1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com 4 * Author: Peter Ujfalusi <peter.ujfalusi@ti.com> 5 */ 6 7 #include <linux/kernel.h> 8 #include <linux/delay.h> 9 #include <linux/dmaengine.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/dmapool.h> 12 #include <linux/err.h> 13 #include <linux/init.h> 14 #include <linux/interrupt.h> 15 #include <linux/list.h> 16 #include <linux/platform_device.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/of.h> 20 #include <linux/of_dma.h> 21 #include <linux/of_device.h> 22 #include <linux/of_irq.h> 23 #include <linux/workqueue.h> 24 #include <linux/completion.h> 25 #include <linux/soc/ti/k3-ringacc.h> 26 #include <linux/soc/ti/ti_sci_protocol.h> 27 #include <linux/soc/ti/ti_sci_inta_msi.h> 28 #include <linux/dma/ti-cppi5.h> 29 30 #include "../virt-dma.h" 31 #include "k3-udma.h" 32 #include "k3-psil-priv.h" 33 34 struct udma_static_tr { 35 u8 elsize; /* RPSTR0 */ 36 u16 elcnt; /* RPSTR0 */ 37 u16 bstcnt; /* RPSTR1 */ 38 }; 39 40 #define K3_UDMA_MAX_RFLOWS 1024 41 #define K3_UDMA_DEFAULT_RING_SIZE 16 42 43 /* How SRC/DST tag should be updated by UDMA in the descriptor's Word 3 */ 44 #define UDMA_RFLOW_SRCTAG_NONE 0 45 #define UDMA_RFLOW_SRCTAG_CFG_TAG 1 46 #define UDMA_RFLOW_SRCTAG_FLOW_ID 2 47 #define UDMA_RFLOW_SRCTAG_SRC_TAG 4 48 49 #define UDMA_RFLOW_DSTTAG_NONE 0 50 #define UDMA_RFLOW_DSTTAG_CFG_TAG 1 51 #define UDMA_RFLOW_DSTTAG_FLOW_ID 2 52 #define UDMA_RFLOW_DSTTAG_DST_TAG_LO 4 53 #define UDMA_RFLOW_DSTTAG_DST_TAG_HI 5 54 55 struct udma_chan; 56 57 enum udma_mmr { 58 MMR_GCFG = 0, 59 MMR_RCHANRT, 60 MMR_TCHANRT, 61 MMR_LAST, 62 }; 63 64 static const char * const mmr_names[] = { "gcfg", "rchanrt", "tchanrt" }; 65 66 struct udma_tchan { 67 void __iomem *reg_rt; 68 69 int id; 70 struct k3_ring *t_ring; /* Transmit ring */ 71 struct k3_ring *tc_ring; /* Transmit Completion ring */ 72 }; 73 74 struct udma_rflow { 75 int id; 76 struct k3_ring *fd_ring; /* Free Descriptor ring */ 77 struct k3_ring *r_ring; /* Receive ring */ 78 }; 79 80 struct udma_rchan { 81 void __iomem *reg_rt; 82 83 int id; 84 }; 85 86 #define UDMA_FLAG_PDMA_ACC32 BIT(0) 87 #define UDMA_FLAG_PDMA_BURST BIT(1) 88 89 struct udma_match_data { 90 u32 psil_base; 91 bool enable_memcpy_support; 92 u32 flags; 93 u32 statictr_z_mask; 94 u32 rchan_oes_offset; 95 96 u8 tpl_levels; 97 u32 level_start_idx[]; 98 }; 99 100 struct udma_hwdesc { 101 size_t cppi5_desc_size; 102 void *cppi5_desc_vaddr; 103 dma_addr_t cppi5_desc_paddr; 104 105 /* TR descriptor internal pointers */ 106 void *tr_req_base; 107 struct cppi5_tr_resp_t *tr_resp_base; 108 }; 109 110 struct udma_rx_flush { 111 struct udma_hwdesc hwdescs[2]; 112 113 size_t buffer_size; 114 void *buffer_vaddr; 115 dma_addr_t buffer_paddr; 116 }; 117 118 struct udma_dev { 119 struct dma_device ddev; 120 struct device *dev; 121 void __iomem *mmrs[MMR_LAST]; 122 const struct udma_match_data *match_data; 123 124 size_t desc_align; /* alignment to use for descriptors */ 125 126 struct udma_tisci_rm tisci_rm; 127 128 struct k3_ringacc *ringacc; 129 130 struct work_struct purge_work; 131 struct list_head desc_to_purge; 132 spinlock_t lock; 133 134 struct udma_rx_flush rx_flush; 135 136 int tchan_cnt; 137 int echan_cnt; 138 int rchan_cnt; 139 int rflow_cnt; 140 unsigned long *tchan_map; 141 unsigned long *rchan_map; 142 unsigned long *rflow_gp_map; 143 unsigned long *rflow_gp_map_allocated; 144 unsigned long *rflow_in_use; 145 146 struct udma_tchan *tchans; 147 struct udma_rchan *rchans; 148 struct udma_rflow *rflows; 149 150 struct udma_chan *channels; 151 u32 psil_base; 152 u32 atype; 153 }; 154 155 struct udma_desc { 156 struct virt_dma_desc vd; 157 158 bool terminated; 159 160 enum dma_transfer_direction dir; 161 162 struct udma_static_tr static_tr; 163 u32 residue; 164 165 unsigned int sglen; 166 unsigned int desc_idx; /* Only used for cyclic in packet mode */ 167 unsigned int tr_idx; 168 169 u32 metadata_size; 170 void *metadata; /* pointer to provided metadata buffer (EPIP, PSdata) */ 171 172 unsigned int hwdesc_count; 173 struct udma_hwdesc hwdesc[]; 174 }; 175 176 enum udma_chan_state { 177 UDMA_CHAN_IS_IDLE = 0, /* not active, no teardown is in progress */ 178 UDMA_CHAN_IS_ACTIVE, /* Normal operation */ 179 UDMA_CHAN_IS_TERMINATING, /* channel is being terminated */ 180 }; 181 182 struct udma_tx_drain { 183 struct delayed_work work; 184 ktime_t tstamp; 185 u32 residue; 186 }; 187 188 struct udma_chan_config { 189 bool pkt_mode; /* TR or packet */ 190 bool needs_epib; /* EPIB is needed for the communication or not */ 191 u32 psd_size; /* size of Protocol Specific Data */ 192 u32 metadata_size; /* (needs_epib ? 16:0) + psd_size */ 193 u32 hdesc_size; /* Size of a packet descriptor in packet mode */ 194 bool notdpkt; /* Suppress sending TDC packet */ 195 int remote_thread_id; 196 u32 atype; 197 u32 src_thread; 198 u32 dst_thread; 199 enum psil_endpoint_type ep_type; 200 bool enable_acc32; 201 bool enable_burst; 202 enum udma_tp_level channel_tpl; /* Channel Throughput Level */ 203 204 enum dma_transfer_direction dir; 205 }; 206 207 struct udma_chan { 208 struct virt_dma_chan vc; 209 struct dma_slave_config cfg; 210 struct udma_dev *ud; 211 struct udma_desc *desc; 212 struct udma_desc *terminated_desc; 213 struct udma_static_tr static_tr; 214 char *name; 215 216 struct udma_tchan *tchan; 217 struct udma_rchan *rchan; 218 struct udma_rflow *rflow; 219 220 bool psil_paired; 221 222 int irq_num_ring; 223 int irq_num_udma; 224 225 bool cyclic; 226 bool paused; 227 228 enum udma_chan_state state; 229 struct completion teardown_completed; 230 231 struct udma_tx_drain tx_drain; 232 233 u32 bcnt; /* number of bytes completed since the start of the channel */ 234 235 /* Channel configuration parameters */ 236 struct udma_chan_config config; 237 238 /* dmapool for packet mode descriptors */ 239 bool use_dma_pool; 240 struct dma_pool *hdesc_pool; 241 242 u32 id; 243 }; 244 245 static inline struct udma_dev *to_udma_dev(struct dma_device *d) 246 { 247 return container_of(d, struct udma_dev, ddev); 248 } 249 250 static inline struct udma_chan *to_udma_chan(struct dma_chan *c) 251 { 252 return container_of(c, struct udma_chan, vc.chan); 253 } 254 255 static inline struct udma_desc *to_udma_desc(struct dma_async_tx_descriptor *t) 256 { 257 return container_of(t, struct udma_desc, vd.tx); 258 } 259 260 /* Generic register access functions */ 261 static inline u32 udma_read(void __iomem *base, int reg) 262 { 263 return readl(base + reg); 264 } 265 266 static inline void udma_write(void __iomem *base, int reg, u32 val) 267 { 268 writel(val, base + reg); 269 } 270 271 static inline void udma_update_bits(void __iomem *base, int reg, 272 u32 mask, u32 val) 273 { 274 u32 tmp, orig; 275 276 orig = readl(base + reg); 277 tmp = orig & ~mask; 278 tmp |= (val & mask); 279 280 if (tmp != orig) 281 writel(tmp, base + reg); 282 } 283 284 /* TCHANRT */ 285 static inline u32 udma_tchanrt_read(struct udma_tchan *tchan, int reg) 286 { 287 if (!tchan) 288 return 0; 289 return udma_read(tchan->reg_rt, reg); 290 } 291 292 static inline void udma_tchanrt_write(struct udma_tchan *tchan, int reg, 293 u32 val) 294 { 295 if (!tchan) 296 return; 297 udma_write(tchan->reg_rt, reg, val); 298 } 299 300 static inline void udma_tchanrt_update_bits(struct udma_tchan *tchan, int reg, 301 u32 mask, u32 val) 302 { 303 if (!tchan) 304 return; 305 udma_update_bits(tchan->reg_rt, reg, mask, val); 306 } 307 308 /* RCHANRT */ 309 static inline u32 udma_rchanrt_read(struct udma_rchan *rchan, int reg) 310 { 311 if (!rchan) 312 return 0; 313 return udma_read(rchan->reg_rt, reg); 314 } 315 316 static inline void udma_rchanrt_write(struct udma_rchan *rchan, int reg, 317 u32 val) 318 { 319 if (!rchan) 320 return; 321 udma_write(rchan->reg_rt, reg, val); 322 } 323 324 static inline void udma_rchanrt_update_bits(struct udma_rchan *rchan, int reg, 325 u32 mask, u32 val) 326 { 327 if (!rchan) 328 return; 329 udma_update_bits(rchan->reg_rt, reg, mask, val); 330 } 331 332 static int navss_psil_pair(struct udma_dev *ud, u32 src_thread, u32 dst_thread) 333 { 334 struct udma_tisci_rm *tisci_rm = &ud->tisci_rm; 335 336 dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET; 337 return tisci_rm->tisci_psil_ops->pair(tisci_rm->tisci, 338 tisci_rm->tisci_navss_dev_id, 339 src_thread, dst_thread); 340 } 341 342 static int navss_psil_unpair(struct udma_dev *ud, u32 src_thread, 343 u32 dst_thread) 344 { 345 struct udma_tisci_rm *tisci_rm = &ud->tisci_rm; 346 347 dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET; 348 return tisci_rm->tisci_psil_ops->unpair(tisci_rm->tisci, 349 tisci_rm->tisci_navss_dev_id, 350 src_thread, dst_thread); 351 } 352 353 static void udma_reset_uchan(struct udma_chan *uc) 354 { 355 memset(&uc->config, 0, sizeof(uc->config)); 356 uc->config.remote_thread_id = -1; 357 uc->state = UDMA_CHAN_IS_IDLE; 358 } 359 360 static void udma_dump_chan_stdata(struct udma_chan *uc) 361 { 362 struct device *dev = uc->ud->dev; 363 u32 offset; 364 int i; 365 366 if (uc->config.dir == DMA_MEM_TO_DEV || uc->config.dir == DMA_MEM_TO_MEM) { 367 dev_dbg(dev, "TCHAN State data:\n"); 368 for (i = 0; i < 32; i++) { 369 offset = UDMA_TCHAN_RT_STDATA_REG + i * 4; 370 dev_dbg(dev, "TRT_STDATA[%02d]: 0x%08x\n", i, 371 udma_tchanrt_read(uc->tchan, offset)); 372 } 373 } 374 375 if (uc->config.dir == DMA_DEV_TO_MEM || uc->config.dir == DMA_MEM_TO_MEM) { 376 dev_dbg(dev, "RCHAN State data:\n"); 377 for (i = 0; i < 32; i++) { 378 offset = UDMA_RCHAN_RT_STDATA_REG + i * 4; 379 dev_dbg(dev, "RRT_STDATA[%02d]: 0x%08x\n", i, 380 udma_rchanrt_read(uc->rchan, offset)); 381 } 382 } 383 } 384 385 static inline dma_addr_t udma_curr_cppi5_desc_paddr(struct udma_desc *d, 386 int idx) 387 { 388 return d->hwdesc[idx].cppi5_desc_paddr; 389 } 390 391 static inline void *udma_curr_cppi5_desc_vaddr(struct udma_desc *d, int idx) 392 { 393 return d->hwdesc[idx].cppi5_desc_vaddr; 394 } 395 396 static struct udma_desc *udma_udma_desc_from_paddr(struct udma_chan *uc, 397 dma_addr_t paddr) 398 { 399 struct udma_desc *d = uc->terminated_desc; 400 401 if (d) { 402 dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d, 403 d->desc_idx); 404 405 if (desc_paddr != paddr) 406 d = NULL; 407 } 408 409 if (!d) { 410 d = uc->desc; 411 if (d) { 412 dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d, 413 d->desc_idx); 414 415 if (desc_paddr != paddr) 416 d = NULL; 417 } 418 } 419 420 return d; 421 } 422 423 static void udma_free_hwdesc(struct udma_chan *uc, struct udma_desc *d) 424 { 425 if (uc->use_dma_pool) { 426 int i; 427 428 for (i = 0; i < d->hwdesc_count; i++) { 429 if (!d->hwdesc[i].cppi5_desc_vaddr) 430 continue; 431 432 dma_pool_free(uc->hdesc_pool, 433 d->hwdesc[i].cppi5_desc_vaddr, 434 d->hwdesc[i].cppi5_desc_paddr); 435 436 d->hwdesc[i].cppi5_desc_vaddr = NULL; 437 } 438 } else if (d->hwdesc[0].cppi5_desc_vaddr) { 439 struct udma_dev *ud = uc->ud; 440 441 dma_free_coherent(ud->dev, d->hwdesc[0].cppi5_desc_size, 442 d->hwdesc[0].cppi5_desc_vaddr, 443 d->hwdesc[0].cppi5_desc_paddr); 444 445 d->hwdesc[0].cppi5_desc_vaddr = NULL; 446 } 447 } 448 449 static void udma_purge_desc_work(struct work_struct *work) 450 { 451 struct udma_dev *ud = container_of(work, typeof(*ud), purge_work); 452 struct virt_dma_desc *vd, *_vd; 453 unsigned long flags; 454 LIST_HEAD(head); 455 456 spin_lock_irqsave(&ud->lock, flags); 457 list_splice_tail_init(&ud->desc_to_purge, &head); 458 spin_unlock_irqrestore(&ud->lock, flags); 459 460 list_for_each_entry_safe(vd, _vd, &head, node) { 461 struct udma_chan *uc = to_udma_chan(vd->tx.chan); 462 struct udma_desc *d = to_udma_desc(&vd->tx); 463 464 udma_free_hwdesc(uc, d); 465 list_del(&vd->node); 466 kfree(d); 467 } 468 469 /* If more to purge, schedule the work again */ 470 if (!list_empty(&ud->desc_to_purge)) 471 schedule_work(&ud->purge_work); 472 } 473 474 static void udma_desc_free(struct virt_dma_desc *vd) 475 { 476 struct udma_dev *ud = to_udma_dev(vd->tx.chan->device); 477 struct udma_chan *uc = to_udma_chan(vd->tx.chan); 478 struct udma_desc *d = to_udma_desc(&vd->tx); 479 unsigned long flags; 480 481 if (uc->terminated_desc == d) 482 uc->terminated_desc = NULL; 483 484 if (uc->use_dma_pool) { 485 udma_free_hwdesc(uc, d); 486 kfree(d); 487 return; 488 } 489 490 spin_lock_irqsave(&ud->lock, flags); 491 list_add_tail(&vd->node, &ud->desc_to_purge); 492 spin_unlock_irqrestore(&ud->lock, flags); 493 494 schedule_work(&ud->purge_work); 495 } 496 497 static bool udma_is_chan_running(struct udma_chan *uc) 498 { 499 u32 trt_ctl = 0; 500 u32 rrt_ctl = 0; 501 502 if (uc->tchan) 503 trt_ctl = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_CTL_REG); 504 if (uc->rchan) 505 rrt_ctl = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_CTL_REG); 506 507 if (trt_ctl & UDMA_CHAN_RT_CTL_EN || rrt_ctl & UDMA_CHAN_RT_CTL_EN) 508 return true; 509 510 return false; 511 } 512 513 static bool udma_is_chan_paused(struct udma_chan *uc) 514 { 515 u32 val, pause_mask; 516 517 switch (uc->config.dir) { 518 case DMA_DEV_TO_MEM: 519 val = udma_rchanrt_read(uc->rchan, 520 UDMA_RCHAN_RT_PEER_RT_EN_REG); 521 pause_mask = UDMA_PEER_RT_EN_PAUSE; 522 break; 523 case DMA_MEM_TO_DEV: 524 val = udma_tchanrt_read(uc->tchan, 525 UDMA_TCHAN_RT_PEER_RT_EN_REG); 526 pause_mask = UDMA_PEER_RT_EN_PAUSE; 527 break; 528 case DMA_MEM_TO_MEM: 529 val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_CTL_REG); 530 