xref: /openbmc/linux/drivers/dma/ptdma/ptdma-dev.c (revision b0b4a6b1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Passthru DMA device driver
4  * -- Based on the CCP driver
5  *
6  * Copyright (C) 2016,2021 Advanced Micro Devices, Inc.
7  *
8  * Author: Sanjay R Mehta <sanju.mehta@amd.com>
9  * Author: Gary R Hook <gary.hook@amd.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/debugfs.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19 
20 #include "ptdma.h"
21 
22 /* Human-readable error strings */
23 static char *pt_error_codes[] = {
24 	"",
25 	"ERR 01: ILLEGAL_ENGINE",
26 	"ERR 03: ILLEGAL_FUNCTION_TYPE",
27 	"ERR 04: ILLEGAL_FUNCTION_MODE",
28 	"ERR 06: ILLEGAL_FUNCTION_SIZE",
29 	"ERR 08: ILLEGAL_FUNCTION_RSVD",
30 	"ERR 09: ILLEGAL_BUFFER_LENGTH",
31 	"ERR 10: VLSB_FAULT",
32 	"ERR 11: ILLEGAL_MEM_ADDR",
33 	"ERR 12: ILLEGAL_MEM_SEL",
34 	"ERR 13: ILLEGAL_CONTEXT_ID",
35 	"ERR 15: 0xF Reserved",
36 	"ERR 18: CMD_TIMEOUT",
37 	"ERR 19: IDMA0_AXI_SLVERR",
38 	"ERR 20: IDMA0_AXI_DECERR",
39 	"ERR 21: 0x15 Reserved",
40 	"ERR 22: IDMA1_AXI_SLAVE_FAULT",
41 	"ERR 23: IDMA1_AIXI_DECERR",
42 	"ERR 24: 0x18 Reserved",
43 	"ERR 27: 0x1B Reserved",
44 	"ERR 38: ODMA0_AXI_SLVERR",
45 	"ERR 39: ODMA0_AXI_DECERR",
46 	"ERR 40: 0x28 Reserved",
47 	"ERR 41: ODMA1_AXI_SLVERR",
48 	"ERR 42: ODMA1_AXI_DECERR",
49 	"ERR 43: LSB_PARITY_ERR",
50 };
51 
52 static void pt_log_error(struct pt_device *d, int e)
53 {
54 	dev_err(d->dev, "PTDMA error: %s (0x%x)\n", pt_error_codes[e], e);
55 }
56 
57 void pt_start_queue(struct pt_cmd_queue *cmd_q)
58 {
59 	/* Turn on the run bit */
60 	iowrite32(cmd_q->qcontrol | CMD_Q_RUN, cmd_q->reg_control);
61 }
62 
63 void pt_stop_queue(struct pt_cmd_queue *cmd_q)
64 {
65 	/* Turn off the run bit */
66 	iowrite32(cmd_q->qcontrol & ~CMD_Q_RUN, cmd_q->reg_control);
67 }
68 
69 static int pt_core_execute_cmd(struct ptdma_desc *desc, struct pt_cmd_queue *cmd_q)
70 {
71 	bool soc = FIELD_GET(DWORD0_SOC, desc->dw0);
72 	u8 *q_desc = (u8 *)&cmd_q->qbase[cmd_q->qidx];
73 	u32 tail;
74 
75 	if (soc) {
76 		desc->dw0 |= FIELD_PREP(DWORD0_IOC, desc->dw0);
77 		desc->dw0 &= ~DWORD0_SOC;
78 	}
79 	mutex_lock(&cmd_q->q_mutex);
80 
81 	/* Copy 32-byte command descriptor to hw queue. */
82 	memcpy(q_desc, desc, 32);
83 	cmd_q->qidx = (cmd_q->qidx + 1) % CMD_Q_LEN;
84 
85 	/* The data used by this command must be flushed to memory */
86 	wmb();
87 
88 	/* Write the new tail address back to the queue register */
89 	tail = lower_32_bits(cmd_q->qdma_tail + cmd_q->qidx * Q_DESC_SIZE);
90 	iowrite32(tail, cmd_q->reg_control + 0x0004);
91 
92 	/* Turn the queue back on using our cached control register */
93 	pt_start_queue(cmd_q);
94 	mutex_unlock(&cmd_q->q_mutex);
95 
96 	return 0;
97 }
98 
99 int pt_core_perform_passthru(struct pt_cmd_queue *cmd_q,
100 			     struct pt_passthru_engine *pt_engine)
101 {
102 	struct ptdma_desc desc;
103 
104 	cmd_q->cmd_error = 0;
105 	memset(&desc, 0, sizeof(desc));
106 	desc.dw0 = CMD_DESC_DW0_VAL;
107 	desc.length = pt_engine->src_len;
108 	desc.src_lo = lower_32_bits(pt_engine->src_dma);
