xref: /openbmc/linux/drivers/cpuidle/coupled.c (revision a2cce7a9)
1 /*
2  * coupled.c - helper functions to enter the same idle state on multiple cpus
3  *
4  * Copyright (c) 2011 Google, Inc.
5  *
6  * Author: Colin Cross <ccross@android.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/cpu.h>
21 #include <linux/cpuidle.h>
22 #include <linux/mutex.h>
23 #include <linux/sched.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 
27 #include "cpuidle.h"
28 
29 /**
30  * DOC: Coupled cpuidle states
31  *
32  * On some ARM SMP SoCs (OMAP4460, Tegra 2, and probably more), the
33  * cpus cannot be independently powered down, either due to
34  * sequencing restrictions (on Tegra 2, cpu 0 must be the last to
35  * power down), or due to HW bugs (on OMAP4460, a cpu powering up
36  * will corrupt the gic state unless the other cpu runs a work
37  * around).  Each cpu has a power state that it can enter without
38  * coordinating with the other cpu (usually Wait For Interrupt, or
39  * WFI), and one or more "coupled" power states that affect blocks
40  * shared between the cpus (L2 cache, interrupt controller, and
41  * sometimes the whole SoC).  Entering a coupled power state must
42  * be tightly controlled on both cpus.
43  *
44  * This file implements a solution, where each cpu will wait in the
45  * WFI state until all cpus are ready to enter a coupled state, at
46  * which point the coupled state function will be called on all
47  * cpus at approximately the same time.
48  *
49  * Once all cpus are ready to enter idle, they are woken by an smp
50  * cross call.  At this point, there is a chance that one of the
51  * cpus will find work to do, and choose not to enter idle.  A
52  * final pass is needed to guarantee that all cpus will call the
53  * power state enter function at the same time.  During this pass,
54  * each cpu will increment the ready counter, and continue once the
55  * ready counter matches the number of online coupled cpus.  If any
56  * cpu exits idle, the other cpus will decrement their counter and
57  * retry.
58  *
59  * requested_state stores the deepest coupled idle state each cpu
60  * is ready for.  It is assumed that the states are indexed from
61  * shallowest (highest power, lowest exit latency) to deepest
62  * (lowest power, highest exit latency).  The requested_state
63  * variable is not locked.  It is only written from the cpu that
64  * it stores (or by the on/offlining cpu if that cpu is offline),
65  * and only read after all the cpus are ready for the coupled idle
66  * state are are no longer updating it.
67  *
68  * Three atomic counters are used.  alive_count tracks the number
69  * of cpus in the coupled set that are currently or soon will be
70  * online.  waiting_count tracks the number of cpus that are in
71  * the waiting loop, in the ready loop, or in the coupled idle state.
72  * ready_count tracks the number of cpus that are in the ready loop
73  * or in the coupled idle state.
74  *
75  * To use coupled cpuidle states, a cpuidle driver must:
76  *
77  *    Set struct cpuidle_device.coupled_cpus to the mask of all
78  *    coupled cpus, usually the same as cpu_possible_mask if all cpus
79  *    are part of the same cluster.  The coupled_cpus mask must be
80  *    set in the struct cpuidle_device for each cpu.
81  *
82  *    Set struct cpuidle_device.safe_state to a state that is not a
83  *    coupled state.  This is usually WFI.
84  *
85  *    Set CPUIDLE_FLAG_COUPLED in struct cpuidle_state.flags for each
86  *    state that affects multiple cpus.
87  *
88  *    Provide a struct cpuidle_state.enter function for each state
89  *    that affects multiple cpus.  This function is guaranteed to be
90  *    called on all cpus at approximately the same time.  The driver
91  *    should ensure that the cpus all abort together if any cpu tries
92  *    to abort once the function is called.  The function should return
93  *    with interrupts still disabled.
