1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include <linux/mmu_context.h>
23 #include "amdgpu.h"
24 #include "amdgpu_amdkfd.h"
25 #include "gc/gc_10_3_0_offset.h"
26 #include "gc/gc_10_3_0_sh_mask.h"
27 #include "navi10_enum.h"
28 #include "oss/osssys_5_0_0_offset.h"
29 #include "oss/osssys_5_0_0_sh_mask.h"
30 #include "soc15_common.h"
31 #include "v10_structs.h"
32 #include "nv.h"
33 #include "nvd.h"
34 
35 enum hqd_dequeue_request_type {
36 	NO_ACTION = 0,
37 	DRAIN_PIPE,
38 	RESET_WAVES,
39 	SAVE_WAVES
40 };
41 
42 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
43 {
44 	return (struct amdgpu_device *)kgd;
45 }
46 
47 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
48 			uint32_t queue, uint32_t vmid)
49 {
50 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
51 
52 	mutex_lock(&adev->srbm_mutex);
53 	nv_grbm_select(adev, mec, pipe, queue, vmid);
54 }
55 
56 static void unlock_srbm(struct kgd_dev *kgd)
57 {
58 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
59 
60 	nv_grbm_select(adev, 0, 0, 0, 0);
61 	mutex_unlock(&adev->srbm_mutex);
62 }
63 
64 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
65 				uint32_t queue_id)
66 {
67 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
68 
69 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
70 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
71 
72 	lock_srbm(kgd, mec, pipe, queue_id, 0);
73 }
74 
75 static uint64_t get_queue_mask(struct amdgpu_device *adev,
76 			       uint32_t pipe_id, uint32_t queue_id)
77 {
78 	unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
79 			queue_id;
80 
81 	return 1ull << bit;
82 }
83 
84 static void release_queue(struct kgd_dev *kgd)
85 {
86 	unlock_srbm(kgd);
87 }
88 
89 static void program_sh_mem_settings_v10_3(struct kgd_dev *kgd, uint32_t vmid,
90 					uint32_t sh_mem_config,
91 					uint32_t sh_mem_ape1_base,
92 					uint32_t sh_mem_ape1_limit,
93 					uint32_t sh_mem_bases)
94 {
95 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
96 
97 	lock_srbm(kgd, 0, 0, 0, vmid);
98 
99 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_CONFIG), sh_mem_config);
100 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_BASES), sh_mem_bases);
101 	/* APE1 no longer exists on GFX9 */
102 
103 	unlock_srbm(kgd);
104 }
105 
106 /* ATC is defeatured on Sienna_Cichlid */
107 static int set_pasid_vmid_mapping_v10_3(struct kgd_dev *kgd, unsigned int pasid,
108 					unsigned int vmid)
109 {
110 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
111 
112 	uint32_t value = pasid << IH_VMID_0_LUT__PASID__SHIFT;
113 
114 	/* Mapping vmid to pasid also for IH block */
115 	pr_debug("mapping vmid %d -> pasid %d in IH block for GFX client\n",
116 			vmid, pasid);
117 	WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid, value);
118 
119 	return 0;
120 }
121 
122 static int init_interrupts_v10_3(struct kgd_dev *kgd, uint32_t pipe_id)
123 {
124 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
125 	uint32_t mec;
126 	uint32_t pipe;
127 
128 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
129 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
130 
131 	lock_srbm(kgd, mec, pipe, 0, 0);
132 
133 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCPC_INT_CNTL),
134 		CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
135 		CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
136 
137 	unlock_srbm(kgd);
138 
139 	return 0;
140 }
141 
142 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
143 				unsigned int engine_id,
144 				unsigned int queue_id)
145 {
146 	uint32_t sdma_engine_reg_base = 0;
147 	uint32_t sdma_rlc_reg_offset;
148 
149 	switch (engine_id) {
150 	default:
151 		dev_warn(adev->dev,
152 			 "Invalid sdma engine id (%d), using engine id 0\n",
153 			 engine_id);
154 		fallthrough;
155 	case 0:
156 		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0,
157 				mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
158 		break;
159 	case 1:
160 		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA1, 0,
161 				mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
162 		break;
163 	case 2:
164 		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA2, 0,
165 				mmSDMA2_RLC0_RB_CNTL) - mmSDMA2_RLC0_RB_CNTL;
166 		break;
167 	case 3:
168 		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA3, 0,
169 				mmSDMA3_RLC0_RB_CNTL) - mmSDMA2_RLC0_RB_CNTL;
170 		break;
171 	}
172 
173 	sdma_rlc_reg_offset = sdma_engine_reg_base
174 		+ queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
175 
176 	pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
177 			queue_id, sdma_rlc_reg_offset);
178 
179 	return sdma_rlc_reg_offset;
180 }
181 
182 static inline struct v10_compute_mqd *get_mqd(void *mqd)
183 {
184 	return (struct v10_compute_mqd *)mqd;
185 }
186 
187 static inline struct v10_sdma_mqd *get_sdma_mqd(void *mqd)
188 {
189 	return (struct v10_sdma_mqd *)mqd;
190 }
191 