109 	desc.dw3.src_hi = upper_32_bits(pt_engine->src_dma);
110 	desc.dst_lo = lower_32_bits(pt_engine->dst_dma);
111 	desc.dw5.dst_hi = upper_32_bits(pt_engine->dst_dma);
112 
113 	return pt_core_execute_cmd(&desc, cmd_q);
114 }
115 
116 static inline void pt_core_disable_queue_interrupts(struct pt_device *pt)
117 {
118 	iowrite32(0, pt->cmd_q.reg_control + 0x000C);
119 }
120 
121 static inline void pt_core_enable_queue_interrupts(struct pt_device *pt)
122 {
123 	iowrite32(SUPPORTED_INTERRUPTS, pt->cmd_q.reg_control + 0x000C);
124 }
125 
126 static void pt_do_cmd_complete(unsigned long data)
127 {
128 	struct pt_tasklet_data *tdata = (struct pt_tasklet_data *)data;
129 	struct pt_cmd *cmd = tdata->cmd;
130 	struct pt_cmd_queue *cmd_q = &cmd->pt->cmd_q;
131 	u32 tail;
132 
133 	if (cmd_q->cmd_error) {
134 	       /*
135 		* Log the error and flush the queue by
136 		* moving the head pointer
137 		*/
138 		tail = lower_32_bits(cmd_q->qdma_tail + cmd_q->qidx * Q_DESC_SIZE);
139 		pt_log_error(cmd_q->pt, cmd_q->cmd_error);
140 		iowrite32(tail, cmd_q->reg_control + 0x0008);
141 	}
142 
143 	cmd->pt_cmd_callback(cmd->data, cmd->ret);
144 }
145 
146 static irqreturn_t pt_core_irq_handler(int irq, void *data)
147 {
148 	struct pt_device *pt = data;
149 	struct pt_cmd_queue *cmd_q = &pt->cmd_q;
150 	u32 status;
151 
152 	pt_core_disable_queue_interrupts(pt);
153 	status = ioread32(cmd_q->reg_control + 0x0010);
154 	if (status) {
155 		cmd_q->int_status = status;
156 		cmd_q->q_status = ioread32(cmd_q->reg_control + 0x0100);
157 		cmd_q->q_int_status = ioread32(cmd_q->reg_control + 0x0104);
158 
159 		/* On error, only save the first error value */
160 		if ((status & INT_ERROR) && !cmd_q->cmd_error)
161 			cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
162 
163 		/* Acknowledge the interrupt */
164 		iowrite32(status, cmd_q->reg_control + 0x0010);
165 		pt_core_enable_queue_interrupts(pt);
166 		pt_do_cmd_complete((ulong)&pt->tdata);
167 	}
168 	return IRQ_HANDLED;
169 }
170 
171 int pt_core_init(struct pt_device *pt)
172 {
173 	char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
174 	struct pt_cmd_queue *cmd_q = &pt->cmd_q;
175 	u32 dma_addr_lo, dma_addr_hi;
176 	struct device *dev = pt->dev;
177 	struct dma_pool *dma_pool;
178 	int ret;
179 
180 	/* Allocate a dma pool for the queue */
181 	snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q", dev_name(pt->dev));
182 
183 	dma_pool = dma_pool_create(dma_pool_name, dev,
184 				   PT_DMAPOOL_MAX_SIZE,
185 				   PT_DMAPOOL_ALIGN, 0);
186 	if (!dma_pool)
187 		return -ENOMEM;
188 
189 	/* ptdma core initialisation */
190 	iowrite32(CMD_CONFIG_VHB_EN, pt->io_regs + CMD_CONFIG_OFFSET);
191 	iowrite32(CMD_QUEUE_PRIO, pt->io_regs + CMD_QUEUE_PRIO_OFFSET);
192 	iowrite32(CMD_TIMEOUT_DISABLE, pt->io_regs + CMD_TIMEOUT_OFFSET);
193 	iowrite32(CMD_CLK_GATE_CONFIG, pt->io_regs + CMD_CLK_GATE_CTL_OFFSET);
194 	iowrite32(CMD_CONFIG_REQID, pt->io_regs + CMD_REQID_CONFIG_OFFSET);
195 
196 	cmd_q->pt = pt;
197 	cmd_q->dma_pool = dma_pool;
198 	mutex_init(&cmd_q->q_mutex);
199 
200 	/* Page alignment satisfies our needs for N <= 128 */