94  */
95 
96 /**
97  * struct cpuidle_coupled - data for set of cpus that share a coupled idle state
98  * @coupled_cpus: mask of cpus that are part of the coupled set
99  * @requested_state: array of requested states for cpus in the coupled set
100  * @ready_waiting_counts: combined count of cpus  in ready or waiting loops
101  * @online_count: count of cpus that are online
102  * @refcnt: reference count of cpuidle devices that are using this struct
103  * @prevent: flag to prevent coupled idle while a cpu is hotplugging
104  */
105 struct cpuidle_coupled {
106 	cpumask_t coupled_cpus;
107 	int requested_state[NR_CPUS];
108 	atomic_t ready_waiting_counts;
109 	atomic_t abort_barrier;
110 	int online_count;
111 	int refcnt;
112 	int prevent;
113 };
114 
115 #define WAITING_BITS 16
116 #define MAX_WAITING_CPUS (1 << WAITING_BITS)
117 #define WAITING_MASK (MAX_WAITING_CPUS - 1)
118 #define READY_MASK (~WAITING_MASK)
119 
120 #define CPUIDLE_COUPLED_NOT_IDLE	(-1)
121 
122 static DEFINE_MUTEX(cpuidle_coupled_lock);
123 static DEFINE_PER_CPU(struct call_single_data, cpuidle_coupled_poke_cb);
124 
125 /*
126  * The cpuidle_coupled_poke_pending mask is used to avoid calling
127  * __smp_call_function_single with the per cpu call_single_data struct already
128  * in use.  This prevents a deadlock where two cpus are waiting for each others
129  * call_single_data struct to be available
130  */
131 static cpumask_t cpuidle_coupled_poke_pending;
132 
133 /*
134  * The cpuidle_coupled_poked mask is used to ensure that each cpu has been poked
135  * once to minimize entering the ready loop with a poke pending, which would
136  * require aborting and retrying.
137  */
138 static cpumask_t cpuidle_coupled_poked;
139 
140 /**
141  * cpuidle_coupled_parallel_barrier - synchronize all online coupled cpus
142  * @dev: cpuidle_device of the calling cpu
143  * @a:   atomic variable to hold the barrier
144  *
145  * No caller to this function will return from this function until all online
146  * cpus in the same coupled group have called this function.  Once any caller
147  * has returned from this function, the barrier is immediately available for
148  * reuse.
149  *
150  * The atomic variable must be initialized to 0 before any cpu calls
151  * this function, will be reset to 0 before any cpu returns from this function.
152  *
153  * Must only be called from within a coupled idle state handler
154  * (state.enter when state.flags has CPUIDLE_FLAG_COUPLED set).
155  *
156  * Provides full smp barrier semantics before and after calling.
157  */
158 void cpuidle_coupled_parallel_barrier(struct cpuidle_device *dev, atomic_t *a)
159 {
160 	int n = dev->coupled->online_count;
161 
162 	smp_mb__before_atomic();
163 	atomic_inc(a);
164 
165 	while (atomic_read(a) < n)
166 		cpu_relax();
167 
168 	if (atomic_inc_return(a) == n * 2) {
169 		atomic_set(a, 0);
170 		return;
171 	}
172 
173 	while (atomic_read(a) > n)
174 		cpu_relax();
175 }
176 
177 /**
178  * cpuidle_state_is_coupled - check if a state is part of a coupled set
179  * @drv: struct cpuidle_driver for the platform
180  * @state: index of the target state in drv->states
181  *
182  * Returns true if the target state is coupled with cpus besides this one
183  */
184 bool cpuidle_state_is_coupled(struct cpuidle_driver *drv, int state)
185 {
186 	return drv->states[state].flags & CPUIDLE_FLAG_COUPLED;
187 }
188 
189 /**
190  * cpuidle_coupled_state_verify - check if the coupled states are correctly set.
191  * @drv: struct cpuidle_driver for the platform
192  *
193  * Returns 0 for valid state values, a negative error code otherwise:
194  *  * -EINVAL if any coupled state(safe_state_index) is wrongly set.