pause_mask = UDMA_CHAN_RT_CTL_PAUSE; 531 break; 532 default: 533 return false; 534 } 535 536 if (val & pause_mask) 537 return true; 538 539 return false; 540 } 541 542 static void udma_sync_for_device(struct udma_chan *uc, int idx) 543 { 544 struct udma_desc *d = uc->desc; 545 546 if (uc->cyclic && uc->config.pkt_mode) { 547 dma_sync_single_for_device(uc->ud->dev, 548 d->hwdesc[idx].cppi5_desc_paddr, 549 d->hwdesc[idx].cppi5_desc_size, 550 DMA_TO_DEVICE); 551 } else { 552 int i; 553 554 for (i = 0; i < d->hwdesc_count; i++) { 555 if (!d->hwdesc[i].cppi5_desc_vaddr) 556 continue; 557 558 dma_sync_single_for_device(uc->ud->dev, 559 d->hwdesc[i].cppi5_desc_paddr, 560 d->hwdesc[i].cppi5_desc_size, 561 DMA_TO_DEVICE); 562 } 563 } 564 } 565 566 static inline dma_addr_t udma_get_rx_flush_hwdesc_paddr(struct udma_chan *uc) 567 { 568 return uc->ud->rx_flush.hwdescs[uc->config.pkt_mode].cppi5_desc_paddr; 569 } 570 571 static int udma_push_to_ring(struct udma_chan *uc, int idx) 572 { 573 struct udma_desc *d = uc->desc; 574 struct k3_ring *ring = NULL; 575 dma_addr_t paddr; 576 577 switch (uc->config.dir) { 578 case DMA_DEV_TO_MEM: 579 ring = uc->rflow->fd_ring; 580 break; 581 case DMA_MEM_TO_DEV: 582 case DMA_MEM_TO_MEM: 583 ring = uc->tchan->t_ring; 584 break; 585 default: 586 return -EINVAL; 587 } 588 589 /* RX flush packet: idx == -1 is only passed in case of DEV_TO_MEM */ 590 if (idx == -1) { 591 paddr = udma_get_rx_flush_hwdesc_paddr(uc); 592 } else { 593 paddr = udma_curr_cppi5_desc_paddr(d, idx); 594 595 wmb(); /* Ensure that writes are not moved over this point */ 596 udma_sync_for_device(uc, idx); 597 } 598 599 return k3_ringacc_ring_push(ring, &paddr); 600 } 601 602 static bool udma_desc_is_rx_flush(struct udma_chan *uc, dma_addr_t addr) 603 { 604 if (uc->config.dir != DMA_DEV_TO_MEM) 605 return false; 606 607 if (addr == udma_get_rx_flush_hwdesc_paddr(uc)) 608 return true; 609 610 return false; 611 } 612 613 static int udma_pop_from_ring(struct udma_chan *uc, dma_addr_t *addr) 614 { 615 struct k3_ring *ring = NULL; 616 int ret = -ENOENT; 617 618 switch (uc->config.dir) { 619 case DMA_DEV_TO_MEM: 620 ring = uc->rflow->r_ring; 621 break; 622 case DMA_MEM_TO_DEV: 623 case DMA_MEM_TO_MEM: 624 ring = uc->tchan->tc_ring; 625 break; 626 default: 627 break; 628 } 629 630 if (ring && k3_ringacc_ring_get_occ(ring)) { 631 struct udma_desc *d = NULL; 632 633 ret = k3_ringacc_ring_pop(ring, addr); 634 if (ret) 635 return ret; 636 637 /* Teardown completion */ 638 if (cppi5_desc_is_tdcm(*addr)) 639 return ret; 640 641 /* Check for flush descriptor */ 642 if (udma_desc_is_rx_flush(uc, *addr)) 643 return -ENOENT; 644 645 d = udma_udma_desc_from_paddr(uc, *addr); 646 647 if (d) 648 dma_sync_single_for_cpu(uc->ud->dev, *addr, 649 d->hwdesc[0].cppi5_desc_size, 650 DMA_FROM_DEVICE); 651 rmb(); /* Ensure that reads are not moved before this point */ 652 } 653 654 return ret; 655 } 656 657 static void udma_reset_rings(struct udma_chan *uc) 658 { 659 struct k3_ring *ring1 = NULL; 660 struct k3_ring *ring2 = NULL; 661 662 switch (uc->config.dir) { 663 case DMA_DEV_TO_MEM: 664 if (uc->rchan) { 665 ring1 = uc->rflow->fd_ring; 666 ring2 = uc->rflow->r_ring; 667 } 668 break; 669 case DMA_MEM_TO_DEV: 670 case DMA_MEM_TO_MEM: 671 if (uc->tchan) { 672 ring1 = uc->tchan->t_ring; 673 ring2 = uc->tchan->tc_ring; 674 } 675 break; 676 default: 677 break; 678 } 679 680 if (ring1) 681 k3_ringacc_ring_reset_dma(ring1, 682 k3_ringacc_ring_get_occ(ring1)); 683 if (ring2) 684 k3_ringacc_ring_reset(ring2); 685 686 /* make sure we are not leaking memory by stalled descriptor */ 687 if (uc->terminated_desc) { 688 udma_desc_free(&uc->terminated_desc->vd); 689 uc->terminated_desc = NULL; 690 } 691 } 692 693 static void udma_reset_counters(struct udma_chan *uc) 694 { 695 u32 val; 696 697 if (uc->tchan) { 698 val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_BCNT_REG); 699 udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_BCNT_REG, val); 700 701 val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_SBCNT_REG); 702 udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_SBCNT_REG, val); 703 704 val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_PCNT_REG); 705 udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PCNT_REG, val); 706 707 val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_PEER_BCNT_REG); 708 udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PEER_BCNT_REG, val); 709 } 710 711 if (uc->rchan) { 712 val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_BCNT_REG); 713 udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_BCNT_REG, val); 714 715 val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_SBCNT_REG); 716 udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_SBCNT_REG, val); 717 718 val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_PCNT_REG); 719 udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PCNT_REG, val); 720 721 val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_PEER_BCNT_REG); 722 udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PEER_BCNT_REG, val); 723 } 724 725 uc->bcnt = 0; 726 } 727 728 static int udma_reset_chan(struct udma_chan *uc, bool hard) 729 { 730 switch (uc->config.dir) { 731 case DMA_DEV_TO_MEM: 732 udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PEER_RT_EN_REG, 0); 733 udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG, 0); 734 break; 735 case DMA_MEM_TO_DEV: 736 udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG, 0); 737 udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PEER_RT_EN_REG, 0); 738 break; 739 case DMA_MEM_TO_MEM: 740 udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG, 0); 741 udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG, 0); 742 break; 743 default: 744 return -EINVAL; 745 } 746 747 /* Reset all counters */ 748 udma_reset_counters(uc); 749 750 /* Hard reset: re-initialize the channel to reset */ 751 if (hard) { 752 struct udma_chan_config ucc_backup; 753 int ret; 754 755 memcpy(&ucc_backup, &uc->config, sizeof(uc->config)); 756 uc->ud->ddev.device_free_chan_resources(&uc->vc.chan); 757 758 /* restore the channel configuration */ 759 memcpy(&uc->config, &ucc_backup, sizeof(uc->config)); 760 ret = uc->ud->ddev.device_alloc_chan_resources(&uc->vc.chan); 761 if (ret) 762 return ret; 763 764 /* 765 * Setting forced teardown after forced reset helps recovering 766 * the rchan. 767 */ 768 if (uc->config.dir == DMA_DEV_TO_MEM) 769 udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG, 770 UDMA_CHAN_RT_CTL_EN | 771 UDMA_CHAN_RT_CTL_TDOWN | 772 UDMA_CHAN_RT_CTL_FTDOWN); 773 } 774 uc->state = UDMA_CHAN_IS_IDLE; 775 776 return 0; 777 } 778 779 static void udma_start_desc(struct udma_chan *uc) 780 { 781 struct udma_chan_config *ucc = &uc->config; 782 783 if (ucc->pkt_mode && (uc->cyclic || ucc->dir == DMA_DEV_TO_MEM)) { 784 int i; 785 786 /* Push all descriptors to ring for packet mode cyclic or RX */ 787 for (i = 0; i < uc->desc->sglen; i++) 788 udma_push_to_ring(uc, i); 789 } else { 790 udma_push_to_ring(uc, 0); 791 } 792 } 793 794 static bool udma_chan_needs_reconfiguration(struct udma_chan *uc) 795 { 796 /* Only PDMAs have staticTR */ 797 if (uc->config.ep_type == PSIL_EP_NATIVE) 798 return false; 799 800 /* Check if the staticTR configuration has changed for TX */ 801 if (memcmp(&uc->static_tr, &uc->desc->static_tr, sizeof(uc->static_tr))) 802 return true; 803 804 return false; 805 } 806 807 static int udma_start(struct udma_chan *uc) 808 { 809 struct virt_dma_desc *vd = vchan_next_desc(&uc->vc); 810 811 if (!vd) { 812 uc->desc = NULL; 813 return -ENOENT; 814 } 815 816 list_del(&vd->node); 817 818 uc->desc = to_udma_desc(&vd->tx); 819 820 /* Channel is already running and does not need reconfiguration */ 821 if (udma_is_chan_running(uc) && !udma_chan_needs_reconfiguration(uc)) { 822 udma_start_desc(uc); 823 goto out; 824 } 825 826 /* Make sure that we clear the teardown bit, if it is set */ 827 udma_reset_chan(uc, false); 828 829 /* Push descriptors before we start the channel */ 830 udma_start_desc(uc); 831 832 switch (uc->desc->dir) { 833 case DMA_DEV_TO_MEM: 834 /* Config remote TR */ 835 if (uc->config.ep_type == PSIL_EP_PDMA_XY) { 836 u32 val = PDMA_STATIC_TR_Y(uc->desc->static_tr.elcnt) | 837 PDMA_STATIC_TR_X(uc->desc->static_tr.elsize); 838 const struct udma_match_data *match_data = 839 uc->ud->match_data; 840 841 if (uc->config.enable_acc32) 842 val |= PDMA_STATIC_TR_XY_ACC32; 843 if (uc->config.enable_burst) 844 val |= PDMA_STATIC_TR_XY_BURST; 845 846 udma_rchanrt_write(uc->rchan, 847 UDMA_RCHAN_RT_PEER_STATIC_TR_XY_REG, val); 848 849 udma_rchanrt_write(uc->rchan, 850 UDMA_RCHAN_RT_PEER_STATIC_TR_Z_REG, 851 PDMA_STATIC_TR_Z(uc->desc->static_tr.bstcnt, 852 match_data->statictr_z_mask)); 853 854 /* save the current staticTR configuration */ 855 memcpy(&uc->static_tr, &uc->desc->static_tr, 856 sizeof(uc->static_tr)); 857 } 858 859 udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG, 860 UDMA_CHAN_RT_CTL_EN); 861 862 /* Enable remote */ 863 udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PEER_RT_EN_REG, 864 UDMA_PEER_RT_EN_ENABLE); 865 866 break; 867 case DMA_MEM_TO_DEV: 868 /* Config remote TR */ 869 if (uc->config.ep_type == PSIL_EP_PDMA_XY) { 870 u32 val = PDMA_STATIC_TR_Y(uc->desc->static_tr.elcnt) | 871 PDMA_STATIC_TR_X(uc->desc->static_tr.elsize); 872 873 if (uc->config.enable_acc32) 874 val |= PDMA_STATIC_TR_XY_ACC32; 875 if (uc->config.enable_burst) 876 val |= PDMA_STATIC_TR_XY_BURST; 877 878 udma_tchanrt_write(uc->tchan, 879 UDMA_TCHAN_RT_PEER_STATIC_TR_XY_REG, val); 880 881 /* save the current staticTR configuration */ 882 memcpy(&uc->static_tr, &uc->desc->static_tr, 883 sizeof(uc->static_tr)); 884 } 885 886 /* Enable remote */ 887 udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PEER_RT_EN_REG, 888 UDMA_PEER_RT_EN_ENABLE); 889 890 udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG, 891 UDMA_CHAN_RT_CTL_EN); 892 893 break; 894 case DMA_MEM_TO_MEM: 895 udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG, 896 UDMA_CHAN_RT_CTL_EN); 897 udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG, 898 UDMA_CHAN_RT_CTL_EN); 899 900 break; 901 default: 902 return -EINVAL; 903 } 904 905 uc->state = UDMA_CHAN_IS_ACTIVE; 906 out: 907 908 return 0; 909 } 910 911 static int udma_stop(struct udma_chan *uc) 912 { 913 enum udma_chan_state old_state = uc->state; 914 915 uc->state = UDMA_CHAN_IS_TERMINATING; 916 reinit_completion(&uc->teardown_completed); 917 918 switch (uc->config.dir) { 919 case DMA_DEV_TO_MEM: 920 if (!uc->cyclic && !uc->desc) 921 udma_push_to_ring(uc, -1); 922 923 udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PEER_RT_EN_REG, 924 UDMA_PEER_RT_EN_ENABLE | 925 UDMA_PEER_RT_EN_TEARDOWN); 926 break; 927 case DMA_MEM_TO_DEV: 928 udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PEER_RT_EN_REG, 929 UDMA_PEER_RT_EN_ENABLE | 930 UDMA_PEER_RT_EN_FLUSH); 931 udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG, 932 UDMA_CHAN_RT_CTL_EN | 933 UDMA_CHAN_RT_CTL_TDOWN); 934 break; 935 case DMA_MEM_TO_MEM: 936 udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG, 937 UDMA_CHAN_RT_CTL_EN | 938 UDMA_CHAN_RT_CTL_TDOWN); 939 break; 940 default: 941 uc->state = old_state; 942 complete_all(&uc->teardown_completed); 943 return -EINVAL; 944 } 945 946 return 0; 947 } 948 949 static void udma_cyclic_packet_elapsed(struct udma_chan *uc) 950 { 951 struct udma_desc *d = uc->desc; 952 struct cppi5_host_desc_t *h_desc; 953 954 h_desc = d->hwdesc[d->desc_idx].cppi5_desc_vaddr; 955 cppi5_hdesc_reset_to_original(h_desc); 956 udma_push_to_ring(uc, d->desc_idx); 957 d->desc_idx = (d->desc_idx + 1) % d->sglen; 958 } 959 960 static inline void udma_fetch_epib(struct udma_chan *uc, struct udma_desc *d) 961 { 962 struct cppi5_host_desc_t *h_desc = d->hwdesc[0].cppi5_desc_vaddr; 963 964 memcpy(d->metadata, h_desc->epib, d->metadata_size); 965 } 966 967 static bool udma_is_desc_really_done(struct udma_chan *uc, struct udma_desc *d) 968 { 969 u32 peer_bcnt, bcnt; 970 971 /* Only TX towards PDMA is affected */ 972 if (uc->config.ep_type == PSIL_EP_NATIVE || 973 uc->config.dir != DMA_MEM_TO_DEV) 974 return true; 975 976 peer_bcnt = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_PEER_BCNT_REG); 977 bcnt = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_BCNT_REG); 978 979 /* Transfer is incomplete, store current residue and time stamp */ 980 if (peer_bcnt < bcnt) { 981 uc->tx_drain.residue = bcnt - peer_bcnt; 982 uc->tx_drain.tstamp = ktime_get(); 983 return false; 984 } 985 986 return true; 987 } 988 989 static void udma_check_tx_completion(struct work_struct *work) 990 { 991 struct udma_chan *uc = container_of(work, typeof(*uc), 992 tx_drain.work.work); 993 bool desc_done = true; 994 u32 residue_diff; 995 ktime_t time_diff; 996 unsigned long delay; 997 998 while (1) { 999 if (uc->desc) { 1000 /* Get previous residue and time stamp */ 1001 residue_diff = uc->tx_drain.residue; 1002 time_diff = uc->tx_drain.tstamp; 1003 /* 1004 * Get current residue and time stamp or see if 1005 * transfer is complete 1006 */ 1007 desc_done = udma_is_desc_really_done(uc, uc->desc); 1008 } 1009 1010 if (!desc_done) { 1011 /* 1012 * Find the time delta and residue delta w.r.t 1013 * previous poll 1014 */ 1015 time_diff = ktime_sub(uc->tx_drain.tstamp, 1016 time_diff) + 1; 1017 residue_diff -= uc->tx_drain.residue; 1018 if (residue_diff) { 1019 /* 1020 * Try to guess when we should check 1021 * next time by calculating rate at 1022 * which data is being drained at the 1023 * peer device 1024 */ 1025 delay = (time_diff / residue_diff) * 1026 uc->tx_drain.residue; 1027 } else { 1028 /* No progress, check again in 1 second */ 1029 schedule_delayed_work(&uc->tx_drain.work, HZ); 1030 break; 1031 } 1032 1033 usleep_range(ktime_to_us(delay), 1034 ktime_to_us(delay) + 10); 1035 continue; 1036 } 1037 1038 if (uc->desc) { 1039 struct udma_desc *d = uc->desc; 1040 1041 uc->bcnt += d->residue; 1042 udma_start(uc); 1043 vchan_cookie_complete(&d->vd); 1044 break; 1045 } 1046 1047 break; 1048 } 1049 } 1050 1051 static irqreturn_t udma_ring_irq_handler(int irq, void *data) 1052 { 1053 struct udma_chan *uc = data; 1054 struct udma_desc *d; 1055 unsigned long flags; 1056 dma_addr_t paddr = 0; 1057 1058 if (udma_pop_from_ring(uc, &paddr) || !paddr) 1059 return IRQ_HANDLED; 1060 1061 spin_lock_irqsave(&uc->vc.lock, flags); 1062 1063 /* Teardown completion message */ 1064 if (cppi5_desc_is_tdcm(paddr)) { 1065 complete_all(&uc->teardown_completed); 1066 1067 if (uc->terminated_desc) { 1068 udma_desc_free(&uc->terminated_desc->vd); 1069 uc->terminated_desc = NULL; 1070 } 1071 1072 if (!uc->desc) 1073 udma_start(uc); 1074 1075 goto out; 1076 } 1077 1078 d = udma_udma_desc_from_paddr(uc, paddr); 1079 1080 if (d) { 1081 dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d, 1082 d->desc_idx); 1083 if (desc_paddr != paddr) { 1084 dev_err(uc->ud->dev, "not matching descriptors!