// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com * Author: Peter Ujfalusi */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../virt-dma.h" #include "k3-udma.h" #include "k3-psil-priv.h" struct udma_static_tr { u8 elsize; /* RPSTR0 */ u16 elcnt; /* RPSTR0 */ u16 bstcnt; /* RPSTR1 */ }; #define K3_UDMA_MAX_RFLOWS 1024 #define K3_UDMA_DEFAULT_RING_SIZE 16 /* How SRC/DST tag should be updated by UDMA in the descriptor's Word 3 */ #define UDMA_RFLOW_SRCTAG_NONE 0 #define UDMA_RFLOW_SRCTAG_CFG_TAG 1 #define UDMA_RFLOW_SRCTAG_FLOW_ID 2 #define UDMA_RFLOW_SRCTAG_SRC_TAG 4 #define UDMA_RFLOW_DSTTAG_NONE 0 #define UDMA_RFLOW_DSTTAG_CFG_TAG 1 #define UDMA_RFLOW_DSTTAG_FLOW_ID 2 #define UDMA_RFLOW_DSTTAG_DST_TAG_LO 4 #define UDMA_RFLOW_DSTTAG_DST_TAG_HI 5 struct udma_chan; enum udma_mmr { MMR_GCFG = 0, MMR_RCHANRT, MMR_TCHANRT, MMR_LAST, }; static const char * const mmr_names[] = { "gcfg", "rchanrt", "tchanrt" }; struct udma_tchan { void __iomem *reg_rt; int id; struct k3_ring *t_ring; /* Transmit ring */ struct k3_ring *tc_ring; /* Transmit Completion ring */ }; struct udma_rflow { int id; struct k3_ring *fd_ring; /* Free Descriptor ring */ struct k3_ring *r_ring; /* Receive ring */ }; struct udma_rchan { void __iomem *reg_rt; int id; }; #define UDMA_FLAG_PDMA_ACC32 BIT(0) #define UDMA_FLAG_PDMA_BURST BIT(1) struct udma_match_data { u32 psil_base; bool enable_memcpy_support; u32 flags; u32 statictr_z_mask; u32 rchan_oes_offset; u8 tpl_levels; u32 level_start_idx[]; }; struct udma_hwdesc { size_t cppi5_desc_size; void *cppi5_desc_vaddr; dma_addr_t cppi5_desc_paddr; /* TR descriptor internal pointers */ void *tr_req_base; struct cppi5_tr_resp_t *tr_resp_base; }; struct udma_rx_flush { struct udma_hwdesc hwdescs[2]; size_t buffer_size; void *buffer_vaddr; dma_addr_t buffer_paddr; }; struct udma_dev { struct dma_device ddev; struct device *dev; void __iomem *mmrs[MMR_LAST]; const struct udma_match_data *match_data; size_t desc_align; /* alignment to use for descriptors */ struct udma_tisci_rm tisci_rm; struct k3_ringacc *ringacc; struct work_struct purge_work; struct list_head desc_to_purge; spinlock_t lock; struct udma_rx_flush rx_flush; int tchan_cnt; int echan_cnt; int rchan_cnt; int rflow_cnt; unsigned long *tchan_map; unsigned long *rchan_map; unsigned long *rflow_gp_map; unsigned long *rflow_gp_map_allocated; unsigned long *rflow_in_use; struct udma_tchan *tchans; struct udma_rchan *rchans; struct udma_rflow *rflows; struct udma_chan *channels; u32 psil_base; u32 atype; }; struct udma_desc { struct virt_dma_desc vd; bool terminated; enum dma_transfer_direction dir; struct udma_static_tr static_tr; u32 residue; unsigned int sglen; unsigned int desc_idx; /* Only used for cyclic in packet mode */ unsigned int tr_idx; u32 metadata_size; void *metadata; /* pointer to provided metadata buffer (EPIP, PSdata) */ unsigned int hwdesc_count; struct udma_hwdesc hwdesc[]; }; enum udma_chan_state { UDMA_CHAN_IS_IDLE = 0, /* not active, no teardown is in progress */ UDMA_CHAN_IS_ACTIVE, /* Normal operation */ UDMA_CHAN_IS_TERMINATING, /* channel is being terminated */ }; struct udma_tx_drain { struct delayed_work work; ktime_t tstamp; u32 residue; }; struct udma_chan_config { bool pkt_mode; /* TR or packet */ bool needs_epib; /* EPIB is needed for the communication or not */ u32 psd_size; /* size of Protocol Specific Data */ u32 metadata_size; /* (needs_epib ? 16:0) + psd_size */ u32 hdesc_size; /* Size of a packet descriptor in packet mode */ bool notdpkt; /* Suppress sending TDC packet */ int remote_thread_id; u32 atype; u32 src_thread; u32 dst_thread; enum psil_endpoint_type ep_type; bool enable_acc32; bool enable_burst; enum udma_tp_level channel_tpl; /* Channel Throughput Level */ enum dma_transfer_direction dir; }; struct udma_chan { struct virt_dma_chan vc; struct dma_slave_config cfg; struct udma_dev *ud; struct udma_desc *desc; struct udma_desc *terminated_desc; struct udma_static_tr static_tr; char *name; struct udma_tchan *tchan; struct udma_rchan *rchan; struct udma_rflow *rflow; bool psil_paired; int irq_num_ring; int irq_num_udma; bool cyclic; bool paused; enum udma_chan_state state; struct completion teardown_completed; struct udma_tx_drain tx_drain; u32 bcnt; /* number of bytes completed since the start of the channel */ /* Channel configuration parameters */ struct udma_chan_config config; /* dmapool for packet mode descriptors */ bool use_dma_pool; struct dma_pool *hdesc_pool; u32 id; }; static inline struct udma_dev *to_udma_dev(struct dma_device *d) { return container_of(d, struct udma_dev, ddev); } static inline struct udma_chan *to_udma_chan(struct dma_chan *c) { return container_of(c, struct udma_chan, vc.chan); } static inline struct udma_desc *to_udma_desc(struct dma_async_tx_descriptor *t) { return container_of(t, struct udma_desc, vd.tx); } /* Generic register access functions */ static inline u32 udma_read(void __iomem *base, int reg) { return readl(base + reg); } static inline void udma_write(void __iomem *base, int reg, u32 val) { writel(val, base + reg); } static inline void udma_update_bits(void __iomem *base, int reg, u32 mask, u32 val) { u32 tmp, orig; orig = readl(base + reg); tmp = orig & ~mask; tmp |= (val & mask); if (tmp != orig) writel(tmp, base + reg); } /* TCHANRT */ static inline u32 udma_tchanrt_read(struct udma_tchan *tchan, int reg) { if (!tchan) return 0; return udma_read(tchan->reg_rt, reg); } static inline void udma_tchanrt_write(struct udma_tchan *tchan, int reg, u32 val) { if (!tchan) return; udma_write(tchan->reg_rt, reg, val); } static inline void udma_tchanrt_update_bits(struct udma_tchan *tchan, int reg, u32 mask, u32 val) { if (!tchan) return; udma_update_bits(tchan->reg_rt, reg, mask, val); } /* RCHANRT */ static inline u32 udma_rchanrt_read(struct udma_rchan *rchan, int reg) { if (!rchan) return 0; return udma_read(rchan->reg_rt, reg); } static inline void udma_rchanrt_write(struct udma_rchan *rchan, int reg, u32 val) { if (!rchan) return; udma_write(rchan->reg_rt, reg, val); } static inline void udma_rchanrt_update_bits(struct udma_rchan *rchan, int reg, u32 mask, u32 val) { if (!rchan) return; udma_update_bits(rchan->reg_rt, reg, mask, val); } static int navss_psil_pair(struct udma_dev *ud, u32 src_thread, u32 dst_thread) { struct udma_tisci_rm *tisci_rm = &ud->tisci_rm; dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET; return tisci_rm->tisci_psil_ops->pair(tisci_rm->tisci, tisci_rm->tisci_navss_dev_id, src_thread, dst_thread); } static int navss_psil_unpair(struct udma_dev *ud, u32 src_thread, u32 dst_thread) { struct udma_tisci_rm *tisci_rm = &ud->tisci_rm; dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET; return tisci_rm->tisci_psil_ops->unpair(tisci_rm->tisci, tisci_rm->tisci_navss_dev_id, src_thread, dst_thread); } static void udma_reset_uchan(struct udma_chan *uc) { memset(&uc->config, 0, sizeof(uc->config)); uc->config.remote_thread_id = -1; uc->state = UDMA_CHAN_IS_IDLE; } static void udma_dump_chan_stdata(struct udma_chan *uc) { struct device *dev = uc->ud->dev; u32 offset; int i; if (uc->config.dir == DMA_MEM_TO_DEV || uc->config.dir == DMA_MEM_TO_MEM) { dev_dbg(dev, "TCHAN State data:\n"); for (i = 0; i < 32; i++) { offset = UDMA_TCHAN_RT_STDATA_REG + i * 4; dev_dbg(dev, "TRT_STDATA[%02d]: 0x%08x\n", i, udma_tchanrt_read(uc->tchan, offset)); } } if (uc->config.dir == DMA_DEV_TO_MEM || uc->config.dir == DMA_MEM_TO_MEM) { dev_dbg(dev, "RCHAN State data:\n"); for (i = 0; i < 32; i++) { offset = UDMA_RCHAN_RT_STDATA_REG + i * 4; dev_dbg(dev, "RRT_STDATA[%02d]: 0x%08x\n", i, udma_rchanrt_read(uc->rchan, offset)); } } } static inline dma_addr_t udma_curr_cppi5_desc_paddr(struct udma_desc *d, int idx) { return d->hwdesc[idx].cppi5_desc_paddr; } static inline void *udma_curr_cppi5_desc_vaddr(struct udma_desc *d, int idx) { return d->hwdesc[idx].cppi5_desc_vaddr; } static struct udma_desc *udma_udma_desc_from_paddr(struct udma_chan *uc, dma_addr_t paddr) { struct udma_desc *d = uc->terminated_desc; if (d) { dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d, d->desc_idx); if (desc_paddr != paddr) d = NULL; } if (!d) { d = uc->desc; if (d) { dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d, d->desc_idx); if (desc_paddr != paddr) d = NULL; } } return d; } static void udma_free_hwdesc(struct udma_chan *uc, struct udma_desc *d) { if (uc->use_dma_pool) { int i; for (i = 0; i < d->hwdesc_count; i++) { if (!d->hwdesc[i].cppi5_desc_vaddr) continue; dma_pool_free(uc->hdesc_pool, d->hwdesc[i].cppi5_desc_vaddr, d->hwdesc[i].cppi5_desc_paddr); d->hwdesc[i].cppi5_desc_vaddr = NULL; } } else if (d->hwdesc[0].cppi5_desc_vaddr) { struct udma_dev *ud = uc->ud; dma_free_coherent(ud->dev, d->hwdesc[0].cppi5_desc_size, d->hwdesc[0].cppi5_desc_vaddr, d->hwdesc[0].cppi5_desc_paddr); d->hwdesc[0].cppi5_desc_vaddr = NULL; } } static void udma_purge_desc_work(struct work_struct *work) { struct udma_dev *ud = container_of(work, typeof(*ud), purge_work); struct virt_dma_desc *vd, *_vd; unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&ud->lock, flags); list_splice_tail_init(&ud->desc_to_purge, &head); spin_unlock_irqrestore(&ud->lock, flags); list_for_each_entry_safe(vd, _vd, &head, node) { struct udma_chan *uc = to_udma_chan(vd->tx.chan); struct udma_desc *d = to_udma_desc(&vd->tx); udma_free_hwdesc(uc, d); list_del(&vd->node); kfree(d); } /* If more to purge, schedule the work again */ if (!list_empty(&ud->desc_to_purge)) schedule_work(&ud->purge_work); } static void udma_desc_free(struct virt_dma_desc *vd) { struct udma_dev *ud = to_udma_dev(vd->tx.chan->device); struct udma_chan *uc = to_udma_chan(vd->tx.chan); struct udma_desc *d = to_udma_desc(&vd->tx); unsigned long flags; if (uc->terminated_desc == d) uc->terminated_desc = NULL; if (uc->use_dma_pool) { udma_free_hwdesc(uc, d); kfree(d); return; } spin_lock_irqsave(&ud->lock, flags); list_add_tail(&vd->node, &ud->desc_to_purge); spin_unlock_irqrestore(&ud->lock, flags); schedule_work(&ud->purge_work); } static bool udma_is_chan_running(struct udma_chan *uc) { u32 trt_ctl = 0; u32 rrt_ctl = 0; if (uc->tchan) trt_ctl = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_CTL_REG); if (uc->rchan) rrt_ctl = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_CTL_REG); if (trt_ctl & UDMA_CHAN_RT_CTL_EN || rrt_ctl & UDMA_CHAN_RT_CTL_EN) return true; return false; } static bool udma_is_chan_paused(struct udma_chan *uc) { u32 val, pause_mask; switch (uc->config.dir) { case DMA_DEV_TO_MEM: val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_PEER_RT_EN_REG); pause_mask = UDMA_PEER_RT_EN_PAUSE; break; case DMA_MEM_TO_DEV: val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_PEER_RT_EN_REG); pause_mask = UDMA_PEER_RT_EN_PAUSE; break; case DMA_MEM_TO_MEM: val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_CTL_REG); pause_mask = UDMA_CHAN_RT_CTL_PAUSE; break; default: return false; } if (val & pause_mask) return true; return false; } static void udma_sync_for_device(struct udma_chan *uc, int idx) { struct udma_desc *d = uc->desc; if (uc->cyclic && uc->config.pkt_mode) { dma_sync_single_for_device(uc->ud->dev, d->hwdesc[idx].cppi5_desc_paddr, d->hwdesc[idx].cppi5_desc_size, DMA_TO_DEVICE); } else { int i; for (i = 0; i < d->hwdesc_count; i++) { if (!d->hwdesc[i].cppi5_desc_vaddr) continue; dma_sync_single_for_device(uc->ud->dev, d->hwdesc[i].cppi5_desc_paddr, d->hwdesc[i].cppi5_desc_size, DMA_TO_DEVICE); } } } static inline dma_addr_t udma_get_rx_flush_hwdesc_paddr(struct udma_chan *uc) { return uc->ud->rx_flush.hwdescs[uc->config.pkt_mode].cppi5_desc_paddr; } static int udma_push_to_ring(struct udma_chan *uc, int idx) { struct udma_desc *d = uc->desc; struct k3_ring *ring = NULL; dma_addr_t paddr; switch (uc->config.dir) { case DMA_DEV_TO_MEM: ring = uc->rflow->fd_ring; break; case DMA_MEM_TO_DEV: case DMA_MEM_TO_MEM: ring = uc->tchan->t_ring; break; default: return -EINVAL; } /* RX flush packet: idx == -1 is only passed in case of DEV_TO_MEM */ if (idx == -1) { paddr = udma_get_rx_flush_hwdesc_paddr(uc); } else { paddr = udma_curr_cppi5_desc_paddr(d, idx); wmb(); /* Ensure that writes are not moved over this point */ udma_sync_for_device(uc, idx); } return k3_ringacc_ring_push(ring, &paddr); } static bool udma_desc_is_rx_flush(struct udma_chan *uc, dma_addr_t addr) { if (uc->config.dir != DMA_DEV_TO_MEM) return false; if (addr == udma_get_rx_flush_hwdesc_paddr(uc)) return true; return false; } static int udma_pop_from_ring(struct udma_chan *uc, dma_addr_t *addr) { struct k3_ring *ring = NULL; int ret = -ENOENT; switch (uc->config.dir) { case DMA_DEV_TO_MEM: ring = uc->rflow->r_ring; break; case DMA_MEM_TO_DEV: case DMA_MEM_TO_MEM: ring = uc->tchan->tc_ring; break; default: break; } if (ring && k3_ringacc_ring_get_occ(ring)) { struct udma_desc *d = NULL; ret = k3_ringacc_ring_pop(ring, addr); if (ret) return ret; /* Teardown completion */ if (cppi5_desc_is_tdcm(*addr)) return ret; /* Check for flush descriptor */ if (udma_desc_is_rx_flush(uc, *addr)) return -ENOENT; d = udma_udma_desc_from_paddr(uc, *addr); if (d) dma_sync_single_for_cpu(uc->ud->dev, *addr, d->hwdesc[0].cppi5_desc_size, DMA_FROM_DEVICE); rmb(); /* Ensure that reads are not moved before this point */ } return ret; } static void udma_reset_rings(struct udma_chan *uc) { struct k3_ring *ring1 = NULL; struct k3_ring *ring2 = NULL; switch (uc->config.dir) { case DMA_DEV_TO_MEM: if (uc->rchan) { ring1 = uc->rflow->fd_ring; ring2 = uc->rflow->r_ring; } break; case DMA_MEM_TO_DEV: case DMA_MEM_TO_MEM: if (uc->tchan) { ring1 = uc->tchan->t_ring; ring2 = uc->tchan->tc_ring; } break; default: break; } if (ring1) k3_ringacc_ring_reset_dma(ring1, k3_ringacc_ring_get_occ(ring1)); if (ring2) k3_ringacc_ring_reset(ring2); /* make sure we are not leaking memory by stalled descriptor */ if (uc->terminated_desc) { udma_desc_free(&uc->terminated_desc->vd); uc->terminated_desc = NULL; } } static void udma_reset_counters(struct udma_chan *uc) { u32 val; if (uc->tchan) { val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_BCNT_REG); udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_BCNT_REG, val); val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_SBCNT_REG); udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_SBCNT_REG, val); val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_PCNT_REG); udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PCNT_REG, val); val = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_PEER_BCNT_REG); udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PEER_BCNT_REG, val); } if (uc->rchan) { val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_BCNT_REG); udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_BCNT_REG, val); val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_SBCNT_REG); udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_SBCNT_REG, val); val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_PCNT_REG); udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PCNT_REG, val); val = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_PEER_BCNT_REG); udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PEER_BCNT_REG, val); } uc->bcnt = 0; } static int udma_reset_chan(struct udma_chan *uc, bool hard) { switch (uc->config.dir) { case DMA_DEV_TO_MEM: udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PEER_RT_EN_REG, 0); udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG, 0); break; case DMA_MEM_TO_DEV: udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG, 0); udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PEER_RT_EN_REG, 0); break; case DMA_MEM_TO_MEM: udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG, 0); udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG, 0); break; default: return -EINVAL; } /* Reset all counters */ udma_reset_counters(uc); /* Hard reset: re-initialize the channel to reset */ if (hard) { struct udma_chan_config ucc_backup; int ret; memcpy(&ucc_backup, &uc->config, sizeof(uc->config)); uc->ud->ddev.device_free_chan_resources(&uc->vc.chan); /* restore the channel configuration */ memcpy(&uc->config, &ucc_backup, sizeof(uc->config)); ret = uc->ud->ddev.device_alloc_chan_resources(&uc->vc.chan); if (ret) return ret; /* * Setting forced teardown after forced reset helps recovering * the rchan. */ if (uc->config.dir == DMA_DEV_TO_MEM) udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG, UDMA_CHAN_RT_CTL_EN | UDMA_CHAN_RT_CTL_TDOWN | UDMA_CHAN_RT_CTL_FTDOWN); } uc->state = UDMA_CHAN_IS_IDLE; return 0; } static void udma_start_desc(struct udma_chan *uc) { struct udma_chan_config *ucc = &uc->config; if (ucc->pkt_mode && (uc->cyclic || ucc->dir == DMA_DEV_TO_MEM)) { int i; /* Push all descriptors to ring for packet mode cyclic or RX */ for (i = 0; i < uc->desc->sglen; i++) udma_push_to_ring(uc, i); } else { udma_push_to_ring(uc, 0); } } static bool udma_chan_needs_reconfiguration(struct udma_chan *uc) { /* Only PDMAs have staticTR */ if (uc->config.ep_type == PSIL_EP_NATIVE) return false; /* Check if the staticTR configuration has changed for TX */ if (memcmp(&uc->static_tr, &uc->desc->static_tr, sizeof(uc->static_tr))) return true; return false; } static int udma_start(struct udma_chan *uc) { struct virt_dma_desc *vd = vchan_next_desc(&uc->vc); if (!vd) { uc->desc = NULL; return -ENOENT; } list_del(&vd->node); uc->desc = to_udma_desc(&vd->tx); /* Channel is already running and does not need reconfiguration */ if (udma_is_chan_running(uc) && !udma_chan_needs_reconfiguration(uc)) { udma_start_desc(uc); goto out; } /* Make sure that we clear the teardown bit, if it is set */ udma_reset_chan(uc, false); /* Push descriptors before we start the channel */ udma_start_desc(uc); switch (uc->desc->dir) { case DMA_DEV_TO_MEM: /* Config remote TR */ if (uc->config.ep_type == PSIL_EP_PDMA_XY) { u32 val = PDMA_STATIC_TR_Y(uc->desc->static_tr.elcnt) | PDMA_STATIC_TR_X(uc->desc->static_tr.elsize); const struct udma_match_data *match_data = uc->ud->match_data; if (uc->config.enable_acc32) val |= PDMA_STATIC_TR_XY_ACC32; if (uc->config.enable_burst) val |= PDMA_STATIC_TR_XY_BURST; udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PEER_STATIC_TR_XY_REG, val); udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PEER_STATIC_TR_Z_REG, PDMA_STATIC_TR_Z(uc->desc->static_tr.bstcnt, match_data->statictr_z_mask)); /* save the current staticTR configuration */ memcpy(&uc->static_tr, &uc->desc->static_tr, sizeof(uc->static_tr)); } udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG, UDMA_CHAN_RT_CTL_EN); /* Enable remote */ udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PEER_RT_EN_REG, UDMA_PEER_RT_EN_ENABLE); break; case DMA_MEM_TO_DEV: /* Config remote TR */ if (uc->config.ep_type == PSIL_EP_PDMA_XY) { u32 val = PDMA_STATIC_TR_Y(uc->desc->static_tr.elcnt) | PDMA_STATIC_TR_X(uc->desc->static_tr.elsize); if (uc->config.enable_acc32) val |= PDMA_STATIC_TR_XY_ACC32; if (uc->config.enable_burst) val |= PDMA_STATIC_TR_XY_BURST; udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PEER_STATIC_TR_XY_REG, val); /* save the current staticTR configuration */ memcpy(&uc->static_tr, &uc->desc->static_tr, sizeof(uc->static_tr)); } /* Enable remote */ udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PEER_RT_EN_REG, UDMA_PEER_RT_EN_ENABLE); udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG, UDMA_CHAN_RT_CTL_EN); break; case DMA_MEM_TO_MEM: udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_CTL_REG, UDMA_CHAN_RT_CTL_EN); udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG, UDMA_CHAN_RT_CTL_EN); break; default: return -EINVAL; } uc->state = UDMA_CHAN_IS_ACTIVE; out: return 0; } static int udma_stop(struct udma_chan *uc) { enum udma_chan_state old_state = uc->state; uc->state = UDMA_CHAN_IS_TERMINATING; reinit_completion(&uc->teardown_completed); switch (uc->config.dir) { case DMA_DEV_TO_MEM: if (!uc->cyclic && !uc->desc) udma_push_to_ring(uc, -1); udma_rchanrt_write(uc->rchan, UDMA_RCHAN_RT_PEER_RT_EN_REG, UDMA_PEER_RT_EN_ENABLE | UDMA_PEER_RT_EN_TEARDOWN); break; case DMA_MEM_TO_DEV: udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_PEER_RT_EN_REG, UDMA_PEER_RT_EN_ENABLE | UDMA_PEER_RT_EN_FLUSH); udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG, UDMA_CHAN_RT_CTL_EN | UDMA_CHAN_RT_CTL_TDOWN); break; case DMA_MEM_TO_MEM: udma_tchanrt_write(uc->tchan, UDMA_TCHAN_RT_CTL_REG, UDMA_CHAN_RT_CTL_EN | UDMA_CHAN_RT_CTL_TDOWN); break; default: uc->state = old_state; complete_all(&uc->teardown_completed); return -EINVAL; } return 0; } static void udma_cyclic_packet_elapsed(struct udma_chan *uc) { struct udma_desc *d = uc->desc; struct cppi5_host_desc_t *h_desc; h_desc = d->hwdesc[d->desc_idx].cppi5_desc_vaddr; cppi5_hdesc_reset_to_original(h_desc); udma_push_to_ring(uc, d->desc_idx); d->desc_idx = (d->desc_idx + 1) % d->sglen; } static inline void udma_fetch_epib(struct udma_chan *uc, struct udma_desc *d) { struct cppi5_host_desc_t *h_desc = d->hwdesc[0].cppi5_desc_vaddr; memcpy(d->metadata, h_desc->epib, d->metadata_size); } static bool udma_is_desc_really_done(struct udma_chan *uc, struct udma_desc *d) { u32 peer_bcnt, bcnt; /* Only TX towards PDMA is affected */ if (uc->config.ep_type == PSIL_EP_NATIVE || uc->config.dir != DMA_MEM_TO_DEV) return true; peer_bcnt = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_PEER_BCNT_REG); bcnt = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_BCNT_REG); /* Transfer is incomplete, store current residue and time stamp */ if (peer_bcnt < bcnt) { uc->tx_drain.residue = bcnt - peer_bcnt; uc->tx_drain.tstamp = ktime_get(); return false; } return true; } static void udma_check_tx_completion(struct work_struct *work) { struct udma_chan *uc = container_of(work, typeof(*uc), tx_drain.work.work); bool desc_done = true; u32 residue_diff; ktime_t time_diff; unsigned long delay; while (1) { if (uc->desc) { /* Get previous residue and time stamp */ residue_diff = uc->tx_drain.residue; time_diff = uc->tx_drain.tstamp; /* * Get current residue and time stamp or see if * transfer is complete */ desc_done = udma_is_desc_really_done(uc, uc->desc); } if (!desc_done) { /* * Find the time delta and residue delta w.r.t * previous poll */ time_diff = ktime_sub(uc->tx_drain.tstamp, time_diff) + 1; residue_diff -= uc->tx_drain.residue; if (residue_diff) { /* * Try to guess when we should check * next time by calculating rate at * which data is being drained at the * peer device */ delay = (time_diff / residue_diff) * uc->tx_drain.residue; } else { /* No progress, check again in 1 second */ schedule_delayed_work(&uc->tx_drain.work, HZ); break; } usleep_range(ktime_to_us(delay), ktime_to_us(delay) + 10); continue; } if (uc->desc) { struct udma_desc *d = uc->desc; uc->bcnt += d->residue; udma_start(uc); vchan_cookie_complete(&d->vd); break; } break; } } static irqreturn_t udma_ring_irq_handler(int irq, void *data) { struct udma_chan *uc = data; struct udma_desc *d; unsigned long flags; dma_addr_t paddr = 0; if (udma_pop_from_ring(uc, &paddr) || !paddr) return IRQ_HANDLED; spin_lock_irqsave(&uc->vc.lock, flags); /* Teardown completion message */ if (cppi5_desc_is_tdcm(paddr)) { complete_all(&uc->teardown_completed); if (uc->terminated_desc) { udma_desc_free(&uc->terminated_desc->vd); uc->terminated_desc = NULL; } if (!uc->desc) udma_start(uc); goto out; } d = udma_udma_desc_from_paddr(uc, paddr); if (d) { dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d, d->desc_idx); if (desc_paddr != paddr) { dev_err(uc->ud->dev, "not matching descriptors!