195  */
196 int cpuidle_coupled_state_verify(struct cpuidle_driver *drv)
197 {
198 	int i;
199 
200 	for (i = drv->state_count - 1; i >= 0; i--) {
201 		if (cpuidle_state_is_coupled(drv, i) &&
202 		    (drv->safe_state_index == i ||
203 		     drv->safe_state_index < 0 ||
204 		     drv->safe_state_index >= drv->state_count))
205 			return -EINVAL;
206 	}
207 
208 	return 0;
209 }
210 
211 /**
212  * cpuidle_coupled_set_ready - mark a cpu as ready
213  * @coupled: the struct coupled that contains the current cpu
214  */
215 static inline void cpuidle_coupled_set_ready(struct cpuidle_coupled *coupled)
216 {
217 	atomic_add(MAX_WAITING_CPUS, &coupled->ready_waiting_counts);
218 }
219 
220 /**
221  * cpuidle_coupled_set_not_ready - mark a cpu as not ready
222  * @coupled: the struct coupled that contains the current cpu
223  *
224  * Decrements the ready counter, unless the ready (and thus the waiting) counter
225  * is equal to the number of online cpus.  Prevents a race where one cpu
226  * decrements the waiting counter and then re-increments it just before another
227  * cpu has decremented its ready counter, leading to the ready counter going
228  * down from the number of online cpus without going through the coupled idle
229  * state.
230  *
231  * Returns 0 if the counter was decremented successfully, -EINVAL if the ready
232  * counter was equal to the number of online cpus.
233  */
234 static
235 inline int cpuidle_coupled_set_not_ready(struct cpuidle_coupled *coupled)
236 {
237 	int all;
238 	int ret;
239 
240 	all = coupled->online_count | (coupled->online_count << WAITING_BITS);
241 	ret = atomic_add_unless(&coupled->ready_waiting_counts,
242 		-MAX_WAITING_CPUS, all);
243 
244 	return ret ? 0 : -EINVAL;
245 }
246 
247 /**
248  * cpuidle_coupled_no_cpus_ready - check if no cpus in a coupled set are ready
249  * @coupled: the struct coupled that contains the current cpu
250  *
251  * Returns true if all of the cpus in a coupled set are out of the ready loop.
252  */
253 static inline int cpuidle_coupled_no_cpus_ready(struct cpuidle_coupled *coupled)
254 {
255 	int r = atomic_read(&coupled->ready_waiting_counts) >> WAITING_BITS;
256 	return r == 0;
257 }
258 
259 /**
260  * cpuidle_coupled_cpus_ready - check if all cpus in a coupled set are ready
261  * @coupled: the struct coupled that contains the current cpu
262  *
263  * Returns true if all cpus coupled to this target state are in the ready loop
264  */
265 static inline bool cpuidle_coupled_cpus_ready(struct cpuidle_coupled *coupled)
266 {
267 	int r = atomic_read(&coupled->ready_waiting_counts) >> WAITING_BITS;
268 	return r == coupled->online_count;
269 }
270 
271 /**
272  * cpuidle_coupled_cpus_waiting - check if all cpus in a coupled set are waiting
273  * @coupled: the struct coupled that contains the current cpu
274  *
275  * Returns true if all cpus coupled to this target state are in the wait loop
276  */
277 static inline bool cpuidle_coupled_cpus_waiting(struct cpuidle_coupled *coupled)
278 {
279 	int w = atomic_read(&coupled->ready_waiting_counts) & WAITING_MASK;
280 	return w == coupled->online_count;
281 }
282 
283 /**
284  * cpuidle_coupled_no_cpus_waiting - check if no cpus in coupled set are waiting
285  * @coupled: the struct coupled that contains the current cpu
286  *
287  * Returns true if all of the cpus in a coupled set are out of the waiting loop.
288  */
289 static inline int cpuidle_coupled_no_cpus_waiting(struct cpuidle_coupled *coupled)
290 {
291 	int w = atomic_read(&coupled->ready_waiting_counts) & WAITING_MASK;
292 	return w == 0;
293 }
294 
295 /**
296  * cpuidle_coupled_get_state - determine the deepest idle state
297  * @dev: struct cpuidle_device for this cpu
298  * @coupled: the struct coupled that contains the current cpu
299  *
300  * Returns the deepest idle state that all coupled cpus can enter
301  */
302 static inline int cpuidle_coupled_get_state(struct cpuidle_device *dev,
303 		struct cpuidle_coupled *coupled)
304 {
305 	int i;
306 	int state = INT_MAX;
307 
308 	/*
309 	 * Read barrier ensures that read of requested_state is ordered after
310 	 * reads of ready_count.  Matches the write barriers
311 	 * cpuidle_set_state_waiting.