192 static int hqd_load_v10_3(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
193 			uint32_t queue_id, uint32_t __user *wptr,
194 			uint32_t wptr_shift, uint32_t wptr_mask,
195 			struct mm_struct *mm)
196 {
197 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
198 	struct v10_compute_mqd *m;
199 	uint32_t *mqd_hqd;
200 	uint32_t reg, hqd_base, data;
201 
202 	m = get_mqd(mqd);
203 
204 	pr_debug("Load hqd of pipe %d queue %d\n", pipe_id, queue_id);
205 	acquire_queue(kgd, pipe_id, queue_id);
206 
207 	/* HIQ is set during driver init period with vmid set to 0*/
208 	if (m->cp_hqd_vmid == 0) {
209 		uint32_t value, mec, pipe;
210 
211 		mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
212 		pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
213 
214 		pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
215 			mec, pipe, queue_id);
216 		value = RREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_CP_SCHEDULERS));
217 		value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
218 			((mec << 5) | (pipe << 3) | queue_id | 0x80));
219 		WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_CP_SCHEDULERS), value);
220 	}
221 
222 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
223 	mqd_hqd = &m->cp_mqd_base_addr_lo;
224 	hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
225 
226 	for (reg = hqd_base;
227 	     reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
228 		WREG32(reg, mqd_hqd[reg - hqd_base]);
229 
230 
231 	/* Activate doorbell logic before triggering WPTR poll. */
232 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
233 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
234 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL), data);
235 
236 	if (wptr) {
237 		/* Don't read wptr with get_user because the user
238 		 * context may not be accessible (if this function
239 		 * runs in a work queue). Instead trigger a one-shot
240 		 * polling read from memory in the CP. This assumes
241 		 * that wptr is GPU-accessible in the queue's VMID via
242 		 * ATC or SVM. WPTR==RPTR before starting the poll so
243 		 * the CP starts fetching new commands from the right
244 		 * place.
245 		 *
246 		 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
247 		 * tricky. Assume that the queue didn't overflow. The
248 		 * number of valid bits in the 32-bit RPTR depends on
249 		 * the queue size. The remaining bits are taken from
250 		 * the saved 64-bit WPTR. If the WPTR wrapped, add the
251 		 * queue size.
252 		 */
253 		uint32_t queue_size =
254 			2 << REG_GET_FIELD(m->cp_hqd_pq_control,
255 					   CP_HQD_PQ_CONTROL, QUEUE_SIZE);
256 		uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
257 
258 		if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
259 			guessed_wptr += queue_size;
260 		guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
261 		guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
262 
263 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_LO),
264 		       lower_32_bits(guessed_wptr));
265 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI),
266 		       upper_32_bits(guessed_wptr));
267 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR),
268 		       lower_32_bits((uint64_t)wptr));
269 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI),
270 		       upper_32_bits((uint64_t)wptr));
271 		pr_debug("%s setting CP_PQ_WPTR_POLL_CNTL1 to %x\n", __func__,
272 			 (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
273 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1),
274 		       (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
275 	}
276 
277 	/* Start the EOP fetcher */
278 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_EOP_RPTR),
279 	       REG_SET_FIELD(m->cp_hqd_eop_rptr,
280 			     CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
281 
282 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
283 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE), data);
284 
285 	release_queue(kgd);
286 
287 	return 0;
288 }
289 
290 static int hiq_mqd_load_v10_3(struct kgd_dev *kgd, void *mqd,
291 			    uint32_t pipe_id, uint32_t queue_id,
292 			    uint32_t doorbell_off)
293 {
294 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
295 	struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring;
296 	struct v10_compute_mqd *m;
297 	uint32_t mec, pipe;
298 	int r;
299 
300 	m = get_mqd(mqd);
301 
302 	acquire_queue(kgd, pipe_id, queue_id);
303 
304 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
305 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
306 
307 	pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
308 		 mec, pipe, queue_id);
309 
310 	spin_lock(&adev->gfx.kiq.ring_lock);
311 	r = amdgpu_ring_alloc(kiq_ring, 7);
312 	if (r) {
313 		pr_err("Failed to alloc KIQ (%d).\n", r);
314 		goto out_unlock;
315 	}
316 
317 	amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
318 	amdgpu_ring_write(kiq_ring,