\n"); goto out; } if (d == uc->desc) { /* active descriptor */ if (uc->cyclic) { udma_cyclic_packet_elapsed(uc); vchan_cyclic_callback(&d->vd); } else { if (udma_is_desc_really_done(uc, d)) { uc->bcnt += d->residue; udma_start(uc); vchan_cookie_complete(&d->vd); } else { schedule_delayed_work(&uc->tx_drain.work, 0); } } } else { /* * terminated descriptor, mark the descriptor as * completed to update the channel's cookie marker */ dma_cookie_complete(&d->vd.tx); } } out: spin_unlock_irqrestore(&uc->vc.lock, flags); return IRQ_HANDLED; } static irqreturn_t udma_udma_irq_handler(int irq, void *data) { struct udma_chan *uc = data; struct udma_desc *d; unsigned long flags; spin_lock_irqsave(&uc->vc.lock, flags); d = uc->desc; if (d) { d->tr_idx = (d->tr_idx + 1) % d->sglen; if (uc->cyclic) { vchan_cyclic_callback(&d->vd); } else { /* TODO: figure out the real amount of data */ uc->bcnt += d->residue; udma_start(uc); vchan_cookie_complete(&d->vd); } } spin_unlock_irqrestore(&uc->vc.lock, flags); return IRQ_HANDLED; } /** * __udma_alloc_gp_rflow_range - alloc range of GP RX flows * @ud: UDMA device * @from: Start the search from this flow id number * @cnt: Number of consecutive flow ids to allocate * * Allocate range of RX flow ids for future use, those flows can be requested * only using explicit flow id number. if @from is set to -1 it will try to find * first free range. if @from is positive value it will force allocation only * of the specified range of flows. * * Returns -ENOMEM if can't find free range. * -EEXIST if requested range is busy. * -EINVAL if wrong input values passed. * Returns flow id on success. */ static int __udma_alloc_gp_rflow_range(struct udma_dev *ud, int from, int cnt) { int start, tmp_from; DECLARE_BITMAP(tmp, K3_UDMA_MAX_RFLOWS); tmp_from = from; if (tmp_from < 0) tmp_from = ud->rchan_cnt; /* default flows can't be allocated and accessible only by id */ if (tmp_from < ud->rchan_cnt) return -EINVAL; if (tmp_from + cnt > ud->rflow_cnt) return -EINVAL; bitmap_or(tmp, ud->rflow_gp_map, ud->rflow_gp_map_allocated, ud->rflow_cnt); start = bitmap_find_next_zero_area(tmp, ud->rflow_cnt, tmp_from, cnt, 0); if (start >= ud->rflow_cnt) return -ENOMEM; if (from >= 0 && start != from) return -EEXIST; bitmap_set(ud->rflow_gp_map_allocated, start, cnt); return start; } static int __udma_free_gp_rflow_range(struct udma_dev *ud, int from, int cnt) { if (from < ud->rchan_cnt) return -EINVAL; if (from + cnt > ud->rflow_cnt) return -EINVAL; bitmap_clear(ud->rflow_gp_map_allocated, from, cnt); return 0; } static struct udma_rflow *__udma_get_rflow(struct udma_dev *ud, int id) { /* * Attempt to request rflow by ID can be made for any rflow * if not in use with assumption that caller knows what's doing. * TI-SCI FW will perform additional permission check ant way, it's * safe */ if (id < 0 || id >= ud->rflow_cnt) return ERR_PTR(-ENOENT); if (test_bit(id, ud->rflow_in_use)) return ERR_PTR(-ENOENT); /* GP rflow has to be allocated first */ if (!test_bit(id, ud->rflow_gp_map) && !test_bit(id, ud->rflow_gp_map_allocated)) return ERR_PTR(-EINVAL); dev_dbg(ud->dev, "get rflow%d\n", id); set_bit(id, ud->rflow_in_use); return &ud->rflows[id]; } static void __udma_put_rflow(struct udma_dev *ud, struct udma_rflow *rflow) { if (!test_bit(rflow->id, ud->rflow_in_use)) { dev_err(ud->dev, "attempt to put unused rflow%d\n", rflow->id); return; } dev_dbg(ud->dev, "put rflow%d\n", rflow->id); clear_bit(rflow->id, ud->rflow_in_use); } #define UDMA_RESERVE_RESOURCE(res) \ static struct udma_##res *__udma_reserve_##res(struct udma_dev *ud, \ enum udma_tp_level tpl, \ int id) \ { \ if (id >= 0) { \ if (test_bit(id, ud->res##_map)) { \ dev_err(ud->dev, "res##%d is in use\n", id); \ return ERR_PTR(-ENOENT); \ } \ } else { \ int start; \ \ if (tpl >= ud->match_data->tpl_levels) \ tpl = ud->match_data->tpl_levels - 1; \ \ start = ud->match_data->level_start_idx[tpl]; \ \ id = find_next_zero_bit(ud->res##_map, ud->res##_cnt, \ start); \ if (id == ud->res##_cnt) { \ return ERR_PTR(-ENOENT); \ } \ } \ \ set_bit(id, ud->res##_map); \ return &ud->res##s[id]; \ } UDMA_RESERVE_RESOURCE(tchan); UDMA_RESERVE_RESOURCE(rchan); static int udma_get_tchan(struct udma_chan *uc) { struct udma_dev *ud = uc->ud; if (uc->tchan) { dev_dbg(ud->dev, "chan%d: already have tchan%d allocated\n", uc->id, uc->tchan->id); return 0; } uc->tchan = __udma_reserve_tchan(ud, uc->config.channel_tpl, -1); return PTR_ERR_OR_ZERO(uc->tchan); } static int udma_get_rchan(struct udma_chan *uc) { struct udma_dev *ud = uc->ud; if (uc->rchan) { dev_dbg(ud->dev, "chan%d: already have rchan%d allocated\n", uc->id, uc->rchan->id); return 0; } uc->rchan = __udma_reserve_rchan(ud, uc->config.channel_tpl, -1); return PTR_ERR_OR_ZERO(uc->rchan); } static int udma_get_chan_pair(struct udma_chan *uc) { struct udma_dev *ud = uc->ud; const struct udma_match_data *match_data = ud->match_data; int chan_id, end; if ((uc->tchan && uc->rchan) && uc->tchan->id == uc->rchan->id) { dev_info(ud->dev, "chan%d: already have %d pair allocated\n", uc->id, uc->tchan->id); return 0; } if (uc->tchan) { dev_err(ud->dev, "chan%d: already have tchan%d allocated\n", uc->id, uc->tchan->id); return -EBUSY; } else if (uc->rchan) { dev_err(ud->dev, "chan%d: already have rchan%d allocated\n", uc->id, uc->rchan->id); return -EBUSY; } /* Can be optimized, but let's have it like this for now */ end = min(ud->tchan_cnt, ud->rchan_cnt); /* Try to use the highest TPL channel pair for MEM_TO_MEM channels */ chan_id = match_data->level_start_idx[match_data->tpl_levels - 1]; for (; chan_id < end; chan_id++) { if (!test_bit(chan_id, ud->tchan_map) && !test_bit(chan_id, ud->rchan_map)) break; } if (chan_id == end) return -ENOENT; set_bit(chan_id, ud->tchan_map); set_bit(chan_id, ud->rchan_map); uc->tchan = &ud->tchans[chan_id]; uc->rchan = &ud->rchans[chan_id]; return 0; } static int udma_get_rflow(struct udma_chan *uc, int flow_id) { struct udma_dev *ud = uc->ud; if (!uc->rchan) { dev_err(ud->dev, "chan%d: does not have rchan??\n", uc->id); return -EINVAL; } if (uc->rflow) { dev_dbg(ud->dev, "chan%d: already have rflow%d allocated\n", uc->id, uc->rflow->id); return 0; } uc->rflow = __udma_get_rflow(ud, flow_id); return PTR_ERR_OR_ZERO(uc->rflow); } static void udma_put_rchan(struct udma_chan *uc) { struct udma_dev *ud = uc->ud; if (uc->rchan) { dev_dbg(ud->dev, "chan%d: put rchan%d\n", uc->id, uc->rchan->id); clear_bit(uc->rchan->id, ud->rchan_map); uc->rchan = NULL; } } static void udma_put_tchan(struct udma_chan *uc) { struct udma_dev *ud = uc->ud; if (uc->tchan) { dev_dbg(ud->dev, "chan%d: put tchan%d\n", uc->id, uc->tchan->id); clear_bit(uc->tchan->id, ud->tchan_map); uc->tchan = NULL; } } static void udma_put_rflow(struct udma_chan *uc) { struct udma_dev *ud = uc->ud; if (uc->rflow) { dev_dbg(ud->dev, "chan%d: put rflow%d\n", uc->id, uc->rflow->id); __udma_put_rflow(ud, uc->rflow); uc->rflow = NULL; } } static void udma_free_tx_resources(struct udma_chan *uc) { if (!uc->tchan) return; k3_ringacc_ring_free(uc->tchan->t_ring); k3_ringacc_ring_free(uc->tchan->tc_ring); uc->tchan->t_ring = NULL; uc->tchan->tc_ring = NULL; udma_put_tchan(uc); } static int udma_alloc_tx_resources(struct udma_chan *uc) { struct k3_ring_cfg ring_cfg; struct udma_dev *ud = uc->ud; int ret; ret = udma_get_tchan(uc); if (ret) return ret; uc->tchan->t_ring = k3_ringacc_request_ring(ud->ringacc, uc->tchan->id, 0); if (!uc->tchan->t_ring) { ret = -EBUSY; goto err_tx_ring; } uc->tchan->tc_ring = k3_ringacc_request_ring(ud->ringacc, -1, 0); if (!uc->tchan->tc_ring) { ret = -EBUSY; goto err_txc_ring; } memset(&ring_cfg, 0, sizeof(ring_cfg)); ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE; ring_cfg.elm_size = K3_RINGACC_RING_ELSIZE_8; ring_cfg.mode = K3_RINGACC_RING_MODE_MESSAGE; ret = k3_ringacc_ring_cfg(uc->tchan->t_ring, &ring_cfg); ret |= k3_ringacc_ring_cfg(uc->tchan->tc_ring, &ring_cfg); if (ret) goto err_ringcfg; return 0; err_ringcfg: k3_ringacc_ring_free(uc->tchan->tc_ring); uc->tchan->tc_ring = NULL; err_txc_ring: k3_ringacc_ring_free(uc->tchan->t_ring); uc->tchan->t_ring = NULL; err_tx_ring: udma_put_tchan(uc); return ret; } static void udma_free_rx_resources(struct udma_chan *uc) { if (!uc->rchan) return; if (uc->rflow) { struct udma_rflow *rflow = uc->rflow; k3_ringacc_ring_free(rflow->fd_ring); k3_ringacc_ring_free(rflow->r_ring); rflow->fd_ring = NULL; rflow->r_ring = NULL; udma_put_rflow(uc); } udma_put_rchan(uc); } static int udma_alloc_rx_resources(struct udma_chan *uc) { struct udma_dev *ud = uc->ud; struct k3_ring_cfg ring_cfg; struct udma_rflow *rflow; int fd_ring_id; int ret; ret = udma_get_rchan(uc); if (ret) return ret; /* For MEM_TO_MEM we don't need rflow or rings */ if (uc->config.dir == DMA_MEM_TO_MEM) return 0; ret = udma_get_rflow(uc, uc->rchan->id); if (ret) { ret = -EBUSY; goto err_rflow; } rflow = uc->rflow; fd_ring_id = ud->tchan_cnt + ud->echan_cnt + uc->rchan->id; rflow->fd_ring = k3_ringacc_request_ring(ud->ringacc, fd_ring_id, 0); if (!rflow->fd_ring) { ret = -EBUSY; goto err_rx_ring; } rflow->r_ring = k3_ringacc_request_ring(ud->ringacc, -1, 0); if (!rflow->r_ring) { ret = -EBUSY; goto err_rxc_ring; } memset(&ring_cfg, 0, sizeof(ring_cfg)); if (uc->config.pkt_mode) ring_cfg.size = SG_MAX_SEGMENTS; else ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE; ring_cfg.elm_size = K3_RINGACC_RING_ELSIZE_8; ring_cfg.mode = K3_RINGACC_RING_MODE_MESSAGE; ret = k3_ringacc_ring_cfg(rflow->fd_ring, &ring_cfg); ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE; ret |= k3_ringacc_ring_cfg(rflow->r_ring, &ring_cfg); if (ret) goto err_ringcfg; return 0; err_ringcfg: k3_ringacc_ring_free(rflow->r_ring); rflow->r_ring = NULL; err_rxc_ring: k3_ringacc_ring_free(rflow->fd_ring); rflow->fd_ring = NULL; err_rx_ring: udma_put_rflow(uc); err_rflow: udma_put_rchan(uc); return ret; } #define TISCI_TCHAN_VALID_PARAMS ( \ TI_SCI_MSG_VALUE_RM_UDMAP_CH_PAUSE_ON_ERR_VALID | \ TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_FILT_EINFO_VALID | \ TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_FILT_PSWORDS_VALID | \ TI_SCI_MSG_VALUE_RM_UDMAP_CH_CHAN_TYPE_VALID | \ TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_SUPR_TDPKT_VALID | \ TI_SCI_MSG_VALUE_RM_UDMAP_CH_FETCH_SIZE_VALID | \ TI_SCI_MSG_VALUE_RM_UDMAP_CH_CQ_QNUM_VALID | \ TI_SCI_MSG_VALUE_RM_UDMAP_CH_ATYPE_VALID) #define TISCI_RCHAN_VALID_PARAMS ( \ TI_SCI_MSG_VALUE_RM_UDMAP_CH_PAUSE_ON_ERR_VALID | \ TI_SCI_MSG_VALUE_RM_UDMAP_CH_FETCH_SIZE_VALID | \ TI_SCI_MSG_VALUE_RM_UDMAP_CH_CQ_QNUM_VALID | \ TI_SCI_MSG_VALUE_RM_UDMAP_CH_CHAN_TYPE_VALID | \ TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_IGNORE_SHORT_VALID | \ TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_IGNORE_LONG_VALID | \ TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_FLOWID_START_VALID | \ TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_FLOWID_CNT_VALID | \ TI_SCI_MSG_VALUE_RM_UDMAP_CH_ATYPE_VALID) static int udma_tisci_m2m_channel_config(struct udma_chan *uc) { struct udma_dev *ud = uc->ud; struct udma_tisci_rm *tisci_rm = &ud->tisci_rm; const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops; struct udma_tchan *tchan = uc->tchan; struct udma_rchan *rchan = uc->rchan; int ret = 0; /* Non synchronized - mem to mem type of transfer */ int tc_ring = k3_ringacc_get_ring_id(tchan->tc_ring); struct ti_sci_msg_rm_udmap_tx_ch_cfg req_tx = { 0 }; struct ti_sci_msg_rm_udmap_rx_ch_cfg req_rx = { 0 }; req_tx.valid_params = TISCI_TCHAN_VALID_PARAMS; req_tx.nav_id = tisci_rm->tisci_dev_id; req_tx.index = tchan->id; req_tx.tx_chan_type = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_BCOPY_PBRR; req_tx.tx_fetch_size = sizeof(struct cppi5_desc_hdr_t) >> 2; req_tx.txcq_qnum = tc_ring; req_tx.tx_atype = ud->atype; ret = tisci_ops->tx_ch_cfg(tisci_rm->tisci, &req_tx); if (ret) { dev_err(ud->dev, "tchan%d cfg failed %d\n", tchan->id, ret); return ret; } req_rx.valid_params = TISCI_RCHAN_VALID_PARAMS; req_rx.nav_id = tisci_rm->tisci_dev_id; req_rx.index = rchan->id; req_rx.rx_fetch_size = sizeof(struct cppi5_desc_hdr_t) >> 2; req_rx.rxcq_qnum = tc_ring; req_rx.rx_chan_type = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_BCOPY_PBRR; req_rx.rx_atype = ud->atype; ret = tisci_ops->rx_ch_cfg(tisci_rm->tisci, &req_rx); if (ret) dev_err(ud->dev, "rchan%d alloc failed %d\n", rchan->id, ret); return ret; } static int udma_tisci_tx_channel_config(struct udma_chan *uc) { struct udma_dev *ud = uc->ud; struct udma_tisci_rm *tisci_rm = &ud->tisci_rm; const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops; struct udma_tchan *tchan = uc->tchan; int tc_ring = k3_ringacc_get_ring_id(tchan->tc_ring); struct ti_sci_msg_rm_udmap_tx_ch_cfg req_tx = { 0 }; u32 mode, fetch_size; int ret = 0; if (uc->config.pkt_mode) { mode = TI_SCI_RM_UDMAP_CHAN_TYPE_PKT_PBRR; fetch_size = cppi5_hdesc_calc_size(uc->config.needs_epib, uc->config.psd_size, 0); } else { mode = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_PBRR; fetch_size = sizeof(struct cppi5_desc_hdr_t); } req_tx.valid_params = TISCI_TCHAN_VALID_PARAMS; req_tx.nav_id = tisci_rm->tisci_dev_id; req_tx.index = tchan->id; req_tx.tx_chan_type = mode; req_tx.tx_supr_tdpkt = uc->config.notdpkt; req_tx.tx_fetch_size = fetch_size >> 2; req_tx.txcq_qnum = tc_ring; req_tx.tx_atype = uc->config.atype; ret = tisci_ops->tx_ch_cfg(tisci_rm->tisci, &req_tx); if (ret) dev_err(ud->dev, "tchan%d cfg failed %d\n", tchan->id, ret); return ret; } static int udma_tisci_rx_channel_config(struct udma_chan *uc) { struct udma_dev *ud = uc->ud; struct udma_tisci_rm *tisci_rm = &ud->tisci_rm; const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops; struct udma_rchan *rchan = uc->rchan; int fd_ring = k3_ringacc_get_ring_id(uc->rflow->fd_ring); int rx_ring = k3_ringacc_get_ring_id(uc->rflow->r_ring); struct ti_sci_msg_rm_udmap_rx_ch_cfg req_rx = { 0 }; struct ti_sci_msg_rm_udmap_flow_cfg flow_req = { 0 }; u32 mode, fetch_size; int ret = 0; if (uc->config.pkt_mode) { mode = TI_SCI_RM_UDMAP_CHAN_TYPE_PKT_PBRR; fetch_size = cppi5_hdesc_calc_size(uc->config.needs_epib, uc->config.psd_size, 0); } else { mode = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_PBRR; fetch_size = sizeof(struct cppi5_desc_hdr_t); } req_rx.valid_params = TISCI_RCHAN_VALID_PARAMS; req_rx.nav_id = tisci_rm->tisci_dev_id; req_rx.index = rchan->id; req_rx.rx_fetch_size = fetch_size >> 2; req_rx.rxcq_qnum = rx_ring; req_rx.rx_chan_type = mode; req_rx.rx_atype = uc->config.atype; ret = tisci_ops->rx_ch_cfg(tisci_rm->tisci, &req_rx); if (ret) { dev_err(ud->dev, "rchan%d cfg failed %d\n", rchan->id, ret); return ret; } flow_req.valid_params = TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_EINFO_PRESENT_VALID | TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_PSINFO_PRESENT_VALID | TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_ERROR_HANDLING_VALID | TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DESC_TYPE_VALID | TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_QNUM_VALID | TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_SRC_TAG_HI_SEL_VALID | TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_SRC_TAG_LO_SEL_VALID | TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_TAG_HI_SEL_VALID | TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_TAG_LO_SEL_VALID | TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ0_SZ0_QNUM_VALID | TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ1_QNUM_VALID | TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ2_QNUM_VALID | TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ3_QNUM_VALID; flow_req.nav_id = tisci_rm->tisci_dev_id; flow_req.flow_index = rchan->id; if (uc->config.needs_epib) flow_req.rx_einfo_present = 1; else flow_req.rx_einfo_present = 0; if (uc->config.psd_size) flow_req.rx_psinfo_present = 1; else flow_req.rx_psinfo_present = 0; flow_req.rx_error_handling = 1; flow_req.rx_dest_qnum = rx_ring; flow_req.rx_src_tag_hi_sel = UDMA_RFLOW_SRCTAG_NONE; flow_req.rx_src_tag_lo_sel = UDMA_RFLOW_SRCTAG_SRC_TAG; flow_req.rx_dest_tag_hi_sel = UDMA_RFLOW_DSTTAG_DST_TAG_HI; flow_req.rx_dest_tag_lo_sel = UDMA_RFLOW_DSTTAG_DST_TAG_LO; flow_req.rx_fdq0_sz0_qnum = fd_ring; flow_req.rx_fdq1_qnum = fd_ring; flow_req.rx_fdq2_qnum = fd_ring; flow_req.rx_fdq3_qnum = fd_ring; ret = tisci_ops->rx_flow_cfg(tisci_rm->tisci, &flow_req); if (ret) dev_err(ud->dev, "flow%d config failed: %d\n", rchan->id, ret); return 0; } static int udma_alloc_chan_resources(struct dma_chan *chan) { struct udma_chan *uc = to_udma_chan(chan); struct udma_dev *ud = to_udma_dev(chan->device); const struct udma_match_data *match_data = ud->match_data; struct k3_ring *irq_ring; u32 irq_udma_idx; int ret; if (uc->config.pkt_mode || uc->config.dir == DMA_MEM_TO_MEM) { uc->use_dma_pool = true; /* in case of MEM_TO_MEM we have maximum of two TRs */ if (uc->config.dir == DMA_MEM_TO_MEM) { uc->config.hdesc_size = cppi5_trdesc_calc_size( sizeof(struct cppi5_tr_type15_t), 2); uc->config.pkt_mode = false; } } if (uc->use_dma_pool) { uc->hdesc_pool = dma_pool_create(uc->name, ud->ddev.dev, uc->config.hdesc_size, ud->desc_align, 0); if (!uc->hdesc_pool) { dev_err(ud->ddev.dev, "Descriptor pool allocation failed\n"); uc->use_dma_pool = false; ret = -ENOMEM; goto err_cleanup; } } /* * Make sure that the completion is in a known state: * No teardown, the channel is idle */ reinit_completion(&uc->teardown_completed); complete_all(&uc->teardown_completed); uc->state = UDMA_CHAN_IS_IDLE; switch (uc->config.dir) { case DMA_MEM_TO_MEM: /* Non synchronized - mem to mem type of transfer */ dev_dbg(uc->ud->dev, "%s: chan%d as MEM-to-MEM\n", __func__, uc->id); ret = udma_get_chan_pair(uc); if (ret) goto err_cleanup; ret = udma_alloc_tx_resources(uc); if (ret) { udma_put_rchan(uc); goto err_cleanup; } ret = udma_alloc_rx_resources(uc); if (ret) { udma_free_tx_resources(uc); goto err_cleanup; } uc->config.src_thread = ud->psil_base + uc->tchan->id; uc->config.dst_thread = (ud->psil_base + uc->rchan->id) | K3_PSIL_DST_THREAD_ID_OFFSET; irq_ring = uc->tchan->tc_ring; irq_udma_idx = uc->tchan->id; ret = udma_tisci_m2m_channel_config(uc); break; case DMA_MEM_TO_DEV: /* Slave transfer synchronized - mem to dev (TX) trasnfer */ dev_dbg(uc->ud->dev, "%s: chan%d as MEM-to-DEV\n", __func__, uc->id); ret = udma_alloc_tx_resources(uc); if (ret) goto err_cleanup; uc->config.src_thread = ud->psil_base + uc->tchan->id; uc->config.dst_thread = uc->config.remote_thread_id; uc->config.dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET; irq_ring = uc->tchan->tc_ring; irq_udma_idx = uc->tchan->id; ret = udma_tisci_tx_channel_config(uc); break; case DMA_DEV_TO_MEM: /* Slave transfer synchronized - dev to mem (RX) trasnfer */ dev_dbg(uc->ud->dev, "%s: chan%d as DEV-to-MEM\n", __func__, uc->id); ret = udma_alloc_rx_resources(uc); if (ret) goto err_cleanup; uc->config.src_thread = uc->config.remote_thread_id; uc->config.dst_thread = (ud->psil_base + uc->rchan->id) | K3_PSIL_DST_THREAD_ID_OFFSET; irq_ring = uc->rflow->r_ring; irq_udma_idx = match_data->rchan_oes_offset + uc->rchan->id; ret = udma_tisci_rx_channel_config(uc); break; default: /* Can not happen */ dev_err(uc->ud->dev, "%s: chan%d invalid direction (%u)\n", __func__, uc->id, uc->config.dir); ret = -EINVAL; goto err_cleanup; } /* check if the channel configuration was successful */ if (ret) goto err_res_free; if (udma_is_chan_running(uc)) { dev_warn(ud->dev, "chan%d: is running!\n", uc->id); udma_reset_chan(uc, false); if (udma_is_chan_running(uc)) { dev_err(ud->dev, "chan%d: won't stop!