312 	 */
313 	smp_rmb();
314 
315 	for_each_cpu(i, &coupled->coupled_cpus)
316 		if (cpu_online(i) && coupled->requested_state[i] < state)
317 			state = coupled->requested_state[i];
318 
319 	return state;
320 }
321 
322 static void cpuidle_coupled_handle_poke(void *info)
323 {
324 	int cpu = (unsigned long)info;
325 	cpumask_set_cpu(cpu, &cpuidle_coupled_poked);
326 	cpumask_clear_cpu(cpu, &cpuidle_coupled_poke_pending);
327 }
328 
329 /**
330  * cpuidle_coupled_poke - wake up a cpu that may be waiting
331  * @cpu: target cpu
332  *
333  * Ensures that the target cpu exits it's waiting idle state (if it is in it)
334  * and will see updates to waiting_count before it re-enters it's waiting idle
335  * state.
336  *
337  * If cpuidle_coupled_poked_mask is already set for the target cpu, that cpu
338  * either has or will soon have a pending IPI that will wake it out of idle,
339  * or it is currently processing the IPI and is not in idle.
340  */
341 static void cpuidle_coupled_poke(int cpu)
342 {
343 	struct call_single_data *csd = &per_cpu(cpuidle_coupled_poke_cb, cpu);
344 
345 	if (!cpumask_test_and_set_cpu(cpu, &cpuidle_coupled_poke_pending))
346 		smp_call_function_single_async(cpu, csd);
347 }
348 
349 /**
350  * cpuidle_coupled_poke_others - wake up all other cpus that may be waiting
351  * @dev: struct cpuidle_device for this cpu
352  * @coupled: the struct coupled that contains the current cpu
353  *
354  * Calls cpuidle_coupled_poke on all other online cpus.
355  */
356 static void cpuidle_coupled_poke_others(int this_cpu,
357 		struct cpuidle_coupled *coupled)
358 {
359 	int cpu;
360 
361 	for_each_cpu(cpu, &coupled->coupled_cpus)
362 		if (cpu != this_cpu && cpu_online(cpu))
363 			cpuidle_coupled_poke(cpu);
364 }
365 
366 /**
367  * cpuidle_coupled_set_waiting - mark this cpu as in the wait loop
368  * @dev: struct cpuidle_device for this cpu
369  * @coupled: the struct coupled that contains the current cpu
370  * @next_state: the index in drv->states of the requested state for this cpu
371  *
372  * Updates the requested idle state for the specified cpuidle device.
373  * Returns the number of waiting cpus.
374  */
375 static int cpuidle_coupled_set_waiting(int cpu,
376 		struct cpuidle_coupled *coupled, int next_state)
377 {
378 	coupled->requested_state[cpu] = next_state;
379 
380 	/*
381 	 * The atomic_inc_return provides a write barrier to order the write
382 	 * to requested_state with the later write that increments ready_count.
383 	 */
384 	return atomic_inc_return(&coupled->ready_waiting_counts) & WAITING_MASK;
385 }
386 
387 /**
388  * cpuidle_coupled_set_not_waiting - mark this cpu as leaving the wait loop
389  * @dev: struct cpuidle_device for this cpu
390  * @coupled: the struct coupled that contains the current cpu
391  *
392  * Removes the requested idle state for the specified cpuidle device.
393  */
394 static void cpuidle_coupled_set_not_waiting(int cpu,
395 		struct cpuidle_coupled *coupled)
396 {
397 	/*
398 	 * Decrementing waiting count can race with incrementing it in
399 	 * cpuidle_coupled_set_waiting, but that's OK.  Worst case, some
400 	 * cpus will increment ready_count and then spin until they
401 	 * notice that this cpu has cleared it's requested_state.