319 			  PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
320 			  PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
321 			  PACKET3_MAP_QUEUES_QUEUE(queue_id) |
322 			  PACKET3_MAP_QUEUES_PIPE(pipe) |
323 			  PACKET3_MAP_QUEUES_ME((mec - 1)) |
324 			  PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
325 			  PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
326 			  PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
327 			  PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
328 	amdgpu_ring_write(kiq_ring,
329 			  PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
330 	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
331 	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
332 	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
333 	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
334 	amdgpu_ring_commit(kiq_ring);
335 
336 out_unlock:
337 	spin_unlock(&adev->gfx.kiq.ring_lock);
338 	release_queue(kgd);
339 
340 	return r;
341 }
342 
343 static int hqd_dump_v10_3(struct kgd_dev *kgd,
344 			uint32_t pipe_id, uint32_t queue_id,
345 			uint32_t (**dump)[2], uint32_t *n_regs)
346 {
347 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
348 	uint32_t i = 0, reg;
349 #define HQD_N_REGS 56
350 #define DUMP_REG(addr) do {				\
351 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
352 			break;				\
353 		(*dump)[i][0] = (addr) << 2;		\
354 		(*dump)[i++][1] = RREG32(addr);		\
355 	} while (0)
356 
357 	*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
358 	if (*dump == NULL)
359 		return -ENOMEM;
360 
361 	acquire_queue(kgd, pipe_id, queue_id);
362 
363 	for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
364 	     reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
365 		DUMP_REG(reg);
366 
367 	release_queue(kgd);
368 
369 	WARN_ON_ONCE(i != HQD_N_REGS);
370 	*n_regs = i;
371 
372 	return 0;
373 }
374 
375 static int hqd_sdma_load_v10_3(struct kgd_dev *kgd, void *mqd,
376 			     uint32_t __user *wptr, struct mm_struct *mm)
377 {
378 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
379 	struct v10_sdma_mqd *m;
380 	uint32_t sdma_rlc_reg_offset;
381 	unsigned long end_jiffies;
382 	uint32_t data;
383 	uint64_t data64;
384 	uint64_t __user *wptr64 = (uint64_t __user *)wptr;
385 
386 	m = get_sdma_mqd(mqd);
387 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
388 					    m->sdma_queue_id);
389 
390 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
391 		m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
392 
393 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
394 	while (true) {
395 		data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
396 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
397 			break;
398 		if (time_after(jiffies, end_jiffies)) {
399 			pr_err("SDMA RLC not idle in %s\n", __func__);
400 			return -ETIME;
401 		}
402 		usleep_range(500, 1000);
403 	}
404 
405 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
406 	       m->sdmax_rlcx_doorbell_offset);
407 
408 	data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
409 			     ENABLE, 1);
410 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
411 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
412 				m->sdmax_rlcx_rb_rptr);
413 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
414 				m->sdmax_rlcx_rb_rptr_hi);
415 
416 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
417 	if (read_user_wptr(mm, wptr64, data64)) {
418 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
419 		       lower_32_bits(data64));
420 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
421 		       upper_32_bits(data64));
422 	} else {
423 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
424 		       m->sdmax_rlcx_rb_rptr);
425 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
426 		       m->sdmax_rlcx_rb_rptr_hi);
427 	}
428 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
429 
430 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
431 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
432 			m->sdmax_rlcx_rb_base_hi);
433 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
434 			m->sdmax_rlcx_rb_rptr_addr_lo);
435 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
436 			m->sdmax_rlcx_rb_rptr_addr_hi);
437 
438 	data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
439 			     RB_ENABLE, 1);
440 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
441 
442 	return 0;
443 }
444 
445 static int hqd_sdma_dump_v10_3(struct kgd_dev *kgd,
446 			     uint32_t engine_id, uint32_t queue_id,
447 			     uint32_t (**dump)[2], uint32_t *n_regs)
448 {
449 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
450 	uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
451 			engine_id, queue_id);
452 	uint32_t i = 0, reg;
453 #undef HQD_N_REGS
454 #define HQD_N_REGS (19+6+7+10)
455 
456 	*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
457 	if (*dump == NULL)
458 		return -ENOMEM;
459 