\n"); 1085 goto out; 1086 } 1087 1088 if (d == uc->desc) { 1089 /* active descriptor */ 1090 if (uc->cyclic) { 1091 udma_cyclic_packet_elapsed(uc); 1092 vchan_cyclic_callback(&d->vd); 1093 } else { 1094 if (udma_is_desc_really_done(uc, d)) { 1095 uc->bcnt += d->residue; 1096 udma_start(uc); 1097 vchan_cookie_complete(&d->vd); 1098 } else { 1099 schedule_delayed_work(&uc->tx_drain.work, 1100 0); 1101 } 1102 } 1103 } else { 1104 /* 1105 * terminated descriptor, mark the descriptor as 1106 * completed to update the channel's cookie marker 1107 */ 1108 dma_cookie_complete(&d->vd.tx); 1109 } 1110 } 1111 out: 1112 spin_unlock_irqrestore(&uc->vc.lock, flags); 1113 1114 return IRQ_HANDLED; 1115 } 1116 1117 static irqreturn_t udma_udma_irq_handler(int irq, void *data) 1118 { 1119 struct udma_chan *uc = data; 1120 struct udma_desc *d; 1121 unsigned long flags; 1122 1123 spin_lock_irqsave(&uc->vc.lock, flags); 1124 d = uc->desc; 1125 if (d) { 1126 d->tr_idx = (d->tr_idx + 1) % d->sglen; 1127 1128 if (uc->cyclic) { 1129 vchan_cyclic_callback(&d->vd); 1130 } else { 1131 /* TODO: figure out the real amount of data */ 1132 uc->bcnt += d->residue; 1133 udma_start(uc); 1134 vchan_cookie_complete(&d->vd); 1135 } 1136 } 1137 1138 spin_unlock_irqrestore(&uc->vc.lock, flags); 1139 1140 return IRQ_HANDLED; 1141 } 1142 1143 /** 1144 * __udma_alloc_gp_rflow_range - alloc range of GP RX flows 1145 * @ud: UDMA device 1146 * @from: Start the search from this flow id number 1147 * @cnt: Number of consecutive flow ids to allocate 1148 * 1149 * Allocate range of RX flow ids for future use, those flows can be requested 1150 * only using explicit flow id number. if @from is set to -1 it will try to find 1151 * first free range. if @from is positive value it will force allocation only 1152 * of the specified range of flows. 1153 * 1154 * Returns -ENOMEM if can't find free range. 1155 * -EEXIST if requested range is busy. 1156 * -EINVAL if wrong input values passed. 1157 * Returns flow id on success. 1158 */ 1159 static int __udma_alloc_gp_rflow_range(struct udma_dev *ud, int from, int cnt) 1160 { 1161 int start, tmp_from; 1162 DECLARE_BITMAP(tmp, K3_UDMA_MAX_RFLOWS); 1163 1164 tmp_from = from; 1165 if (tmp_from < 0) 1166 tmp_from = ud->rchan_cnt; 1167 /* default flows can't be allocated and accessible only by id */ 1168 if (tmp_from < ud->rchan_cnt) 1169 return -EINVAL; 1170 1171 if (tmp_from + cnt > ud->rflow_cnt) 1172 return -EINVAL; 1173 1174 bitmap_or(tmp, ud->rflow_gp_map, ud->rflow_gp_map_allocated, 1175 ud->rflow_cnt); 1176 1177 start = bitmap_find_next_zero_area(tmp, 1178 ud->rflow_cnt, 1179 tmp_from, cnt, 0); 1180 if (start >= ud->rflow_cnt) 1181 return -ENOMEM; 1182 1183 if (from >= 0 && start != from) 1184 return -EEXIST; 1185 1186 bitmap_set(ud->rflow_gp_map_allocated, start, cnt); 1187 return start; 1188 } 1189 1190 static int __udma_free_gp_rflow_range(struct udma_dev *ud, int from, int cnt) 1191 { 1192 if (from < ud->rchan_cnt) 1193 return -EINVAL; 1194 if (from + cnt > ud->rflow_cnt) 1195 return -EINVAL; 1196 1197 bitmap_clear(ud->rflow_gp_map_allocated, from, cnt); 1198 return 0; 1199 } 1200 1201 static struct udma_rflow *__udma_get_rflow(struct udma_dev *ud, int id) 1202 { 1203 /* 1204 * Attempt to request rflow by ID can be made for any rflow 1205 * if not in use with assumption that caller knows what's doing. 1206 * TI-SCI FW will perform additional permission check ant way, it's 1207 * safe 1208 */ 1209 1210 if (id < 0 || id >= ud->rflow_cnt) 1211 return ERR_PTR(-ENOENT); 1212 1213 if (test_bit(id, ud->rflow_in_use)) 1214 return ERR_PTR(-ENOENT); 1215 1216 /* GP rflow has to be allocated first */ 1217 if (!test_bit(id, ud->rflow_gp_map) && 1218 !test_bit(id, ud->rflow_gp_map_allocated)) 1219 return ERR_PTR(-EINVAL); 1220 1221 dev_dbg(ud->dev, "get rflow%d\n", id); 1222 set_bit(id, ud->rflow_in_use); 1223 return &ud->rflows[id]; 1224 } 1225 1226 static void __udma_put_rflow(struct udma_dev *ud, struct udma_rflow *rflow) 1227 { 1228 if (!test_bit(rflow->id, ud->rflow_in_use)) { 1229 dev_err(ud->dev, "attempt to put unused rflow%d\n", rflow->id); 1230 return; 1231 } 1232 1233 dev_dbg(ud->dev, "put rflow%d\n", rflow->id); 1234 clear_bit(rflow->id, ud->rflow_in_use); 1235 } 1236 1237 #define UDMA_RESERVE_RESOURCE(res) \ 1238 static struct udma_##res *__udma_reserve_##res(struct udma_dev *ud, \ 1239 enum udma_tp_level tpl, \ 1240 int id) \ 1241 { \ 1242 if (id >= 0) { \ 1243 if (test_bit(id, ud->res##_map)) { \ 1244 dev_err(ud->dev, "res##%d is in use\n", id); \ 1245 return ERR_PTR(-ENOENT); \ 1246 } \ 1247 } else { \ 1248 int start; \ 1249 \ 1250 if (tpl >= ud->match_data->tpl_levels) \ 1251 tpl = ud->match_data->tpl_levels - 1; \ 1252 \ 1253 start = ud->match_data->level_start_idx[tpl]; \ 1254 \ 1255 id = find_next_zero_bit(ud->res##_map, ud->res##_cnt, \ 1256 start); \ 1257 if (id == ud->res##_cnt) { \ 1258 return ERR_PTR(-ENOENT); \ 1259 } \ 1260 } \ 1261 \ 1262 set_bit(id, ud->res##_map); \ 1263 return &ud->res##s[id]; \ 1264 } 1265 1266 UDMA_RESERVE_RESOURCE(tchan); 1267 UDMA_RESERVE_RESOURCE(rchan); 1268 1269 static int udma_get_tchan(struct udma_chan *uc) 1270 { 1271 struct udma_dev *ud = uc->ud; 1272 1273 if (uc->tchan) { 1274 dev_dbg(ud->dev, "chan%d: already have tchan%d allocated\n", 1275 uc->id, uc->tchan->id); 1276 return 0; 1277 } 1278 1279 uc->tchan = __udma_reserve_tchan(ud, uc->config.channel_tpl, -1); 1280 1281 return PTR_ERR_OR_ZERO(uc->tchan); 1282 } 1283 1284 static int udma_get_rchan(struct udma_chan *uc) 1285 { 1286 struct udma_dev *ud = uc->ud; 1287 1288 if (uc->rchan) { 1289 dev_dbg(ud->dev, "chan%d: already have rchan%d allocated\n", 1290 uc->id, uc->rchan->id); 1291 return 0; 1292 } 1293 1294 uc->rchan = __udma_reserve_rchan(ud, uc->config.channel_tpl, -1); 1295 1296 return PTR_ERR_OR_ZERO(uc->rchan); 1297 } 1298 1299 static int udma_get_chan_pair(struct udma_chan *uc) 1300 { 1301 struct udma_dev *ud = uc->ud; 1302 const struct udma_match_data *match_data = ud->match_data; 1303 int chan_id, end; 1304 1305 if ((uc->tchan && uc->rchan) && uc->tchan->id == uc->rchan->id) { 1306 dev_info(ud->dev, "chan%d: already have %d pair allocated\n", 1307 uc->id, uc->tchan->id); 1308 return 0; 1309 } 1310 1311 if (uc->tchan) { 1312 dev_err(ud->dev, "chan%d: already have tchan%d allocated\n", 1313 uc->id, uc->tchan->id); 1314 return -EBUSY; 1315 } else if (uc->rchan) { 1316 dev_err(ud->dev, "chan%d: already have rchan%d allocated\n", 1317 uc->id, uc->rchan->id); 1318 return -EBUSY; 1319 } 1320 1321 /* Can be optimized, but let's have it like this for now */ 1322 end = min(ud->tchan_cnt, ud->rchan_cnt); 1323 /* Try to use the highest TPL channel pair for MEM_TO_MEM channels */ 1324 chan_id = match_data->level_start_idx[match_data->tpl_levels - 1]; 1325 for (; chan_id < end; chan_id++) { 1326 if (!test_bit(chan_id, ud->tchan_map) && 1327 !test_bit(chan_id, ud->rchan_map)) 1328 break; 1329 } 1330 1331 if (chan_id == end) 1332 return -ENOENT; 1333 1334 set_bit(chan_id, ud->tchan_map); 1335 set_bit(chan_id, ud->rchan_map); 1336 uc->tchan = &ud->tchans[chan_id]; 1337 uc->rchan = &ud->rchans[chan_id]; 1338 1339 return 0; 1340 } 1341 1342 static int udma_get_rflow(struct udma_chan *uc, int flow_id) 1343 { 1344 struct udma_dev *ud = uc->ud; 1345 1346 if (!uc->rchan) { 1347 dev_err(ud->dev, "chan%d: does not have rchan??\n", uc->id); 1348 return -EINVAL; 1349 } 1350 1351 if (uc->rflow) { 1352 dev_dbg(ud->dev, "chan%d: already have rflow%d allocated\n", 1353 uc->id, uc->rflow->id); 1354 return 0; 1355 } 1356 1357 uc->rflow = __udma_get_rflow(ud, flow_id); 1358 1359 return PTR_ERR_OR_ZERO(uc->rflow); 1360 } 1361 1362 static void udma_put_rchan(struct udma_chan *uc) 1363 { 1364 struct udma_dev *ud = uc->ud; 1365 1366 if (uc->rchan) { 1367 dev_dbg(ud->dev, "chan%d: put rchan%d\n", uc->id, 1368 uc->rchan->id); 1369 clear_bit(uc->rchan->id, ud->rchan_map); 1370 uc->rchan = NULL; 1371 } 1372 } 1373 1374 static void udma_put_tchan(struct udma_chan *uc) 1375 { 1376 struct udma_dev *ud = uc->ud; 1377 1378 if (uc->tchan) { 1379 dev_dbg(ud->dev, "chan%d: put tchan%d\n", uc->id, 1380 uc->tchan->id); 1381 clear_bit(uc->tchan->id, ud->tchan_map); 1382 uc->tchan = NULL; 1383 } 1384 } 1385 1386 static void udma_put_rflow(struct udma_chan *uc) 1387 { 1388 struct udma_dev *ud = uc->ud; 1389 1390 if (uc->rflow) { 1391 dev_dbg(ud->dev, "chan%d: put rflow%d\n", uc->id, 1392 uc->rflow->id); 1393 __udma_put_rflow(ud, uc->rflow); 1394 uc->rflow = NULL; 1395 } 1396 } 1397 1398 static void udma_free_tx_resources(struct udma_chan *uc) 1399 { 1400 if (!uc->tchan) 1401 return; 1402 1403 k3_ringacc_ring_free(uc->tchan->t_ring); 1404 k3_ringacc_ring_free(uc->tchan->tc_ring); 1405 uc->tchan->t_ring = NULL; 1406 uc->tchan->tc_ring = NULL; 1407 1408 udma_put_tchan(uc); 1409 } 1410 1411 static int udma_alloc_tx_resources(struct udma_chan *uc) 1412 { 1413 struct k3_ring_cfg ring_cfg; 1414 struct udma_dev *ud = uc->ud; 1415 int ret; 1416 1417 ret = udma_get_tchan(uc); 1418 if (ret) 1419 return ret; 1420 1421 uc->tchan->t_ring = k3_ringacc_request_ring(ud->ringacc, 1422 uc->tchan->id, 0); 1423 if (!uc->tchan->t_ring) { 1424 ret = -EBUSY; 1425 goto err_tx_ring; 1426 } 1427 1428 uc->tchan->tc_ring = k3_ringacc_request_ring(ud->ringacc, -1, 0); 1429 if (!uc->tchan->tc_ring) { 1430 ret = -EBUSY; 1431 goto err_txc_ring; 1432 } 1433 1434 memset(&ring_cfg, 0, sizeof(ring_cfg)); 1435 ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE; 1436 ring_cfg.elm_size = K3_RINGACC_RING_ELSIZE_8; 1437 ring_cfg.mode = K3_RINGACC_RING_MODE_MESSAGE; 1438 1439 ret = k3_ringacc_ring_cfg(uc->tchan->t_ring, &ring_cfg); 1440 ret |= k3_ringacc_ring_cfg(uc->tchan->tc_ring, &ring_cfg); 1441 1442 if (ret) 1443 goto err_ringcfg; 1444 1445 return 0; 1446 1447 err_ringcfg: 1448 k3_ringacc_ring_free(uc->tchan->tc_ring); 1449 uc->tchan->tc_ring = NULL; 1450 err_txc_ring: 1451 k3_ringacc_ring_free(uc->tchan->t_ring); 1452 uc->tchan->t_ring = NULL; 1453 err_tx_ring: 1454 udma_put_tchan(uc); 1455 1456 return ret; 1457 } 1458 1459 static void udma_free_rx_resources(struct udma_chan *uc) 1460 { 1461 if (!uc->rchan) 1462 return; 1463 1464 if (uc->rflow) { 1465 struct udma_rflow *rflow = uc->rflow; 1466 1467 k3_ringacc_ring_free(rflow->fd_ring); 1468 k3_ringacc_ring_free(rflow->r_ring); 1469 rflow->fd_ring = NULL; 1470 rflow->r_ring = NULL; 1471 1472 udma_put_rflow(uc); 1473 } 1474 1475 udma_put_rchan(uc); 1476 } 1477 1478 static int udma_alloc_rx_resources(struct udma_chan *uc) 1479 { 1480 struct udma_dev *ud = uc->ud; 1481 struct k3_ring_cfg ring_cfg; 1482 struct udma_rflow *rflow; 1483 int fd_ring_id; 1484 int ret; 1485 1486 ret = udma_get_rchan(uc); 1487 if (ret) 1488 return ret; 1489 1490 /* For MEM_TO_MEM we don't need rflow or rings */ 1491 if (uc->config.dir == DMA_MEM_TO_MEM) 1492 return 0; 1493 1494 ret = udma_get_rflow(uc, uc->rchan->id); 1495 if (ret) { 1496 ret = -EBUSY; 1497 goto err_rflow; 1498 } 1499 1500 rflow = uc->rflow; 1501 fd_ring_id = ud->tchan_cnt + ud->echan_cnt + uc->rchan->id; 1502 rflow->fd_ring = k3_ringacc_request_ring(ud->ringacc, fd_ring_id, 0); 1503 if (!rflow->fd_ring) { 1504 ret = -EBUSY; 1505 goto err_rx_ring; 1506 } 1507 1508 rflow->r_ring = k3_ringacc_request_ring(ud->ringacc, -1, 0); 1509 if (!rflow->r_ring) { 1510 ret = -EBUSY; 1511 goto err_rxc_ring; 1512 } 1513 1514 memset(&ring_cfg, 0, sizeof(ring_cfg)); 1515 1516 if (uc->config.pkt_mode) 1517 ring_cfg.size = SG_MAX_SEGMENTS; 1518 else 1519 ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE; 1520 1521 ring_cfg.elm_size = K3_RINGACC_RING_ELSIZE_8; 1522 ring_cfg.mode = K3_RINGACC_RING_MODE_MESSAGE; 1523 1524 ret = k3_ringacc_ring_cfg(rflow->fd_ring, &ring_cfg); 1525 ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE; 1526 ret |= k3_ringacc_ring_cfg(rflow->r_ring, &ring_cfg); 1527 1528 if (ret) 1529 goto err_ringcfg; 1530 1531 return 0; 1532 1533 err_ringcfg: 1534 