402 	 */
403 	atomic_dec(&coupled->ready_waiting_counts);
404 
405 	coupled->requested_state[cpu] = CPUIDLE_COUPLED_NOT_IDLE;
406 }
407 
408 /**
409  * cpuidle_coupled_set_done - mark this cpu as leaving the ready loop
410  * @cpu: the current cpu
411  * @coupled: the struct coupled that contains the current cpu
412  *
413  * Marks this cpu as no longer in the ready and waiting loops.  Decrements
414  * the waiting count first to prevent another cpu looping back in and seeing
415  * this cpu as waiting just before it exits idle.
416  */
417 static void cpuidle_coupled_set_done(int cpu, struct cpuidle_coupled *coupled)
418 {
419 	cpuidle_coupled_set_not_waiting(cpu, coupled);
420 	atomic_sub(MAX_WAITING_CPUS, &coupled->ready_waiting_counts);
421 }
422 
423 /**
424  * cpuidle_coupled_clear_pokes - spin until the poke interrupt is processed
425  * @cpu - this cpu
426  *
427  * Turns on interrupts and spins until any outstanding poke interrupts have
428  * been processed and the poke bit has been cleared.
429  *
430  * Other interrupts may also be processed while interrupts are enabled, so
431  * need_resched() must be tested after this function returns to make sure
432  * the interrupt didn't schedule work that should take the cpu out of idle.
433  *
434  * Returns 0 if no poke was pending, 1 if a poke was cleared.
435  */
436 static int cpuidle_coupled_clear_pokes(int cpu)
437 {
438 	if (!cpumask_test_cpu(cpu, &cpuidle_coupled_poke_pending))
439 		return 0;
440 
441 	local_irq_enable();
442 	while (cpumask_test_cpu(cpu, &cpuidle_coupled_poke_pending))
443 		cpu_relax();
444 	local_irq_disable();
445 
446 	return 1;
447 }
448 
449 static bool cpuidle_coupled_any_pokes_pending(struct cpuidle_coupled *coupled)
450 {
451 	cpumask_t cpus;
452 	int ret;
453 
454 	cpumask_and(&cpus, cpu_online_mask, &coupled->coupled_cpus);
455 	ret = cpumask_and(&cpus, &cpuidle_coupled_poke_pending, &cpus);
456 
457 	return ret;
458 }
459 
460 /**
461  * cpuidle_enter_state_coupled - attempt to enter a state with coupled cpus
462  * @dev: struct cpuidle_device for the current cpu
463  * @drv: struct cpuidle_driver for the platform
464  * @next_state: index of the requested state in drv->states
465  *
466  * Coordinate with coupled cpus to enter the target state.  This is a two
467  * stage process.  In the first stage, the cpus are operating independently,
468  * and may call into cpuidle_enter_state_coupled at completely different times.
469  * To save as much power as possible, the first cpus to call this function will
470  * go to an intermediate state (the cpuidle_device's safe state), and wait for
471  * all the other cpus to call this function.  Once all coupled cpus are idle,
472  * the second stage will start.  Each coupled cpu will spin until all cpus have
473  * guaranteed that they will call the target_state.
474  *
475  * This function must be called with interrupts disabled.  It may enable
476  * interrupts while preparing for idle, and it will always return with
477  * interrupts enabled.
478  */
479 int cpuidle_enter_state_coupled(struct cpuidle_device *dev,
480 		struct cpuidle_driver *drv, int next_state)
481 {
482 	int entered_state = -1;
483 	struct cpuidle_coupled *coupled = dev->coupled;
484 	int w;
485 
486 	if (!coupled)
487 		return -EINVAL;
488 
489 	while (coupled->prevent) {
490 		cpuidle_coupled_clear_pokes(dev->cpu);
491 		if (need_resched()) {
492 			local_irq_enable();
493 			return entered_state;
494 		}
495 		entered_state = cpuidle_enter_state(dev, drv,
496 			drv->safe_state_index);
497 		local_irq_disable();
498 	}
499 
500 	/* Read barrier ensures online_count is read after prevent is cleared */
501 	smp_rmb();
502 
503 reset:
504 	cpumask_clear_cpu(dev->cpu, &cpuidle_coupled_poked);
505 
506 	w = cpuidle_coupled_set_waiting(dev->cpu, coupled, next_state);
507 	/*
508 	 * If this is the last cpu to enter the waiting state, poke
509 	 * all the other cpus out of their waiting state so they can
510 	 * enter a deeper state.  This can race with one of the cpus
511 	 * exiting the waiting state due to an interrupt and
512 	 * decrementing waiting_count, see comment below.