\n", uc->id); ret = -EBUSY; goto err_res_free; } } /* PSI-L pairing */ ret = navss_psil_pair(ud, uc->config.src_thread, uc->config.dst_thread); if (ret) { dev_err(ud->dev, "PSI-L pairing failed: 0x%04x -> 0x%04x\n", uc->config.src_thread, uc->config.dst_thread); goto err_res_free; } uc->psil_paired = true; uc->irq_num_ring = k3_ringacc_get_ring_irq_num(irq_ring); if (uc->irq_num_ring <= 0) { dev_err(ud->dev, "Failed to get ring irq (index: %u)\n", k3_ringacc_get_ring_id(irq_ring)); ret = -EINVAL; goto err_psi_free; } ret = request_irq(uc->irq_num_ring, udma_ring_irq_handler, IRQF_TRIGGER_HIGH, uc->name, uc); if (ret) { dev_err(ud->dev, "chan%d: ring irq request failed\n", uc->id); goto err_irq_free; } /* Event from UDMA (TR events) only needed for slave TR mode channels */ if (is_slave_direction(uc->config.dir) && !uc->config.pkt_mode) { uc->irq_num_udma = ti_sci_inta_msi_get_virq(ud->dev, irq_udma_idx); if (uc->irq_num_udma <= 0) { dev_err(ud->dev, "Failed to get udma irq (index: %u)\n", irq_udma_idx); free_irq(uc->irq_num_ring, uc); ret = -EINVAL; goto err_irq_free; } ret = request_irq(uc->irq_num_udma, udma_udma_irq_handler, 0, uc->name, uc); if (ret) { dev_err(ud->dev, "chan%d: UDMA irq request failed\n", uc->id); free_irq(uc->irq_num_ring, uc); goto err_irq_free; } } else { uc->irq_num_udma = 0; } udma_reset_rings(uc); return 0; err_irq_free: uc->irq_num_ring = 0; uc->irq_num_udma = 0; err_psi_free: navss_psil_unpair(ud, uc->config.src_thread, uc->config.dst_thread); uc->psil_paired = false; err_res_free: udma_free_tx_resources(uc); udma_free_rx_resources(uc); err_cleanup: udma_reset_uchan(uc); if (uc->use_dma_pool) { dma_pool_destroy(uc->hdesc_pool); uc->use_dma_pool = false; } return ret; } static int udma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg) { struct udma_chan *uc = to_udma_chan(chan); memcpy(&uc->cfg, cfg, sizeof(uc->cfg)); return 0; } static struct udma_desc *udma_alloc_tr_desc(struct udma_chan *uc, size_t tr_size, int tr_count, enum dma_transfer_direction dir) { struct udma_hwdesc *hwdesc; struct cppi5_desc_hdr_t *tr_desc; struct udma_desc *d; u32 reload_count = 0; u32 ring_id; switch (tr_size) { case 16: case 32: case 64: case 128: break; default: dev_err(uc->ud->dev, "Unsupported TR size of %zu\n", tr_size); return NULL; } /* We have only one descriptor containing multiple TRs */ d = kzalloc(sizeof(*d) + sizeof(d->hwdesc[0]), GFP_NOWAIT); if (!d) return NULL; d->sglen = tr_count; d->hwdesc_count = 1; hwdesc = &d->hwdesc[0]; /* Allocate memory for DMA ring descriptor */ if (uc->use_dma_pool) { hwdesc->cppi5_desc_size = uc->config.hdesc_size; hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool, GFP_NOWAIT, &hwdesc->cppi5_desc_paddr); } else { hwdesc->cppi5_desc_size = cppi5_trdesc_calc_size(tr_size, tr_count); hwdesc->cppi5_desc_size = ALIGN(hwdesc->cppi5_desc_size, uc->ud->desc_align); hwdesc->cppi5_desc_vaddr = dma_alloc_coherent(uc->ud->dev, hwdesc->cppi5_desc_size, &hwdesc->cppi5_desc_paddr, GFP_NOWAIT); } if (!hwdesc->cppi5_desc_vaddr) { kfree(d); return NULL; } /* Start of the TR req records */ hwdesc->tr_req_base = hwdesc->cppi5_desc_vaddr + tr_size; /* Start address of the TR response array */ hwdesc->tr_resp_base = hwdesc->tr_req_base + tr_size * tr_count; tr_desc = hwdesc->cppi5_desc_vaddr; if (uc->cyclic) reload_count = CPPI5_INFO0_TRDESC_RLDCNT_INFINITE; if (dir == DMA_DEV_TO_MEM) ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring); else ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring); cppi5_trdesc_init(tr_desc, tr_count, tr_size, 0, reload_count); cppi5_desc_set_pktids(tr_desc, uc->id, CPPI5_INFO1_DESC_FLOWID_DEFAULT); cppi5_desc_set_retpolicy(tr_desc, 0, ring_id); return d; } /** * udma_get_tr_counters - calculate TR counters for a given length * @len: Length of the trasnfer * @align_to: Preferred alignment * @tr0_cnt0: First TR icnt0 * @tr0_cnt1: First TR icnt1 * @tr1_cnt0: Second (if used) TR icnt0 * * For len < SZ_64K only one TR is enough, tr1_cnt0 is not updated * For len >= SZ_64K two TRs are used in a simple way: * First TR: SZ_64K-alignment blocks (tr0_cnt0, tr0_cnt1) * Second TR: the remaining length (tr1_cnt0) * * Returns the number of TRs the length needs (1 or 2) * -EINVAL if the length can not be supported */ static int udma_get_tr_counters(size_t len, unsigned long align_to, u16 *tr0_cnt0, u16 *tr0_cnt1, u16 *tr1_cnt0) { if (len < SZ_64K) { *tr0_cnt0 = len; *tr0_cnt1 = 1; return 1; } if (align_to > 3) align_to = 3; realign: *tr0_cnt0 = SZ_64K - BIT(align_to); if (len / *tr0_cnt0 >= SZ_64K) { if (align_to) { align_to--; goto realign; } return -EINVAL; } *tr0_cnt1 = len / *tr0_cnt0; *tr1_cnt0 = len % *tr0_cnt0; return 2; } static struct udma_desc * udma_prep_slave_sg_tr(struct udma_chan *uc, struct scatterlist *sgl, unsigned int sglen, enum dma_transfer_direction dir, unsigned long tx_flags, void *context) { struct scatterlist *sgent; struct udma_desc *d; struct cppi5_tr_type1_t *tr_req = NULL; u16 tr0_cnt0, tr0_cnt1, tr1_cnt0; unsigned int i; size_t tr_size; int num_tr = 0; int tr_idx = 0; if (!is_slave_direction(dir)) { dev_err(uc->ud->dev, "Only slave cyclic is supported\n"); return NULL; } /* estimate the number of TRs we will need */ for_each_sg(sgl, sgent, sglen, i) { if (sg_dma_len(sgent) < SZ_64K) num_tr++; else num_tr += 2; } /* Now allocate and setup the descriptor. */ tr_size = sizeof(struct cppi5_tr_type1_t); d = udma_alloc_tr_desc(uc, tr_size, num_tr, dir); if (!d) return NULL; d->sglen = sglen; tr_req = d->hwdesc[0].tr_req_base; for_each_sg(sgl, sgent, sglen, i) { dma_addr_t sg_addr = sg_dma_address(sgent); num_tr = udma_get_tr_counters(sg_dma_len(sgent), __ffs(sg_addr), &tr0_cnt0, &tr0_cnt1, &tr1_cnt0); if (num_tr < 0) { dev_err(uc->ud->dev, "size %u is not supported\n", sg_dma_len(sgent)); udma_free_hwdesc(uc, d); kfree(d); return NULL; } cppi5_tr_init(&tr_req[i].flags, CPPI5_TR_TYPE1, false, false, CPPI5_TR_EVENT_SIZE_COMPLETION, 0); cppi5_tr_csf_set(&tr_req[i].flags, CPPI5_TR_CSF_SUPR_EVT); tr_req[tr_idx].addr = sg_addr; tr_req[tr_idx].icnt0 = tr0_cnt0; tr_req[tr_idx].icnt1 = tr0_cnt1; tr_req[tr_idx].dim1 = tr0_cnt0; tr_idx++; if (num_tr == 2) { cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1, false, false, CPPI5_TR_EVENT_SIZE_COMPLETION, 0); cppi5_tr_csf_set(&tr_req[tr_idx].flags, CPPI5_TR_CSF_SUPR_EVT); tr_req[tr_idx].addr = sg_addr + tr0_cnt1 * tr0_cnt0; tr_req[tr_idx].icnt0 = tr1_cnt0; tr_req[tr_idx].icnt1 = 1; tr_req[tr_idx].dim1 = tr1_cnt0; tr_idx++; } d->residue += sg_dma_len(sgent); } cppi5_tr_csf_set(&tr_req[tr_idx - 1].flags, CPPI5_TR_CSF_SUPR_EVT | CPPI5_TR_CSF_EOP); return d; } static int udma_configure_statictr(struct udma_chan *uc, struct udma_desc *d, enum dma_slave_buswidth dev_width, u16 elcnt) { if (uc->config.ep_type != PSIL_EP_PDMA_XY) return 0; /* Bus width translates to the element size (ES) */ switch (dev_width) { case DMA_SLAVE_BUSWIDTH_1_BYTE: d->static_tr.elsize = 0; break; case DMA_SLAVE_BUSWIDTH_2_BYTES: d->static_tr.elsize = 1; break; case DMA_SLAVE_BUSWIDTH_3_BYTES: d->static_tr.elsize = 2; break; case DMA_SLAVE_BUSWIDTH_4_BYTES: d->static_tr.elsize = 3; break; case DMA_SLAVE_BUSWIDTH_8_BYTES: d->static_tr.elsize = 4; break; default: /* not reached */ return -EINVAL; } d->static_tr.elcnt = elcnt; /* * PDMA must to close the packet when the channel is in packet mode. * For TR mode when the channel is not cyclic we also need PDMA to close * the packet otherwise the transfer will stall because PDMA holds on * the data it has received from the peripheral. */ if (uc->config.pkt_mode || !uc->cyclic) { unsigned int div = dev_width * elcnt; if (uc->cyclic) d->static_tr.bstcnt = d->residue / d->sglen / div; else d->static_tr.bstcnt = d->residue / div; if (uc->config.dir == DMA_DEV_TO_MEM && d->static_tr.bstcnt > uc->ud->match_data->statictr_z_mask) return -EINVAL; } else { d->static_tr.bstcnt = 0; } return 0; } static struct udma_desc * udma_prep_slave_sg_pkt(struct udma_chan *uc, struct scatterlist *sgl, unsigned int sglen, enum dma_transfer_direction dir, unsigned long tx_flags, void *context) { struct scatterlist *sgent; struct cppi5_host_desc_t *h_desc = NULL; struct udma_desc *d; u32 ring_id; unsigned int i; d = kzalloc(sizeof(*d) + sglen * sizeof(d->hwdesc[0]), GFP_NOWAIT); if (!d) return NULL; d->sglen = sglen; d->hwdesc_count = sglen; if (dir == DMA_DEV_TO_MEM) ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring); else ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring); for_each_sg(sgl, sgent, sglen, i) { struct udma_hwdesc *hwdesc = &d->hwdesc[i]; dma_addr_t sg_addr = sg_dma_address(sgent); struct cppi5_host_desc_t *desc; size_t sg_len = sg_dma_len(sgent); hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool, GFP_NOWAIT, &hwdesc->cppi5_desc_paddr); if (!hwdesc->cppi5_desc_vaddr) { dev_err(uc->ud->dev, "descriptor%d allocation failed\n", i); udma_free_hwdesc(uc, d); kfree(d); return NULL; } d->residue += sg_len; hwdesc->cppi5_desc_size = uc->config.hdesc_size; desc = hwdesc->cppi5_desc_vaddr; if (i == 0) { cppi5_hdesc_init(desc, 0, 0); /* Flow and Packed ID */ cppi5_desc_set_pktids(&desc->hdr, uc->id, CPPI5_INFO1_DESC_FLOWID_DEFAULT); cppi5_desc_set_retpolicy(&desc->hdr, 0, ring_id); } else { cppi5_hdesc_reset_hbdesc(desc); cppi5_desc_set_retpolicy(&desc->hdr, 0, 0xffff); } /* attach the sg buffer to the descriptor */ cppi5_hdesc_attach_buf(desc, sg_addr, sg_len, sg_addr, sg_len); /* Attach link as host buffer descriptor */ if (h_desc) cppi5_hdesc_link_hbdesc(h_desc, hwdesc->cppi5_desc_paddr); if (dir == DMA_MEM_TO_DEV) h_desc = desc; } if (d->residue >= SZ_4M) { dev_err(uc->ud->dev, "%s: Transfer size %u is over the supported 4M range\n", __func__, d->residue); udma_free_hwdesc(uc, d); kfree(d); return NULL; } h_desc = d->hwdesc[0].cppi5_desc_vaddr; cppi5_hdesc_set_pktlen(h_desc, d->residue); return d; } static int udma_attach_metadata(struct dma_async_tx_descriptor *desc, void *data, size_t len) { struct udma_desc *d = to_udma_desc(desc); struct udma_chan *uc = to_udma_chan(desc->chan); struct cppi5_host_desc_t *h_desc; u32 psd_size = len; u32 flags = 0; if (!uc->config.pkt_mode || !uc->config.metadata_size) return -ENOTSUPP; if (!data || len > uc->config.metadata_size) return -EINVAL; if (uc->config.needs_epib && len < CPPI5_INFO0_HDESC_EPIB_SIZE) return -EINVAL; h_desc = d->hwdesc[0].cppi5_desc_vaddr; if (d->dir == DMA_MEM_TO_DEV) memcpy(h_desc->epib, data, len); if (uc->config.needs_epib) psd_size -= CPPI5_INFO0_HDESC_EPIB_SIZE; d->metadata = data; d->metadata_size = len; if (uc->config.needs_epib) flags |= CPPI5_INFO0_HDESC_EPIB_PRESENT; cppi5_hdesc_update_flags(h_desc, flags); cppi5_hdesc_update_psdata_size(h_desc, psd_size); return 0; } static void *udma_get_metadata_ptr(struct dma_async_tx_descriptor *desc, size_t *payload_len, size_t *max_len) { struct udma_desc *d = to_udma_desc(desc); struct udma_chan *uc = to_udma_chan(desc->chan); struct cppi5_host_desc_t *h_desc; if (!uc->config.pkt_mode || !uc->config.metadata_size) return ERR_PTR(-ENOTSUPP); h_desc = d->hwdesc[0].cppi5_desc_vaddr; *max_len = uc->config.metadata_size; *payload_len = cppi5_hdesc_epib_present(&h_desc->hdr) ? CPPI5_INFO0_HDESC_EPIB_SIZE : 0; *payload_len += cppi5_hdesc_get_psdata_size(h_desc); return h_desc->epib; } static int udma_set_metadata_len(struct dma_async_tx_descriptor *desc, size_t payload_len) { struct udma_desc *d = to_udma_desc(desc); struct udma_chan *uc = to_udma_chan(desc->chan); struct cppi5_host_desc_t *h_desc; u32 psd_size = payload_len; u32 flags = 0; if (!uc->config.pkt_mode || !uc->config.metadata_size) return -ENOTSUPP; if (payload_len > uc->config.metadata_size) return -EINVAL; if (uc->config.needs_epib && payload_len < CPPI5_INFO0_HDESC_EPIB_SIZE) return -EINVAL; h_desc = d->hwdesc[0].cppi5_desc_vaddr; if (uc->config.needs_epib) { psd_size -= CPPI5_INFO0_HDESC_EPIB_SIZE; flags |= CPPI5_INFO0_HDESC_EPIB_PRESENT; } cppi5_hdesc_update_flags(h_desc, flags); cppi5_hdesc_update_psdata_size(h_desc, psd_size); return 0; } static struct dma_descriptor_metadata_ops metadata_ops = { .attach = udma_attach_metadata, .get_ptr = udma_get_metadata_ptr, .set_len = udma_set_metadata_len, }; static struct dma_async_tx_descriptor * udma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, unsigned int sglen, enum dma_transfer_direction dir, unsigned long tx_flags, void *context) { struct udma_chan *uc = to_udma_chan(chan); enum dma_slave_buswidth dev_width; struct udma_desc *d; u32 burst; if (dir != uc->config.dir) { dev_err(chan->device->dev, "%s: chan%d is for %s, not supporting %s\n", __func__, uc->id, dmaengine_get_direction_text(uc->config.dir), dmaengine_get_direction_text(dir)); return NULL; } if (dir == DMA_DEV_TO_MEM) { dev_width = uc->cfg.src_addr_width; burst = uc->cfg.src_maxburst; } else if (dir == DMA_MEM_TO_DEV) { dev_width = uc->cfg.dst_addr_width; burst = uc->cfg.dst_maxburst; } else { dev_err(chan->device->dev, "%s: bad direction?