k3_ringacc_ring_free(rflow->r_ring); 1535 rflow->r_ring = NULL; 1536 err_rxc_ring: 1537 k3_ringacc_ring_free(rflow->fd_ring); 1538 rflow->fd_ring = NULL; 1539 err_rx_ring: 1540 udma_put_rflow(uc); 1541 err_rflow: 1542 udma_put_rchan(uc); 1543 1544 return ret; 1545 } 1546 1547 #define TISCI_TCHAN_VALID_PARAMS ( \ 1548 TI_SCI_MSG_VALUE_RM_UDMAP_CH_PAUSE_ON_ERR_VALID | \ 1549 TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_FILT_EINFO_VALID | \ 1550 TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_FILT_PSWORDS_VALID | \ 1551 TI_SCI_MSG_VALUE_RM_UDMAP_CH_CHAN_TYPE_VALID | \ 1552 TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_SUPR_TDPKT_VALID | \ 1553 TI_SCI_MSG_VALUE_RM_UDMAP_CH_FETCH_SIZE_VALID | \ 1554 TI_SCI_MSG_VALUE_RM_UDMAP_CH_CQ_QNUM_VALID | \ 1555 TI_SCI_MSG_VALUE_RM_UDMAP_CH_ATYPE_VALID) 1556 1557 #define TISCI_RCHAN_VALID_PARAMS ( \ 1558 TI_SCI_MSG_VALUE_RM_UDMAP_CH_PAUSE_ON_ERR_VALID | \ 1559 TI_SCI_MSG_VALUE_RM_UDMAP_CH_FETCH_SIZE_VALID | \ 1560 TI_SCI_MSG_VALUE_RM_UDMAP_CH_CQ_QNUM_VALID | \ 1561 TI_SCI_MSG_VALUE_RM_UDMAP_CH_CHAN_TYPE_VALID | \ 1562 TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_IGNORE_SHORT_VALID | \ 1563 TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_IGNORE_LONG_VALID | \ 1564 TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_FLOWID_START_VALID | \ 1565 TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_FLOWID_CNT_VALID | \ 1566 TI_SCI_MSG_VALUE_RM_UDMAP_CH_ATYPE_VALID) 1567 1568 static int udma_tisci_m2m_channel_config(struct udma_chan *uc) 1569 { 1570 struct udma_dev *ud = uc->ud; 1571 struct udma_tisci_rm *tisci_rm = &ud->tisci_rm; 1572 const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops; 1573 struct udma_tchan *tchan = uc->tchan; 1574 struct udma_rchan *rchan = uc->rchan; 1575 int ret = 0; 1576 1577 /* Non synchronized - mem to mem type of transfer */ 1578 int tc_ring = k3_ringacc_get_ring_id(tchan->tc_ring); 1579 struct ti_sci_msg_rm_udmap_tx_ch_cfg req_tx = { 0 }; 1580 struct ti_sci_msg_rm_udmap_rx_ch_cfg req_rx = { 0 }; 1581 1582 req_tx.valid_params = TISCI_TCHAN_VALID_PARAMS; 1583 req_tx.nav_id = tisci_rm->tisci_dev_id; 1584 req_tx.index = tchan->id; 1585 req_tx.tx_chan_type = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_BCOPY_PBRR; 1586 req_tx.tx_fetch_size = sizeof(struct cppi5_desc_hdr_t) >> 2; 1587 req_tx.txcq_qnum = tc_ring; 1588 req_tx.tx_atype = ud->atype; 1589 1590 ret = tisci_ops->tx_ch_cfg(tisci_rm->tisci, &req_tx); 1591 if (ret) { 1592 dev_err(ud->dev, "tchan%d cfg failed %d\n", tchan->id, ret); 1593 return ret; 1594 } 1595 1596 req_rx.valid_params = TISCI_RCHAN_VALID_PARAMS; 1597 req_rx.nav_id = tisci_rm->tisci_dev_id; 1598 req_rx.index = rchan->id; 1599 req_rx.rx_fetch_size = sizeof(struct cppi5_desc_hdr_t) >> 2; 1600 req_rx.rxcq_qnum = tc_ring; 1601 req_rx.rx_chan_type = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_BCOPY_PBRR; 1602 req_rx.rx_atype = ud->atype; 1603 1604 ret = tisci_ops->rx_ch_cfg(tisci_rm->tisci, &req_rx); 1605 if (ret) 1606 dev_err(ud->dev, "rchan%d alloc failed %d\n", rchan->id, ret); 1607 1608 return ret; 1609 } 1610 1611 static int udma_tisci_tx_channel_config(struct udma_chan *uc) 1612 { 1613 struct udma_dev *ud = uc->ud; 1614 struct udma_tisci_rm *tisci_rm = &ud->tisci_rm; 1615 const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops; 1616 struct udma_tchan *tchan = uc->tchan; 1617 int tc_ring = k3_ringacc_get_ring_id(tchan->tc_ring); 1618 struct ti_sci_msg_rm_udmap_tx_ch_cfg req_tx = { 0 }; 1619 u32 mode, fetch_size; 1620 int ret = 0; 1621 1622 if (uc->config.pkt_mode) { 1623 mode = TI_SCI_RM_UDMAP_CHAN_TYPE_PKT_PBRR; 1624 fetch_size = cppi5_hdesc_calc_size(uc->config.needs_epib, 1625 uc->config.psd_size, 0); 1626 } else { 1627 mode = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_PBRR; 1628 fetch_size = sizeof(struct cppi5_desc_hdr_t); 1629 } 1630 1631 req_tx.valid_params = TISCI_TCHAN_VALID_PARAMS; 1632 req_tx.nav_id = tisci_rm->tisci_dev_id; 1633 req_tx.index = tchan->id; 1634 req_tx.tx_chan_type = mode; 1635 req_tx.tx_supr_tdpkt = uc->config.notdpkt; 1636 req_tx.tx_fetch_size = fetch_size >> 2; 1637 req_tx.txcq_qnum = tc_ring; 1638 req_tx.tx_atype = uc->config.atype; 1639 1640 ret = tisci_ops->tx_ch_cfg(tisci_rm->tisci, &req_tx); 1641 if (ret) 1642 dev_err(ud->dev, "tchan%d cfg failed %d\n", tchan->id, ret); 1643 1644 return ret; 1645 } 1646 1647 static int udma_tisci_rx_channel_config(struct udma_chan *uc) 1648 { 1649 struct udma_dev *ud = uc->ud; 1650 struct udma_tisci_rm *tisci_rm = &ud->tisci_rm; 1651 const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops; 1652 struct udma_rchan *rchan = uc->rchan; 1653 int fd_ring = k3_ringacc_get_ring_id(uc->rflow->fd_ring); 1654 int rx_ring = k3_ringacc_get_ring_id(uc->rflow->r_ring); 1655 struct ti_sci_msg_rm_udmap_rx_ch_cfg req_rx = { 0 }; 1656 struct ti_sci_msg_rm_udmap_flow_cfg flow_req = { 0 }; 1657 u32 mode, fetch_size; 1658 int ret = 0; 1659 1660 if (uc->config.pkt_mode) { 1661 mode = TI_SCI_RM_UDMAP_CHAN_TYPE_PKT_PBRR; 1662 fetch_size = cppi5_hdesc_calc_size(uc->config.needs_epib, 1663 uc->config.psd_size, 0); 1664 } else { 1665 mode = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_PBRR; 1666 fetch_size = sizeof(struct cppi5_desc_hdr_t); 1667 } 1668 1669 req_rx.valid_params = TISCI_RCHAN_VALID_PARAMS; 1670 req_rx.nav_id = tisci_rm->tisci_dev_id; 1671 req_rx.index = rchan->id; 1672 req_rx.rx_fetch_size = fetch_size >> 2; 1673 req_rx.rxcq_qnum = rx_ring; 1674 req_rx.rx_chan_type = mode; 1675 req_rx.rx_atype = uc->config.atype; 1676 1677 ret = tisci_ops->rx_ch_cfg(tisci_rm->tisci, &req_rx); 1678 if (ret) { 1679 dev_err(ud->dev, "rchan%d cfg failed %d\n", rchan->id, ret); 1680 return ret; 1681 } 1682 1683 flow_req.valid_params = 1684 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_EINFO_PRESENT_VALID | 1685 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_PSINFO_PRESENT_VALID | 1686 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_ERROR_HANDLING_VALID | 1687 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DESC_TYPE_VALID | 1688 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_QNUM_VALID | 1689 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_SRC_TAG_HI_SEL_VALID | 1690 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_SRC_TAG_LO_SEL_VALID | 1691 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_TAG_HI_SEL_VALID | 1692 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_TAG_LO_SEL_VALID | 1693 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ0_SZ0_QNUM_VALID | 1694 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ1_QNUM_VALID | 1695 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ2_QNUM_VALID | 1696 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ3_QNUM_VALID; 1697 1698 flow_req.nav_id = tisci_rm->tisci_dev_id; 1699 flow_req.flow_index = rchan->id; 1700 1701 if (uc->config.needs_epib) 1702 flow_req.rx_einfo_present = 1; 1703 else 1704 flow_req.rx_einfo_present = 0; 1705 if (uc->config.psd_size) 1706 flow_req.rx_psinfo_present = 1; 1707 else 1708 flow_req.rx_psinfo_present = 0; 1709 flow_req.rx_error_handling = 1; 1710 flow_req.rx_dest_qnum = rx_ring; 1711 flow_req.rx_src_tag_hi_sel = UDMA_RFLOW_SRCTAG_NONE; 1712 flow_req.rx_src_tag_lo_sel = UDMA_RFLOW_SRCTAG_SRC_TAG; 1713 flow_req.rx_dest_tag_hi_sel = UDMA_RFLOW_DSTTAG_DST_TAG_HI; 1714 flow_req.rx_dest_tag_lo_sel = UDMA_RFLOW_DSTTAG_DST_TAG_LO; 1715 flow_req.rx_fdq0_sz0_qnum = fd_ring; 1716 flow_req.rx_fdq1_qnum = fd_ring; 1717 flow_req.rx_fdq2_qnum = fd_ring; 1718 flow_req.rx_fdq3_qnum = fd_ring; 1719 1720 ret = tisci_ops->rx_flow_cfg(tisci_rm->tisci, &flow_req); 1721 1722 if (ret) 1723 dev_err(ud->dev, "flow%d config failed: %d\n", rchan->id, ret); 1724 1725 return 0; 1726 } 1727 1728 static int udma_alloc_chan_resources(struct dma_chan *chan) 1729 { 1730 struct udma_chan *uc = to_udma_chan(chan); 1731 struct udma_dev *ud = to_udma_dev(chan->device); 1732 const struct udma_match_data *match_data = ud->match_data; 1733 struct k3_ring *irq_ring; 1734 u32 irq_udma_idx; 1735 int ret; 1736 1737 if (uc->config.pkt_mode || uc->config.dir == DMA_MEM_TO_MEM) { 1738 uc->use_dma_pool = true; 1739 /* in case of MEM_TO_MEM we have maximum of two TRs */ 1740 if (uc->config.dir == DMA_MEM_TO_MEM) { 1741 uc->config.hdesc_size = cppi5_trdesc_calc_size( 1742 sizeof(struct cppi5_tr_type15_t), 2); 1743 uc->config.pkt_mode = false; 1744 } 1745 } 1746 1747 if (uc->use_dma_pool) { 1748 uc->hdesc_pool = dma_pool_create(uc->name, ud->ddev.dev, 1749 uc->config.hdesc_size, 1750 ud->desc_align, 1751 0); 1752 if (!uc->hdesc_pool) { 1753 dev_err(ud->ddev.dev, 1754 "Descriptor pool allocation failed\n"); 1755 uc->use_dma_pool = false; 1756 ret = -ENOMEM; 1757 goto err_cleanup; 1758 } 1759 } 1760 1761 /* 1762 * Make sure that the completion is in a known state: 1763 * No teardown, the channel is idle 1764 */ 1765 reinit_completion(&uc->teardown_completed); 1766 complete_all(&uc->teardown_completed); 1767 uc->state = UDMA_CHAN_IS_IDLE; 1768 1769 switch (uc->config.dir) { 1770 case DMA_MEM_TO_MEM: 1771 /* Non synchronized - mem to mem type of transfer */ 1772 dev_dbg(uc->ud->dev, "%s: chan%d as MEM-to-MEM\n", __func__, 1773 uc->id); 1774 1775 ret = udma_get_chan_pair(uc); 1776 if (ret) 1777 goto err_cleanup; 1778 1779 ret = udma_alloc_tx_resources(uc); 1780 if (ret) { 1781 udma_put_rchan(uc); 1782 goto err_cleanup; 1783 } 1784 1785 ret = udma_alloc_rx_resources(uc); 1786 if (ret) { 1787 udma_free_tx_resources(uc); 1788 goto err_cleanup; 1789 } 1790 1791 uc->config.src_thread = ud->psil_base + uc->tchan->id; 1792 uc->config.dst_thread = (ud->psil_base + uc->rchan->id) | 1793 K3_PSIL_DST_THREAD_ID_OFFSET; 1794 1795 irq_ring = uc->tchan->tc_ring; 1796 irq_udma_idx = uc->tchan->id; 1797 1798 ret = udma_tisci_m2m_channel_config(uc); 1799 break; 1800 case DMA_MEM_TO_DEV: 1801 /* Slave transfer synchronized - mem to dev (TX) trasnfer */ 1802 dev_dbg(uc->ud->dev, "%s: chan%d as MEM-to-DEV\n", __func__, 1803 uc->id); 1804 1805 ret = udma_alloc_tx_resources(uc); 1806 if (ret) 1807 goto err_cleanup; 1808 1809 uc->config.src_thread = ud->psil_base + uc->tchan->id; 1810 uc->config.dst_thread = uc->config.remote_thread_id; 1811 uc->config.dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET; 1812 1813 irq_ring = uc->tchan->tc_ring; 1814 irq_udma_idx = uc->tchan->id; 1815 1816 ret = udma_tisci_tx_channel_config(uc); 1817 break; 1818 case DMA_DEV_TO_MEM: 1819 /* Slave transfer synchronized - dev to mem (RX) trasnfer */ 1820 dev_dbg(uc->ud->dev, "%s: chan%d as DEV-to-MEM\n", __func__, 1821 uc->id); 1822 1823 ret = udma_alloc_rx_resources(uc); 1824 if (ret) 1825 goto err_cleanup; 1826 1827 uc->config.src_thread = uc->config.remote_thread_id; 1828 uc->config.dst_thread = (ud->psil_base + uc->rchan->id) | 1829 K3_PSIL_DST_THREAD_ID_OFFSET; 1830 1831 irq_ring = uc->rflow->r_ring; 1832 irq_udma_idx = match_data->rchan_oes_offset + uc->rchan->id; 1833 1834 ret = udma_tisci_rx_channel_config(uc); 1835 break; 1836 default: 1837 /* Can not happen */ 1838 dev_err(uc->ud->dev, "%s: chan%d invalid direction (%u)\n", 1839 __func__, uc->id, uc->config.dir); 1840 ret = -EINVAL; 1841 goto err_cleanup; 1842 1843 } 1844 1845 /* check if the channel configuration was successful */ 1846 if (ret) 1847 goto err_res_free; 1848 1849 if (udma_is_chan_running(uc)) { 1850 dev_warn(ud->dev, "chan%d: is running!\n", uc->id); 1851 udma_reset_chan(uc, false); 1852 if (udma_is_chan_running(uc)) { 1853 dev_err(ud->dev, "chan%d: won't stop!