgd,
663 				uint32_t trap_debug_wave_launch_mode,
664 				uint32_t vmid)
665 {
666 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
667 	uint32_t data = 0;
668 	uint32_t orig_wave_cntl_value;
669 	uint32_t orig_stall_vmid;
670 
671 	mutex_lock(&adev->grbm_idx_mutex);
672 
673 	orig_wave_cntl_value = RREG32(SOC15_REG_OFFSET(GC,
674 				0,
675 				mmSPI_GDBG_WAVE_CNTL));
676 	orig_stall_vmid = REG_GET_FIELD(orig_wave_cntl_value,
677 			SPI_GDBG_WAVE_CNTL,
678 			STALL_VMID);
679 
680 	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_RA, 1);
681 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data);
682 
683 	data = 0;
684 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), data);
685 
686 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), orig_stall_vmid);
687 
688 	mutex_unlock(&adev->grbm_idx_mutex);
689 
690 	return 0;
691 }
692 
693 uint32_t disable_debug_trap_v10_3(struct kgd_dev *kgd)
694 {
695 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
696 
697 	mutex_lock(&adev->grbm_idx_mutex);
698 
699 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
700 
701 	mutex_unlock(&adev->grbm_idx_mutex);
702 
703 	return 0;
704 }
705 
706 uint32_t set_wave_launch_trap_override_v10_3(struct kgd_dev *kgd,
707 						uint32_t trap_override,
708 						uint32_t trap_mask)
709 {
710 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
711 	uint32_t data = 0;
712 
713 	mutex_lock(&adev->grbm_idx_mutex);
714 
715 	data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
716 	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_RA, 1);
717 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data);
718 
719 	data = 0;
720 	data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK,
721 			EXCP_EN, trap_mask);
722 	data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK,
723 			REPLACE, trap_override);
724 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), data);
725 
726 	data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
727 	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_RA, 0);
728 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data);
729 
730 	mutex_unlock(&adev->grbm_idx_mutex);
731 
732 	return 0;
733 }
734 
735 uint32_t set_wave_launch_mode_v10_3(struct kgd_dev *kgd,
736 					uint8_t wave_launch_mode,
737 					uint32_t vmid)
738 {
739 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
740 	uint32_t data = 0;
741 	bool is_stall_mode;
742 	bool is_mode_set;
743 
744 	is_stall_mode = (wave_launch_mode == 4);
745 	is_mode_set = (wave_launch_mode != 0 && wave_launch_mode != 4);
746 
747 	mutex_lock(&adev->grbm_idx_mutex);
748 
749 	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
750 			VMID_MASK, is_mode_set ? 1 << vmid : 0);
751 	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
752 			MODE, is_mode_set ? wave_launch_mode : 0);
753 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL2), data);
754 
755 	data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
756 	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL,
757 			STALL_VMID, is_stall_mode ? 1 << vmid : 0);
758 	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL,
759 			STALL_RA, is_stall_mode ? 1 : 0);
760 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data);
761 
762 	mutex_unlock(&adev->grbm_idx_mutex);
763 
764 	return 0;
765 }
766 
767 /* kgd_get_iq_wait_times: Returns the mmCP_IQ_WAIT_TIME1/2 values
768  * The values read are:
769  *	ib_offload_wait_time     -- Wait Count for Indirect Buffer Offloads.
770  *	atomic_offload_wait_time -- Wait Count for L2 and GDS Atomics Offloads.
771  *	wrm_offload_wait_time    -- Wait Count for WAIT_REG_MEM Offloads.
772  *	gws_wait_time            -- Wait Count for Global Wave Syncs.
773  *	que_sleep_wait_time      -- Wait Count for Dequeue Retry.
774  *	sch_wave_wait_time       -- Wait Count for Scheduling Wave Message.
775  *	sem_rearm_wait_time      -- Wait Count for Semaphore re-arm.
776  *	deq_retry_wait_time      -- Wait Count for Global Wave Syncs.
777  */
778 void get_iq_wait_times_v10_3(struct kgd_dev *kgd,
779 					uint32_t *wait_times)
780 
781 {
782 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
783 
784 	*wait_times = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2));
785 }
786 
787 void build_grace_period_packet_info_v10_3(struct kgd_dev *kgd,
788 						uint32_t wait_times,
789 						uint32_t grace_period,
790 						uint32_t *reg_offset,
791 						uint32_t *reg_data)
792 {
793 	*reg_data = wait_times;
794 
795 	*reg_data = REG_SET_FIELD(*reg_data,
796 			CP_IQ_WAIT_TIME2,
797 			SCH_WAVE,
798 			grace_period);
799 
800 	*reg_offset = mmCP_IQ_WAIT_TIME2;
801 }
802 #endif
803 
804 const struct kfd2kgd_calls gfx_v10_3_kfd2kgd = {
805 	.program_sh_mem_settings = program_sh_mem_settings_v10_3,
806 	.set_pasid_vmid_mapping = set_pasid_vmid_mapping_v10_3,
807 	.init_interrupts = init_interrupts_v10_3,
808 	.hqd_load = hqd_load_v10_3,
809 	.hiq_mqd_load = hiq_mqd_load_v10_3,
810 	.hqd_sdma_load = hqd_sdma_load_v10_3,
811 	.hqd_dump = hqd_dump_v10_3,
812 	.hqd_sdma_dump = hqd_sdma_dump_v10_3,
813 	.hqd_is_occupied = hqd_is_occupied_v10_3,
814 	.hqd_sdma_is_occupied = hqd_sdma_is_occupied_v10_3,
815 	.hqd_destroy = hqd_destroy_v10_3,
816 	.hqd_sdma_destroy = hqd_sdma_destroy_v10_3,
817 	.address_watch_disable = address_watch_disable_v10_3,
818 	.address_watch_execute = address_watch_execute_v10_3,
819 	.wave_control_execute = wave_control_execute_v10_3,
820 	.address_watch_get_offset = address_watch_get_offset_v10_3,
821 	.get_atc_vmid_pasid_mapping_info = NULL,
822 	.set_vm_context_page_table_base = set_vm_context_page_table_base_v10_3,
823 #if 0
824 	.enable_debug_trap = enable_debug_trap_v10_3,
825 	.disable_debug_trap = disable_debug_trap_v10_3,
826 	.set_wave_launch_trap_override = set_wave_launch_trap_override_v10_3,
827 	.set_wave_launch_mode = set_wave_launch_mode_v10_3,
828 	.get_iq_wait_times = get_iq_wait_times_v10_3,
829 	.build_grace_period_packet_info = build_grace_period_packet_info_v10_3,
830 #endif
831 };
832