513 	 */
514 	if (w == coupled->online_count) {
515 		cpumask_set_cpu(dev->cpu, &cpuidle_coupled_poked);
516 		cpuidle_coupled_poke_others(dev->cpu, coupled);
517 	}
518 
519 retry:
520 	/*
521 	 * Wait for all coupled cpus to be idle, using the deepest state
522 	 * allowed for a single cpu.  If this was not the poking cpu, wait
523 	 * for at least one poke before leaving to avoid a race where
524 	 * two cpus could arrive at the waiting loop at the same time,
525 	 * but the first of the two to arrive could skip the loop without
526 	 * processing the pokes from the last to arrive.
527 	 */
528 	while (!cpuidle_coupled_cpus_waiting(coupled) ||
529 			!cpumask_test_cpu(dev->cpu, &cpuidle_coupled_poked)) {
530 		if (cpuidle_coupled_clear_pokes(dev->cpu))
531 			continue;
532 
533 		if (need_resched()) {
534 			cpuidle_coupled_set_not_waiting(dev->cpu, coupled);
535 			goto out;
536 		}
537 
538 		if (coupled->prevent) {
539 			cpuidle_coupled_set_not_waiting(dev->cpu, coupled);
540 			goto out;
541 		}
542 
543 		entered_state = cpuidle_enter_state(dev, drv,
544 			drv->safe_state_index);
545 		local_irq_disable();
546 	}
547 
548 	cpuidle_coupled_clear_pokes(dev->cpu);
549 	if (need_resched()) {
550 		cpuidle_coupled_set_not_waiting(dev->cpu, coupled);
551 		goto out;
552 	}
553 
554 	/*
555 	 * Make sure final poke status for this cpu is visible before setting
556 	 * cpu as ready.
557 	 */
558 	smp_wmb();
559 
560 	/*
561 	 * All coupled cpus are probably idle.  There is a small chance that
562 	 * one of the other cpus just became active.  Increment the ready count,
563 	 * and spin until all coupled cpus have incremented the counter. Once a
564 	 * cpu has incremented the ready counter, it cannot abort idle and must
565 	 * spin until either all cpus have incremented the ready counter, or
566 	 * another cpu leaves idle and decrements the waiting counter.
567 	 */
568 
569 	cpuidle_coupled_set_ready(coupled);
570 	while (!cpuidle_coupled_cpus_ready(coupled)) {
571 		/* Check if any other cpus bailed out of idle. */
572 		if (!cpuidle_coupled_cpus_waiting(coupled))
573 			if (!cpuidle_coupled_set_not_ready(coupled))
574 				goto retry;
575 
576 		cpu_relax();
577 	}
578 
579 	/*
580 	 * Make sure read of all cpus ready is done before reading pending pokes
581 	 */
582 	smp_rmb();
583 
584 	/*
585 	 * There is a small chance that a cpu left and reentered idle after this
586 	 * cpu saw that all cpus were waiting.  The cpu that reentered idle will
587 	 * have sent this cpu a poke, which will still be pending after the
588 	 * ready loop.  The pending interrupt may be lost by the interrupt
589 	 * controller when entering the deep idle state.  It's not possible to
590 	 * clear a pending interrupt without turning interrupts on and handling
591 	 * it, and it's too late to turn on interrupts here, so reset the
592 	 * coupled idle state of all cpus and retry.
593 	 */
594 	if (cpuidle_coupled_any_pokes_pending(coupled)) {
595 		cpuidle_coupled_set_done(dev->cpu, coupled);
596 		/* Wait for all cpus to see the pending pokes */
597 		cpuidle_coupled_parallel_barrier(dev, &coupled->abort_barrier);
598 		goto reset;
599 	}
600 
601 	/* all cpus have acked the coupled state */
602 	next_state = cpuidle_coupled_get_state(dev, coupled);
603 
604 	entered_state = cpuidle_enter_state(dev, drv, next_state);
605 
606 	cpuidle_coupled_set_done(dev->cpu, coupled);
607 
608 out:
609 	/*
610 	 * Normal cpuidle states are expected to return with irqs enabled.