\n", uc->id); 1854 ret = -EBUSY; 1855 goto err_res_free; 1856 } 1857 } 1858 1859 /* PSI-L pairing */ 1860 ret = navss_psil_pair(ud, uc->config.src_thread, uc->config.dst_thread); 1861 if (ret) { 1862 dev_err(ud->dev, "PSI-L pairing failed: 0x%04x -> 0x%04x\n", 1863 uc->config.src_thread, uc->config.dst_thread); 1864 goto err_res_free; 1865 } 1866 1867 uc->psil_paired = true; 1868 1869 uc->irq_num_ring = k3_ringacc_get_ring_irq_num(irq_ring); 1870 if (uc->irq_num_ring <= 0) { 1871 dev_err(ud->dev, "Failed to get ring irq (index: %u)\n", 1872 k3_ringacc_get_ring_id(irq_ring)); 1873 ret = -EINVAL; 1874 goto err_psi_free; 1875 } 1876 1877 ret = request_irq(uc->irq_num_ring, udma_ring_irq_handler, 1878 IRQF_TRIGGER_HIGH, uc->name, uc); 1879 if (ret) { 1880 dev_err(ud->dev, "chan%d: ring irq request failed\n", uc->id); 1881 goto err_irq_free; 1882 } 1883 1884 /* Event from UDMA (TR events) only needed for slave TR mode channels */ 1885 if (is_slave_direction(uc->config.dir) && !uc->config.pkt_mode) { 1886 uc->irq_num_udma = ti_sci_inta_msi_get_virq(ud->dev, 1887 irq_udma_idx); 1888 if (uc->irq_num_udma <= 0) { 1889 dev_err(ud->dev, "Failed to get udma irq (index: %u)\n", 1890 irq_udma_idx); 1891 free_irq(uc->irq_num_ring, uc); 1892 ret = -EINVAL; 1893 goto err_irq_free; 1894 } 1895 1896 ret = request_irq(uc->irq_num_udma, udma_udma_irq_handler, 0, 1897 uc->name, uc); 1898 if (ret) { 1899 dev_err(ud->dev, "chan%d: UDMA irq request failed\n", 1900 uc->id); 1901 free_irq(uc->irq_num_ring, uc); 1902 goto err_irq_free; 1903 } 1904 } else { 1905 uc->irq_num_udma = 0; 1906 } 1907 1908 udma_reset_rings(uc); 1909 1910 return 0; 1911 1912 err_irq_free: 1913 uc->irq_num_ring = 0; 1914 uc->irq_num_udma = 0; 1915 err_psi_free: 1916 navss_psil_unpair(ud, uc->config.src_thread, uc->config.dst_thread); 1917 uc->psil_paired = false; 1918 err_res_free: 1919 udma_free_tx_resources(uc); 1920 udma_free_rx_resources(uc); 1921 err_cleanup: 1922 udma_reset_uchan(uc); 1923 1924 if (uc->use_dma_pool) { 1925 dma_pool_destroy(uc->hdesc_pool); 1926 uc->use_dma_pool = false; 1927 } 1928 1929 return ret; 1930 } 1931 1932 static int udma_slave_config(struct dma_chan *chan, 1933 struct dma_slave_config *cfg) 1934 { 1935 struct udma_chan *uc = to_udma_chan(chan); 1936 1937 memcpy(&uc->cfg, cfg, sizeof(uc->cfg)); 1938 1939 return 0; 1940 } 1941 1942 static struct udma_desc *udma_alloc_tr_desc(struct udma_chan *uc, 1943 size_t tr_size, int tr_count, 1944 enum dma_transfer_direction dir) 1945 { 1946 struct udma_hwdesc *hwdesc; 1947 struct cppi5_desc_hdr_t *tr_desc; 1948 struct udma_desc *d; 1949 u32 reload_count = 0; 1950 u32 ring_id; 1951 1952 switch (tr_size) { 1953 case 16: 1954 case 32: 1955 case 64: 1956 case 128: 1957 break; 1958 default: 1959 dev_err(uc->ud->dev, "Unsupported TR size of %zu\n", tr_size); 1960 return NULL; 1961 } 1962 1963 /* We have only one descriptor containing multiple TRs */ 1964 d = kzalloc(sizeof(*d) + sizeof(d->hwdesc[0]), GFP_NOWAIT); 1965 if (!d) 1966 return NULL; 1967 1968 d->sglen = tr_count; 1969 1970 d->hwdesc_count = 1; 1971 hwdesc = &d->hwdesc[0]; 1972 1973 /* Allocate memory for DMA ring descriptor */ 1974 if (uc->use_dma_pool) { 1975 hwdesc->cppi5_desc_size = uc->config.hdesc_size; 1976 hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool, 1977 GFP_NOWAIT, 1978 &hwdesc->cppi5_desc_paddr); 1979 } else { 1980 hwdesc->cppi5_desc_size = cppi5_trdesc_calc_size(tr_size, 1981 tr_count); 1982 hwdesc->cppi5_desc_size = ALIGN(hwdesc->cppi5_desc_size, 1983 uc->ud->desc_align); 1984 hwdesc->cppi5_desc_vaddr = dma_alloc_coherent(uc->ud->dev, 1985 hwdesc->cppi5_desc_size, 1986 &hwdesc->cppi5_desc_paddr, 1987 GFP_NOWAIT); 1988 } 1989 1990 if (!hwdesc->cppi5_desc_vaddr) { 1991 kfree(d); 1992 return NULL; 1993 } 1994 1995 /* Start of the TR req records */ 1996 hwdesc->tr_req_base = hwdesc->cppi5_desc_vaddr + tr_size; 1997 /* Start address of the TR response array */ 1998 hwdesc->tr_resp_base = hwdesc->tr_req_base + tr_size * tr_count; 1999 2000 tr_desc = hwdesc->cppi5_desc_vaddr; 2001 2002 if (uc->cyclic) 2003 reload_count = CPPI5_INFO0_TRDESC_RLDCNT_INFINITE; 2004 2005 if (dir == DMA_DEV_TO_MEM) 2006 ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring); 2007 else 2008 ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring); 2009 2010 cppi5_trdesc_init(tr_desc, tr_count, tr_size, 0, reload_count); 2011 cppi5_desc_set_pktids(tr_desc, uc->id, 2012 CPPI5_INFO1_DESC_FLOWID_DEFAULT); 2013 cppi5_desc_set_retpolicy(tr_desc, 0, ring_id); 2014 2015 return d; 2016 } 2017 2018 /** 2019 * udma_get_tr_counters - calculate TR counters for a given length 2020 * @len: Length of the trasnfer 2021 * @align_to: Preferred alignment 2022 * @tr0_cnt0: First TR icnt0 2023 * @tr0_cnt1: First TR icnt1 2024 * @tr1_cnt0: Second (if used) TR icnt0 2025 * 2026 * For len < SZ_64K only one TR is enough, tr1_cnt0 is not updated 2027 * For len >= SZ_64K two TRs are used in a simple way: 2028 * First TR: SZ_64K-alignment blocks (tr0_cnt0, tr0_cnt1) 2029 * Second TR: the remaining length (tr1_cnt0) 2030 * 2031 * Returns the number of TRs the length needs (1 or 2) 2032 * -EINVAL if the length can not be supported 2033 */ 2034 static int udma_get_tr_counters(size_t len, unsigned long align_to, 2035 u16 *tr0_cnt0, u16 *tr0_cnt1, u16 *tr1_cnt0) 2036 { 2037 if (len < SZ_64K) { 2038 *tr0_cnt0 = len; 2039 *tr0_cnt1 = 1; 2040 2041 return 1; 2042 } 2043 2044 if (align_to > 3) 2045 align_to = 3; 2046 2047 realign: 2048 *tr0_cnt0 = SZ_64K - BIT(align_to); 2049 if (len / *tr0_cnt0 >= SZ_64K) { 2050 if (align_to) { 2051 align_to--; 2052 goto realign; 2053 } 2054 return -EINVAL; 2055 } 2056 2057 *tr0_cnt1 = len / *tr0_cnt0; 2058 *tr1_cnt0 = len % *tr0_cnt0; 2059 2060 return 2; 2061 } 2062 2063 static struct udma_desc * 2064 udma_prep_slave_sg_tr(struct udma_chan *uc, struct scatterlist *sgl, 2065 unsigned int sglen, enum dma_transfer_direction dir, 2066 unsigned long tx_flags, void *context) 2067 { 2068 struct scatterlist *sgent; 2069 struct udma_desc *d; 2070 struct cppi5_tr_type1_t *tr_req = NULL; 2071 u16 tr0_cnt0, tr0_cnt1, tr1_cnt0; 2072 unsigned int i; 2073 size_t tr_size; 2074 int num_tr = 0; 2075 int tr_idx = 0; 2076 2077 if (!is_slave_direction(dir)) { 2078 dev_err(uc->ud->dev, "Only slave cyclic is supported\n"); 2079 return NULL; 2080 } 2081 2082 /* estimate the number of TRs we will need */ 2083 for_each_sg(sgl, sgent, sglen, i) { 2084 if (sg_dma_len(sgent) < SZ_64K) 2085 num_tr++; 2086 else 2087 num_tr += 2; 2088 } 2089 2090 /* Now allocate and setup the descriptor. */ 2091 tr_size = sizeof(struct cppi5_tr_type1_t); 2092 d = udma_alloc_tr_desc(uc, tr_size, num_tr, dir); 2093 if (!d) 2094 return NULL; 2095 2096 d->sglen = sglen; 2097 2098 tr_req = d->hwdesc[0].tr_req_base; 2099 for_each_sg(sgl, sgent, sglen, i) { 2100 dma_addr_t sg_addr = sg_dma_address(sgent); 2101 2102 num_tr = udma_get_tr_counters(sg_dma_len(sgent), __ffs(sg_addr), 2103 &tr0_cnt0, &tr0_cnt1, &tr1_cnt0); 2104 if (num_tr < 0) { 2105 dev_err(uc->ud->dev, "size %u is not supported\n", 2106 sg_dma_len(sgent)); 2107 udma_free_hwdesc(uc, d); 2108 kfree(d); 2109 return NULL; 2110 } 2111 2112 cppi5_tr_init(&tr_req[i].flags, CPPI5_TR_TYPE1, false, false, 2113 CPPI5_TR_EVENT_SIZE_COMPLETION, 0); 2114 cppi5_tr_csf_set(&tr_req[i].flags, CPPI5_TR_CSF_SUPR_EVT); 2115 2116 tr_req[tr_idx].addr = sg_addr; 2117 tr_req[tr_idx].icnt0 = tr0_cnt0; 2118 tr_req[tr_idx].icnt1 = tr0_cnt1; 2119 tr_req[tr_idx].dim1 = tr0_cnt0; 2120 tr_idx++; 2121 2122 if (num_tr == 2) { 2123 cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1, 2124 false, false, 2125 CPPI5_TR_EVENT_SIZE_COMPLETION, 0); 2126 cppi5_tr_csf_set(&tr_req[tr_idx].flags, 2127 CPPI5_TR_CSF_SUPR_EVT); 2128 2129 tr_req[tr_idx].addr = sg_addr + tr0_cnt1 * tr0_cnt0; 2130 tr_req[tr_idx].icnt0 = tr1_cnt0; 2131 tr_req[tr_idx].icnt1 = 1; 2132 tr_req[tr_idx].dim1 = tr1_cnt0; 2133 tr_idx++; 2134 } 2135 2136 d->residue += sg_dma_len(sgent); 2137 } 2138 2139 cppi5_tr_csf_set(&tr_req[tr_idx - 1].flags, 2140 CPPI5_TR_CSF_SUPR_EVT | CPPI5_TR_CSF_EOP); 2141 2142 return d; 2143 } 2144 2145 static int udma_configure_statictr(struct udma_chan *uc, struct udma_desc *d, 2146 enum dma_slave_buswidth dev_width, 2147 u16 elcnt) 2148 { 2149 if (uc->config.ep_type != PSIL_EP_PDMA_XY) 2150 return 0; 2151 2152 /* Bus width translates to the element size (ES) */ 2153 switch (dev_width) { 2154 case DMA_SLAVE_BUSWIDTH_1_BYTE: 2155 d->static_tr.elsize = 0; 2156 break; 2157 case DMA_SLAVE_BUSWIDTH_2_BYTES: 2158 d->static_tr.elsize = 1; 2159 break; 2160 case DMA_SLAVE_BUSWIDTH_3_BYTES: 2161 d->static_tr.elsize = 2; 2162 break; 2163 case DMA_SLAVE_BUSWIDTH_4_BYTES: 2164 d->static_tr.elsize = 3; 2165 break; 2166 case DMA_SLAVE_BUSWIDTH_8_BYTES: 2167 d->static_tr.elsize = 4; 2168 break; 2169 default: /* not reached */ 2170 return -EINVAL; 2171 } 2172 2173 d->static_tr.elcnt = elcnt; 2174 2175 /* 2176 * PDMA must to close the packet when the channel is in packet mode. 2177 * For TR mode when the channel is not cyclic we also need PDMA to close 2178 * the packet otherwise the transfer will stall because PDMA holds on 2179 * the data it has received from the peripheral. 2180 */ 2181 if (uc->config.pkt_mode || !uc->cyclic) { 2182 unsigned int div = dev_width * elcnt; 2183 2184 if (uc->cyclic) 2185 d->static_tr.bstcnt = d->residue / d->sglen / div; 2186 else 2187 d->static_tr.bstcnt = d->residue / div; 2188 2189 if (uc->config.dir == DMA_DEV_TO_MEM && 2190 d->static_tr.bstcnt > uc->ud->match_data->statictr_z_mask) 2191 return -EINVAL; 2192 } else { 2193 d->static_tr.bstcnt = 0; 2194 } 2195 2196 return 0; 2197 } 2198 2199 static struct udma_desc * 2200 udma_prep_slave_sg_pkt(struct udma_chan *uc, struct scatterlist *sgl, 2201 unsigned int sglen, enum dma_transfer_direction dir, 2202 unsigned long tx_flags, void *context) 2203 { 2204 struct scatterlist *sgent; 2205 struct cppi5_host_desc_t *h_desc = NULL; 2206 struct udma_desc *d; 2207 u32 ring_id; 2208 unsigned int i; 2209 2210 d = kzalloc(sizeof(*d) + sglen * sizeof(d->hwdesc[0]), GFP_NOWAIT); 2211 if (!d) 2212 return NULL; 2213 2214 d->sglen = sglen; 2215 d->hwdesc_count = sglen; 2216 2217 if (dir == DMA_DEV_TO_MEM) 2218 ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring); 2219 else 2220 ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring); 2221 2222 for_each_sg(sgl, sgent, sglen, i) { 2223 struct udma_hwdesc *hwdesc = &d->hwdesc[i]; 2224 dma_addr_t sg_addr = sg_dma_address(sgent); 2225 struct cppi5_host_desc_t *desc; 2226 size_t sg_len = sg_dma_len(sgent); 2227 2228 hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool, 2229 GFP_NOWAIT, 2230 &hwdesc->cppi5_desc_paddr); 2231 if (!hwdesc->cppi5_desc_vaddr) { 2232 dev_err(uc->ud->dev, 2233 "descriptor%d allocation failed\n", i); 2234 2235 udma_free_hwdesc(uc, d); 2236 kfree(d); 2237 return NULL; 2238 } 2239 2240 d->residue += sg_len; 2241 hwdesc->cppi5_desc_size = uc->config.hdesc_size; 2242 desc = hwdesc->cppi5_desc_vaddr; 2243 2244 if (i == 0) { 2245 cppi5_hdesc_init(desc, 0, 0); 2246 /* Flow and Packed ID */ 2247 cppi5_desc_set_pktids(&desc->hdr, uc->id, 2248 CPPI5_INFO1_DESC_FLOWID_DEFAULT); 2249 cppi5_desc_set_retpolicy(&desc->hdr, 0, ring_id); 2250 } else { 2251 cppi5_hdesc_reset_hbdesc(desc); 2252 cppi5_desc_set_retpolicy(&desc->hdr, 0, 0xffff); 2253 } 2254 2255 /* attach the sg buffer to the descriptor */ 2256 cppi5_hdesc_attach_buf(desc, sg_addr, sg_len, sg_addr, sg_len); 2257 2258 /* Attach link as host buffer descriptor */ 2259 if (h_desc) 2260 cppi5_hdesc_link_hbdesc(h_desc, 2261 hwdesc->cppi5_desc_paddr); 2262 2263 if (dir == DMA_MEM_TO_DEV) 2264 h_desc = desc; 2265 } 2266 2267 if (d->residue >= SZ_4M) { 2268 dev_err(uc->ud->dev, 2269 "%s: Transfer size %u is over the supported 4M range\n", 2270 __func__, d->residue); 2271 udma_free_hwdesc(uc, d); 2272 kfree(d); 2273 return NULL; 2274 } 2275 2276 h_desc = d->hwdesc[0].cppi5_desc_vaddr; 2277 cppi5_hdesc_set_pktlen(h_desc, d->residue); 2278 2279 return d; 2280 } 2281 2282 static int udma_attach_metadata(struct dma_async_tx_descriptor *desc, 2283 void *data, size_t len) 2284 { 2285 struct udma_desc *d = to_udma_desc(desc); 2286 struct udma_chan *uc = to_udma_chan(desc->chan); 2287 struct cppi5_host_desc_t *h_desc; 2288 u32 psd_size = len; 2289 u32 flags = 0; 2290 2291 if (!uc->config.pkt_mode || !uc->config.metadata_size) 2292 return -ENOTSUPP; 2293 2294 if (!data || len > uc->config.metadata_size) 2295 return -EINVAL; 2296 2297 if (uc->config.needs_epib && len < CPPI5_INFO0_HDESC_EPIB_SIZE) 2298 return -EINVAL; 2299 2300 h_desc = d->hwdesc[0].cppi5_desc_vaddr; 2301 if (d->dir == DMA_MEM_TO_DEV) 2302 memcpy(h_desc->epib, data, len); 2303 2304 if (uc->config.needs_epib) 2305 psd_size -= CPPI5_INFO0_HDESC_EPIB_SIZE; 2306 2307 d->metadata = data; 2308 d->metadata_size = len; 2309 if (uc->config.needs_epib) 2310 flags |= CPPI5_INFO0_HDESC_EPIB_PRESENT; 2311 2312 cppi5_hdesc_update_flags(h_desc, flags); 2313 cppi5_hdesc_update_psdata_size(h_desc, psd_size); 2314 2315 return 0; 2316 } 2317 2318 static void *udma_get_metadata_ptr(struct dma_async_tx_descriptor *desc, 2319 size_t *payload_len, size_t *max_len) 2320 { 2321 struct udma_desc *d = to_udma_desc(desc); 2322 struct udma_chan *uc = to_udma_chan(desc->chan); 2323 struct cppi5_host_desc_t *h_desc; 2324 2325 if (!uc->config.pkt_mode || !uc->config.metadata_size) 2326 return ERR_PTR(-ENOTSUPP); 2327 2328 h_desc = d->hwdesc[0].cppi5_desc_vaddr; 2329 2330 *max_len = uc->config.metadata_size; 2331 2332 *payload_len = cppi5_hdesc_epib_present(&h_desc->hdr) ? 2333 CPPI5_INFO0_HDESC_EPIB_SIZE : 0; 2334 *payload_len += cppi5_hdesc_get_psdata_size(h_desc); 2335 2336 return h_desc->epib; 2337 } 2338 2339 static int udma_set_metadata_len(struct dma_async_tx_descriptor *desc, 2340 size_t payload_len) 2341 { 2342 struct udma_desc *d = to_udma_desc(desc); 2343 struct udma_chan *uc = to_udma_chan(desc->chan); 2344 struct cppi5_host_desc_t *h_desc; 2345 u32 psd_size = payload_len; 2346 u32 flags = 0; 2347 2348 if (!uc->config.pkt_mode || !uc->config.metadata_size) 2349 return -ENOTSUPP; 2350 2351 if (payload_len > uc->config.metadata_size) 2352 return -EINVAL; 2353 2354 if (uc->config.needs_epib && payload_len < CPPI5_INFO0_HDESC_EPIB_SIZE) 2355 return -EINVAL; 2356 2357 h_desc = d->hwdesc[0].cppi5_desc_vaddr; 2358 2359 if (uc->config.needs_epib) { 2360 psd_size -= CPPI5_INFO0_HDESC_EPIB_SIZE; 2361 flags |= CPPI5_INFO0_HDESC_EPIB_PRESENT; 2362 } 2363 2364 cppi5_hdesc_update_flags(h_desc, flags); 2365 cppi5_hdesc_update_psdata_size(h_desc, psd_size); 2366 2367 return 0; 2368 } 2369 2370 static struct dma_descriptor_metadata_ops metadata_ops = { 2371 .attach = udma_attach_metadata, 2372 .get_ptr = udma_get_metadata_ptr, 2373 .set_len = udma_set_metadata_len, 2374 }; 2375 2376 static struct dma_async_tx_descriptor * 2377 udma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2378 unsigned int sglen, enum dma_transfer_direction dir, 2379 unsigned long tx_flags, void *context) 2380 { 2381 struct udma_chan *uc = to_udma_chan(chan); 2382 enum dma_slave_buswidth dev_width; 2383 struct udma_desc *d; 2384 u32 burst; 2385 2386 if (dir != uc->config.dir) { 2387 dev_err(chan->device->dev, 2388 "%s: chan%d is for %s, not supporting %s\n", 2389 __func__, uc->id, 2390 dmaengine_get_direction_text(uc->config.dir), 2391 dmaengine_get_direction_text(dir)); 2392 return NULL; 2393 } 2394 2395 if (dir == DMA_DEV_TO_MEM) { 2396 dev_width = uc->cfg.src_addr_width; 2397 burst = uc->cfg.src_maxburst; 2398 } else if (dir == DMA_MEM_TO_DEV) { 2399 dev_width = uc->cfg.dst_addr_width; 2400 burst = uc->cfg.dst_maxburst; 2401 } else { 2402 dev_err(chan->device->dev, "%s: bad direction?