\n", __func__); return NULL; } if (!burst) burst = 1; if (uc->config.pkt_mode) d = udma_prep_slave_sg_pkt(uc, sgl, sglen, dir, tx_flags, context); else d = udma_prep_slave_sg_tr(uc, sgl, sglen, dir, tx_flags, context); if (!d) return NULL; d->dir = dir; d->desc_idx = 0; d->tr_idx = 0; /* static TR for remote PDMA */ if (udma_configure_statictr(uc, d, dev_width, burst)) { dev_err(uc->ud->dev, "%s: StaticTR Z is limited to maximum 4095 (%u)\n", __func__, d->static_tr.bstcnt); udma_free_hwdesc(uc, d); kfree(d); return NULL; } if (uc->config.metadata_size) d->vd.tx.metadata_ops = &metadata_ops; return vchan_tx_prep(&uc->vc, &d->vd, tx_flags); } static struct udma_desc * udma_prep_dma_cyclic_tr(struct udma_chan *uc, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction dir, unsigned long flags) { struct udma_desc *d; size_t tr_size, period_addr; struct cppi5_tr_type1_t *tr_req; unsigned int periods = buf_len / period_len; u16 tr0_cnt0, tr0_cnt1, tr1_cnt0; unsigned int i; int num_tr; if (!is_slave_direction(dir)) { dev_err(uc->ud->dev, "Only slave cyclic is supported\n"); return NULL; } num_tr = udma_get_tr_counters(period_len, __ffs(buf_addr), &tr0_cnt0, &tr0_cnt1, &tr1_cnt0); if (num_tr < 0) { dev_err(uc->ud->dev, "size %zu is not supported\n", period_len); return NULL; } /* Now allocate and setup the descriptor. */ tr_size = sizeof(struct cppi5_tr_type1_t); d = udma_alloc_tr_desc(uc, tr_size, periods * num_tr, dir); if (!d) return NULL; tr_req = d->hwdesc[0].tr_req_base; period_addr = buf_addr; for (i = 0; i < periods; i++) { int tr_idx = i * num_tr; cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1, false, false, CPPI5_TR_EVENT_SIZE_COMPLETION, 0); tr_req[tr_idx].addr = period_addr; tr_req[tr_idx].icnt0 = tr0_cnt0; tr_req[tr_idx].icnt1 = tr0_cnt1; tr_req[tr_idx].dim1 = tr0_cnt0; if (num_tr == 2) { cppi5_tr_csf_set(&tr_req[tr_idx].flags, CPPI5_TR_CSF_SUPR_EVT); tr_idx++; cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1, false, false, CPPI5_TR_EVENT_SIZE_COMPLETION, 0); tr_req[tr_idx].addr = period_addr + tr0_cnt1 * tr0_cnt0; tr_req[tr_idx].icnt0 = tr1_cnt0; tr_req[tr_idx].icnt1 = 1; tr_req[tr_idx].dim1 = tr1_cnt0; } if (!(flags & DMA_PREP_INTERRUPT)) cppi5_tr_csf_set(&tr_req[tr_idx].flags, CPPI5_TR_CSF_SUPR_EVT); period_addr += period_len; } return d; } static struct udma_desc * udma_prep_dma_cyclic_pkt(struct udma_chan *uc, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction dir, unsigned long flags) { struct udma_desc *d; u32 ring_id; int i; int periods = buf_len / period_len; if (periods > (K3_UDMA_DEFAULT_RING_SIZE - 1)) return NULL; if (period_len >= SZ_4M) return NULL; d = kzalloc(sizeof(*d) + periods * sizeof(d->hwdesc[0]), GFP_NOWAIT); if (!d) return NULL; d->hwdesc_count = periods; /* TODO: re-check this... */ if (dir == DMA_DEV_TO_MEM) ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring); else ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring); for (i = 0; i < periods; i++) { struct udma_hwdesc *hwdesc = &d->hwdesc[i]; dma_addr_t period_addr = buf_addr + (period_len * i); struct cppi5_host_desc_t *h_desc; hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool, GFP_NOWAIT, &hwdesc->cppi5_desc_paddr); if (!hwdesc->cppi5_desc_vaddr) { dev_err(uc->ud->dev, "descriptor%d allocation failed\n", i); udma_free_hwdesc(uc, d); kfree(d); return NULL; } hwdesc->cppi5_desc_size = uc->config.hdesc_size; h_desc = hwdesc->cppi5_desc_vaddr; cppi5_hdesc_init(h_desc, 0, 0); cppi5_hdesc_set_pktlen(h_desc, period_len); /* Flow and Packed ID */ cppi5_desc_set_pktids(&h_desc->hdr, uc->id, CPPI5_INFO1_DESC_FLOWID_DEFAULT); cppi5_desc_set_retpolicy(&h_desc->hdr, 0, ring_id); /* attach each period to a new descriptor */ cppi5_hdesc_attach_buf(h_desc, period_addr, period_len, period_addr, period_len); } return d; } static struct dma_async_tx_descriptor * udma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction dir, unsigned long flags) { struct udma_chan *uc = to_udma_chan(chan); enum dma_slave_buswidth dev_width; struct udma_desc *d; u32 burst; if (dir != uc->config.dir) { dev_err(chan->device->dev, "%s: chan%d is for %s, not supporting %s\n", __func__, uc->id, dmaengine_get_direction_text(uc->config.dir), dmaengine_get_direction_text(dir)); return NULL; } uc->cyclic = true; if (dir == DMA_DEV_TO_MEM) { dev_width = uc->cfg.src_addr_width; burst = uc->cfg.src_maxburst; } else if (dir == DMA_MEM_TO_DEV) { dev_width = uc->cfg.dst_addr_width; burst = uc->cfg.dst_maxburst; } else { dev_err(uc->ud->dev, "%s: bad direction?\n", __func__); return NULL; } if (!burst) burst = 1; if (uc->config.pkt_mode) d = udma_prep_dma_cyclic_pkt(uc, buf_addr, buf_len, period_len, dir, flags); else d = udma_prep_dma_cyclic_tr(uc, buf_addr, buf_len, period_len, dir, flags); if (!d) return NULL; d->sglen = buf_len / period_len; d->dir = dir; d->residue = buf_len; /* static TR for remote PDMA */ if (udma_configure_statictr(uc, d, dev_width, burst)) { dev_err(uc->ud->dev, "%s: StaticTR Z is limited to maximum 4095 (%u)\n", __func__, d->static_tr.bstcnt); udma_free_hwdesc(uc, d); kfree(d); return NULL; } if (uc->config.metadata_size) d->vd.tx.metadata_ops = &metadata_ops; return vchan_tx_prep(&uc->vc, &d->vd, flags); } static struct dma_async_tx_descriptor * udma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, size_t len, unsigned long tx_flags) { struct udma_chan *uc = to_udma_chan(chan); struct udma_desc *d; struct cppi5_tr_type15_t *tr_req; int num_tr; size_t tr_size = sizeof(struct cppi5_tr_type15_t); u16 tr0_cnt0, tr0_cnt1, tr1_cnt0; if (uc->config.dir != DMA_MEM_TO_MEM) { dev_err(chan->device->dev, "%s: chan%d is for %s, not supporting %s\n", __func__, uc->id, dmaengine_get_direction_text(uc->config.dir), dmaengine_get_direction_text(DMA_MEM_TO_MEM)); return NULL; } num_tr = udma_get_tr_counters(len, __ffs(src | dest), &tr0_cnt0, &tr0_cnt1, &tr1_cnt0); if (num_tr < 0) { dev_err(uc->ud->dev, "size %zu is not supported\n", len); return NULL; } d = udma_alloc_tr_desc(uc, tr_size, num_tr, DMA_MEM_TO_MEM); if (!d) return NULL; d->dir = DMA_MEM_TO_MEM; d->desc_idx = 0; d->tr_idx = 0; d->residue = len; tr_req = d->hwdesc[0].tr_req_base; cppi5_tr_init(&tr_req[0].flags, CPPI5_TR_TYPE15, false, true, CPPI5_TR_EVENT_SIZE_COMPLETION, 0); cppi5_tr_csf_set(&tr_req[0].flags, CPPI5_TR_CSF_SUPR_EVT); tr_req[0].addr = src; tr_req[0].icnt0 = tr0_cnt0; tr_req[0].icnt1 = tr0_cnt1; tr_req[0].icnt2 = 1; tr_req[0].icnt3 = 1; tr_req[0].dim1 = tr0_cnt0; tr_req[0].daddr = dest; tr_req[0].dicnt0 = tr0_cnt0; tr_req[0].dicnt1 = tr0_cnt1; tr_req[0].dicnt2 = 1; tr_req[0].dicnt3 = 1; tr_req[0].ddim1 = tr0_cnt0; if (num_tr == 2) { cppi5_tr_init(&tr_req[1].flags, CPPI5_TR_TYPE15, false, true, CPPI5_TR_EVENT_SIZE_COMPLETION, 0); cppi5_tr_csf_set(&tr_req[1].flags, CPPI5_TR_CSF_SUPR_EVT); tr_req[1].addr = src + tr0_cnt1 * tr0_cnt0; tr_req[1].icnt0 = tr1_cnt0; tr_req[1].icnt1 = 1; tr_req[1].icnt2 = 1; tr_req[1].icnt3 = 1; tr_req[1].daddr = dest + tr0_cnt1 * tr0_cnt0; tr_req[1].dicnt0 = tr1_cnt0; tr_req[1].dicnt1 = 1; tr_req[1].dicnt2 = 1; tr_req[1].dicnt3 = 1; } cppi5_tr_csf_set(&tr_req[num_tr - 1].flags, CPPI5_TR_CSF_SUPR_EVT | CPPI5_TR_CSF_EOP); if (uc->config.metadata_size) d->vd.tx.metadata_ops = &metadata_ops; return vchan_tx_prep(&uc->vc, &d->vd, tx_flags); } static void udma_issue_pending(struct dma_chan *chan) { struct udma_chan *uc = to_udma_chan(chan); unsigned long flags; spin_lock_irqsave(&uc->vc.lock, flags); /* If we have something pending and no active descriptor, then */ if (vchan_issue_pending(&uc->vc) && !uc->desc) { /* * start a descriptor if the channel is NOT [marked as * terminating _and_ it is still running (teardown has not * completed yet)]. */ if (!(uc->state == UDMA_CHAN_IS_TERMINATING && udma_is_chan_running(uc))) udma_start(uc); } spin_unlock_irqrestore(&uc->vc.lock, flags); } static enum dma_status udma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct udma_chan *uc = to_udma_chan(chan); enum dma_status ret; unsigned long flags; spin_lock_irqsave(&uc->vc.lock, flags); ret = dma_cookie_status(chan, cookie, txstate); if (!udma_is_chan_running(uc)) ret = DMA_COMPLETE; if (ret == DMA_IN_PROGRESS && udma_is_chan_paused(uc)) ret = DMA_PAUSED; if (ret == DMA_COMPLETE || !txstate) goto out; if (uc->desc && uc->desc->vd.tx.cookie == cookie) { u32 peer_bcnt = 0; u32 bcnt = 0; u32 residue = uc->desc->residue; u32 delay = 0; if (uc->desc->dir == DMA_MEM_TO_DEV) { bcnt = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_SBCNT_REG); if (uc->config.ep_type != PSIL_EP_NATIVE) { peer_bcnt = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_PEER_BCNT_REG); if (bcnt > peer_bcnt) delay = bcnt - peer_bcnt; } } else if (uc->desc->dir == DMA_DEV_TO_MEM) { bcnt = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_BCNT_REG); if (uc->config.ep_type != PSIL_EP_NATIVE) { peer_bcnt = udma_rchanrt_read(uc->rchan, UDMA_RCHAN_RT_PEER_BCNT_REG); if (peer_bcnt > bcnt) delay = peer_bcnt - bcnt; } } else { bcnt = udma_tchanrt_read(uc->tchan, UDMA_TCHAN_RT_BCNT_REG); } bcnt -= uc->bcnt; if (bcnt && !(bcnt % uc->desc->residue)) residue = 0; else residue -= bcnt % uc->desc->residue; if (!residue && (uc->config.dir == DMA_DEV_TO_MEM || !delay)) { ret = DMA_COMPLETE; delay = 0; } dma_set_residue(txstate, residue); dma_set_in_flight_bytes(txstate, delay); } else { ret = DMA_COMPLETE; } out: spin_unlock_irqrestore(&uc->vc.lock, flags); return ret; } static int udma_pause(struct dma_chan *chan) { struct udma_chan *uc = to_udma_chan(chan); /* pause the channel */ switch (uc->config.dir) { case DMA_DEV_TO_MEM: udma_rchanrt_update_bits(uc->rchan, UDMA_RCHAN_RT_PEER_RT_EN_REG, UDMA_PEER_RT_EN_PAUSE, UDMA_PEER_RT_EN_PAUSE); break; case DMA_MEM_TO_DEV: udma_tchanrt_update_bits(uc->tchan, UDMA_TCHAN_RT_PEER_RT_EN_REG, UDMA_PEER_RT_EN_PAUSE, UDMA_PEER_RT_EN_PAUSE); break; case DMA_MEM_TO_MEM: udma_tchanrt_update_bits(uc->tchan, UDMA_TCHAN_RT_CTL_REG, UDMA_CHAN_RT_CTL_PAUSE, UDMA_CHAN_RT_CTL_PAUSE); break; default: return -EINVAL; } return 0; } static int udma_resume(struct dma_chan *chan) { struct udma_chan *uc = to_udma_chan(chan); /* resume the channel */ switch (uc->config.dir) { case DMA_DEV_TO_MEM: udma_rchanrt_update_bits(uc->rchan, UDMA_RCHAN_RT_PEER_RT_EN_REG, UDMA_PEER_RT_EN_PAUSE, 0); break; case DMA_MEM_TO_DEV: udma_tchanrt_update_bits(uc->tchan, UDMA_TCHAN_RT_PEER_RT_EN_REG, UDMA_PEER_RT_EN_PAUSE, 0); break; case DMA_MEM_TO_MEM: udma_tchanrt_update_bits(uc->tchan, UDMA_TCHAN_RT_CTL_REG, UDMA_CHAN_RT_CTL_PAUSE, 0); break; default: return -EINVAL; } return 0; } static int udma_terminate_all(struct dma_chan *chan) { struct udma_chan *uc = to_udma_chan(chan); unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&uc->vc.lock, flags); if (udma_is_chan_running(uc)) udma_stop(uc); if (uc->desc) { uc->terminated_desc = uc->desc; uc->desc = NULL; uc->terminated_desc->terminated = true; cancel_delayed_work(&uc->tx_drain.work); } uc->paused = false; vchan_get_all_descriptors(&uc->vc, &head); spin_unlock_irqrestore(&uc->vc.lock, flags); vchan_dma_desc_free_list(&uc->vc, &head); return 0; } static void udma_synchronize(struct dma_chan *chan) { struct udma_chan *uc = to_udma_chan(chan); unsigned long timeout = msecs_to_jiffies(1000); vchan_synchronize(&uc->vc); if (uc->state == UDMA_CHAN_IS_TERMINATING) { timeout = wait_for_completion_timeout(&uc->teardown_completed, timeout); if (!timeout) { dev_warn(uc->ud->dev, "chan%d teardown timeout!