611 	 * That leads to an inefficiency where a cpu receiving an interrupt
612 	 * that brings it out of idle will process that interrupt before
613 	 * exiting the idle enter function and decrementing ready_count.  All
614 	 * other cpus will need to spin waiting for the cpu that is processing
615 	 * the interrupt.  If the driver returns with interrupts disabled,
616 	 * all other cpus will loop back into the safe idle state instead of
617 	 * spinning, saving power.
618 	 *
619 	 * Calling local_irq_enable here allows coupled states to return with
620 	 * interrupts disabled, but won't cause problems for drivers that
621 	 * exit with interrupts enabled.
622 	 */
623 	local_irq_enable();
624 
625 	/*
626 	 * Wait until all coupled cpus have exited idle.  There is no risk that
627 	 * a cpu exits and re-enters the ready state because this cpu has
628 	 * already decremented its waiting_count.
629 	 */
630 	while (!cpuidle_coupled_no_cpus_ready(coupled))
631 		cpu_relax();
632 
633 	return entered_state;
634 }
635 
636 static void cpuidle_coupled_update_online_cpus(struct cpuidle_coupled *coupled)
637 {
638 	cpumask_t cpus;
639 	cpumask_and(&cpus, cpu_online_mask, &coupled->coupled_cpus);
640 	coupled->online_count = cpumask_weight(&cpus);
641 }
642 
643 /**
644  * cpuidle_coupled_register_device - register a coupled cpuidle device
645  * @dev: struct cpuidle_device for the current cpu
646  *
647  * Called from cpuidle_register_device to handle coupled idle init.  Finds the
648  * cpuidle_coupled struct for this set of coupled cpus, or creates one if none
649  * exists yet.
650  */
651 int cpuidle_coupled_register_device(struct cpuidle_device *dev)
652 {
653 	int cpu;
654 	struct cpuidle_device *other_dev;
655 	struct call_single_data *csd;
656 	struct cpuidle_coupled *coupled;
657 
658 	if (cpumask_empty(&dev->coupled_cpus))
659 		return 0;
660 
661 	for_each_cpu(cpu, &dev->coupled_cpus) {
662 		other_dev = per_cpu(cpuidle_devices, cpu);
663 		if (other_dev && other_dev->coupled) {
664 			coupled = other_dev->coupled;
665 			goto have_coupled;
666 		}
667 	}
668 
669 	/* No existing coupled info found, create a new one */
670 	coupled = kzalloc(sizeof(struct cpuidle_coupled), GFP_KERNEL);
671 	if (!coupled)
672 		return -ENOMEM;
673 
674 	coupled->coupled_cpus = dev->coupled_cpus;
675 
676 have_coupled:
677 	dev->coupled = coupled;
678 	if (WARN_ON(!cpumask_equal(&dev->coupled_cpus, &coupled->coupled_cpus)))
679 		coupled->prevent++;
680 
681 	cpuidle_coupled_update_online_cpus(coupled);
682 
683 	coupled->refcnt++;
684 
685 	csd = &per_cpu(cpuidle_coupled_poke_cb, dev->cpu);
686 	csd->func = cpuidle_coupled_handle_poke;
687 	csd->info = (void *)(unsigned long)dev->cpu;
688 
689 	return 0;
690 }
691 
692 /**
693  * cpuidle_coupled_unregister_device - unregister a coupled cpuidle device
694  * @dev: struct cpuidle_device for the current cpu
695  *
696  * Called from cpuidle_unregister_device to tear down coupled idle.  Removes the
697  * cpu from the coupled idle set, and frees the cpuidle_coupled_info struct if
698  * this was the last cpu in the set.