460 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
461 		DUMP_REG(sdma_rlc_reg_offset + reg);
462 	for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
463 		DUMP_REG(sdma_rlc_reg_offset + reg);
464 	for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
465 	     reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
466 		DUMP_REG(sdma_rlc_reg_offset + reg);
467 	for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
468 	     reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
469 		DUMP_REG(sdma_rlc_reg_offset + reg);
470 
471 	WARN_ON_ONCE(i != HQD_N_REGS);
472 	*n_regs = i;
473 
474 	return 0;
475 }
476 
477 static bool hqd_is_occupied_v10_3(struct kgd_dev *kgd, uint64_t queue_address,
478 				uint32_t pipe_id, uint32_t queue_id)
479 {
480 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
481 	uint32_t act;
482 	bool retval = false;
483 	uint32_t low, high;
484 
485 	acquire_queue(kgd, pipe_id, queue_id);
486 	act = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE));
487 	if (act) {
488 		low = lower_32_bits(queue_address >> 8);
489 		high = upper_32_bits(queue_address >> 8);
490 
491 		if (low == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE)) &&
492 		   high == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE_HI)))
493 			retval = true;
494 	}
495 	release_queue(kgd);
496 	return retval;
497 }
498 
499 static bool hqd_sdma_is_occupied_v10_3(struct kgd_dev *kgd, void *mqd)
500 {
501 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
502 	struct v10_sdma_mqd *m;
503 	uint32_t sdma_rlc_reg_offset;
504 	uint32_t sdma_rlc_rb_cntl;
505 
506 	m = get_sdma_mqd(mqd);
507 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
508 					    m->sdma_queue_id);
509 
510 	sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
511 
512 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
513 		return true;
514 
515 	return false;
516 }
517 
518 static int hqd_destroy_v10_3(struct kgd_dev *kgd, void *mqd,
519 				enum kfd_preempt_type reset_type,
520 				unsigned int utimeout, uint32_t pipe_id,
521 				uint32_t queue_id)
522 {
523 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
524 	enum hqd_dequeue_request_type type;
525 	unsigned long end_jiffies;
526 	uint32_t temp;
527 	struct v10_compute_mqd *m = get_mqd(mqd);
528 
529 	acquire_queue(kgd, pipe_id, queue_id);
530 
531 	if (m->cp_hqd_vmid == 0)
532 		WREG32_FIELD15(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0);
533 
534 	switch (reset_type) {
535 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
536 		type = DRAIN_PIPE;
537 		break;
538 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
539 		type = RESET_WAVES;
540 		break;
541 	default:
542 		type = DRAIN_PIPE;
543 		break;
544 	}
545 
546 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_DEQUEUE_REQUEST), type);
547 
548 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
549 	while (true) {
550 		temp = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE));
551 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
552 			break;
553 		if (time_after(jiffies, end_jiffies)) {
554 			pr_err("cp queue pipe %d queue %d preemption failed\n",
555 					pipe_id, queue_id);
556 			release_queue(kgd);
557 			return -ETIME;
558 		}
559 		usleep_range(500, 1000);
560 	}
561 
562 	release_queue(kgd);
563 	return 0;
564 }
565 
566 static int hqd_sdma_destroy_v10_3(struct kgd_dev *kgd, void *mqd,
567 				unsigned int utimeout)
568 {
569 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
570 	struct v10_sdma_mqd *m;
571 	uint32_t sdma_rlc_reg_offset;
572 	uint32_t temp;
573 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
574 
575 	m = get_sdma_mqd(mqd);
576 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
577 					    m->sdma_queue_id);
578 
579 	temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
580 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
581 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
582 
583 	while (true) {
584 		temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
585 		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
586 			break;
587 		if (time_after(jiffies, end_jiffies)) {
588 			pr_err("SDMA RLC not idle in %s\n", __func__);
589 			return -ETIME;
590 		}
591 		usleep_range(500, 1000);
592 	}
593 
594 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
595 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
596 		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
597 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
598 
599 	m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
600 	m->sdmax_rlcx_rb_rptr_hi =
601 		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
602 
603 	return 0;
604 }
605 
606 
607 static int address_watch_disable_v10_3(struct kgd_dev *kgd)
608 {
609 	return 0;
610 }
611 
612 static int address_watch_execute_v10_3(struct kgd_dev *kgd,
613 					unsigned int watch_point_id,
614 					uint32_t cntl_val,
615 					uint32_t addr_hi,