\n", __func__); 2403 return NULL; 2404 } 2405 2406 if (!burst) 2407 burst = 1; 2408 2409 if (uc->config.pkt_mode) 2410 d = udma_prep_slave_sg_pkt(uc, sgl, sglen, dir, tx_flags, 2411 context); 2412 else 2413 d = udma_prep_slave_sg_tr(uc, sgl, sglen, dir, tx_flags, 2414 context); 2415 2416 if (!d) 2417 return NULL; 2418 2419 d->dir = dir; 2420 d->desc_idx = 0; 2421 d->tr_idx = 0; 2422 2423 /* static TR for remote PDMA */ 2424 if (udma_configure_statictr(uc, d, dev_width, burst)) { 2425 dev_err(uc->ud->dev, 2426 "%s: StaticTR Z is limited to maximum 4095 (%u)\n", 2427 __func__, d->static_tr.bstcnt); 2428 2429 udma_free_hwdesc(uc, d); 2430 kfree(d); 2431 return NULL; 2432 } 2433 2434 if (uc->config.metadata_size) 2435 d->vd.tx.metadata_ops = &metadata_ops; 2436 2437 return vchan_tx_prep(&uc->vc, &d->vd, tx_flags); 2438 } 2439 2440 static struct udma_desc * 2441 udma_prep_dma_cyclic_tr(struct udma_chan *uc, dma_addr_t buf_addr, 2442 size_t buf_len, size_t period_len, 2443 enum dma_transfer_direction dir, unsigned long flags) 2444 { 2445 struct udma_desc *d; 2446 size_t tr_size, period_addr; 2447 struct cppi5_tr_type1_t *tr_req; 2448 unsigned int periods = buf_len / period_len; 2449 u16 tr0_cnt0, tr0_cnt1, tr1_cnt0; 2450 unsigned int i; 2451 int num_tr; 2452 2453 if (!is_slave_direction(dir)) { 2454 dev_err(uc->ud->dev, "Only slave cyclic is supported\n"); 2455 return NULL; 2456 } 2457 2458 num_tr = udma_get_tr_counters(period_len, __ffs(buf_addr), &tr0_cnt0, 2459 &tr0_cnt1, &tr1_cnt0); 2460 if (num_tr < 0) { 2461 dev_err(uc->ud->dev, "size %zu is not supported\n", 2462 period_len); 2463 return NULL; 2464 } 2465 2466 /* Now allocate and setup the descriptor. */ 2467 tr_size = sizeof(struct cppi5_tr_type1_t); 2468 d = udma_alloc_tr_desc(uc, tr_size, periods * num_tr, dir); 2469 if (!d) 2470 return NULL; 2471 2472 tr_req = d->hwdesc[0].tr_req_base; 2473 period_addr = buf_addr; 2474 for (i = 0; i < periods; i++) { 2475 int tr_idx = i * num_tr; 2476 2477 cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1, false, 2478 false, CPPI5_TR_EVENT_SIZE_COMPLETION, 0); 2479 2480 tr_req[tr_idx].addr = period_addr; 2481 tr_req[tr_idx].icnt0 = tr0_cnt0; 2482 tr_req[tr_idx].icnt1 = tr0_cnt1; 2483 tr_req[tr_idx].dim1 = tr0_cnt0; 2484 2485 if (num_tr == 2) { 2486 cppi5_tr_csf_set(&tr_req[tr_idx].flags, 2487 CPPI5_TR_CSF_SUPR_EVT); 2488 tr_idx++; 2489 2490 cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1, 2491 false, false, 2492 CPPI5_TR_EVENT_SIZE_COMPLETION, 0); 2493 2494 tr_req[tr_idx].addr = period_addr + tr0_cnt1 * tr0_cnt0; 2495 tr_req[tr_idx].icnt0 = tr1_cnt0; 2496 tr_req[tr_idx].icnt1 = 1; 2497 tr_req[tr_idx].dim1 = tr1_cnt0; 2498 } 2499 2500 if (!(flags & DMA_PREP_INTERRUPT)) 2501 cppi5_tr_csf_set(&tr_req[tr_idx].flags, 2502 CPPI5_TR_CSF_SUPR_EVT); 2503 2504 period_addr += period_len; 2505 } 2506 2507 return d; 2508 } 2509 2510 static struct udma_desc * 2511 udma_prep_dma_cyclic_pkt(struct udma_chan *uc, dma_addr_t buf_addr, 2512 size_t buf_len, size_t period_len, 2513 enum dma_transfer_direction dir, unsigned long flags) 2514 { 2515 struct udma_desc *d; 2516 u32 ring_id; 2517 int i; 2518 int periods = buf_len / period_len; 2519 2520 if (periods > (K3_UDMA_DEFAULT_RING_SIZE - 1)) 2521 return NULL; 2522 2523 if (period_len >= SZ_4M) 2524 return NULL; 2525 2526 d = kzalloc(sizeof(*d) + periods * sizeof(d->hwdesc[0]), GFP_NOWAIT); 2527 if (!d) 2528 return NULL; 2529 2530 d->hwdesc_count = periods; 2531 2532 /* TODO: re-check this... */ 2533 if (dir == DMA_DEV_TO_MEM) 2534 ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring); 2535 else 2536 ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring); 2537 2538 for (i = 0; i < periods; i++) { 2539 struct udma_hwdesc *hwdesc = &d->hwdesc[i]; 2540 dma_addr_t period_addr = buf_addr + (period_len * i); 2541 struct cppi5_host_desc_t *h_desc; 2542 2543 hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool, 2544 GFP_NOWAIT, 2545 &hwdesc->cppi5_desc_paddr); 2546 if (!hwdesc->cppi5_desc_vaddr) { 2547 dev_err(uc->ud->dev, 2548 "descriptor%d allocation failed\n", i); 2549 2550 udma_free_hwdesc(uc, d); 2551 kfree(d); 2552 return NULL; 2553 } 2554 2555 hwdesc->cppi5_desc_size = uc->config.hdesc_size; 2556 h_desc = hwdesc->cppi5_desc_vaddr; 2557 2558 cppi5_hdesc_init(h_desc, 0, 0); 2559 cppi5_hdesc_set_pktlen(h_desc, period_len); 2560 2561 /* Flow and Packed ID */ 2562 cppi5_desc_set_pktids(&h_desc->hdr, uc->id, 2563 CPPI5_INFO1_DESC_FLOWID_DEFAULT); 2564 cppi5_desc_set_retpolicy(&h_desc->hdr, 0, ring_id); 2565 2566 /* attach each period to a new descriptor */ 2567 cppi5_hdesc_attach_buf(h_desc, 2568 period_addr, period_len, 2569 period_addr, period_len); 2570 } 2571 2572 return d; 2573 } 2574 2575 static struct dma_async_tx_descriptor * 2576 udma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 2577 size_t period_len, enum dma_transfer_direction dir, 2578 unsigned long flags) 2579 { 2580 struct udma_chan *uc = to_udma_chan(chan); 2581 enum dma_slave_buswidth dev_width; 2582 struct udma_desc *d; 2583 u32 burst; 2584 2585 if (dir != uc->config.dir) { 2586 dev_err(chan->device->dev, 2587 "%s: chan%d is for %s, not supporting %s\n", 2588 __func__, uc->id, 2589 dmaengine_get_direction_text(uc->config.dir), 2590 dmaengine_get_direction_text(dir)); 2591 return NULL; 2592 } 2593 2594 uc->cyclic = true; 2595 2596 if (dir == DMA_DEV_TO_MEM) { 2597 dev_width = uc->cfg.src_addr_width; 2598 burst = uc->cfg.src_maxburst; 2599 } else if (dir == DMA_MEM_TO_DEV) { 2600 dev_width = uc->cfg.dst_addr_width; 2601 burst = uc->cfg.dst_maxburst; 2602 } else { 2603 dev_err(uc->ud->dev, "%s: bad direction?\n", __func__); 2604 return NULL; 2605 } 2606 2607 if (!burst) 2608 burst = 1; 2609 2610 if (uc->config.pkt_mode) 2611 d = udma_prep_dma_cyclic_pkt(uc, buf_addr, buf_len, period_len, 2612 dir, flags); 2613 else 2614 d = udma_prep_dma_cyclic_tr(uc, buf_addr, buf_len, period_len, 2615 dir, flags); 2616 2617 if (!d) 2618 return NULL; 2619 2620 d->sglen = buf_len / period_len; 2621 2622 d->dir = dir; 2623 d->residue = buf_len; 2624 2625 /* static TR for remote PDMA */ 2626 if (udma_configure_statictr(uc, d, dev_width, burst)) { 2627 dev_err(uc->ud->dev, 2628 "%s: StaticTR Z is limited to maximum 4095 (%u)\n", 2629 __func__, d->static_tr.bstcnt); 2630 2631 udma_free_hwdesc(uc, d); 2632 kfree(d); 2633 return NULL; 2634 } 2635 2636 if (uc->config.metadata_size) 2637 d->vd.tx.metadata_ops = &metadata_ops; 2638 2639 return vchan_tx_prep(&uc->vc, &d->vd, flags); 2640 } 2641 2642 static struct dma_async_tx_descriptor * 2643 udma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 2644 size_t len, unsigned long tx_flags) 2645 { 2646 struct udma_chan *uc = to_udma_chan(chan); 2647 struct udma_desc *d; 2648 struct cppi5_tr_type15_t *tr_req; 2649 int num_tr; 2650 size_t tr_size = sizeof(struct cppi5_tr_type15_t); 2651 u16 tr0_cnt0, tr0_cnt1, tr1_cnt0; 2652 2653 if (uc->config.dir != DMA_MEM_TO_MEM) { 2654 dev_err(chan->device->dev, 2655 "%s: chan%d is for %s, not supporting %s\n", 2656 __func__, uc->id, 2657 dmaengine_get_direction_text(uc->config.dir), 2658 dmaengine_get_direction_text(DMA_MEM_TO_MEM)); 2659 return NULL; 2660 } 2661 2662 num_tr = udma_get_tr_counters(len, __ffs(src | dest), &tr0_cnt0, 2663 &tr0_cnt1, &tr1_cnt0); 2664 if (num_tr < 0) { 2665 dev_err(uc->ud->dev, "size %zu is not supported\n", 2666 len); 2667 return NULL; 2668 } 2669 2670 d = udma_alloc_tr_desc(uc, tr_size, num_tr, DMA_MEM_TO_MEM); 2671 if (!d) 2672 return NULL; 2673 2674 d->dir = DMA_MEM_TO_MEM; 2675 d->desc_idx = 0; 2676 d->tr_idx = 0; 2677 d->residue = len; 2678 2679 tr_req = d->hwdesc[0].tr_req_base; 2680 2681 cppi5_tr_init(&tr_req[0].flags, CPPI5_TR_TYPE15, false, true, 2682 CPPI5_TR_EVENT_SIZE_COMPLETION, 0); 2683 cppi5_tr_csf_set(&tr_req[0].flags, CPPI5_TR_CSF_SUPR_EVT); 2684 2685 tr_req[0].addr = src; 2686 tr_req[0].icnt0 = tr0_cnt0; 2687 tr_req[0].icnt1 = tr0_cnt1; 2688 tr_req[0].icnt2 = 1; 2689 tr_req[0].icnt3 = 1; 2690 tr_req[0].dim1 = tr0_cnt0; 2691 2692 tr_req[0].daddr = dest; 2693 tr_req[0].dicnt0 = tr0_cnt0; 2694 tr_req[0].dicnt1 = tr0_cnt1; 2695 tr_req[0].dicnt2 = 1; 2696 tr_req[0].dicnt3 = 1; 2697 tr_req[0].ddim1 = tr0_cnt0; 2698 2699 if (num_tr == 2) { 2700 cppi5_tr_init(&tr_req[1].flags, CPPI5_TR_TYPE15, false, true, 2701 CPPI5_TR_EVENT_SIZE_COMPLETION, 0); 2702 cppi5_tr_csf_set(&tr_req[1].flags, CPPI5_TR_CSF_SUPR_EVT); 2703 2704 tr_req[1].addr = src + tr0_cnt1 * tr0_cnt0; 2705 tr_req[1].icnt0 = tr1_cnt0; 2706 tr_req[1].icnt1 = 1; 2707 tr_req[1].icnt2 = 1; 2708 tr_req[1].icnt3 = 1; 2709 2710 tr_req[1].daddr = dest + tr0_cnt1 * tr0_cnt0; 2711 tr_req[1].dicnt0 = tr1_cnt0; 2712 tr_req[1].dicnt1 = 1; 2713 tr_req[1].dicnt2 = 1; 2714 tr_req[1].dicnt3 = 1; 2715 } 2716 2717 cppi5_tr_csf_set(&tr_req[num_tr - 1].flags, 2718 CPPI5_TR_CSF_SUPR_EVT | CPPI5_TR_CSF_EOP); 2719 2720 if (uc->config.metadata_size) 2721 d->vd.tx.metadata_ops = &metadata_ops; 2722 2723 return vchan_tx_prep(&uc->vc, &d->vd, tx_flags); 2724 } 2725 2726 static void udma_issue_pending(struct dma_chan *chan) 2727 { 2728 struct udma_chan *uc = to_udma_chan(chan); 2729 unsigned long flags; 2730 2731 spin_lock_irqsave(&uc->vc.lock, flags); 2732 2733 /* If we have something pending and no active descriptor, then */ 2734 if (vchan_issue_pending(&uc->vc) && !uc->desc) { 2735 /* 2736 * start a descriptor if the channel is NOT [marked as 2737 * terminating _and_ it is still running (teardown has not 2738 * completed yet)]. 2739 */ 2740 if (!(uc->state == UDMA_CHAN_IS_TERMINATING && 2741 udma_is_chan_running(uc))) 2742 udma_start(uc); 2743 } 2744 2745 spin_unlock_irqrestore(&uc->vc.lock, flags); 2746 } 2747 2748 static enum dma_status udma_tx_status(struct dma_chan *chan, 2749 dma_cookie_t cookie, 2750 struct dma_tx_state *txstate) 2751 { 2752 struct udma_chan *uc = to_udma_chan(chan); 2753 enum dma_status ret; 2754 unsigned long flags; 2755 2756 spin_lock_irqsave(&uc->vc.lock, flags); 2757 2758 ret = dma_cookie_status(chan, cookie, txstate); 2759 2760 if (!udma_is_chan_running(uc)) 2761 ret = DMA_COMPLETE; 2762 2763 if (ret == DMA_IN_PROGRESS && udma_is_chan_paused(uc)) 2764 ret = DMA_PAUSED; 2765 2766 if (ret == DMA_COMPLETE || !txstate) 2767 goto out; 2768 2769 if (uc->desc && uc->desc->vd.tx.cookie == cookie) { 2770 u32 peer_bcnt = 0; 2771 u32 bcnt = 0; 2772 u32 residue = uc->desc->residue; 2773 u32 delay = 0; 2774 2775 if (uc->desc->dir == DMA_MEM_TO_DEV) { 2776 bcnt = udma_tchanrt_read(uc->tchan, 2777 UDMA_TCHAN_RT_SBCNT_REG); 2778 2779 if (uc->config.ep_type != PSIL_EP_NATIVE) { 2780 peer_bcnt = udma_tchanrt_read(uc->tchan, 2781 UDMA_TCHAN_RT_PEER_BCNT_REG); 2782 2783 if (bcnt > peer_bcnt) 2784 delay = bcnt - peer_bcnt; 2785 } 2786 } else if (uc->desc->dir == DMA_DEV_TO_MEM) { 2787 bcnt = udma_rchanrt_read(uc->rchan, 2788 UDMA_RCHAN_RT_BCNT_REG); 2789 2790 if (uc->config.ep_type != PSIL_EP_NATIVE) { 2791 peer_bcnt = udma_rchanrt_read(uc->rchan, 2792 UDMA_RCHAN_RT_PEER_BCNT_REG); 2793 2794 if (peer_bcnt > bcnt) 2795 delay = peer_bcnt - bcnt; 2796 } 2797 } else { 2798 bcnt = udma_tchanrt_read(uc->tchan, 2799 UDMA_TCHAN_RT_BCNT_REG); 2800 } 2801 2802 bcnt -= uc->bcnt; 2803 if (bcnt && !(bcnt % uc->desc->residue)) 2804 residue = 0; 2805 else 2806 residue -= bcnt % uc->desc->residue; 2807 2808 if (!residue && (uc->config.dir == DMA_DEV_TO_MEM || !delay)) { 2809 ret = DMA_COMPLETE; 2810 delay = 0; 2811 } 2812 2813 dma_set_residue(txstate, residue); 2814 dma_set_in_flight_bytes(txstate, delay); 2815 2816 } else { 2817 ret = DMA_COMPLETE; 2818 } 2819 2820 out: 2821 spin_unlock_irqrestore(&uc->vc.lock, flags); 2822 return ret; 2823 } 2824 2825 static int udma_pause(struct dma_chan *chan) 2826 { 2827 struct udma_chan *uc = to_udma_chan(chan); 2828 2829 /* pause the channel */ 2830 switch (uc->config.dir) { 2831 case DMA_DEV_TO_MEM: 2832 udma_rchanrt_update_bits(uc->rchan, 2833 UDMA_RCHAN_RT_PEER_RT_EN_REG, 2834 UDMA_PEER_RT_EN_PAUSE, 2835 UDMA_PEER_RT_EN_PAUSE); 2836 break; 2837 case DMA_MEM_TO_DEV: 2838 udma_tchanrt_update_bits(uc->tchan, 2839 UDMA_TCHAN_RT_PEER_RT_EN_REG, 2840 UDMA_PEER_RT_EN_PAUSE, 2841 UDMA_PEER_RT_EN_PAUSE); 2842 break; 2843 case DMA_MEM_TO_MEM: 2844 udma_tchanrt_update_bits(uc->tchan, UDMA_TCHAN_RT_CTL_REG, 2845 UDMA_CHAN_RT_CTL_PAUSE, 2846 UDMA_CHAN_RT_CTL_PAUSE); 2847 break; 2848 default: 2849 return -EINVAL; 2850 } 2851 2852 return 0; 2853 } 2854 2855 static int udma_resume(struct dma_chan *chan) 2856 { 2857 struct udma_chan *uc = to_udma_chan(chan); 2858 2859 /* resume the channel */ 2860 switch (uc->config.dir) { 2861 case DMA_DEV_TO_MEM: 2862 udma_rchanrt_update_bits(uc->rchan, 2863 UDMA_RCHAN_RT_PEER_RT_EN_REG, 2864 UDMA_PEER_RT_EN_PAUSE, 0); 2865 2866 break; 2867 case DMA_MEM_TO_DEV: 2868 udma_tchanrt_update_bits(uc->tchan, 2869 UDMA_TCHAN_RT_PEER_RT_EN_REG, 2870 UDMA_PEER_RT_EN_PAUSE, 0); 2871 break; 2872 case DMA_MEM_TO_MEM: 2873 udma_tchanrt_update_bits(uc->tchan, UDMA_TCHAN_RT_CTL_REG, 2874 UDMA_CHAN_RT_CTL_PAUSE, 0); 2875 break; 2876 default: 2877 return -EINVAL; 2878 } 2879 2880 return 0; 2881 } 2882 2883 static int udma_terminate_all(struct dma_chan *chan) 2884 { 2885 struct udma_chan *uc = to_udma_chan(chan); 2886 unsigned long flags; 2887 LIST_HEAD(head); 2888 2889 spin_lock_irqsave(&uc->vc.lock, flags); 2890 2891 if (udma_is_chan_running(uc)) 2892 udma_stop(uc); 2893 2894 if (uc->desc) { 2895 uc->terminated_desc = uc->desc; 2896 uc->desc = NULL; 2897 uc->terminated_desc->terminated = true; 2898 cancel_delayed_work(&uc->tx_drain.work); 2899 } 2900 2901 uc->paused = false; 2902 2903 vchan_get_all_descriptors(&uc->vc, &head); 2904 spin_unlock_irqrestore(&uc->vc.lock, flags); 2905 vchan_dma_desc_free_list(&uc->vc, &head); 2906 2907 return 0; 2908 } 2909 2910 static void udma_synchronize(struct dma_chan *chan) 2911 { 2912 struct udma_chan *uc = to_udma_chan(chan); 2913 unsigned long timeout = msecs_to_jiffies(1000); 2914 2915 vchan_synchronize(&uc->vc); 2916 2917 if (uc->state == UDMA_CHAN_IS_TERMINATING) { 2918 timeout = wait_for_completion_timeout(&uc->teardown_completed, 2919 timeout); 2920 if (!timeout) { 2921 dev_warn(uc->ud->dev, "chan%d teardown timeout!