\n", uc->id); udma_dump_chan_stdata(uc); udma_reset_chan(uc, true); } } udma_reset_chan(uc, false); if (udma_is_chan_running(uc)) dev_warn(uc->ud->dev, "chan%d refused to stop!\n", uc->id); cancel_delayed_work_sync(&uc->tx_drain.work); udma_reset_rings(uc); } static void udma_desc_pre_callback(struct virt_dma_chan *vc, struct virt_dma_desc *vd, struct dmaengine_result *result) { struct udma_chan *uc = to_udma_chan(&vc->chan); struct udma_desc *d; if (!vd) return; d = to_udma_desc(&vd->tx); if (d->metadata_size) udma_fetch_epib(uc, d); /* Provide residue information for the client */ if (result) { void *desc_vaddr = udma_curr_cppi5_desc_vaddr(d, d->desc_idx); if (cppi5_desc_get_type(desc_vaddr) == CPPI5_INFO0_DESC_TYPE_VAL_HOST) { result->residue = d->residue - cppi5_hdesc_get_pktlen(desc_vaddr); if (result->residue) result->result = DMA_TRANS_ABORTED; else result->result = DMA_TRANS_NOERROR; } else { result->residue = 0; result->result = DMA_TRANS_NOERROR; } } } /* * This tasklet handles the completion of a DMA descriptor by * calling its callback and freeing it. */ static void udma_vchan_complete(unsigned long arg) { struct virt_dma_chan *vc = (struct virt_dma_chan *)arg; struct virt_dma_desc *vd, *_vd; struct dmaengine_desc_callback cb; LIST_HEAD(head); spin_lock_irq(&vc->lock); list_splice_tail_init(&vc->desc_completed, &head); vd = vc->cyclic; if (vd) { vc->cyclic = NULL; dmaengine_desc_get_callback(&vd->tx, &cb); } else { memset(&cb, 0, sizeof(cb)); } spin_unlock_irq(&vc->lock); udma_desc_pre_callback(vc, vd, NULL); dmaengine_desc_callback_invoke(&cb, NULL); list_for_each_entry_safe(vd, _vd, &head, node) { struct dmaengine_result result; dmaengine_desc_get_callback(&vd->tx, &cb); list_del(&vd->node); udma_desc_pre_callback(vc, vd, &result); dmaengine_desc_callback_invoke(&cb, &result); vchan_vdesc_fini(vd); } } static void udma_free_chan_resources(struct dma_chan *chan) { struct udma_chan *uc = to_udma_chan(chan); struct udma_dev *ud = to_udma_dev(chan->device); udma_terminate_all(chan); if (uc->terminated_desc) { udma_reset_chan(uc, false); udma_reset_rings(uc); } cancel_delayed_work_sync(&uc->tx_drain.work); if (uc->irq_num_ring > 0) { free_irq(uc->irq_num_ring, uc); uc->irq_num_ring = 0; } if (uc->irq_num_udma > 0) { free_irq(uc->irq_num_udma, uc); uc->irq_num_udma = 0; } /* Release PSI-L pairing */ if (uc->psil_paired) { navss_psil_unpair(ud, uc->config.src_thread, uc->config.dst_thread); uc->psil_paired = false; } vchan_free_chan_resources(&uc->vc); tasklet_kill(&uc->vc.task); udma_free_tx_resources(uc); udma_free_rx_resources(uc); udma_reset_uchan(uc); if (uc->use_dma_pool) { dma_pool_destroy(uc->hdesc_pool); uc->use_dma_pool = false; } } static struct platform_driver udma_driver; struct udma_filter_param { int remote_thread_id; u32 atype; }; static bool udma_dma_filter_fn(struct dma_chan *chan, void *param) { struct udma_chan_config *ucc; struct psil_endpoint_config *ep_config; struct udma_filter_param *filter_param; struct udma_chan *uc; struct udma_dev *ud; if (chan->device->dev->driver != &udma_driver.driver) return false; uc = to_udma_chan(chan); ucc = &uc->config; ud = uc->ud; filter_param = param; if (filter_param->atype > 2) { dev_err(ud->dev, "Invalid channel atype: %u\n", filter_param->atype); return false; } ucc->remote_thread_id = filter_param->remote_thread_id; ucc->atype = filter_param->atype; if (ucc->remote_thread_id & K3_PSIL_DST_THREAD_ID_OFFSET) ucc->dir = DMA_MEM_TO_DEV; else ucc->dir = DMA_DEV_TO_MEM; ep_config = psil_get_ep_config(ucc->remote_thread_id); if (IS_ERR(ep_config)) { dev_err(ud->dev, "No configuration for psi-l thread 0x%04x\n", ucc->remote_thread_id); ucc->dir = DMA_MEM_TO_MEM; ucc->remote_thread_id = -1; ucc->atype = 0; return false; } ucc->pkt_mode = ep_config->pkt_mode; ucc->channel_tpl = ep_config->channel_tpl; ucc->notdpkt = ep_config->notdpkt; ucc->ep_type = ep_config->ep_type; if (ucc->ep_type != PSIL_EP_NATIVE) { const struct udma_match_data *match_data = ud->match_data; if (match_data->flags & UDMA_FLAG_PDMA_ACC32) ucc->enable_acc32 = ep_config->pdma_acc32; if (match_data->flags & UDMA_FLAG_PDMA_BURST) ucc->enable_burst = ep_config->pdma_burst; } ucc->needs_epib = ep_config->needs_epib; ucc->psd_size = ep_config->psd_size; ucc->metadata_size = (ucc->needs_epib ? CPPI5_INFO0_HDESC_EPIB_SIZE : 0) + ucc->psd_size; if (ucc->pkt_mode) ucc->hdesc_size = ALIGN(sizeof(struct cppi5_host_desc_t) + ucc->metadata_size, ud->desc_align); dev_dbg(ud->dev, "chan%d: Remote thread: 0x%04x (%s)\n", uc->id, ucc->remote_thread_id, dmaengine_get_direction_text(ucc->dir)); return true; } static struct dma_chan *udma_of_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct udma_dev *ud = ofdma->of_dma_data; dma_cap_mask_t mask = ud->ddev.cap_mask; struct udma_filter_param filter_param; struct dma_chan *chan; if (dma_spec->args_count != 1 && dma_spec->args_count != 2) return NULL; filter_param.remote_thread_id = dma_spec->args[0]; if (dma_spec->args_count == 2) filter_param.atype = dma_spec->args[1]; else filter_param.atype = 0; chan = __dma_request_channel(&mask, udma_dma_filter_fn, &filter_param, ofdma->of_node); if (!chan) { dev_err(ud->dev, "get channel fail in %s.\n", __func__); return ERR_PTR(-EINVAL); } return chan; } static struct udma_match_data am654_main_data = { .psil_base = 0x1000, .enable_memcpy_support = true, .statictr_z_mask = GENMASK(11, 0), .rchan_oes_offset = 0x2000, .tpl_levels = 2, .level_start_idx = { [0] = 8, /* Normal channels */ [1] = 0, /* High Throughput channels */ }, }; static struct udma_match_data am654_mcu_data = { .psil_base = 0x6000, .enable_memcpy_support = false, .statictr_z_mask = GENMASK(11, 0), .rchan_oes_offset = 0x2000, .tpl_levels = 2, .level_start_idx = { [0] = 2, /* Normal channels */ [1] = 0, /* High Throughput channels */ }, }; static struct udma_match_data j721e_main_data = { .psil_base = 0x1000, .enable_memcpy_support = true, .flags = UDMA_FLAG_PDMA_ACC32 | UDMA_FLAG_PDMA_BURST, .statictr_z_mask = GENMASK(23, 0), .rchan_oes_offset = 0x400, .tpl_levels = 3, .level_start_idx = { [0] = 16, /* Normal channels */ [1] = 4, /* High Throughput channels */ [2] = 0, /* Ultra High Throughput channels */ }, }; static struct udma_match_data j721e_mcu_data = { .psil_base = 0x6000, .enable_memcpy_support = false, /* MEM_TO_MEM is slow via MCU UDMA */ .flags = UDMA_FLAG_PDMA_ACC32 | UDMA_FLAG_PDMA_BURST, .statictr_z_mask = GENMASK(23, 0), .rchan_oes_offset = 0x400, .tpl_levels = 2, .level_start_idx = { [0] = 2, /* Normal channels */ [1] = 0, /* High Throughput channels */ }, }; static const struct of_device_id udma_of_match[] = { { .compatible = "ti,am654-navss-main-udmap", .data = &am654_main_data, }, { .compatible = "ti,am654-navss-mcu-udmap", .data = &am654_mcu_data, }, { .compatible = "ti,j721e-navss-main-udmap", .data = &j721e_main_data, }, { .compatible = "ti,j721e-navss-mcu-udmap", .data = &j721e_mcu_data, }, { /* Sentinel */ }, }; static int udma_get_mmrs(struct platform_device *pdev, struct udma_dev *ud) { struct resource *res; int i; for (i = 0; i < MMR_LAST; i++) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, mmr_names[i]); ud->mmrs[i] = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(ud->mmrs[i])) return PTR_ERR(ud->mmrs[i]); } return 0; } static int udma_setup_resources(struct udma_dev *ud) { struct device *dev = ud->dev; int ch_count, ret, i, j; u32 cap2, cap3; struct ti_sci_resource_desc *rm_desc; struct ti_sci_resource *rm_res, irq_res; struct udma_tisci_rm *tisci_rm = &ud->tisci_rm; static const char * const range_names[] = { "ti,sci-rm-range-tchan", "ti,sci-rm-range-rchan", "ti,sci-rm-range-rflow" }; cap2 = udma_read(ud->mmrs[MMR_GCFG], 0x28); cap3 = udma_read(ud->mmrs[MMR_GCFG], 0x2c); ud->rflow_cnt = cap3 & 0x3fff; ud->tchan_cnt = cap2 & 0x1ff; ud->echan_cnt = (cap2 >> 9) & 0x1ff; ud->rchan_cnt = (cap2 >> 18) & 0x1ff; ch_count = ud->tchan_cnt + ud->rchan_cnt; ud->tchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->tchan_cnt), sizeof(unsigned long), GFP_KERNEL); ud->tchans = devm_kcalloc(dev, ud->tchan_cnt, sizeof(*ud->tchans), GFP_KERNEL); ud->rchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->rchan_cnt), sizeof(unsigned long), GFP_KERNEL); ud->rchans = devm_kcalloc(dev, ud->rchan_cnt, sizeof(*ud->rchans), GFP_KERNEL); ud->rflow_gp_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->rflow_cnt), sizeof(unsigned long), GFP_KERNEL); ud->rflow_gp_map_allocated = devm_kcalloc(dev, BITS_TO_LONGS(ud->rflow_cnt), sizeof(unsigned long), GFP_KERNEL); ud->rflow_in_use = devm_kcalloc(dev, BITS_TO_LONGS(ud->rflow_cnt), sizeof(unsigned long), GFP_KERNEL); ud->rflows = devm_kcalloc(dev, ud->rflow_cnt, sizeof(*ud->rflows), GFP_KERNEL); if (!ud->tchan_map || !ud->rchan_map || !ud->rflow_gp_map || !ud->rflow_gp_map_allocated || !ud->tchans || !ud->rchans || !ud->rflows || !ud->rflow_in_use) return -ENOMEM; /* * RX flows with the same Ids as RX channels are reserved to be used * as default flows if remote HW can't generate flow_ids. Those * RX flows can be requested only explicitly by id. */ bitmap_set(ud->rflow_gp_map_allocated, 0, ud->rchan_cnt); /* by default no GP rflows are assigned to Linux */ bitmap_set(ud->rflow_gp_map, 0, ud->rflow_cnt); /* Get resource ranges from tisci */ for (i = 0; i < RM_RANGE_LAST; i++) tisci_rm->rm_ranges[i] = devm_ti_sci_get_of_resource(tisci_rm->tisci, dev, tisci_rm->tisci_dev_id, (char *)range_names[i]); /* tchan ranges */ rm_res = tisci_rm->rm_ranges[RM_RANGE_TCHAN]; if (IS_ERR(rm_res)) { bitmap_zero(ud->tchan_map, ud->tchan_cnt); } else { bitmap_fill(ud->tchan_map, ud->tchan_cnt); for (i = 0; i < rm_res->sets; i++) { rm_desc = &rm_res->desc[i]; bitmap_clear(ud->tchan_map, rm_desc->start, rm_desc->num); dev_dbg(dev, "ti-sci-res: tchan: %d:%d\n", rm_desc->start, rm_desc->num); } } irq_res.sets = rm_res->sets; /* rchan and matching default flow ranges */ rm_res = tisci_rm->rm_ranges[RM_RANGE_RCHAN]; if (IS_ERR(rm_res)) { bitmap_zero(ud->rchan_map, ud->rchan_cnt); } else { bitmap_fill(ud->rchan_map, ud->rchan_cnt); for (i = 0; i < rm_res->sets; i++) { rm_desc = &rm_res->desc[i]; bitmap_clear(ud->rchan_map, rm_desc->start, rm_desc->num); dev_dbg(dev, "ti-sci-res: rchan: %d:%d\n", rm_desc->start, rm_desc->num); } } irq_res.sets += rm_res->sets; irq_res.desc = kcalloc(irq_res.sets, sizeof(*irq_res.desc), GFP_KERNEL); rm_res = tisci_rm->rm_ranges[RM_RANGE_TCHAN]; for (i = 0; i < rm_res->sets; i++) { irq_res.desc[i].start = rm_res->desc[i].start; irq_res.desc[i].num = rm_res->desc[i].num; } rm_res = tisci_rm->rm_ranges[RM_RANGE_RCHAN]; for (j = 0; j < rm_res->sets; j++, i++) { irq_res.desc[i].start = rm_res->desc[j].start + ud->match_data->rchan_oes_offset; irq_res.desc[i].num = rm_res->desc[j].num; } ret = ti_sci_inta_msi_domain_alloc_irqs(ud->dev, &irq_res); kfree(irq_res.desc); if (ret) { dev_err(ud->dev, "Failed to allocate MSI interrupts\n"); return ret; } /* GP rflow ranges */ rm_res = tisci_rm->rm_ranges[RM_RANGE_RFLOW]; if (IS_ERR(rm_res)) { /* all gp flows are assigned exclusively to Linux */ bitmap_clear(ud->rflow_gp_map, ud->rchan_cnt, ud->rflow_cnt - ud->rchan_cnt); } else { for (i = 0; i < rm_res->sets; i++) { rm_desc = &rm_res->desc[i]; bitmap_clear(ud->rflow_gp_map, rm_desc->start, rm_desc->num); dev_dbg(dev, "ti-sci-res: rflow: %d:%d\n", rm_desc->start, rm_desc->num); } } ch_count -= bitmap_weight(ud->tchan_map, ud->tchan_cnt); ch_count -= bitmap_weight(ud->rchan_map, ud->rchan_cnt); if (!ch_count) return -ENODEV; ud->channels = devm_kcalloc(dev, ch_count, sizeof(*ud->channels), GFP_KERNEL); if (!ud->channels) return -ENOMEM; dev_info(dev, "Channels: %d (tchan: %u, rchan: %u, gp-rflow: %u)\n", ch_count, ud->tchan_cnt - bitmap_weight(ud->tchan_map, ud->tchan_cnt), ud->rchan_cnt - bitmap_weight(ud->rchan_map, ud->rchan_cnt), ud->rflow_cnt - bitmap_weight(ud->rflow_gp_map, ud->rflow_cnt)); return ch_count; } static int udma_setup_rx_flush(struct udma_dev *ud) { struct udma_rx_flush *rx_flush = &ud->rx_flush; struct cppi5_desc_hdr_t *tr_desc; struct cppi5_tr_type1_t *tr_req; struct cppi5_host_desc_t *desc; struct device *dev = ud->dev; struct udma_hwdesc *hwdesc; size_t tr_size; /* Allocate 1K buffer for discarded data on RX channel teardown */ rx_flush->buffer_size = SZ_1K; rx_flush->buffer_vaddr = devm_kzalloc(dev, rx_flush->buffer_size, GFP_KERNEL); if (!rx_flush->buffer_vaddr) return -ENOMEM; rx_flush->buffer_paddr = dma_map_single(dev, rx_flush->buffer_vaddr, rx_flush->buffer_size, DMA_TO_DEVICE); if (dma_mapping_error(dev, rx_flush->buffer_paddr)) return -ENOMEM; /* Set up descriptor to be used for TR mode */ hwdesc = &rx_flush->hwdescs[0]; tr_size = sizeof(struct cppi5_tr_type1_t); hwdesc->cppi5_desc_size = cppi5_trdesc_calc_size(tr_size, 1); hwdesc->cppi5_desc_size = ALIGN(hwdesc->cppi5_desc_size, ud->desc_align); hwdesc->cppi5_desc_vaddr = devm_kzalloc(dev, hwdesc->cppi5_desc_size, GFP_KERNEL); if (!hwdesc->cppi5_desc_vaddr) return -ENOMEM; hwdesc->cppi5_desc_paddr = dma_map_single(dev, hwdesc->cppi5_desc_vaddr, hwdesc->cppi5_desc_size, DMA_TO_DEVICE); if (dma_mapping_error(dev, hwdesc->cppi5_desc_paddr)) return -ENOMEM; /* Start of the TR req records */ hwdesc->tr_req_base = hwdesc->cppi5_desc_vaddr + tr_size; /* Start address of the TR response array */ hwdesc->tr_resp_base = hwdesc->tr_req_base + tr_size; tr_desc = hwdesc->cppi5_desc_vaddr; cppi5_trdesc_init(tr_desc, 1, tr_size, 0, 0); cppi5_desc_set_pktids(tr_desc, 0, CPPI5_INFO1_DESC_FLOWID_DEFAULT); cppi5_desc_set_retpolicy(tr_desc, 0, 0); tr_req = hwdesc->tr_req_base; cppi5_tr_init(&tr_req->flags, CPPI5_TR_TYPE1, false, false, CPPI5_TR_EVENT_SIZE_COMPLETION, 0); cppi5_tr_csf_set(&tr_req->flags, CPPI5_TR_CSF_SUPR_EVT); tr_req->addr = rx_flush->buffer_paddr; tr_req->icnt0 = rx_flush->buffer_size; tr_req->icnt1 = 1; dma_sync_single_for_device(dev, hwdesc->cppi5_desc_paddr, hwdesc->cppi5_desc_size, DMA_TO_DEVICE); /* Set up descriptor to be used for packet mode */ hwdesc = &rx_flush->hwdescs[1]; hwdesc->cppi5_desc_size = ALIGN(sizeof(struct cppi5_host_desc_t) + CPPI5_INFO0_HDESC_EPIB_SIZE + CPPI5_INFO0_HDESC_PSDATA_MAX_SIZE, ud->desc_align); hwdesc->cppi5_desc_vaddr = devm_kzalloc(dev, hwdesc->cppi5_desc_size, GFP_KERNEL); if (!hwdesc->cppi5_desc_vaddr) return -ENOMEM; hwdesc->cppi5_desc_paddr = dma_map_single(dev, hwdesc->cppi5_desc_vaddr, hwdesc->cppi5_desc_size, DMA_TO_DEVICE); if (dma_mapping_error(dev, hwdesc->cppi5_desc_paddr)) return -ENOMEM; desc = hwdesc->cppi5_desc_vaddr; cppi5_hdesc_init(desc, 0, 0); cppi5_desc_set_pktids(&desc->hdr, 0, CPPI5_INFO1_DESC_FLOWID_DEFAULT); cppi5_desc_set_retpolicy(&desc->hdr, 0, 0); cppi5_hdesc_attach_buf(desc, rx_flush->buffer_paddr, rx_flush->buffer_size, rx_flush->buffer_paddr, rx_flush->buffer_size); dma_sync_single_for_device(dev, hwdesc->cppi5_desc_paddr, hwdesc->cppi5_desc_size, DMA_TO_DEVICE); return 0; } #ifdef CONFIG_DEBUG_FS static void udma_dbg_summary_show_chan(struct seq_file *s, struct dma_chan *chan) { struct udma_chan *uc = to_udma_chan(chan); struct udma_chan_config *ucc = &uc->config; seq_printf(s, " %-13s| %s", dma_chan_name(chan), chan->dbg_client_name ?: "in-use"); seq_printf(s, " (%s, ", dmaengine_get_direction_text(uc->config.dir)); switch (uc->config.dir) { case DMA_MEM_TO_MEM: seq_printf(s, "chan%d pair [0x%04x -> 0x%04x], ", uc->tchan->id, ucc->src_thread, ucc->dst_thread); break; case DMA_DEV_TO_MEM: seq_printf(s, "rchan%d [0x%04x -> 0x%04x], ", uc->rchan->id, ucc->src_thread, ucc->dst_thread); break; case DMA_MEM_TO_DEV: seq_printf(s, "tchan%d [0x%04x -> 0x%04x], ", uc->tchan->id, ucc->src_thread, ucc->dst_thread); break; default: seq_printf(s, ")\n"); return; } if (ucc->ep_type == PSIL_EP_NATIVE) { seq_printf(s, "PSI-L Native"); if (ucc->metadata_size) { seq_printf(s, "[%s", ucc->needs_epib ? " EPIB" : ""); if (ucc->psd_size) seq_printf(s, " PSDsize:%u", ucc->psd_size); seq_printf(s, " ]"); } } else { seq_printf(s, "PDMA"); if (ucc->enable_acc32 || ucc->enable_burst) seq_printf(s, "[%s%s ]", ucc->enable_acc32 ? " ACC32" : "", ucc->enable_burst ? " BURST" : ""); } seq_printf(s, ", %s)\n", ucc->pkt_mode ? "Packet mode" : "TR mode"); } static void udma_dbg_summary_show(struct seq_file *s, struct dma_device *dma_dev) { struct dma_chan *chan; list_for_each_entry(chan, &dma_dev->channels, device_node) { if (chan->client_count) udma_dbg_summary_show_chan(s, chan); } } #endif /* CONFIG_DEBUG_FS */ #define TI_UDMAC_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)) static int udma_probe(struct platform_device *pdev) { struct device_node *navss_node = pdev->dev.parent->of_node; struct device *dev = &pdev->dev; struct udma_dev *ud; const struct of_device_id *match; int i, ret; int ch_count; ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(48)); if (ret) dev_err(dev, "failed to set dma mask stuff\n"); ud = devm_kzalloc(dev, sizeof(*ud), GFP_KERNEL); if (!ud) return -ENOMEM; ret = udma_get_mmrs(pdev, ud); if (ret) return ret; ud->tisci_rm.tisci = ti_sci_get_by_phandle(dev->of_node, "ti,sci"); if (IS_ERR(ud->tisci_rm.tisci)) return PTR_ERR(ud->tisci_rm.tisci); ret = of_property_read_u32(dev->of_node, "ti,sci-dev-id", &ud->tisci_rm.tisci_dev_id); if (ret) { dev_err(dev, "ti,sci-dev-id read failure %d\n", ret); return ret; } pdev->id = ud->tisci_rm.tisci_dev_id; ret = of_property_read_u32(navss_node, "ti,sci-dev-id", &ud->tisci_rm.tisci_navss_dev_id); if (ret) { dev_err(dev, "NAVSS ti,sci-dev-id read failure %d\n", ret); return ret; } ret = of_property_read_u32(dev->of_node, "ti,udma-atype", &ud->atype); if (!ret && ud->atype > 2) { dev_err(dev, "Invalid atype: %u\n", ud->atype); return -EINVAL; } ud->tisci_rm.tisci_udmap_ops = &ud->tisci_rm.tisci->ops.rm_udmap_ops; ud->tisci_rm.tisci_psil_ops = &ud->tisci_rm.tisci->ops.rm_psil_ops; ud->ringacc = of_k3_ringacc_get_by_phandle(dev->of_node, "ti,ringacc"); if (IS_ERR(ud->ringacc)) return PTR_ERR(ud->ringacc); dev->msi_domain = of_msi_get_domain(dev, dev->of_node, DOMAIN_BUS_TI_SCI_INTA_MSI); if (!dev->msi_domain) { dev_err(dev, "Failed to get MSI domain\n"); return -EPROBE_DEFER; } match = of_match_node(udma_of_match, dev->of_node); if (!match) { dev_err(dev, "No compatible match found\n"); return -ENODEV; } ud->match_data = match->data; dma_cap_set(DMA_SLAVE, ud->ddev.cap_mask); dma_cap_set(DMA_CYCLIC, ud->ddev.cap_mask); ud->ddev.device_alloc_chan_resources = udma_alloc_chan_resources; ud->ddev.device_config = udma_slave_config; ud->ddev.device_prep_slave_sg = udma_prep_slave_sg; ud->ddev.device_prep_dma_cyclic = udma_prep_dma_cyclic; ud->ddev.device_issue_pending = udma_issue_pending; ud->ddev.device_tx_status = udma_tx_status; ud->ddev.device_pause = udma_pause; ud->ddev.device_resume = udma_resume; ud->ddev.device_terminate_all = udma_terminate_all; ud->ddev.device_synchronize = udma_synchronize; #ifdef CONFIG_DEBUG_FS ud->ddev.dbg_summary_show = udma_dbg_summary_show; #endif ud->ddev.device_free_chan_resources = udma_free_chan_resources; ud->ddev.src_addr_widths = TI_UDMAC_BUSWIDTHS; ud->ddev.dst_addr_widths = TI_UDMAC_BUSWIDTHS; ud->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); ud->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; ud->ddev.copy_align = DMAENGINE_ALIGN_8_BYTES; ud->ddev.desc_metadata_modes = DESC_METADATA_CLIENT | DESC_METADATA_ENGINE; if (ud->match_data->enable_memcpy_support) { dma_cap_set(DMA_MEMCPY, ud->ddev.cap_mask); ud->ddev.device_prep_dma_memcpy = udma_prep_dma_memcpy; ud->ddev.directions |= BIT(DMA_MEM_TO_MEM); } ud->ddev.dev = dev; ud->dev = dev; ud->psil_base = ud->match_data->psil_base; INIT_LIST_HEAD(&ud->ddev.channels); INIT_LIST_HEAD(&ud->desc_to_purge); ch_count = udma_setup_resources(ud); if (ch_count <= 0) return ch_count; spin_lock_init(&ud->lock); INIT_WORK(&ud->purge_work, udma_purge_desc_work); ud->desc_align = 64; if (ud->desc_align < dma_get_cache_alignment()) ud->desc_align = dma_get_cache_alignment(); ret = udma_setup_rx_flush(ud); if (ret) return ret; for (i = 0; i < ud->tchan_cnt; i++) { struct udma_tchan *tchan = &ud->tchans[i]; tchan->id = i; tchan->reg_rt = ud->mmrs[MMR_TCHANRT] + i * 0x1000; } for (i = 0; i < ud->rchan_cnt; i++) { struct udma_rchan *rchan = &ud->rchans[i]; rchan->id = i; rchan->reg_rt = ud->mmrs[MMR_RCHANRT] + i * 0x1000; } for (i = 0; i < ud->rflow_cnt; i++) { struct udma_rflow *rflow = &ud->rflows[i]; rflow->id = i; } for (i = 0; i < ch_count; i++) { struct udma_chan *uc = &ud->channels[i]; uc->ud = ud; uc->vc.desc_free = udma_desc_free; uc->id = i; uc->tchan = NULL; uc->rchan = NULL; uc->config.remote_thread_id = -1; uc->config.dir = DMA_MEM_TO_MEM; uc->name = devm_kasprintf(dev, GFP_KERNEL, "%s chan%d", dev_name(dev), i); vchan_init(&uc->vc, &ud->ddev); /* Use custom vchan completion handling */ tasklet_init(&uc->vc.task, udma_vchan_complete, (unsigned long)&uc->vc); init_completion(&uc->teardown_completed); INIT_DELAYED_WORK(&uc->tx_drain.work, udma_check_tx_completion); } ret = dma_async_device_register(&ud->ddev); if (ret) { dev_err(dev, "failed to register slave DMA engine: %d\n", ret); return ret; } platform_set_drvdata(pdev, ud); ret = of_dma_controller_register(dev->of_node, udma_of_xlate, ud); if (ret) { dev_err(dev, "failed to register of_dma controller\n"); dma_async_device_unregister(&ud->ddev); } return ret; } static struct platform_driver udma_driver = { .driver = { .name = "ti-udma", .of_match_table = udma_of_match, .suppress_bind_attrs = true, }, .probe = udma_probe, }; builtin_platform_driver(udma_driver); /* Private interfaces to UDMA */ #include "k3-udma-private.c"