616 					uint32_t addr_lo)
617 {
618 	return 0;
619 }
620 
621 static int wave_control_execute_v10_3(struct kgd_dev *kgd,
622 					uint32_t gfx_index_val,
623 					uint32_t sq_cmd)
624 {
625 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
626 	uint32_t data = 0;
627 
628 	mutex_lock(&adev->grbm_idx_mutex);
629 
630 	WREG32(SOC15_REG_OFFSET(GC, 0, mmGRBM_GFX_INDEX), gfx_index_val);
631 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_CMD), sq_cmd);
632 
633 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
634 		INSTANCE_BROADCAST_WRITES, 1);
635 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
636 		SA_BROADCAST_WRITES, 1);
637 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
638 		SE_BROADCAST_WRITES, 1);
639 
640 	WREG32(SOC15_REG_OFFSET(GC, 0, mmGRBM_GFX_INDEX), data);
641 	mutex_unlock(&adev->grbm_idx_mutex);
642 
643 	return 0;
644 }
645 
646 static uint32_t address_watch_get_offset_v10_3(struct kgd_dev *kgd,
647 					unsigned int watch_point_id,
648 					unsigned int reg_offset)
649 {
650 	return 0;
651 }
652 
653 static void set_vm_context_page_table_base_v10_3(struct kgd_dev *kgd, uint32_t vmid,
654 		uint64_t page_table_base)
655 {
656 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
657 
658 	/* SDMA is on gfxhub as well for Navi1* series */
659 	adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
660 }
661 
662 #if 0
663 uint32_t enable_debug_trap_v10_3(struct kgd_dev *kgd,
664 				uint32_t trap_debug_wave_launch_mode,
665 				uint32_t vmid)
666 {
667 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
668 	uint32_t data = 0;
669 	uint32_t orig_wave_cntl_value;
670 	uint32_t orig_stall_vmid;
671 
672 	mutex_lock(&adev->grbm_idx_mutex);
673 
674 	orig_wave_cntl_value = RREG32(SOC15_REG_OFFSET(GC,
675 				0,
676 				mmSPI_GDBG_WAVE_CNTL));
677 	orig_stall_vmid = REG_GET_FIELD(orig_wave_cntl_value,
678 			SPI_GDBG_WAVE_CNTL,
679 			STALL_VMID);
680 
681 	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_RA, 1);
682 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data);
683 
684 	data = 0;
685 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), data);
686 
687 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), orig_stall_vmid);
688 
689 	mutex_unlock(&adev->grbm_idx_mutex);
690 
691 	return 0;
692 }
693 
694 uint32_t disable_debug_trap_v10_3(struct kgd_dev *kgd)
695 {
696 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
697 
698 	mutex_lock(&adev->grbm_idx_mutex);
699 
700 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
701 
702 	mutex_unlock(&adev->grbm_idx_mutex);
703 
704 	return 0;
705 }
706 
707 uint32_t set_wave_launch_trap_override_v10_3(struct kgd_dev *kgd,
708 						uint32_t trap_override,
709 						uint32_t trap_mask)
710 {
711 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
712 	uint32_t data = 0;
713 
714 	mutex_lock(&adev->grbm_idx_mutex);
715 
716 	data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
717 	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_RA, 1);
718 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data);
719 
720 	data = 0;
721 	data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK,
722 			EXCP_EN, trap_mask);
723 	data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK,
724 			REPLACE, trap_override);
725 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), data);
726 
727 	data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
728 	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_RA, 0);
729 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data);
730 
731 	mutex_unlock(&adev->grbm_idx_mutex);
732 
733 	return 0;
734 }
735 
736 uint32_t set_wave_launch_mode_v10_3(struct kgd_dev *kgd,
737 					uint8_t wave_launch_mode,
738 					uint32_t vmid)
739 {
740 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
741 	uint32_t data = 0;
742 	bool is_stall_mode;
743 	bool is_mode_set;
744 
745 	is_stall_mode = (wave_launch_mode == 4);
746 	is_mode_set = (wave_launch_mode != 0 && wave_launch_mode != 4);
747 
748 	mutex_lock(&adev->grbm_idx_mutex);
749 
750 	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
751 			VMID_MASK, is_mode_set ? 1 << vmid : 0);
752 	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
753 			MODE, is_mode_set ? wave_launch_mode : 0);
754 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL2), data);
755 
756 	data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
757 	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL,
758 			STALL_VMID, is_stall_mode ? 1 << vmid : 0);
759 	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL,
760 			STALL_RA, is_stall_mode ? 1 : 0);
761 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data);
762 
763 	mutex_unlock(&adev->grbm_idx_mutex);
764 
765 	return 0;
766 }
767 
768 /* kgd_get_iq_wait_times: Returns the mmCP_IQ_WAIT_TIME1/2 values
769  * The values read are:
770  *	ib_offload_wait_time     -- Wait Count for Indirect Buffer Offloads.