\n", 2922 uc->id); 2923 udma_dump_chan_stdata(uc); 2924 udma_reset_chan(uc, true); 2925 } 2926 } 2927 2928 udma_reset_chan(uc, false); 2929 if (udma_is_chan_running(uc)) 2930 dev_warn(uc->ud->dev, "chan%d refused to stop!\n", uc->id); 2931 2932 cancel_delayed_work_sync(&uc->tx_drain.work); 2933 udma_reset_rings(uc); 2934 } 2935 2936 static void udma_desc_pre_callback(struct virt_dma_chan *vc, 2937 struct virt_dma_desc *vd, 2938 struct dmaengine_result *result) 2939 { 2940 struct udma_chan *uc = to_udma_chan(&vc->chan); 2941 struct udma_desc *d; 2942 2943 if (!vd) 2944 return; 2945 2946 d = to_udma_desc(&vd->tx); 2947 2948 if (d->metadata_size) 2949 udma_fetch_epib(uc, d); 2950 2951 /* Provide residue information for the client */ 2952 if (result) { 2953 void *desc_vaddr = udma_curr_cppi5_desc_vaddr(d, d->desc_idx); 2954 2955 if (cppi5_desc_get_type(desc_vaddr) == 2956 CPPI5_INFO0_DESC_TYPE_VAL_HOST) { 2957 result->residue = d->residue - 2958 cppi5_hdesc_get_pktlen(desc_vaddr); 2959 if (result->residue) 2960 result->result = DMA_TRANS_ABORTED; 2961 else 2962 result->result = DMA_TRANS_NOERROR; 2963 } else { 2964 result->residue = 0; 2965 result->result = DMA_TRANS_NOERROR; 2966 } 2967 } 2968 } 2969 2970 /* 2971 * This tasklet handles the completion of a DMA descriptor by 2972 * calling its callback and freeing it. 2973 */ 2974 static void udma_vchan_complete(unsigned long arg) 2975 { 2976 struct virt_dma_chan *vc = (struct virt_dma_chan *)arg; 2977 struct virt_dma_desc *vd, *_vd; 2978 struct dmaengine_desc_callback cb; 2979 LIST_HEAD(head); 2980 2981 spin_lock_irq(&vc->lock); 2982 list_splice_tail_init(&vc->desc_completed, &head); 2983 vd = vc->cyclic; 2984 if (vd) { 2985 vc->cyclic = NULL; 2986 dmaengine_desc_get_callback(&vd->tx, &cb); 2987 } else { 2988 memset(&cb, 0, sizeof(cb)); 2989 } 2990 spin_unlock_irq(&vc->lock); 2991 2992 udma_desc_pre_callback(vc, vd, NULL); 2993 dmaengine_desc_callback_invoke(&cb, NULL); 2994 2995 list_for_each_entry_safe(vd, _vd, &head, node) { 2996 struct dmaengine_result result; 2997 2998 dmaengine_desc_get_callback(&vd->tx, &cb); 2999 3000 list_del(&vd->node); 3001 3002 udma_desc_pre_callback(vc, vd, &result); 3003 dmaengine_desc_callback_invoke(&cb, &result); 3004 3005 vchan_vdesc_fini(vd); 3006 } 3007 } 3008 3009 static void udma_free_chan_resources(struct dma_chan *chan) 3010 { 3011 struct udma_chan *uc = to_udma_chan(chan); 3012 struct udma_dev *ud = to_udma_dev(chan->device); 3013 3014 udma_terminate_all(chan); 3015 if (uc->terminated_desc) { 3016 udma_reset_chan(uc, false); 3017 udma_reset_rings(uc); 3018 } 3019 3020 cancel_delayed_work_sync(&uc->tx_drain.work); 3021 3022 if (uc->irq_num_ring > 0) { 3023 free_irq(uc->irq_num_ring, uc); 3024 3025 uc->irq_num_ring = 0; 3026 } 3027 if (uc->irq_num_udma > 0) { 3028 free_irq(uc->irq_num_udma, uc); 3029 3030 uc->irq_num_udma = 0; 3031 } 3032 3033 /* Release PSI-L pairing */ 3034 if (uc->psil_paired) { 3035 navss_psil_unpair(ud, uc->config.src_thread, 3036 uc->config.dst_thread); 3037 uc->psil_paired = false; 3038 } 3039 3040 vchan_free_chan_resources(&uc->vc); 3041 tasklet_kill(&uc->vc.task); 3042 3043 udma_free_tx_resources(uc); 3044 udma_free_rx_resources(uc); 3045 udma_reset_uchan(uc); 3046 3047 if (uc->use_dma_pool) { 3048 dma_pool_destroy(uc->hdesc_pool); 3049 uc->use_dma_pool = false; 3050 } 3051 } 3052 3053 static struct platform_driver udma_driver; 3054 3055 struct udma_filter_param { 3056 int remote_thread_id; 3057 u32 atype; 3058 }; 3059 3060 static bool udma_dma_filter_fn(struct dma_chan *chan, void *param) 3061 { 3062 struct udma_chan_config *ucc; 3063 struct psil_endpoint_config *ep_config; 3064 struct udma_filter_param *filter_param; 3065 struct udma_chan *uc; 3066 struct udma_dev *ud; 3067 3068 if (chan->device->dev->driver != &udma_driver.driver) 3069 return false; 3070 3071 uc = to_udma_chan(chan); 3072 ucc = &uc->config; 3073 ud = uc->ud; 3074 filter_param = param; 3075 3076 if (filter_param->atype > 2) { 3077 dev_err(ud->dev, "Invalid channel atype: %u\n", 3078 filter_param->atype); 3079 return false; 3080 } 3081 3082 ucc->remote_thread_id = filter_param->remote_thread_id; 3083 ucc->atype = filter_param->atype; 3084 3085 if (ucc->remote_thread_id & K3_PSIL_DST_THREAD_ID_OFFSET) 3086 ucc->dir = DMA_MEM_TO_DEV; 3087 else 3088 ucc->dir = DMA_DEV_TO_MEM; 3089 3090 ep_config = psil_get_ep_config(ucc->remote_thread_id); 3091 if (IS_ERR(ep_config)) { 3092 dev_err(ud->dev, "No configuration for psi-l thread 0x%04x\n", 3093 ucc->remote_thread_id); 3094 ucc->dir = DMA_MEM_TO_MEM; 3095 ucc->remote_thread_id = -1; 3096 ucc->atype = 0; 3097 return false; 3098 } 3099 3100 ucc->pkt_mode = ep_config->pkt_mode; 3101 ucc->channel_tpl = ep_config->channel_tpl; 3102 ucc->notdpkt = ep_config->notdpkt; 3103 ucc->ep_type = ep_config->ep_type; 3104 3105 if (ucc->ep_type != PSIL_EP_NATIVE) { 3106 const struct udma_match_data *match_data = ud->match_data; 3107 3108 if (match_data->flags & UDMA_FLAG_PDMA_ACC32) 3109 ucc->enable_acc32 = ep_config->pdma_acc32; 3110 if (match_data->flags & UDMA_FLAG_PDMA_BURST) 3111 ucc->enable_burst = ep_config->pdma_burst; 3112 } 3113 3114 ucc->needs_epib = ep_config->needs_epib; 3115 ucc->psd_size = ep_config->psd_size; 3116 ucc->metadata_size = 3117 (ucc->needs_epib ? CPPI5_INFO0_HDESC_EPIB_SIZE : 0) + 3118 ucc->psd_size; 3119 3120 if (ucc->pkt_mode) 3121 ucc->hdesc_size = ALIGN(sizeof(struct cppi5_host_desc_t) + 3122 ucc->metadata_size, ud->desc_align); 3123 3124 dev_dbg(ud->dev, "chan%d: Remote thread: 0x%04x (%s)\n", uc->id, 3125 ucc->remote_thread_id, dmaengine_get_direction_text(ucc->dir)); 3126 3127 return true; 3128 } 3129 3130 static struct dma_chan *udma_of_xlate(struct of_phandle_args *dma_spec, 3131 struct of_dma *ofdma) 3132 { 3133 struct udma_dev *ud = ofdma->of_dma_data; 3134 dma_cap_mask_t mask = ud->ddev.cap_mask; 3135 struct udma_filter_param filter_param; 3136 struct dma_chan *chan; 3137 3138 if (dma_spec->args_count != 1 && dma_spec->args_count != 2) 3139 return NULL; 3140 3141 filter_param.remote_thread_id = dma_spec->args[0]; 3142 if (dma_spec->args_count == 2) 3143 filter_param.atype = dma_spec->args[1]; 3144 else 3145 filter_param.atype = 0; 3146 3147 chan = __dma_request_channel(&mask, udma_dma_filter_fn, &filter_param, 3148 ofdma->of_node); 3149 if (!chan) { 3150 dev_err(ud->dev, "get channel fail in %s.\n", __func__); 3151 return ERR_PTR(-EINVAL); 3152 } 3153 3154 return chan; 3155 } 3156 3157 static struct udma_match_data am654_main_data = { 3158 .psil_base = 0x1000, 3159 .enable_memcpy_support = true, 3160 .statictr_z_mask = GENMASK(11, 0), 3161 .rchan_oes_offset = 0x2000, 3162 .tpl_levels = 2, 3163 .level_start_idx = { 3164 [0] = 8, /* Normal channels */ 3165 [1] = 0, /* High Throughput channels */ 3166 }, 3167 }; 3168 3169 static struct udma_match_data am654_mcu_data = { 3170 .psil_base = 0x6000, 3171 .enable_memcpy_support = false, 3172 .statictr_z_mask = GENMASK(11, 0), 3173 .rchan_oes_offset = 0x2000, 3174 .tpl_levels = 2, 3175 .level_start_idx = { 3176 [0] = 2, /* Normal channels */ 3177 [1] = 0, /* High Throughput channels */ 3178 }, 3179 }; 3180 3181 static struct udma_match_data j721e_main_data = { 3182 .psil_base = 0x1000, 3183 .enable_memcpy_support = true, 3184 .flags = UDMA_FLAG_PDMA_ACC32 | UDMA_FLAG_PDMA_BURST, 3185 .statictr_z_mask = GENMASK(23, 0), 3186 .rchan_oes_offset = 0x400, 3187 .tpl_levels = 3, 3188 .level_start_idx = { 3189 [0] = 16, /* Normal channels */ 3190 [1] = 4, /* High Throughput channels */ 3191 [2] = 0, /* Ultra High Throughput channels */ 3192 }, 3193 }; 3194 3195 static struct udma_match_data j721e_mcu_data = { 3196 .psil_base = 0x6000, 3197 .enable_memcpy_support = false, /* MEM_TO_MEM is slow via MCU UDMA */ 3198 .flags = UDMA_FLAG_PDMA_ACC32 | UDMA_FLAG_PDMA_BURST, 3199 .statictr_z_mask = GENMASK(23, 0), 3200 .rchan_oes_offset = 0x400, 3201 .tpl_levels = 2, 3202 .level_start_idx = { 3203 [0] = 2, /* Normal channels */ 3204 [1] = 0, /* High Throughput channels */ 3205 }, 3206 }; 3207 3208 static const struct of_device_id udma_of_match[] = { 3209 { 3210 .compatible = "ti,am654-navss-main-udmap", 3211 .data = &am654_main_data, 3212 }, 3213 { 3214 .compatible = "ti,am654-navss-mcu-udmap", 3215 .data = &am654_mcu_data, 3216 }, { 3217 .compatible = "ti,j721e-navss-main-udmap", 3218 .data = &j721e_main_data, 3219 }, { 3220 .compatible = "ti,j721e-navss-mcu-udmap", 3221 .data = &j721e_mcu_data, 3222 }, 3223 { /* Sentinel */ }, 3224 }; 3225 3226 static int udma_get_mmrs(struct platform_device *pdev, struct udma_dev *ud) 3227 { 3228 struct resource *res; 3229 int i; 3230 3231 for (i = 0; i < MMR_LAST; i++) { 3232 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 3233 mmr_names[i]); 3234 ud->mmrs[i] = devm_ioremap_resource(&pdev->dev, res); 3235 if (IS_ERR(ud->mmrs[i])) 3236 return PTR_ERR(ud->mmrs[i]); 3237 } 3238 3239 return 0; 3240 } 3241 3242 static int udma_setup_resources(struct udma_dev *ud) 3243 { 3244 struct device *dev = ud->dev; 3245 int ch_count, ret, i, j; 3246 u32 cap2, cap3; 3247 struct ti_sci_resource_desc *rm_desc; 3248 struct ti_sci_resource *rm_res, irq_res; 3249 struct udma_tisci_rm *tisci_rm = &ud->tisci_rm; 3250 static const char * const range_names[] = { "ti,sci-rm-range-tchan", 3251 "ti,sci-rm-range-rchan", 3252 "ti,sci-rm-range-rflow" }; 3253 3254 cap2 = udma_read(ud->mmrs[MMR_GCFG], 0x28); 3255 cap3 = udma_read(ud->mmrs[MMR_GCFG], 0x2c); 3256 3257 ud->rflow_cnt = cap3 & 0x3fff; 3258 ud->tchan_cnt = cap2 & 0x1ff; 3259 ud->echan_cnt = (cap2 >> 9) & 0x1ff; 3260 ud->rchan_cnt = (cap2 >> 18) & 0x1ff; 3261 ch_count = ud->tchan_cnt + ud->rchan_cnt; 3262 3263 ud->tchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->tchan_cnt), 3264 sizeof(unsigned long), GFP_KERNEL); 3265 ud->tchans = devm_kcalloc(dev, ud->tchan_cnt, sizeof(*ud->tchans), 3266 GFP_KERNEL); 3267 ud->rchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->rchan_cnt), 3268 sizeof(unsigned long), GFP_KERNEL); 3269 ud->rchans = devm_kcalloc(dev, ud->rchan_cnt, sizeof(*ud->rchans), 3270 GFP_KERNEL); 3271 ud->rflow_gp_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->rflow_cnt), 3272 sizeof(unsigned long), 3273 GFP_KERNEL); 3274 ud->rflow_gp_map_allocated = devm_kcalloc(dev, 3275 BITS_TO_LONGS(ud->rflow_cnt), 3276 sizeof(unsigned long), 3277 GFP_KERNEL); 3278 ud->rflow_in_use = devm_kcalloc(dev, BITS_TO_LONGS(ud->rflow_cnt), 3279 sizeof(unsigned long), 3280 GFP_KERNEL); 3281 ud->rflows = devm_kcalloc(dev, ud->rflow_cnt, sizeof(*ud->rflows), 3282 GFP_KERNEL); 3283 3284 if (!ud->tchan_map || !ud->rchan_map || !ud->rflow_gp_map || 3285 !ud->rflow_gp_map_allocated || !ud->tchans || !ud->rchans || 3286 !ud->rflows || !ud->rflow_in_use) 3287 return -ENOMEM; 3288 3289 /* 3290 * RX flows with the same Ids as RX channels are reserved to be used 3291 * as default flows if remote HW can't generate flow_ids. Those 3292 * RX flows can be requested only explicitly by id. 3293 */ 3294 bitmap_set(ud->rflow_gp_map_allocated, 0, ud->rchan_cnt); 3295 3296 /* by default no GP rflows are assigned to Linux */ 3297 bitmap_set(ud->rflow_gp_map, 0, ud->rflow_cnt); 3298 3299 /* Get resource ranges from tisci */ 3300 for (i = 0; i < RM_RANGE_LAST; i++) 3301 tisci_rm->rm_ranges[i] = 3302 devm_ti_sci_get_of_resource(tisci_rm->tisci, dev, 3303 tisci_rm->tisci_dev_id, 3304 (char *)range_names[i]); 3305 3306 /* tchan ranges */ 3307 rm_res = tisci_rm->rm_ranges[RM_RANGE_TCHAN]; 3308 if (IS_ERR(rm_res)) { 3309 bitmap_zero(ud->tchan_map, ud->tchan_cnt); 3310 } else { 3311 bitmap_fill(ud->tchan_map, ud->tchan_cnt); 3312 for (i = 0; i < rm_res->sets; i++) { 3313 rm_desc = &rm_res->desc[i]; 3314 bitmap_clear(ud->tchan_map, rm_desc->start, 3315 rm_desc->num); 3316 dev_dbg(dev, "ti-sci-res: tchan: %d:%d\n", 3317 rm_desc->start, rm_desc->num); 3318 } 3319 } 3320 irq_res.sets = rm_res->sets; 3321 3322 /* rchan and matching default flow ranges */ 3323 rm_res = tisci_rm->rm_ranges[RM_RANGE_RCHAN]; 3324 if (IS_ERR(rm_res)) { 3325 bitmap_zero(ud->rchan_map, ud->rchan_cnt); 3326 } else { 3327 bitmap_fill(ud->rchan_map, ud->rchan_cnt); 3328 for (i = 0; i < rm_res->sets; i++) { 3329 rm_desc = &rm_res->desc[i]; 3330 bitmap_clear(ud->rchan_map, rm_desc->start, 3331 rm_desc->num); 3332 dev_dbg(dev, "ti-sci-res: rchan: %d:%d\n", 3333 rm_desc->start, rm_desc->num); 3334 } 3335 } 3336 3337 irq_res.sets += rm_res->sets; 3338 irq_res.desc = kcalloc(irq_res.sets, sizeof(*irq_res.desc), GFP_KERNEL); 