201 	cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);
202 	cmd_q->qbase = dma_alloc_coherent(dev, cmd_q->qsize,
203 					  &cmd_q->qbase_dma,
204 					  GFP_KERNEL);
205 	if (!cmd_q->qbase) {
206 		dev_err(dev, "unable to allocate command queue\n");
207 		ret = -ENOMEM;
208 		goto e_dma_alloc;
209 	}
210 
211 	cmd_q->qidx = 0;
212 
213 	/* Preset some register values */
214 	cmd_q->reg_control = pt->io_regs + CMD_Q_STATUS_INCR;
215 
216 	/* Turn off the queues and disable interrupts until ready */
217 	pt_core_disable_queue_interrupts(pt);
218 
219 	cmd_q->qcontrol = 0; /* Start with nothing */
220 	iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
221 
222 	ioread32(cmd_q->reg_control + 0x0104);
223 	ioread32(cmd_q->reg_control + 0x0100);
224 
225 	/* Clear the interrupt status */
226 	iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_control + 0x0010);
227 
228 	/* Request an irq */
229 	ret = request_irq(pt->pt_irq, pt_core_irq_handler, 0, dev_name(pt->dev), pt);
230 	if (ret)
231 		goto e_pool;
232 
233 	/* Update the device registers with queue information. */
234 	cmd_q->qcontrol &= ~CMD_Q_SIZE;
235 	cmd_q->qcontrol |= FIELD_PREP(CMD_Q_SIZE, QUEUE_SIZE_VAL);
236 
237 	cmd_q->qdma_tail = cmd_q->qbase_dma;
238 	dma_addr_lo = lower_32_bits(cmd_q->qdma_tail);
239 	iowrite32((u32)dma_addr_lo, cmd_q->reg_control + 0x0004);
240 	iowrite32((u32)dma_addr_lo, cmd_q->reg_control + 0x0008);
241 
242 	dma_addr_hi = upper_32_bits(cmd_q->qdma_tail);
243 	cmd_q->qcontrol |= (dma_addr_hi << 16);
244 	iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
245 
246 	pt_core_enable_queue_interrupts(pt);
247 
248 	/* Register the DMA engine support */
249 	ret = pt_dmaengine_register(pt);
250 	if (ret)
251 		goto e_dmaengine;
252 
253 	return 0;
254 
255 e_dmaengine:
256 	free_irq(pt->pt_irq, pt);
257 
258 e_dma_alloc:
259 	dma_free_coherent(dev, cmd_q->qsize, cmd_q->qbase, cmd_q->qbase_dma);
260 
261 e_pool:
262 	dev_err(dev, "unable to allocate an IRQ\n");
263 	dma_pool_destroy(pt->cmd_q.dma_pool);
264 
265 	return ret;
266 }
267 
268 void pt_core_destroy(struct pt_device *pt)
269 {
270 	struct device *dev = pt->dev;
271 	struct pt_cmd_queue *cmd_q = &pt->cmd_q;
272 	struct pt_cmd *cmd;
273 
274 	/* Unregister the DMA engine */
275 	pt_dmaengine_unregister(pt);
276 
277 	/* Disable and clear interrupts */
278 	pt_core_disable_queue_interrupts(pt);
279 
280 	/* Turn off the run bit */
281 	pt_stop_queue(cmd_q);
282 
283 	/* Clear the interrupt status */
284 	iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_control + 0x0010);
285 	ioread32(cmd_q->reg_control + 0x0104);
286 	ioread32(cmd_q->reg_control + 0x0100);
287 
288 	free_irq(pt->pt_irq, pt);
289 
290 	dma_free_coherent(dev, cmd_q->qsize, cmd_q->qbase,
291 			  cmd_q->qbase_dma);
292 
293 	/* Flush the cmd queue */
294 	while (!list_empty(&pt->cmd)) {
295 		/* Invoke the callback directly with an error code */
296 		cmd = list_first_entry(&pt->cmd, struct pt_cmd, entry);
297 		list_del(&cmd->entry);
298 		cmd->pt_cmd_callback(cmd->data, -ENODEV);
299 	}
300 }
301