699  */
700 void cpuidle_coupled_unregister_device(struct cpuidle_device *dev)
701 {
702 	struct cpuidle_coupled *coupled = dev->coupled;
703 
704 	if (cpumask_empty(&dev->coupled_cpus))
705 		return;
706 
707 	if (--coupled->refcnt)
708 		kfree(coupled);
709 	dev->coupled = NULL;
710 }
711 
712 /**
713  * cpuidle_coupled_prevent_idle - prevent cpus from entering a coupled state
714  * @coupled: the struct coupled that contains the cpu that is changing state
715  *
716  * Disables coupled cpuidle on a coupled set of cpus.  Used to ensure that
717  * cpu_online_mask doesn't change while cpus are coordinating coupled idle.
718  */
719 static void cpuidle_coupled_prevent_idle(struct cpuidle_coupled *coupled)
720 {
721 	int cpu = get_cpu();
722 
723 	/* Force all cpus out of the waiting loop. */
724 	coupled->prevent++;
725 	cpuidle_coupled_poke_others(cpu, coupled);
726 	put_cpu();
727 	while (!cpuidle_coupled_no_cpus_waiting(coupled))
728 		cpu_relax();
729 }
730 
731 /**
732  * cpuidle_coupled_allow_idle - allows cpus to enter a coupled state
733  * @coupled: the struct coupled that contains the cpu that is changing state
734  *
735  * Enables coupled cpuidle on a coupled set of cpus.  Used to ensure that
736  * cpu_online_mask doesn't change while cpus are coordinating coupled idle.
737  */
738 static void cpuidle_coupled_allow_idle(struct cpuidle_coupled *coupled)
739 {
740 	int cpu = get_cpu();
741 
742 	/*
743 	 * Write barrier ensures readers see the new online_count when they
744 	 * see prevent == 0.
745 	 */
746 	smp_wmb();
747 	coupled->prevent--;
748 	/* Force cpus out of the prevent loop. */
749 	cpuidle_coupled_poke_others(cpu, coupled);
750 	put_cpu();
751 }
752 
753 /**
754  * cpuidle_coupled_cpu_notify - notifier called during hotplug transitions
755  * @nb: notifier block
756  * @action: hotplug transition
757  * @hcpu: target cpu number
758  *
759  * Called when a cpu is brought on or offline using hotplug.  Updates the
760  * coupled cpu set appropriately
761  */
762 static int cpuidle_coupled_cpu_notify(struct notifier_block *nb,
763 		unsigned long action, void *hcpu)
764 {
765 	int cpu = (unsigned long)hcpu;
766 	struct cpuidle_device *dev;
767 
768 	switch (action & ~CPU_TASKS_FROZEN) {
769 	case CPU_UP_PREPARE:
770 	case CPU_DOWN_PREPARE:
771 	case CPU_ONLINE:
772 	case CPU_DEAD:
773 	case CPU_UP_CANCELED:
774 	case CPU_DOWN_FAILED:
775 		break;
776 	default:
777 		return NOTIFY_OK;
778 	}
779 
780 	mutex_lock(&cpuidle_lock);
781 
782 	dev = per_cpu(cpuidle_devices, cpu);
783 	if (!dev || !dev->coupled)
784 		goto out;
785 
786 	switch (action & ~CPU_TASKS_FROZEN) {
787 	case CPU_UP_PREPARE:
788 	case CPU_DOWN_PREPARE:
789 		cpuidle_coupled_prevent_idle(dev->coupled);
790 		break;
791 	case CPU_ONLINE:
792 	case CPU_DEAD:
793 		cpuidle_coupled_update_online_cpus(dev->coupled);
794 		/* Fall through */
795 	case CPU_UP_CANCELED:
796 	case CPU_DOWN_FAILED:
797 		cpuidle_coupled_allow_idle(dev->coupled);
798 		break;
799 	}
800 
801 out:
802 	mutex_unlock(&cpuidle_lock);
803 	return NOTIFY_OK;
804 }
805 
806 static struct notifier_block cpuidle_coupled_cpu_notifier = {
807 	.notifier_call = cpuidle_coupled_cpu_notify,
808 };
809 
810 static int __init cpuidle_coupled_init(void)
811 {
812 	return register_cpu_notifier(&cpuidle_coupled_cpu_notifier);
813 }
814 core_initcall(cpuidle_coupled_init);
815