3339 rm_res = tisci_rm->rm_ranges[RM_RANGE_TCHAN]; 3340 for (i = 0; i < rm_res->sets; i++) { 3341 irq_res.desc[i].start = rm_res->desc[i].start; 3342 irq_res.desc[i].num = rm_res->desc[i].num; 3343 } 3344 rm_res = tisci_rm->rm_ranges[RM_RANGE_RCHAN]; 3345 for (j = 0; j < rm_res->sets; j++, i++) { 3346 irq_res.desc[i].start = rm_res->desc[j].start + 3347 ud->match_data->rchan_oes_offset; 3348 irq_res.desc[i].num = rm_res->desc[j].num; 3349 } 3350 ret = ti_sci_inta_msi_domain_alloc_irqs(ud->dev, &irq_res); 3351 kfree(irq_res.desc); 3352 if (ret) { 3353 dev_err(ud->dev, "Failed to allocate MSI interrupts\n"); 3354 return ret; 3355 } 3356 3357 /* GP rflow ranges */ 3358 rm_res = tisci_rm->rm_ranges[RM_RANGE_RFLOW]; 3359 if (IS_ERR(rm_res)) { 3360 /* all gp flows are assigned exclusively to Linux */ 3361 bitmap_clear(ud->rflow_gp_map, ud->rchan_cnt, 3362 ud->rflow_cnt - ud->rchan_cnt); 3363 } else { 3364 for (i = 0; i < rm_res->sets; i++) { 3365 rm_desc = &rm_res->desc[i]; 3366 bitmap_clear(ud->rflow_gp_map, rm_desc->start, 3367 rm_desc->num); 3368 dev_dbg(dev, "ti-sci-res: rflow: %d:%d\n", 3369 rm_desc->start, rm_desc->num); 3370 } 3371 } 3372 3373 ch_count -= bitmap_weight(ud->tchan_map, ud->tchan_cnt); 3374 ch_count -= bitmap_weight(ud->rchan_map, ud->rchan_cnt); 3375 if (!ch_count) 3376 return -ENODEV; 3377 3378 ud->channels = devm_kcalloc(dev, ch_count, sizeof(*ud->channels), 3379 GFP_KERNEL); 3380 if (!ud->channels) 3381 return -ENOMEM; 3382 3383 dev_info(dev, "Channels: %d (tchan: %u, rchan: %u, gp-rflow: %u)\n", 3384 ch_count, 3385 ud->tchan_cnt - bitmap_weight(ud->tchan_map, ud->tchan_cnt), 3386 ud->rchan_cnt - bitmap_weight(ud->rchan_map, ud->rchan_cnt), 3387 ud->rflow_cnt - bitmap_weight(ud->rflow_gp_map, 3388 ud->rflow_cnt)); 3389 3390 return ch_count; 3391 } 3392 3393 static int udma_setup_rx_flush(struct udma_dev *ud) 3394 { 3395 struct udma_rx_flush *rx_flush = &ud->rx_flush; 3396 struct cppi5_desc_hdr_t *tr_desc; 3397 struct cppi5_tr_type1_t *tr_req; 3398 struct cppi5_host_desc_t *desc; 3399 struct device *dev = ud->dev; 3400 struct udma_hwdesc *hwdesc; 3401 size_t tr_size; 3402 3403 /* Allocate 1K buffer for discarded data on RX channel teardown */ 3404 rx_flush->buffer_size = SZ_1K; 3405 rx_flush->buffer_vaddr = devm_kzalloc(dev, rx_flush->buffer_size, 3406 GFP_KERNEL); 3407 if (!rx_flush->buffer_vaddr) 3408 return -ENOMEM; 3409 3410 rx_flush->buffer_paddr = dma_map_single(dev, rx_flush->buffer_vaddr, 3411 rx_flush->buffer_size, 3412 DMA_TO_DEVICE); 3413 if (dma_mapping_error(dev, rx_flush->buffer_paddr)) 3414 return -ENOMEM; 3415 3416 /* Set up descriptor to be used for TR mode */ 3417 hwdesc = &rx_flush->hwdescs[0]; 3418 tr_size = sizeof(struct cppi5_tr_type1_t); 3419 hwdesc->cppi5_desc_size = cppi5_trdesc_calc_size(tr_size, 1); 3420 hwdesc->cppi5_desc_size = ALIGN(hwdesc->cppi5_desc_size, 3421 ud->desc_align); 3422 3423 hwdesc->cppi5_desc_vaddr = devm_kzalloc(dev, hwdesc->cppi5_desc_size, 3424 GFP_KERNEL); 3425 if (!hwdesc->cppi5_desc_vaddr) 3426 return -ENOMEM; 3427 3428 hwdesc->cppi5_desc_paddr = dma_map_single(dev, hwdesc->cppi5_desc_vaddr, 3429 hwdesc->cppi5_desc_size, 3430 DMA_TO_DEVICE); 3431 if (dma_mapping_error(dev, hwdesc->cppi5_desc_paddr)) 3432 return -ENOMEM; 3433 3434 /* Start of the TR req records */ 3435 hwdesc->tr_req_base = hwdesc->cppi5_desc_vaddr + tr_size; 3436 /* Start address of the TR response array */ 3437 hwdesc->tr_resp_base = hwdesc->tr_req_base + tr_size; 3438 3439 tr_desc = hwdesc->cppi5_desc_vaddr; 3440 cppi5_trdesc_init(tr_desc, 1, tr_size, 0, 0); 3441 cppi5_desc_set_pktids(tr_desc, 0, CPPI5_INFO1_DESC_FLOWID_DEFAULT); 3442 cppi5_desc_set_retpolicy(tr_desc, 0, 0); 3443 3444 tr_req = hwdesc->tr_req_base; 3445 cppi5_tr_init(&tr_req->flags, CPPI5_TR_TYPE1, false, false, 3446 CPPI5_TR_EVENT_SIZE_COMPLETION, 0); 3447 cppi5_tr_csf_set(&tr_req->flags, CPPI5_TR_CSF_SUPR_EVT); 3448 3449 tr_req->addr = rx_flush->buffer_paddr; 3450 tr_req->icnt0 = rx_flush->buffer_size; 3451 tr_req->icnt1 = 1; 3452 3453 dma_sync_single_for_device(dev, hwdesc->cppi5_desc_paddr, 3454 hwdesc->cppi5_desc_size, DMA_TO_DEVICE); 3455 3456 /* Set up descriptor to be used for packet mode */ 3457 hwdesc = &rx_flush->hwdescs[1]; 3458 hwdesc->cppi5_desc_size = ALIGN(sizeof(struct cppi5_host_desc_t) + 3459 CPPI5_INFO0_HDESC_EPIB_SIZE + 3460 CPPI5_INFO0_HDESC_PSDATA_MAX_SIZE, 3461 ud->desc_align); 3462 3463 hwdesc->cppi5_desc_vaddr = devm_kzalloc(dev, hwdesc->cppi5_desc_size, 3464 GFP_KERNEL); 3465 if (!hwdesc->cppi5_desc_vaddr) 3466 return -ENOMEM; 3467 3468 hwdesc->cppi5_desc_paddr = dma_map_single(dev, hwdesc->cppi5_desc_vaddr, 3469 hwdesc->cppi5_desc_size, 3470 DMA_TO_DEVICE); 3471 if (dma_mapping_error(dev, hwdesc->cppi5_desc_paddr)) 3472 return -ENOMEM; 3473 3474 desc = hwdesc->cppi5_desc_vaddr; 3475 cppi5_hdesc_init(desc, 0, 0); 3476 cppi5_desc_set_pktids(&desc->hdr, 0, CPPI5_INFO1_DESC_FLOWID_DEFAULT); 3477 cppi5_desc_set_retpolicy(&desc->hdr, 0, 0); 3478 3479 cppi5_hdesc_attach_buf(desc, 3480 rx_flush->buffer_paddr, rx_flush->buffer_size, 3481 rx_flush->buffer_paddr, rx_flush->buffer_size); 3482 3483 dma_sync_single_for_device(dev, hwdesc->cppi5_desc_paddr, 3484 hwdesc->cppi5_desc_size, DMA_TO_DEVICE); 3485 return 0; 3486 } 3487 3488 #ifdef CONFIG_DEBUG_FS 3489 static void udma_dbg_summary_show_chan(struct seq_file *s, 3490 struct dma_chan *chan) 3491 { 3492 struct udma_chan *uc = to_udma_chan(chan); 3493 struct udma_chan_config *ucc = &uc->config; 3494 3495 seq_printf(s, " %-13s| %s", dma_chan_name(chan), 3496 chan->dbg_client_name ?: "in-use"); 3497 seq_printf(s, " (%s, ", dmaengine_get_direction_text(uc->config.dir)); 3498 3499 switch (uc->config.dir) { 3500 case DMA_MEM_TO_MEM: 3501 seq_printf(s, "chan%d pair [0x%04x -> 0x%04x], ", uc->tchan->id, 3502 ucc->src_thread, ucc->dst_thread); 3503 break; 3504 case DMA_DEV_TO_MEM: 3505 seq_printf(s, "rchan%d [0x%04x -> 0x%04x], ", uc->rchan->id, 3506 ucc->src_thread, ucc->dst_thread); 3507 break; 3508 case DMA_MEM_TO_DEV: 3509 seq_printf(s, "tchan%d [0x%04x -> 0x%04x], ", uc->tchan->id, 3510 ucc->src_thread, ucc->dst_thread); 3511 break; 3512 default: 3513 seq_printf(s, ")\n"); 3514 return; 3515 } 3516 3517 if (ucc->ep_type == PSIL_EP_NATIVE) { 3518 seq_printf(s, "PSI-L Native"); 3519 if (ucc->metadata_size) { 3520 seq_printf(s, "[%s", ucc->needs_epib ? " EPIB" : ""); 3521 if (ucc->psd_size) 3522 seq_printf(s, " PSDsize:%u", ucc->psd_size); 3523 seq_printf(s, " ]"); 3524 } 3525 } else { 3526 seq_printf(s, "PDMA"); 3527 if (ucc->enable_acc32 || ucc->enable_burst) 3528 seq_printf(s, "[%s%s ]", 3529 ucc->enable_acc32 ? " ACC32" : "", 3530 ucc->enable_burst ? " BURST" : ""); 3531 } 3532 3533 seq_printf(s, ", %s)\n", ucc->pkt_mode ? "Packet mode" : "TR mode"); 3534 } 3535 3536 static void udma_dbg_summary_show(struct seq_file *s, 3537 struct dma_device *dma_dev) 3538 { 3539 struct dma_chan *chan; 3540 3541 list_for_each_entry(chan, &dma_dev->channels, device_node) { 3542 if (chan->client_count) 3543 udma_dbg_summary_show_chan(s, chan); 3544 } 3545 } 3546 #endif /* CONFIG_DEBUG_FS */ 3547 3548 #define TI_UDMAC_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 3549 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 3550 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ 3551 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ 3552 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)) 3553 3554 static int udma_probe(struct platform_device *pdev) 3555 { 3556 struct device_node *navss_node = pdev->dev.parent->of_node; 3557 struct device *dev = &pdev->dev; 3558 struct udma_dev *ud; 3559 const struct of_device_id *match; 3560 int i, ret; 3561 int ch_count; 3562 3563 ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(48)); 3564 if (ret) 3565 dev_err(dev, "failed to set dma mask stuff\n"); 3566 3567 ud = devm_kzalloc(dev, sizeof(*ud), GFP_KERNEL); 3568 if (!ud) 3569 return -ENOMEM; 3570 3571 ret = udma_get_mmrs(pdev, ud); 3572 if (ret) 3573 return ret; 3574 3575 ud->tisci_rm.tisci = ti_sci_get_by_phandle(dev->of_node, "ti,sci"); 3576 if (IS_ERR(ud->tisci_rm.tisci)) 3577 return PTR_ERR(ud->tisci_rm.tisci); 3578 3579 ret = of_property_read_u32(dev->of_node, "ti,sci-dev-id", 3580 &ud->tisci_rm.tisci_dev_id); 3581 if (ret) { 3582 dev_err(dev, "ti,sci-dev-id read failure %d\n", ret); 3583 return ret; 3584 } 3585 pdev->id = ud->tisci_rm.tisci_dev_id; 3586 3587 ret = of_property_read_u32(navss_node, "ti,sci-dev-id", 3588 &ud->tisci_rm.tisci_navss_dev_id); 3589 if (ret) { 3590 dev_err(dev, "NAVSS ti,sci-dev-id read failure %d\n", ret); 3591 return ret; 3592 } 3593 3594 ret = of_property_read_u32(dev->of_node, "ti,udma-atype", &ud->atype); 3595 if (!ret && ud->atype > 2) { 3596 dev_err(dev, "Invalid atype: %u\n", ud->atype); 3597 return -EINVAL; 3598 } 3599 3600 ud->tisci_rm.tisci_udmap_ops = &ud->tisci_rm.tisci->ops.rm_udmap_ops; 3601 ud->tisci_rm.tisci_psil_ops = &ud->tisci_rm.tisci->ops.rm_psil_ops; 3602 3603 ud->ringacc = of_k3_ringacc_get_by_phandle(dev->of_node, "ti,ringacc"); 3604 if (IS_ERR(ud->ringacc)) 3605 return PTR_ERR(ud->ringacc); 3606 3607 dev->msi_domain = of_msi_get_domain(dev, dev->of_node, 3608 DOMAIN_BUS_TI_SCI_INTA_MSI); 3609 if (!dev->msi_domain) { 3610 dev_err(dev, "Failed to get MSI domain\n"); 3611 return -EPROBE_DEFER; 3612 } 3613 3614 match = of_match_node(udma_of_match, dev->of_node); 3615 if (!match) { 3616 dev_err(dev, "No compatible match found\n"); 3617 return -ENODEV; 3618 } 3619 ud->match_data = match->data; 3620 3621 dma_cap_set(DMA_SLAVE, ud->ddev.cap_mask); 3622 dma_cap_set(DMA_CYCLIC, ud->ddev.cap_mask); 3623 3624 ud->ddev.device_alloc_chan_resources = udma_alloc_chan_resources; 3625 ud->ddev.device_config = udma_slave_config; 3626 ud->ddev.device_prep_slave_sg = udma_prep_slave_sg; 3627 ud->ddev.device_prep_dma_cyclic = udma_prep_dma_cyclic; 3628 ud->ddev.device_issue_pending = udma_issue_pending; 3629 ud->ddev.device_tx_status = udma_tx_status; 3630 ud->ddev.device_pause = udma_pause; 3631 ud->ddev.device_resume = udma_resume; 3632 ud->ddev.device_terminate_all = udma_terminate_all; 3633 ud->ddev.device_synchronize = udma_synchronize; 3634 #ifdef CONFIG_DEBUG_FS 3635 ud->ddev.dbg_summary_show = udma_dbg_summary_show; 3636 #endif 3637 3638 ud->ddev.device_free_chan_resources = udma_free_chan_resources; 3639 ud->ddev.src_addr_widths = TI_UDMAC_BUSWIDTHS; 3640 ud->ddev.dst_addr_widths = TI_UDMAC_BUSWIDTHS; 3641 ud->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 3642 ud->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 3643 ud->ddev.copy_align = DMAENGINE_ALIGN_8_BYTES; 3644 ud->ddev.desc_metadata_modes = DESC_METADATA_CLIENT | 3645 DESC_METADATA_ENGINE; 3646 if (ud->match_data->enable_memcpy_support) { 3647 dma_cap_set(DMA_MEMCPY, ud->ddev.cap_mask); 3648 ud->ddev.device_prep_dma_memcpy = udma_prep_dma_memcpy; 3649 ud->ddev.directions |= BIT(DMA_MEM_TO_MEM); 3650 } 3651 3652 ud->ddev.dev = dev; 3653 ud->dev = dev; 3654 ud->psil_base = ud->match_data->psil_base; 3655 3656 INIT_LIST_HEAD(&ud->ddev.channels); 3657 INIT_LIST_HEAD(&ud->desc_to_purge); 3658 3659 ch_count = udma_setup_resources(ud); 3660 if (ch_count <= 0) 3661 return ch_count; 3662 3663 spin_lock_init(&ud->lock); 3664 INIT_WORK(&ud->purge_work, udma_purge_desc_work); 3665 3666 ud->desc_align = 64; 3667 if (ud->desc_align < dma_get_cache_alignment()) 3668 ud->desc_align = dma_get_cache_alignment(); 3669 3670 ret = udma_setup_rx_flush(ud); 3671 if (ret) 3672 return ret; 3673 3674 for (i = 0; i < ud->tchan_cnt; i++) { 3675 struct udma_tchan *tchan = &ud->tchans[i]; 3676 3677 tchan->id = i; 3678 tchan->reg_rt = ud->mmrs[MMR_TCHANRT] + i * 0x1000; 3679 } 3680 3681 for (i = 0; i < ud->rchan_cnt; i++) { 3682 struct udma_rchan *rchan = &ud->rchans[i]; 3683 3684 rchan->id = i; 3685 rchan->reg_rt = ud->mmrs[MMR_RCHANRT] + i * 0x1000; 3686 } 3687 3688 for (i = 0; i < ud->rflow_cnt; i++) { 3689 struct udma_rflow *rflow = &ud->rflows[i]; 3690 3691 rflow->id = i; 3692 } 3693 3694 for (i = 0; i < ch_count; i++) { 3695 struct udma_chan *uc = &ud->channels[i]; 3696 3697 uc->ud = ud; 3698 uc->vc.desc_free = udma_desc_free; 3699 uc->id = i; 3700 uc->tchan = NULL; 3701 uc->rchan = NULL; 3702 uc->config.remote_thread_id = -1; 3703 uc->config.dir = DMA_MEM_TO_MEM; 3704 uc->name = devm_kasprintf(dev, GFP_KERNEL, "%s chan%d", 3705 dev_name(dev), i); 3706 3707 vchan_init(&uc->vc, &ud->ddev); 3708 /* Use custom vchan completion handling */ 3709 tasklet_init(&uc->vc.task, udma_vchan_complete, 3710 (unsigned long)&uc->vc); 3711 init_completion(&uc->teardown_completed); 3712 INIT_DELAYED_WORK(&uc->tx_drain.work, udma_check_tx_completion); 3713 } 3714 3715 ret = dma_async_device_register(&ud->ddev); 3716 if (ret) { 3717 dev_err(dev, "failed to register slave DMA engine: %d\n", ret); 3718 return ret; 3719 } 3720 3721 platform_set_drvdata(pdev, ud); 3722 3723 ret = of_dma_controller_register(dev->of_node, udma_of_xlate, ud); 3724 if (ret) { 3725 dev_err(dev, "failed to register of_dma controller\n"); 3726 dma_async_device_unregister(&ud->ddev); 3727 } 3728 3729 return ret; 3730 } 3731 3732 static struct platform_driver udma_driver = { 3733 .driver = { 3734 .name = "ti-udma", 3735 .of_match_table = udma_of_match, 3736 .suppress_bind_attrs = true, 3737 }, 3738 .probe = udma_probe, 3739 }; 3740 builtin_platform_driver(udma_driver); 3741 3742 /* Private interfaces to UDMA */ 3743 #include "k3-udma-private.c" 3744