// SPDX-License-Identifier: GPL-2.0-only /* * AMD Passthru DMA device driver * -- Based on the CCP driver * * Copyright (C) 2016,2021 Advanced Micro Devices, Inc. * * Author: Sanjay R Mehta * Author: Gary R Hook */ #include #include #include #include #include #include #include #include "ptdma.h" /* Human-readable error strings */ static char *pt_error_codes[] = { "", "ERR 01: ILLEGAL_ENGINE", "ERR 03: ILLEGAL_FUNCTION_TYPE", "ERR 04: ILLEGAL_FUNCTION_MODE", "ERR 06: ILLEGAL_FUNCTION_SIZE", "ERR 08: ILLEGAL_FUNCTION_RSVD", "ERR 09: ILLEGAL_BUFFER_LENGTH", "ERR 10: VLSB_FAULT", "ERR 11: ILLEGAL_MEM_ADDR", "ERR 12: ILLEGAL_MEM_SEL", "ERR 13: ILLEGAL_CONTEXT_ID", "ERR 15: 0xF Reserved", "ERR 18: CMD_TIMEOUT", "ERR 19: IDMA0_AXI_SLVERR", "ERR 20: IDMA0_AXI_DECERR", "ERR 21: 0x15 Reserved", "ERR 22: IDMA1_AXI_SLAVE_FAULT", "ERR 23: IDMA1_AIXI_DECERR", "ERR 24: 0x18 Reserved", "ERR 27: 0x1B Reserved", "ERR 38: ODMA0_AXI_SLVERR", "ERR 39: ODMA0_AXI_DECERR", "ERR 40: 0x28 Reserved", "ERR 41: ODMA1_AXI_SLVERR", "ERR 42: ODMA1_AXI_DECERR", "ERR 43: LSB_PARITY_ERR", }; static void pt_log_error(struct pt_device *d, int e) { dev_err(d->dev, "PTDMA error: %s (0x%x)\n", pt_error_codes[e], e); } void pt_start_queue(struct pt_cmd_queue *cmd_q) { /* Turn on the run bit */ iowrite32(cmd_q->qcontrol | CMD_Q_RUN, cmd_q->reg_control); } void pt_stop_queue(struct pt_cmd_queue *cmd_q) { /* Turn off the run bit */ iowrite32(cmd_q->qcontrol & ~CMD_Q_RUN, cmd_q->reg_control); } static int pt_core_execute_cmd(struct ptdma_desc *desc, struct pt_cmd_queue *cmd_q) { bool soc = FIELD_GET(DWORD0_SOC, desc->dw0); u8 *q_desc = (u8 *)&cmd_q->qbase[cmd_q->qidx]; u32 tail; if (soc) { desc->dw0 |= FIELD_PREP(DWORD0_IOC, desc->dw0); desc->dw0 &= ~DWORD0_SOC; } mutex_lock(&cmd_q->q_mutex); /* Copy 32-byte command descriptor to hw queue. */ memcpy(q_desc, desc, 32); cmd_q->qidx = (cmd_q->qidx + 1) % CMD_Q_LEN; /* The data used by this command must be flushed to memory */ wmb(); /* Write the new tail address back to the queue register */ tail = lower_32_bits(cmd_q->qdma_tail + cmd_q->qidx * Q_DESC_SIZE); iowrite32(tail, cmd_q->reg_control + 0x0004); /* Turn the queue back on using our cached control register */ pt_start_queue(cmd_q); mutex_unlock(&cmd_q->q_mutex); return 0; } int pt_core_perform_passthru(struct pt_cmd_queue *cmd_q, struct pt_passthru_engine *pt_engine) { struct ptdma_desc desc; cmd_q->cmd_error = 0; memset(&desc, 0, sizeof(desc)); desc.dw0 = CMD_DESC_DW0_VAL; desc.length = pt_engine->src_len; desc.src_lo = lower_32_bits(pt_engine->src_dma); desc.dw3.src_hi = upper_32_bits(pt_engine->src_dma); desc.dst_lo = lower_32_bits(pt_engine->dst_dma); desc.dw5.dst_hi = upper_32_bits(pt_engine->dst_dma); return pt_core_execute_cmd(&desc, cmd_q); } static inline void pt_core_disable_queue_interrupts(struct pt_device *pt) { iowrite32(0, pt->cmd_q.reg_control + 0x000C); } static inline void pt_core_enable_queue_interrupts(struct pt_device *pt) { iowrite32(SUPPORTED_INTERRUPTS, pt->cmd_q.reg_control + 0x000C); } static void pt_do_cmd_complete(unsigned long data) { struct pt_tasklet_data *tdata = (struct pt_tasklet_data *)data; struct pt_cmd *cmd = tdata->cmd; struct pt_cmd_queue *cmd_q = &cmd->pt->cmd_q; u32 tail; if (cmd_q->cmd_error) { /* * Log the error and flush the queue by * moving the head pointer */ tail = lower_32_bits(cmd_q->qdma_tail + cmd_q->qidx * Q_DESC_SIZE); pt_log_error(cmd_q->pt, cmd_q->cmd_error); iowrite32(tail, cmd_q->reg_control + 0x0008); } cmd->pt_cmd_callback(cmd->data, cmd->ret); } static irqreturn_t pt_core_irq_handler(int irq, void *data) { struct pt_device *pt = data; struct pt_cmd_queue *cmd_q = &pt->cmd_q; u32 status; pt_core_disable_queue_interrupts(pt); status = ioread32(cmd_q->reg_control + 0x0010); if (status) { cmd_q->int_status = status; cmd_q->q_status = ioread32(cmd_q->reg_control + 0x0100); cmd_q->q_int_status = ioread32(cmd_q->reg_control + 0x0104); /* On error, only save the first error value */ if ((status & INT_ERROR) && !cmd_q->cmd_error) cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status); /* Acknowledge the interrupt */ iowrite32(status, cmd_q->reg_control + 0x0010); pt_core_enable_queue_interrupts(pt); pt_do_cmd_complete((ulong)&pt->tdata); } return IRQ_HANDLED; } int pt_core_init(struct pt_device *pt) { char dma_pool_name[MAX_DMAPOOL_NAME_LEN]; struct pt_cmd_queue *cmd_q = &pt->cmd_q; u32 dma_addr_lo, dma_addr_hi; struct device *dev = pt->dev; struct dma_pool *dma_pool; int ret; /* Allocate a dma pool for the queue */ snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q", dev_name(pt->dev)); dma_pool = dma_pool_create(dma_pool_name, dev, PT_DMAPOOL_MAX_SIZE, PT_DMAPOOL_ALIGN, 0); if (!dma_pool) return -ENOMEM; /* ptdma core initialisation */ iowrite32(CMD_CONFIG_VHB_EN, pt->io_regs + CMD_CONFIG_OFFSET); iowrite32(CMD_QUEUE_PRIO, pt->io_regs + CMD_QUEUE_PRIO_OFFSET); iowrite32(CMD_TIMEOUT_DISABLE, pt->io_regs + CMD_TIMEOUT_OFFSET); iowrite32(CMD_CLK_GATE_CONFIG, pt->io_regs + CMD_CLK_GATE_CTL_OFFSET); iowrite32(CMD_CONFIG_REQID, pt->io_regs + CMD_REQID_CONFIG_OFFSET); cmd_q->pt = pt; cmd_q->dma_pool = dma_pool; mutex_init(&cmd_q->q_mutex); /* Page alignment satisfies our needs for N <= 128 */ cmd_q->qsize = Q_SIZE(Q_DESC_SIZE); cmd_q->qbase = dma_alloc_coherent(dev, cmd_q->qsize, &cmd_q->qbase_dma, GFP_KERNEL); if (!cmd_q->qbase) { dev_err(dev, "unable to allocate command queue\n"); ret = -ENOMEM; goto e_dma_alloc; } cmd_q->qidx = 0; /* Preset some register values */ cmd_q->reg_control = pt->io_regs + CMD_Q_STATUS_INCR; /* Turn off the queues and disable interrupts until ready */ pt_core_disable_queue_interrupts(pt); cmd_q->qcontrol = 0; /* Start with nothing */ iowrite32(cmd_q->qcontrol, cmd_q->reg_control); ioread32(cmd_q->reg_control + 0x0104); ioread32(cmd_q->reg_control + 0x0100); /* Clear the interrupt status */ iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_control + 0x0010); /* Request an irq */ ret = request_irq(pt->pt_irq, pt_core_irq_handler, 0, dev_name(pt->dev), pt); if (ret) goto e_pool; /* Update the device registers with queue information. */ cmd_q->qcontrol &= ~CMD_Q_SIZE; cmd_q->qcontrol |= FIELD_PREP(CMD_Q_SIZE, QUEUE_SIZE_VAL); cmd_q->qdma_tail = cmd_q->qbase_dma; dma_addr_lo = lower_32_bits(cmd_q->qdma_tail); iowrite32((u32)dma_addr_lo, cmd_q->reg_control + 0x0004); iowrite32((u32)dma_addr_lo, cmd_q->reg_control + 0x0008); dma_addr_hi = upper_32_bits(cmd_q->qdma_tail); cmd_q->qcontrol |= (dma_addr_hi << 16); iowrite32(cmd_q->qcontrol, cmd_q->reg_control); pt_core_enable_queue_interrupts(pt); /* Register the DMA engine support */ ret = pt_dmaengine_register(pt); if (ret) goto e_dmaengine; return 0; e_dmaengine: free_irq(pt->pt_irq, pt); e_dma_alloc: dma_free_coherent(dev, cmd_q->qsize, cmd_q->qbase, cmd_q->qbase_dma); e_pool: dev_err(dev, "unable to allocate an IRQ\n"); dma_pool_destroy(pt->cmd_q.dma_pool); return ret; } void pt_core_destroy(struct pt_device *pt) { struct device *dev = pt->dev; struct pt_cmd_queue *cmd_q = &pt->cmd_q; struct pt_cmd *cmd; /* Unregister the DMA engine */ pt_dmaengine_unregister(pt); /* Disable and clear interrupts */ pt_core_disable_queue_interrupts(pt); /* Turn off the run bit */ pt_stop_queue(cmd_q); /* Clear the interrupt status */ iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_control + 0x0010); ioread32(cmd_q->reg_control + 0x0104); ioread32(cmd_q->reg_control + 0x0100); free_irq(pt->pt_irq, pt); dma_free_coherent(dev, cmd_q->qsize, cmd_q->qbase, cmd_q->qbase_dma); /* Flush the cmd queue */ while (!list_empty(&pt->cmd)) { /* Invoke the callback directly with an error code */ cmd = list_first_entry(&pt->cmd, struct pt_cmd, entry); list_del(&cmd->entry); cmd->pt_cmd_callback(cmd->data, -ENODEV); } }