771  *	atomic_offload_wait_time -- Wait Count for L2 and GDS Atomics Offloads.
772  *	wrm_offload_wait_time    -- Wait Count for WAIT_REG_MEM Offloads.
773  *	gws_wait_time            -- Wait Count for Global Wave Syncs.
774  *	que_sleep_wait_time      -- Wait Count for Dequeue Retry.
775  *	sch_wave_wait_time       -- Wait Count for Scheduling Wave Message.
776  *	sem_rearm_wait_time      -- Wait Count for Semaphore re-arm.
777  *	deq_retry_wait_time      -- Wait Count for Global Wave Syncs.
778  */
779 void get_iq_wait_times_v10_3(struct kgd_dev *kgd,
780 					uint32_t *wait_times)
781 
782 {
783 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
784 
785 	*wait_times = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2));
786 }
787 
788 void build_grace_period_packet_info_v10_3(struct kgd_dev *kgd,
789 						uint32_t wait_times,
790 						uint32_t grace_period,
791 						uint32_t *reg_offset,
792 						uint32_t *reg_data)
793 {
794 	*reg_data = wait_times;
795 
796 	*reg_data = REG_SET_FIELD(*reg_data,
797 			CP_IQ_WAIT_TIME2,
798 			SCH_WAVE,
799 			grace_period);
800 
801 	*reg_offset = mmCP_IQ_WAIT_TIME2;
802 }
803 #endif
804 
805 const struct kfd2kgd_calls gfx_v10_3_kfd2kgd = {
806 	.program_sh_mem_settings = program_sh_mem_settings_v10_3,
807 	.set_pasid_vmid_mapping = set_pasid_vmid_mapping_v10_3,
808 	.init_interrupts = init_interrupts_v10_3,
809 	.hqd_load = hqd_load_v10_3,
810 	.hiq_mqd_load = hiq_mqd_load_v10_3,
811 	.hqd_sdma_load = hqd_sdma_load_v10_3,
812 	.hqd_dump = hqd_dump_v10_3,
813 	.hqd_sdma_dump = hqd_sdma_dump_v10_3,
814 	.hqd_is_occupied = hqd_is_occupied_v10_3,
815 	.hqd_sdma_is_occupied = hqd_sdma_is_occupied_v10_3,
816 	.hqd_destroy = hqd_destroy_v10_3,
817 	.hqd_sdma_destroy = hqd_sdma_destroy_v10_3,
818 	.address_watch_disable = address_watch_disable_v10_3,
819 	.address_watch_execute = address_watch_execute_v10_3,
820 	.wave_control_execute = wave_control_execute_v10_3,
821 	.address_watch_get_offset = address_watch_get_offset_v10_3,
822 	.get_atc_vmid_pasid_mapping_info = NULL,
823 	.set_vm_context_page_table_base = set_vm_context_page_table_base_v10_3,
824 #if 0
825 	.enable_debug_trap = enable_debug_trap_v10_3,
826 	.disable_debug_trap = disable_debug_trap_v10_3,
827 	.set_wave_launch_trap_override = set_wave_launch_trap_override_v10_3,
828 	.set_wave_launch_mode = set_wave_launch_mode_v10_3,
829 	.get_iq_wait_times = get_iq_wait_times_v10_3,
830 	.build_grace_period_packet_info = build_grace_period_packet_info_v10_3,
831 #endif
832 };
833